Optimization Services 2.0 User’s Manual

Robert Fourer, Horand Gassmann, Jun Ma, Kipp Martin, Wayne Sheng
July 10, 2009

Abstract

This is the User’s Manual for the Optimization Services (OS) project. The objective of OS
is to provide a general framework consisting of a set of standards for representing optimization
instances, results, solver options, and communication between clients and solvers in a distributed
environment using Web Services. This COIN-OR project provides C++ and Java source code
for libraries and executable programs that implement OS standards. The OS library includes
a robust solver and modeling language interface (API) for linear, nonlinear and other types of
optimization problems. Also included is the C++ source code for a command line executable
0SSolverService for reading problem instances (OSiL format, nl format, MPS format) and
calling a solver either locally or on a remote server. Finally, both Java source code and a Java
war file are provided for users who wish to set up a solver service on a server running Apache
Tomcat. See the Optimization Services home page http://www.optimizationservices.org
and the COIN-OR Trac page http://projects.coin-or.org/0S for more information.

Contents

1 The Optimization Services (OS) Project

2 Quick Roadmap

3 Downloading the OS Project

3.1
3.2

3.3
3.4
3.5

4.1

4.2

4.3

Obtaining the Binaries L
Auxiliary Software for Working with the OS Project
3.2.1 Subversion (SVN)
3.2.2 wget ... e
3.2.3 Windows development platform 00000
3.2.4 CH+ compiler
3.2.5 Fortran Compiler
3.26 flexandbison
327 doxygen ... e
Obtaining OS Source Code Using Subversion (SVN)
Obtaining the OS Source Code From a Tarball or Zip File
Obtaining source for the OS Project API
4 Building and Testing the OS Project
Building the OS Project on Unix/Linux Systems
4.1.1 Building the OS Project on Mac OS X
Building the OS Project on Windows
4.2.1 Microsoft Visual Studio (MSVS)
4.2.2 Visual Studio Examples Distribution
423 Cygwin oL
4.2.4 MIinGW e e
4.2.5 MSYS . .
VPATH Installations
COIN-OR Projects Requiring Fortran

4.4

4.5

4.6
4.7
4.8

4.4.1 Building Ipopt, Bonmin and Couenne in Unix or a Unix-like environment . .

4.4.2 Ipopt and Microsoft Visual Studio
Other Third-Party Software
4.5.1 AMPL Solver Library (ASL)
4.5.2 GLPK . . . o
4.5.3 Cplex . . . o
4.5.4 LINDO
4.5.5 MATLAB
4.5.6 Library Paths
Bug Reporting
Documentation L
Platforms e

5 The OS Project Components

13
13
15
16
16
17
18
20
20
21
22
23
24
24
25
25
26
26
26
26
27
27
28

28

6 OS Protocols 31

6.1 OSiL (Optimization Services instance Language) 31

6.2 OSrL (Optimization Services result Language) 33

6.3 OSoL (Optimization Services option Language) 35

6.4 OSnL (Optimization Services nonlinear Language) 35

6.5 OSpL (Optimization Services process Language) 35

7 The OSSolverService 36

7.1 OSSolverService Input Parameters, 36

7.2 Solving Problems Locally 38

7.3 Solving Problems Remotely with Web Services 39

7.3.1 The solve Service Method 40

7.3.2 The send Service Method 41

7.3.3 The retrieve Service Method 44

7.3.4 The getJobID Service Method 44

7.3.5 The knock Service Method 45

7.3.6 The kill Service Method 46

7.3.7 Summary and description of the APT 47

7.4 Passing Options to Solvers L o 48

8 Setting up a Solver Service with Apache Tomcat 51
9 OS Support for Modeling Languages, Spreadsheets and Numerical Computing

Software 54

9.1 AMPL Client: Hooking AMPL to Solvers 54

9.2 GAMSIlinks: Hooking GAMS to Solvers 55

9.3 MATLAB: Using MATLAB to Build and Run OSiLL Model Instances 56

10 The OS Library Components 61

10.1 OSAgent o o e 61

10.2 OSCommonlnterfaces e 61

10.2.1 The OSInstance Class 62

10.2.2 Creating an 0SInstance Object 62

10.2.3 Mapping Rules e 62

10.2.4 The OSExpressionTree OSnLNode Classes 63

10.2.5 The OSOption Class i i i e e e e 66

10.3 OSModellnterfaces e 66

10.3.1 Converting MPS Files 67

10.3.2 Converting AMPL nl Files. 67

10.4 OSParsers o e e 67

10.5 OSSolverInterfaces 69

10.6 OSUtils e 70

11 The OSInstance API 70

11.1 Get Methods e 71

11.2 Set Methods e 72

11.3 Calculate Methods 72

11.4 Modifying an 0SInstance Object L o 72

11.5 Printing a Model for Debugging o 73

12 Code samples to illustrate the OS Project

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

13 The
13.1
13.2

13.3

14 File

Algorithmic Differentiation: Using the OS Algorithmic Differentiation Methods . . .
Instance Generator: Using the OSInstance API to Generate Instances
branchCutPrice: Using Bep o oo
OSModDemo: Modifying an In-Memory 0SInstance Object.
OSSolverDemo: Building In-Memory Solver and Option Objects
OSDemoResult: Building In-Memory Result Object to Display Solver Result
OSCglCuts: Using the OSInstance API to Generate Cutting Planes

OSRemoteTest: Calling a Remote Server

template L L e

OS Algorithmic Differentiation Implementation

Algorithmic Differentiation: Brief Review
Using OSlInstance Methods: Low Level Calls
13.2.1 First Derivative Reverse Sweep Calculations
13.2.2 Second Derivative Reverse Sweep Calculations
Using OSInstance Methods: High Level Calls,
13.3.1 Sparsity Methods
13.3.2 Function Evaluation Methods
13.3.3 Gradient Evaluation Methods
13.3.4 Hessian Evaluation Methods0

Upload: Using a File Upload Package

15 Appendix — Sample OSiL files

15.1 OSiL representation for problem given in (1)—(4) (p.31)
15.2 OSIiL representation for problem given in (21)-(24) (p.82)
Bibliography

List of Figures

0O ULk W

= = === O
DU WO

The OS distribution root directory.
The OS directory. o e
The <variables> element for the example (1)—(4).
The Variables complexType in the OSiLL schema.
The Variable complexType in the OSiL schema.
The <linearConstraintCoefficients> element for constraints (2) and (3).

The <quadraticCoefficients> element for constraint (2).
The <nl1> element for the nonlinear part of the objective (1).
Aldocal call to solve..
A remote call to solve. L L
Downloading the instance from a remote source.
The OS Communication Methods
Creating an 0SInstance Object
The 0SInstance class o
The InstanceDataclass e
The <variables> element as an 0SInstance object

73
75
75
76
76
76
80
80
81
81

81
81
82
86
86
87
87
88
90
91

91

93
93
95

96

17 Conceptual expression tree for the nonlinear part of the objective (1). 65
18 The function calculation method for the plus node class with polymorphism 65

List of Tables

1 Tested Platforms for Solvers 28
2 Platform Description oL o 28
3 Solver configurations 37

1 The Optimization Services (OS) Project

The objective of Optimization Services (OS) is to provide a general framework consisting of a set
of standards for representing optimization instances, results, solver options, and communication
between clients and solvers in a distributed environment using Web Services. This COIN-OR
project provides source code for libraries and executable programs that implement OS standards.
See the COIN-OR Trac page http://projects.coin-or.org/0S or the Optimization Services
Home Page http://www.optimizationservices.org for more information.

Like other COIN-OR projects, OS has a versioning system that ensures end users some degree
of stability and a stable upgrade path as project development continues. The current stable version
of OS is 2.0, and the current stable release is 2.0.1, based on trunk version 2093.

The OS project provides the following:

1. A set of XML based standards for representing optimization instances (OSiL), optimization
results (OSrL), and optimization solver options (OSoL). There are other standards, but these
are the main ones. The schemas for these standards are described in Section 6.

2. Open source libraries that support and implement many of the standards.

3. A robust solver and modeling language interface (API) for linear and nonlinear optimization
problems. Corresponding to the OSiLL problem instance representation there is an in-memory
object, 0SInstance, along with a collection of get (), set(), and calculate() methods for
accessing and creating problem instances. This is a very general API for linear, integer, and
nonlinear programs. Extensions for other major types of optimization problems are also in
the works. Any modeling language that can produce OSiL can easily communicate with any
solver that uses the OSInstance API. The 0SInstance object is described in more detail in
Section 11. The nonlinear part of the API is based on the COIN-OR project CppAD by Brad
Bell (http://projects.coin-or.org/CppAD) but is written in a very general manner and
could be used with other algorithmic differentiation packages. More detail on algorithmic
differentiation is provided in Section 13.

4. A command line executable 0SSolverService for reading problem instances (OSiL format,
AMPL nl format, MPS format) and calling a solver either locally or on a remote server. This
is described in Section 7.

5. Utilities that convert AMPL nl files and MPS files into the OSiL XML format. This is
described in Section 10.3.

6. Standards that facilitate the communication between clients and optimization solvers using
Web Services. In Section 10.1 we describe the 0SAgent part of the OS library that is used to
create Web Services SOAP packages with OSiLL instances and contact a server for solution.

7. An executable program 0SAmplClient that is designed to work with the AMPL modeling
language. The 0SAmplClient appears as a “solver” to AMPL and, based on options given in
AMPL, contacts solvers either remotely or locally to solve instances created in AMPL. This
is described in Section 9.1.

8. Server software that works with Apache Tomcat and Apache Axis. This software uses Web
Services technology and acts as middleware between the client that creates the instance and
the solver on the server that optimizes the instance and returns the result. This is illustrated
in Section 8.

9. A lightweight version of the project, 0SCommon for modeling language and solver developers
who want to use OS API, readers and writers, without the overhead of other COIN-OR
projects or any third-party software. For information on how to download 0SCommon see
Section 3.5.

2 Quick Roadmap
If you want to:

e Download the OS source code or binaries — see Section 3.
e Download just the OS API, readers and writers — see Section 3.5.
e Build the OS project from the source code — see Section 4.

e Use the OS library to build model instances or use solver APIs — see Sections 10.3, 10.5
and 11.

e Use the OSSolverService to read files in nl, OSiL, or MPS format and call a solver locally or
remotely — see Section 7.

e Use AMPL to solve problems either locally or remotely with a COIN-OR solver, Cplex,
GLPK, or LINDO - see Section 9.1.

e Build a remote solver service using Apache Tomcat — see Section 8.

e Use MATLAB to generate problem instances in OSiL format and call a solver either remotely
or locally — see Section 9.3.

e Use the OS library for algorithmic differentiation (in conjunction with COIN-OR CppAD) —
see Section 13.

e Use modeling languages to generate model instances in OSiLL format — see Section 9.

3 Downloading the OS Project

The OS project is an open-source project with source code under the Common Public License (CPL).
See http://www.ibm.com/developerworks/library/os-cpl.html. This project was initially cre-
ated by Robert Fourer, Jun Ma, and Kipp Martin. The code has been written primarily by Horand
Gassmann, Jun Ma, and Kipp Martin. Horand Gassmann, Jun Ma, and Kipp Martin are the
COIN-OR project leaders and active developers for the OS project. Most users will only be inter-
ested in the obtaining the binaries, which we describe in section 3.1. The remaining sections of
this chapter deal with obtaining the source code for the project, which will be of interest mostly to
developers.

3.1 Obtaining the Binaries

If the user does not wish to compile source code, the OS library, OSSolverService executable and
Tomcat server software configuration are available at http://www.coin-or.org/download/binary/0S/
in binary format. The binary distribution for the OS library and executables follows the following
naming convention:

0S-version_number-platform-compiler-build_options.tgz (zip)

For example, OS Release 1.1.0 compiled with the Intel 9.1 compiler on an Intel 32-bit Linux system
is:

0S-1.1.0-1inux-x86-icc9.1.tgz

For more detail on the naming convention and examples see:
https://projects.coin-or.org/CoinBinary/wiki/ArchiveNamingConventions

After unpacking the tgz or zip archives, the following folders are available.
bin — this directory has the executables 0SSolverService and 0SAmplClient.
include — the header files that are necessary necessary in order to link against the OS library.
lib — the libraries that are necessary for creating applications that use the OS library.
share — license and author information for all the projects used by the OS project.

Files are also provided for an Apache Tomcat Web server along with the associated Web service
that can read SOAP envelopes with model instances in OSiL format and/or options in OSoL
format, call the 0SSolverService, and return the optimization result in OSrL format. The naming
convention for the server binary is

0S-server-version_number.tgz (.zip)
For example, the files associated with OS server release 1.0.0 are in the binary distribution
0S-server-1.0.0.tgz

There is no platform information given since the server and related binaries were written in Java.
The details and use of this distribution are described in Section 8.

Finally for Windows users we provide Visual Studio project files (and supporting libraries and
header files) for building projects based on the OS library and libraries used by the OS project.
The binary for this is named

0S-version_number-VisualStudio.zip
For example, the necessary files associated with OS stable 2.0 are in the binary distribution
0S-1.1-VisualStudio.zip

The binaries provided are based on Visual Studio Express 2008. See Section 4.2.2 for more detail.

3.2 Auxiliary Software for Working with the OS Project

Compiling and modifying the OS project source code can be a daunting task, made somewhat
easier by the inclusion of configure scripts and makefiles in the distribution of the source. However,
additional software packages are sometimes needed or convenient, especially on Windows. We
collect in this section a number of recommended packages that we ourselves use in the development
and maintenance of the code.

3.2.1 Subversion (SVN)

The Subversion version control package is used to obtain the C++ source code. Users with Unix
operating systems will most likely have a command line svn client. If an svn client is not present,
see http://subversion.tigris.org to download an svn client. For Windows users we recom-
mend the svn client TortoiseSVN. (See http://tortoisesvn.tigris.org.) Upon installation the
TortoiseSVN client is integrated within the Windows Explorer.

3.2.2 wget

Certain third-party software (see section 4.5) is available in source form but is not contained in the
OS project distribution. Scripts are included to download this code using the wget executable.
A Windows version of wget is available at

http://www.christopherlewis.com/WGet/wget-1.11.4b.zip

There is no need to rebuild the code locally, which relies on several levels of other software.

3.2.3 Windows development platform

A development platform is essential for users on Windows. OS Project provides support for
Microsoft Visual Studio (see Section 4.2.1) and several unix emulators, including Cygwin (Sec-
tion 4.2.3), MinGW (Section 4.2.4) and MSYS (Section 4.2.5). Download instructions for all of
these packages are included in the sections indicated.

3.2.4 CH+ compiler

A C++ compiler is needed to compile the OS source. This should be present under all unix instal-
lations. If no C4++ compiler is available on the system, the free gcc compiler can be downloaded
from http://gcc.gnu.org.

Microsoft Visual Studio can be configured with the Microsoft c1 compiler, which also works
under MSYS. MinGW is normally configured with the Gnu compiler collection (gcc), although
it can also be used with the c¢1 compiler. However, extreme care is needed if the last option is
followed. gcc and cl have very different header files, and it is important to set up the $PATH
variable correctly in order not to confuse the header files. In our experience, best results are
achieved with the minimal unix-like installation, MSYS, and the Microsoft c1 compiler.

3.2.5 Fortran Compiler

The COIN-OR project Ipopt (see section 4.4) and several of the third-party software described in
section 4.5 include Fortran subroutines, which must be compiled with a Fortran compiler if the user
wants to include these projects in the build. A free Fortran 95 compiler can be downloaded from
http://www.g95.0rg. For Fortran 77 code (which includes the Blas, HSL and Lapack projects —
but not Mumps) it might be sufficient to download the £2¢ translator which turns Fortran 77 code
into code that can subsequently be fed into a C compiler. The £2c¢ translator and the £2¢ runtime
library can be downloaded from http://www.netlib.org/f2c. Further details are available in the
file BuildTools/compile_f2c/INSTALL, which is part of the OS distribution.

3.2.6 flex and bison

Users who want to edit the source code in the parsers described in Section 10.4 will need the
additional tools flex and bison. These can be downloaded from

http://sourceforge.net/project/showfiles.php?group_id=2435&package_id=67879
and are listed at the Web site as

bison-2.3-MSYS-1.0.11-1
flex-2.5.33-MSYS-1.0.11-1
regex-0.12-MSYS-1.0.11-1

The last one contains an important DLL, msys-regex-0.dll, without which flex will not start.

3.2.7 doxygen

Doxygen (http://www.doxygen.org) is a document production system that can be used to prepare
documentation for the OS project and related software. For details, see section 4.7.

3.3 Obtaining OS Source Code Using Subversion (SVIN)

For the rest of this documentation, we assume that the name of the root directory of the OS
project distribution is COIN-0S. The COIN-0S directory structure is illustrated in Figure 1. OS
source code is mainly contained inside of the OS subdirectory. Other first level subdirectories are
mostly external projects (COIN-OR or third-party) that the OS project depends on.

For Users on a Unix system such as Linux, Solaris, Mac OS X, etc., the source code is obtained
as follows. In a command window execute:

svn co https://projects.coin-or.org/svn/0S/releases/1.1.1 COIN-0S

It is possible that on some systems you may get a message such as:

Error validating server certificate for ’https://projects.coin-or.org:443’:

- The certificate is not issued by a trusted authority. Use the

fingerprint to validate the certificate manually!

Certificate information:

- Hostname: projects.coin-or.org

- Valid: from Jun 10 22:51:18 2007 GMT until Jun 15 21:00:28 2009 GMT

- Issuer: 07969287, http://certificates.godaddy.com/repository, GoDaddy.com, Inc.,
Scottsdale, Arizomna, US

- Fingerprint: £7:26:0f:bb:e1:94:a5:23:7f:5c:cb:c3:9a:¢c4:74:51:e5:¢7:4d:29
(R)eject, accept (t)emporarily or accept (p)ermanently?

If so, select (p) and you should not get this message again.

For more information on downloading the OS project or other COIN-OR projects using SVN
see

http://projects.coin-or.org/BuildTools/wiki/user-download#DownloadingtheSourceCode.

10

-

COIN-O5

— -
BuildTools
-

"l:bc
Cagl

.
m—
CainUtils
——————"
éﬁpad
———
.i:.)ala
=
dékydﬂc
=
5yLP
=
Ipopt
m—

-——

05

i:)si
—
SYI&IIF*HGNY
-

ThirdParty

—

aoc
—
ex.é. mples
—

ing

md
—
MSVisualStudio
——
Sﬂur:IEmES
=
e
———
sl'.'_-.-'.lle.sheets
—

test

Vol

—

wsdl

Figure 1: The OS distribution root directory.

11

On Windows with TortoiseSVN, create a directory COIN-0S in the desired location and right-
click on this directory. Select the menu item SVN Checkout ... and in the textbox “URL of
Repository” give the URL for the version of the OS project you wish to check out, for instance,

https://projects.coin-or.org/svn/0S/stable/1.1.
Now build the project as described in Section 4.

The Java source code for setting up a solver service with Apache Tomcat is checked out as
follows:

svn co https://projects.coin-or.org/svn/0S/branches/0Sjava 0SJava

For more detail on running a Tomcat solver service see Section 8.

3.4 Obtaining the OS Source Code From a Tarball or Zip File

The OS source code can also be obtained from either a tarball or zip file. This may be preferred for
users who are not managing other COIN-OR projects and wish to only work with periodic release
versions of the code. In order to obtain the code from a Tarball or Zip file do the following.

Step 1: In a browser open the link http://www.coin-or.org/download/source/0S/. Listed at
this page are files in the format:

0S-release_number.tgz
0S-release_number.zip

Step 2: Click on either the tgz or zip file and download to the desired directory.
Step 3: Unpack the files. For tgz do the following at the command line:

gunzip 0S-release_number.tgz
tar -xvf 0S-release_number.tar

Windows users should be able to double-click on the file 0S-release_number.zip and
have the directory unpacked.

Step 4: (optional) Move the folder 0S-release_number to the desired location and rename it to
COIN-0S.

Now build the project as described in Section 4.

3.5 Obtaining source for the OS Project API

The OS project is very extensive and relies on many other COIN-OR projects. This may not
be desirable for modeling language and solver developers who just wish to use the OS API in
conjunction with their modeling language or solver. Hence there is also an “OS lite” download that
consists of all the code for the OS API and for reading and writing instance and solution files. We
refer to this version of the project as 0SCommon. To get the current version of 0SCommon use the
svn command

svn co https://projects.coin-or.org/svn/0S/branches/0Scpp/0SCommon 0SCommon

12

4 Building and Testing the OS Project

Once the OS source code is obtained, the OS libraries, 0SSolverService executable, and test
examples can be built. We describe how to do this on Unix/Linux systems (see Section 4.1) and
on Windows (see Section 4.2).

4.1 Building the OS Project on Unix/Linux Systems

In order to build the OS project on Unix/Linux systems do the following.

Step 1:

Step 2:

Step 3:

Step 4:

Connect to the OS distribution root directory (COIN-0S in Figure 1).

Run the configure script that will generate the makefiles. If you are running on a machine
with a Fortran 95 compiler present (e.g., gfortran), and you have previously downloaded
the third-party software packages BLAS and Mumps (see Section 4.4), run the command

./configure
otherwise use
./configure COIN_SKIP_PROJECTS="Ipopt Bonmin"

as COIN-OR’s Ipopt and Bonmin projects currently use Fortran to compile some of its
dependent libraries.

Notes:

e [f gfortran is not present and you wish to build the nonlinear solver Ipopt see the
instructions in Section 4.4.

e When using configure you may wish to use the -C option. This instructs configure
to use a cache file, config.cache, to speed up configuration by remembering and
reusing the results of tests already performed.

e For more information and options on the ./configure script see

https://projects.coin-or.org/BuildTools/wiki/user-configure#PreparingtheCompilation.

e You cannot apply COIN_SKIP_PROJECTS to Cbc, Clp, Cgl, CoinUtils, CppAD, or Osi.
These projects must be present.

Run the make files.

make

Run the unitTest.

make test

Depending upon which third-party software you have installed, the result of running the

unitTest should look something like (we have included the third-party solver LINDO in
the test results below; it is not part of the default build):

13

Step 5:

HERE ARE THE UNIT TEST RESULTS:

Solved problem avion2.o0sil with Ipopt

Solved problem HSO71.0sil with Ipopt

Solved problem rosenbrockmod.osil with Ipopt

Solved problem parincQuadratic.osil with Ipopt

Solved problem parincLinear.osil with Ipopt

Solved problem callBack.osil with Ipopt

Solved problem callBackRowMajor.osil with Ipopt

Solved problem parincLinear.osil with Clp

Solved problem p0033.0sil with Cbc

Solved problem p0033.o0sil with SYMPHONY

Solved problem parincLinear.osil with DyLP

Solved problem volumeTest.osil with Vol

Solved problem p0033.0sil with GLPK

Solved problem lindoapiaddins.osil with Lindo

Solved problem rosenbrockmod.osil with Lindo

Solved problem parincQuadratic.osil with Lindo

Solved problem wayneQuadratic.osil with Lindo

Test the MPS -> 0SiL converter on parinc.mps using Cbc

Test the AMPL nl -> 0SiL converter on hs71.nl using LINDO

Test a problem written in b64 and then converted to OSInstance

Successful test of 0SiL parser on problem parincLinear.osil

Successful test of 0OSrL parser on problem parincLinear.osrl

Successful test of prefix and postfix conversion routines on problem rosenbrockmod.osil
Successful test of all of the nonlinear operators on file testOperators.osil
Successful test of AD gradient and Hessian calculations on problem CppADTestLag.osil

All tests completed successfully

If you do not see
All tests completed successfully

then you have not passed the unitTest and hopefully some semi-intelligible error message
was given.

Install the libraries and executables.
make install

This will install all of the libraries in the 1ib directory. In particular, the main OS library
1ib0S along with the libraries of the other COIN-OR projects that download with the
OS project will get installed in the 1ib directory. In addition the make install com-
mand will install four executable programs in the bin directory. One of these binaries is
0SSolverService which is the main OS project executable. This is described in Section 7.
In addition Clp, Cbc, Ipopt and SYMPHONY get installed in the bin directory. Necessary
header files are installed in the include directory. In this case, bin, 1ib and include
are all subdirectories of where ./configure is run. If the user wants these files installed
elsewhere, then configure should specify the prefix of these directories. That is,

./configure --prefix=prefixDirectory COIN_SKIP_PROJECTS="Ipopt Bonmin"

14

For example, running
./configure --prefix=/usr/local COIN_SKIP_PROJECTS="Ipopt Bonmin"
and then running make and make install will put the relevant files in

/usr/local/bin
/usr/local/include
/usr/local/lib

Run an Example! If make test works, proceed to Section 7 to run the key executable,
0SSolverService.

4.1.1 Building the OS Project on Mac OS X

When building OS on Mac OS X 10.5.x (Leopard) it may be necessary to add the following to the
configure line

ADD_CXXFLAGS="-mmacosx-version-min=10.4"
ADD_CFLAGS="-mmacosx-version-min=10.4"
ADD_FFLAGS="-mmacosx-version-min=10.4"
LDFLAGS="-flat_namespace"

Also, the Mac OS X operating system does not come configured with the gcc compiler. Users
wanting to build the OS project on the Mac should do the following;:

e Install the Xcode developer tools. These are available on the install DVD that comes with
the machine or at the Apple developer site. See

http://developer.apple.com/technology/xcode.html
e Install a Fortran compiler. We have had good luck with the GNU gfortran compiler. Plat-

form specific binaries for the various Mac platforms (Leopard and Tiger, Intel and Power PC)
are obtained at

http://hpc.sourceforge.net/

We followed the instructions and installed the binary using the command
sudo tar -xvf gcc-bin.tar -C /

We have also successfully used the fink project, see
http://www.finkproject.org/
to download and build gce/g++/gfortran compilers from source code.

15

4.2 Building the OS Project on Windows

There are a number of options open to Windows users. First, if you wish to work with source code
we recommend downloading the svn client, TortoiseSVN. (See section 3.2.1.) With TortoiseSVN
in the Windows Explorer connect to the directory (e.g., COIN-OS) where you wish to put the OS
code. Right-click on the directory and select SVN Checkout. In the textbox, URL of Repository
give the URL for the version of the OS project you wish to checkout, e.g.,

https://projects.coin-or.org/svn/0S/stable/1.1.

Also, if you plan to build any of the projects contained in ThirdParty (e.g., ASL) we recommend
using wget. (See section 3.2.2.)

4.2.1 Microsoft Visual Studio (MSVS)

Microsoft Visual Studio solution and project files are provided for users of Windows and the Mi-
crosoft Visual Studio IDE. We currently support Versions 8 and 9. These versions are also sometimes
referred to by their (approximate) release dates, which is 2008 for Version 9 and 2005 for Version 8.
In addition there is a free version of the Visual Studio IDE C++ compiler, called Visual C++
Express Edition.

The following steps are necessary to build the OS project using the Microsoft Visual Studio
IDE.

Step 0. If the C++ compiler cl is already installed, go to to Step 2.

Step 1. Download and install the Visual C++ Express Edition, which is available for free at Mi-
crosoft’s web site. Version 9is at http://www.microsoft.com/express/download/#webInstall.
This download contains the Microsoft c1 C++ compiler along with necessary libraries.

Step 2. The part of the OS library responsible for communication with a remote server depends
on some underlying Windows socket header files and libraries. These files are part of the
commercial for-pay version, but are not included in the Visual C++ Express download. If
you have the Express Edition, it is necessary to also download and install the Windows
Platform SDK, which can be found at

http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en.

Step 3. In the COIN-OR/OS directory you will find the folder MSVisualStudio, which contains root
directories organized by the version of Visual Studio. We currently provide solution files
for Version 8 and Version 9. Each contains the file 0S.s1ln and project files for building the
unitTest (0STest.vecproj), the OSSolverService (0SSolverService.vcproj) and the OS
library (1ib0S.vcproj). The Microsoft Visual Studio files are automatically downloaded
with an SVN checkout. They are also contained in the tarballs (see Section 3.4).

Open the solution file or the individual project files (for instance by double-clicking on
them in Windows Explorer) and select Build from the menu bar.

Step 4. Run the unitTest. Connect to the directory COIN-OR/0S/test and run either the release
or debug version of the unitTest executable.

16

4.2.2 Visual Studio Examples Distribution

Many users will not be interested in actually building the OS project from source code. At the link
https://projects.coin-or.org/CoinBinary/browser/binary/0S are binaries for using the OS
project. There are also Visual Studio project files for building applications that use the precompiled
OS libraries. In particular, download and unpack the file

0S-version_number-VisualStudio.zip

This zip archive contains a bin directory that holds the executable 0SSolverService.exe. The
0SSolverService.exe is configured to run, out-of-the-box, the following solvers.

e Bonmin
e Clp
e Chc
e Couenne

e DyLP

Ipopt
SYMPHONY

e Vol

The libraries necessary to run these solvers are included in the download. No additional soft-
ware is necessary to solve models with these solvers! See Section 7 for details on how to use the
0SSolverService.exe executable for solving optimization problems.

The bin directory also contains the 0SAmplClient.exe executable. If the user has a Windows
version of AMPL, then AMPL can be used to invoke all of the solvers mentioned above through
the 0SAmplClient. For details see Section 9.1.

This zip archive also contains a 1ib directory that holds libraries for a number of COIN-OR
projects, including OS. It is possible to build customized optimization applications that link against
these libraries. We provide several examples that use various aspects of the OS project in order to
build customized applications. The Visual Studio example solution file is named osExamples.sln
and it is in the folder MSVisualStudioOSExamples. The solution file osExamples.sln currently
contains five projects (examples).

addCuts — this project illustrates the use of the Cbc and Cgl projects. A file (p0033.0sil)
in OSiL format is used to create an OSInstance object. The linear programming relaxation is
solved. Then, Gomory, simple rounding, and knapsack cuts are added using Cgl. The model
is then optimized using Cbc.

algorithmicDiff — this project illustrates the calculate() method calls in the 0SInstance
class. These calculate() calls are used to calculate function values, gradients, and Hessians.
These methods make underlying calls to the CppAD project.

instanceGenerator — this project shows how to build an instance using the 0SInstance
class. A number of key nonlinear operators are illustrated.

17

osRemoteTest — this project shows how to call a remote solver using Web Services. Im-
portant: This project links to wsock32.1ib, which is not part of the Visual Studio Express
Package. It is necessary to also download and install the Windows Platform SDK, which can
be found at

http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en.
Refer to Section 4.2.1.

osModDemo — this provides yet another illustration of how to build an optimization instance
using the 0SInstance class. In addition, this project illustrates how to modify and in-memory
instance. Finally, this project shows how to build solver objects and use the solver object to
optimize the problem. In this particular case, the Clp solver is used.

In addition, in the zip archive there is a folder MSVisualStudioTemplate. This project contains
a simple Hello World demo in the code demoCode.cpp. However, the solution file is configured to
link with all of the libraries in the 1ib directory and points to all of the header files in the include
directory. The user can simply replace what is currently in demoCode . cpp with his or her own code.

4.2.3 Cygwin

Cygwin provides a Unix emulation environment for Windows. It comes with numerous tools and
libraries including the gcc compilers. See www.cygwin.com. Cygwin can be used with the Gnu
Compiler Collection (gcc) or with the Microsoft c1 compiler.

Using Cygwin with gcc: With Cygwin and the corresponding gcc compiler the OS project
is built exactly as described in Section 4.1. If you previously downloaded Cygwin with gnome make
version 3.81-1, you must obtain a fixed 3.81 version from http://www.cmake.org/files/cygwin/make. exe.
(See also the discussion at http://projects.coin-or.org/BuildTools/wiki/current-issues.)

Using Cygwin with Microsoft cl: Users who are extremely adventuresome and have an
abundance of free time on their hands may wish to use Cygwin with the Microsoft c1 compiler to
build the OS project. The following steps have led to a successful build.

Step 1: Download Cygwin from http://www.cygwin.com/setup.exe and install.

Step 2: Download Visual Studio Express C++ at
http://www.microsoft.com/express/download/#webInstall.
Step 3: The part of the OS library responsible for communication with a remote server depends

on some underlying Windows socket header files and libraries. Therefore it is necessary to
also download and install the Windows Platform SDK. Download the necessary files at

http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en
and install.

Step 4: Set the Cygwin search path configuration. This is important. This step is necessary to
insure that Cygwin looks for compilers, linkers, etc in the correct order. The right order

of directories is: MSVS command directories, Cygwin command directories, and finally
Windows command directories. This is illustrated below.

e First, Cygwin should look in the Microsoft Visual Studio directories. If a standard
Visual Studio install is done, the following should be part of the Cygwin search path.

18

Step 5:

:/cygdrive/c/Program Files/Microsoft Visual Studio 8/Common7/IDE
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/VC/bin
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/Common7/Tools
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/SDK/v2.0/Bin
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/VC/vcpackages
:/cygdrive/c/WINDOWS/Microsoft.NET/Framework/v2.0.50727

e Second, Cygwin should next search its command directories. The following is typical
of a standard install.

/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin

e Third, Cygwin should search the Windows specific command directories. The follow-
ing is typical.
:/cygdrive/c/WINDOWS/system32:/cygdrive/c/WINDOWS
:/cygdrive/c/WINDOWS/System32/Wbem: /cygdrive/c/Program Files/ATI Technologies/ATI Control Panel
:/cygdrive/c/Program Files/Common Files/Roxio Shared/DLLShared/
:/cygdrive/c/Program Files/QuickTime/QTSystem/:/cygdrive/c/Program Files/Microsoft SQL Server/90/Tools/binn/
:/cygdrive/c/Program Files/Microsoft Platform SDKfor Windows Server 2003 R2/Bin/
:/cygdrive/c/Program Files/Microsoft Platform SDK for Windows Server 2003 R2/Bin/WinNT/
:/cygdrive/c/Program Files/SSH Communications Security/SSH Secure Shell
:/cygdrive/c/Program Files/Microsoft Platform SDK for Windows Server 2003 R2/Bin/
:/cygdrive/c/Program Files/Microsoft Platform SDK for Windows Server 2003 R2/Bin/WinNT/
:/cygdrive/d/SSH

Open the Cygwin shell and check the value of $PATH. If directories don’t appear in an order
described above, then the $PATH value needs to be reset.

library.

Build the OS project (or any COIN-OR project). If you wish to avoid the FORTRAN

related issues you should build without Ipopt, Bonmin and Couenne. Issue the following
command in the project root.

./configure COIN_SKIP_PROJECTS="Ipopt Bonmin Couenne" --enable-doscompile=msvc

If you wish to build with Ipopt or Bonmin and Couenne, which depend on it, then FOR-
TRAN is required — and Visual Studio does not ship with a FORTRAN compiler. The
following is a work-around. (See also section 4.4.)

Step a. Obtain one of the Harwell Subroutine Library (HSL) routines ma27ad. f or MA57ad. f.
See http://www.cse.scitech.ac.uk/nag/hsl/. Put the Harwell code in the di-
rectory ThirdParty/HSL. (Note the case in the file names, which is relevant in a
unix-like environment.)

Step b. Follow the instructions for downloading and installing the £2c compiler from Netlib.
The installation instructions for this are in the INSTALL file in

BuildTools/compile_f2c

Step c. Run the configure script

./configure --enable-doscompile=msvc

19

4.2.4 MinGW

MinGW (Minimalist GNU for Windows) is a set of runtime headers to be used with the GNU gcc
compilers for Windows. See www.mingw.org. As with Cygwin, the OS project is built exactly as
described in Section 4.1.

The MinGW installation includes the gcc compiler, which can interact negatively with the
Microsoft c1 compiler. For that reason it is advisable to download the even smaller installation
MSY'S (see next section) if you intend to build any software with the Microsoft Visual Studio suite.

4.2.5 MSYS

MSYS (Minimal SYStem) provides an easy way to use the COIN-OS build system with compil-
ers/linkers of your own choice, such as the Microsoft command line C++ c1 compiler. MSYS is
intended as an alternative to the DOS command window. It is an application that gives the user
a Bourne shell that can run configure scripts and Makefiles. No compilers come with MSYS. In
the Cygwin, MinGW, and MSYS hierarchy, it is at the bottom of the food chain in terms of tools
provided. However, it is very easy to use and build the OS project with MSYS. In this discussion
we assume that the user has downloaded the OS source code (most likely with TortoiseSVN) and
that the c1 compiler is present. The project is built using the following steps.

Note:

e If you wish to use the third-party software with MSY'S it is best to get wget. See section 3.2.2.

e Do not put any imbedded blanks in the path to the OS project.
Execute the following steps to use the Microsoft C++ c1 compiler with MSYS.

Step 1. Download MSYS at

http://downloads.sourceforge.net/mingw/MSYS-1.0.11.exe?modtime=1079444447&big_mirror=1

and install. Double-clicking on the MSY'S icon will open a Bourne shell window.

Step 2. Download Visual Studio Express C++ at

http://www.microsoft.com/express/download/#webInstall
and install.
Step 3. The part of the OS library responsible for communication with a remote server depends

on some underlying Windows socket header files and libraries. Therefore it is necessary to
also download and install the Windows Platform SDK. Download the necessary files at

http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en

and install.

Step 4. Set the Visual Studio environment variables so that paths to the necessary libraries and
header files are recognized. Assuming that a standard installation was done for the Visual
Studio Express and the Windows Platform SDK set the variables as follows:

PATH=C:\Program Files\Microsoft Visual Studio 8\Common7\IDE;
C:\Program Files\Microsoft Visual Studio 8\VC\BIN;
C:\Program Files\Microsoft Visual Studio 8\Common7\Tools;

20

C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\bin;
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;
C:\Program Files\Microsoft Visual Studio 8\VC\VCPackages

INCLUDE=C:\Program Files\Microsoft Visual Studio 8\VC\INCLUDE;
C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Include

LIB = C:\Program Files\Microsoft Visual Studio 8\VC\LIB;
C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\lib;
C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Lib

The environment variables can be set using the System Properties in the Windows
Control Panel.

Step 5. In the MSYS command window connect to the root of the OS project and run the configure
script followed by make as described in Section 4.1.

Run an Example! If make test works, proceed to Section 7 to run the key executable,
0SSolverService.

Microsoft Windows users who wish to obtain MSYS for building the OS project can download
the appropriate software at http://sourceforge.net/project/showfiles.php?group_id=2435.
The user may find this Web site confusing. It is only necessary to download what is referred to as
the MSYS Base System. As of this writing the most recent version is MSYS-1.0.11. This file is
listed as bash-3.1-MSYS-1.0.11 and the binary download is
http://downloads.sourceforge.net/mingw/bash-3.1-MSYS-1.0.11-1.tar.bz2?modtime=1195140582&big_mirror=1

This will provide the necessary Bourne shell for executing the configure scripts. Users who want
to edit the source code in the parsers described in Section 10.4 will need the additional tools flex
and bison as described in section 3.2.6.

4.3 VPATH Installations

It is possible to build the OS project in a directory that is different from the directory where the
source code is present. This is called a VPATH compilation. A VPATH compilation is very useful if
you wish to build several versions (e.g., debug and non-debug versions, or versions with availability
of various combinations of third-party software) of the OS project from a single copy of the source
code.

For example, assume you wish to build a debug version of the OS project in the directory
vpath-debug and that ../COIN-0S is the path to the root of the OS project distribution. Create
the vpath-debug directory, leaving it empty for the moment. From the vpath-debug directory,
run configure as follows:

../COIN-0S/configure --enable-debug
After you run configure, the OS distribution directory structure (see Figure 1) will be mirrored
in the vpath-debug directory, and all of the necessary Makefiles will be copied there. Next from

the vpath-debug directory execute

make

21

and all of the libraries created will be in their respective directories inside vpath-debug and not
../COIN-0S.

Notes:

1. If you have already run the configure script inside the ../COIN-0S directory, you cannot do
a VPATH build until you have run

make distclean

in the ../COIN-0S directory.

2. Note also that configure automatically detects the presence of third-party software and
prepares the configuration and make files accordingly. Once you have downloaded, e.g., Blas,
you must specify

configure COIN_SKIP_PROJECTS="ThirdParty/Blas"

if you want to recreate the default configuration.

3. If you work with the trunk version of OS, it is possible that files are added to and removed
from the distribution due to development activities. These files are not recognized properly
by the system unless it is reconfigured by running

make distclean

followed by

./configure

4.4 COIN-OR Projects Requiring Fortran

Ipopt, Bonmin and Couenne are COIN-OR projects (projects.coin-or.org/Ipopt, projects.
coin-or.org/Bonmin, projects.coin-or.org/Couenne) and are included in the download with
the OS project. However, unlike the other COIN-OR projects that download with OS, these projects
require third-party software that is based on FORTRAN and is not part of the default distribution.
Care must therefore be taken if you wish to build OS with the Ipopt, Bonmin or Couenne solver. It
is further important to know that there is a dependency between these three projects. Ipopt is the
only one using Fortran directly, but Bonmin relies on Ipopt for its solver, and Couenne is similarly
dependent on both Ipopt and Bonmin. Neither Bonmin nor Couenne can therefore be installed in
isolation.
You can exclude all three of these projects from the OS build by adding the option

COIN_SKIP_PROJECTS="Ipopt Bonmin Couenne"

to the configure script.

22

4.4.1 Building Ipopt, Bonmin and Couenne in Unix or a Unix-like environment

If you are working in Unix or one of the Unix-like environments described in section 4.2, you can
proceed as follows. To get the necessary third-party software, first connect into the ThirdParty
directory. Then execute the following commands:

$ cd Blas

$./get.Blas

$ cd ../Lapack
$./get.Lapack
$ cd ../Mumps
$./get.Mumps

Alternatively, you can connect into the project root COIN-0S and execute the script . /get.A11ThirdParty.
This will also get the AMPL ASL libraries (see section 4.5.1).

What you do next depends upon whether or not a FORTRAN compiler is present, and if so,
which version of FORTRAN. There are several options. See also

http://www.coin-or.org/Ipopt/documentation/node13.html

Option 1. If you have a Fortran 95 compiler that recognizes embedded preprocessor statements
(such as gfortran — see http://gcc.gnu.org/fortran/ or g95 — see http://www.g95.org),
you can simply run the configure script and the FORTRAN compiler will be detected
and the Ipopt, Bonmin and Couenne projects will be built.

Option 2. If your Fortran 95 compiler cannot deal with the preprocessor statements embedded in
the Mumps code, it may be possible to run the Fortran code through a preprocessor
such as cpp. In the worst case you may have to resort to manual edits before you can
build Ipopt — or see Option 3.

Option 3. If you have a FORTRAN 77 compiler, you can replace Mumps by one of the Harwell
Subroutine Library (HSL) routines ma27ad.f or MA57ad.f. (Unix is case-sensitive, so
note the file names carefully.) See

http://wuw.cse.scitech.ac.uk/nag/hsl/.

You must obtain the Harwell code and put it in the directory ./ThirdParty/HSL. Now
run the configure script as described in Section 4.1.

Note that the Harwell Subroutine Library is not governed by the Common Public Li-
cense. It is the user’s responsibility to ensure adherence to appropriate copyright and
distribution agreements.

Option 4. If you do not have a FORTRAN compiler and do not wish to obtain one, you can use
the £2c¢ translator from Netlib to translate HSL to C. The installation instructions for
f2c are in the INSTALL file in
BuildTools/compile_f2c

Two important points:

e Option 4 also requires that one of the Harwell Subroutine Library (HSL) routines ma27ad.f
or MA57ad.f be present in the HSL directory.

23

e If you run configure with the -—enable-debug option on Windows, then when building the
vcf2c.1ib, use the command line

CFLAGS = -MTd -DUSE_CLOCK -DMSDOS -DNO_ONEXIT

4.4.2 Ipopt and Microsoft Visual Studio

We regret that at present we cannot distribute a solution file that can detect and reliably process
the necessary third-party software to build Ipopt. Users who need Ipopt on a Windows system are
advised to download the binary build as documented in section 3.1.

4.5 Other Third-Party Software

This section deals with other third-party software not available for download at www.coin-or.org.
The OS project distribution includes the COIN-OR, projects Bonmin, Cbc, Clp, Cgl, CoinUtils,
Couenne, CppAD, DyLP, Ipopt, Osi, SYMPHONY, and Vol. (For details on any of these projects see
the COIN-OR web site at http://www.coin-or.org/projects/.) However, the project is also
designed to work with several other open source and commercial software projects. In the OS
distribution directory structure (see Figure 1), there is a ThirdParty directory, which does not
contain anything other than get.xxxx scripts and other utilities. The source code for any of these
packages must be downloaded separately using the get.xxxx scripts, as configure will not build
these projects without the source code being present. After the download, configure will recognize
the presence of these files and will configure the makefiles accordingly.

If the user wants to exclude these projects from the build after they have been downloaded and
detected, a new configure is required with instructions to skip them. For instance, if the user
experiences problems with the Fortran compiler and its interaction with the system, the following
command can be used to skip all projects that use Fortran code:

configure COIN_SKIP_PROJECTS="Ipopt Bonmin Couenne ThirdParty/Blas ThirdParty/Lapack \
ThirdParty/Mumps"

In the inc subdirectory of the 0S directory, there is a header file, config_os.h that defines the
values of a number of

COIN_HAS_XXXXX

variables.
Many of the other header files contain #include statements inside #ifdef statements. For
example,

#ifdef COIN_HAS_LINDO

#include "LindoSolver.h"

#endif

#ifdef COIN_HAS_GLPK

#include <0siGlpkSolverInterface.hpp>
#endif

If the project is configured with the simple ./configure command given in Step 2 on page 13
with no arguments, then in the config_os.h header file the variables associated with the third-
party software described in this subsection will be undefined. For example:

24

/* Define to 1 if the Cplex package is used */
/* #undef COIN_HAS_CPX */

unlike the configured COIN-OR projects that appear as

/* Define to 1 if the Clp package is used */
#define COIN_HAS_CLP 1

In the following subsections we describe how to incorporate various third-party packages into the
OS project and see to it that the

COIN_HAS_XXXXX

variable is defined in config_os.h.

Make sure to run configure after you have downloaded the required source code, in order to
modify the makefiles appropriately. It is important to note that even though there are multiple
files named configure in various subdirectories, you should only ever run the master configure in
the distribution root directory, possibly accessed from a VPATH as in Section 4.3. It sets important
global variables and will call all other necessary configure files in turn. You may also wish to view
http://projects.coin-or.org/BuildTools/wiki/user-configure#CommandLineArgumentsforconfigure
for more information on command line arguments that are illustrated in the subsections below.

4.5.1 AMPL Solver Library (ASL)

The OS library contains a class, 0Sn120sil (see Section 10.3.2), and the program 0SAmplClient
(see Section 9.1) that require the use of the AMPL Solver Library (ASL). See http://netlib.sandia.gov/ampl/
and http://www.ampl.com. Users with a Unix system should locate the ASL folder that is part
of the distribution. The ASL folder is in the ThirdParty folder which is in the distribution root
folder. Locate and execute the get.ASL script. Do this prior to running the configure script. The
configure script will then build the correct ASL library.
Microsoft Visual Studio users should note that 0SAmplClient is distributed as part of the
binary distribution. For reasons explained in section 4.4.2 it is currently not possible to distribute
a solution file to let users build their own executable.

4.5.2 GLPK

GLPX is a an open-source linear and integer-programming solver from the GNU organization. See
http://www.gnu.org/software/glpk/. In order to use GLPK with OS, either execute get.A11ThirdParty
(see Section 4.4) or connect to ThirdParty/Glpk and execute get.Glpk. Once the source code has
been downloaded, run configure, followed by a make, as explained in Section 4.1 or Section 4.3.

Users on MSVS can download the source by anonymous ftp from

ftp://ftp.gnu.org/gnu/glpk/glpk-version_number.tar.gz

At the time of this writing, the most up-to-date version is 4.32, which can be found at
ftp://ftp.gnu.org/gnu/glpk/glpk-4.32.tar.gz

25

4.5.3 Cplex

Cplex is a linear, integer, and quadratic solver. See http://www.ilog.com/products/cplex/.
Cplex does not provide source code and you can only download the platform dependent binaries.
After installing the binaries and include files in an appropriate directory, run configure to point
to the include and library directory. An example is given below:

configure --with-cplex-1lib="-L$(CPLEXDIR)/1ib/$(SYSTEM)/$(LIBFORMAT) $(CPLEX_LIBS)"
--with-cplex-incdir= $(CPLEXDIR)/include

You may also need the following environment variables (if they are not already set). The
following are values we used in a working implementation.

SYSTEM =i86_linux2_glibc2.3_gcc3.2

LIBFORMAT =static_pic_mt

CPLEXDIR =/usr/local/ilog/cplex81/include/ilcplex

CPLEXLIBPATH= -L$ (CPLEXDIR)/1ib/$(SYSTEM)/$ (LIBFORMAT)

CPLEXINCDIR = $(CPLEXDIR)/include

CPLEX_LIBS=-1lcplex -lilocplex -1lm -lpthread
ILOG_HOME=/usr/local/ilog/cplex81/bin/i86_linux2_glibc2.3_gcc3.2
ILOG_LICENSE_FILE=/usr/local/ilog/ilm/access.ilm
PATH=#**:/usr/local/ilog/cplex81/bin/i86_linux2_glibc2.3_gcc3.2: x**
CLASSPATH=: /usr/local/ilog/cplex81/bin/i86_linux2_glibc2.3_gcc3.2:

4.5.4 LINDO

LINDO is a commercial linear, integer, and nonlinear solver. See www.lindo.com. LINDO does not
provide source code and you can only download the platform dependent binaries. After installing
the binaries and include files in an appropriate directory, run configure to point to the include
and library directory. An example is given below:

configure --with-lindo-incdir=/home/kmartin/files/code/lindo/linux/include
--with-lindo-1ib="-L/home/kmartin/files/code/lindo/linux/1ib -1lindo -lmosek"

4.5.5 MATLAB
Install MATLAB on the client machine and follow the instruction in Section 9.3.

4.5.6 Library Paths

After running configure as described above, on Unix systems, it will be necessary to set the
environment variables LD_LIBRARY_PATH or DYLD_LIBRARY_PATH (on Mac OS X) to point to the
location of the installed third-party libraries in the case that the libraries are dynamic and not
static libraries.

26

4.6 Bug Reporting
Bug reporting is done through the project Trac page. This is at
http://projects.coin-or.org/0S

To report a bug, you must be a registered user. For instructions on how to register, go to
http://www.coin-or.org/usingTrac.html

After registering, log in and then file a trouble ticket by going to

http://projects.coin-or.org/0S/newticket

4.7 Documentation

If you have Doxygen (www.doxygen.org) available (the executable doxygen should be in the path
command) then executing

make doxydoc

in the project root directory will result in the Doxygen documentation being generated and stored
in the doxydoc folder in the project root.
In order to view the documentation, open a browser and open the file

projectroot/doxydoc/html/index.html

By default, running Doxygen will generate documentation for only the OS project. Documen-
tation will not be generated for the other COIN-OR projects in the project root. In the doxydoc
folder is a configuration file doxygen.conf. This configuration file contains the EXCLUDE parameter

EXCLUDE = Bonmin \
Cbc\
Cgl \
Clp \
CoinUtils \
Couenne \
cppad \
SYMPHONY \
Vol \
DyLP \
ThirdParty \
Osi \
include

This file can be edited, and any project for which documentation is desired, can be deleted from
the EXCLUDE list.

27

Table 1: Tested Platforms for Solvers

Mac | Linux | Cyg-gcc | Msys-cl | MinGW-gce | MSVS
Bonmin X X X e X b
Chc X X X X X X
Cgl X X X X X X
Clp b b b X X X
Couenne X X X X
Cplex X
DyLP X b X X b b
Glpk X b b b b
Ipopt X b b X X X
Lindo X X X X
MATLAB X
OSAmplClient X X X X
SYMPHONY X X X X X X
Vol X b b X b b
Table 2: Platform Description
Operating System Compiler Hardware
Mac Mac OS X 10.4.9 gee 4.0.1 Power PC
Mac Mac OS X 10.4.10 gee 4.0.1 Intel
Linux Ubuntu 7.10 gee 4.1.2 Dell Intel 32 bit chip
Cyg-gce Windows 2003 Server gce 4.2.2 Dell Intel 32 bit chip
Msys-cl Windows XP Visual Studio 8 and 9 | Dell Intel 32 bit chip
MinGW-gcc Windows XP gee 3.4.2 Dell Intel 32 bit chip
MSVS Windows XP Visual Studio 8 and 9 | Dell Intel 32 bit chip

4.8 Platforms

The build process described in Section 4.1 has been tested on Linux, Mac OS X, and on Windows
using MinGW/MSYS and Cygwin. The gcc/g++ and Microsoft ¢l compiler have been tested.
A number of solvers have also been tested with the OS library. For a list of tested solvers and
platforms see Table 1. More detail on the platforms listed in Table 1 is given in Table 2. For a list
of other platforms testing the OS project see

https://projects.coin-or.org/TestTools/wiki/NightlyBuildInAction.

5 The OS Project Components

The directories in the project root are outlined in Figure 1.
If you download the OS package, you get these additional COIN-OR projects. The links to the
project home pages are provided below and give more information on these projects.

e Bonmin - http://projects.coin-or.org/Bonmin

e BuildTools - http://projects.coin-or.org/BuildTools

28

Cbc - http://projects.coin-or.org/Cbc

Cgl - http://projects.coin-or.org/Cgl

Clp - http://projects.coin-or.org/Clp

CoinUtils - http://projects.coin-or.org/CoinUtils
Couenne - http://projects.coin-or.org/Couenne
CppAD - http://projects.coin-or.org/CppAD

DyLP - http://projects.coin-or.org/DyLP

Ipopt - http://projects.coin-or.org/Ipopt

Osi - http://projects.coin-or.org/Osi

SYMPHONY - http://projects.coin-or.org/SYMPHONY

Vol - http://projects.coin-or.org/Vol

The following directories are also in the project root.

bin - after executing make install the bin directory will contain 0SSolverService, clp,
cbc, cbc-generic and symphony.

Data - this directory contains numerous test problems that are used by the unitTests of the
COIN-OR projects just mentioned.

doxydoc - is a folder for documentation.

include - is a directory for header files. If the user wishes to write code to link against any
of the libraries in the 1ib directory, it may be necessary to include these header files.

1ib - is a directory of libraries. After running make install the OS library along with all
other COIN-OR libraries are installed in 1ib.

ThirdParty - is a directory for third-party software. For example, if AMPL related software
such as 0SAmplClient is used, then certain AMPL libraries need to be present. This should
go into the ASL directory in ThirdParty.

The directories in the OS directory are outlined in Figure 2. The OS directories include the
following:

applications - is a directory that holds the 0SAmplClient and 0SFileUpload applications
in subdirectories called, respectively, amplClient and fileUpload. See Section 9.1 and 14.

data - is a directory that holds test problems. These test problems are used by the unitTest
of the OS Project. Many of these files are also used to illustrate how the 0SSolverService
works. See Section 7.

doc - is the directory with documentation, including this OS User’s Manual.

examples - is a directory with code examples that illustrate various aspects of the OS project.
These are described in Section 12.

29

05

— —

=

amplClient

app:l in:.:alir:nns
— -
data
—-
I:ﬂ.ﬂc

—l

—
fileUpload
-
alg{:;i.lﬁmicDiﬁ
—

instanceGenerator

examples
— -

ing

- -—

L -
asTestCode
—

'xi

MSVisualStudio
———————

schemas

-—
ste
—-

sly.l-éaheets
—-

test

Ve
— -
Dgﬁgenl
—-
DSC{:mi;";ﬁn Interfaces
I = .
DSConfig.h
-
DSMn-c-i:r-a.I Interfaces
—-
DE-:I.’.arsrers
-
OSSUI;é.rlmerfaces

e

OSSolverService.cpp

—

0SUtils

Figure 2: The OS directory.

30

e inc - is the directory with the config'os.h file which has information about which projects are
included in the distribution.

e m4 - is a directory that contains macro scripts written in the m4 language for auto configura-
tion.

e MSVisualStudio - is a directory that contains folders for the solution files for the Microsoft
Visual Studio IDE. The subdirectories are organized by the version of Visual Studio. We
currently provide solution files for versions 8 and 9.

e schemas - is the directory that contains the W3C XSD (see www.w3.org) schemas that are
behind the OS standards. These are described in more detail in Section 6.

e src - is the directory with all of the source code for the OS Library and for the executable
0SSolverService. The OS Library components are described in Section 10.

e stylesheets - this directory contains the XSLT stylesheet that is used to transform the
solution instance in OSrL format into HTML so that it can be displayed in a browser.

e test - this directory contains the unitTest.

e wsdl - is a directory of WSDL (Web Services Discovery Language) files. These are used to
specify the inputs and outputs for the methods and other invocation details provided by a Web
service. The most relevant file for the current version of the OS project is 0ShL.wsdl. This
describes the set of inputs and outputs for the methods implemented in the 0SSolverService.
See Section 7.

6 OS Protocols

The objective of OS is to provide a set of standards for representing optimization instances, results,
solver options, and communication between clients and solvers in a distributed environment using
Web Services. These standards are specified by W3C XSD schemas. The schemas for the OS
project are contained in the schemas folder under the 0S root. There are numerous schemas in this
directory that are part of the OS standard. For a full description of all the schemas see Ma [4]. We
briefly discuss the standards most relevant to the current version of the OS project.

6.1 OSiL (Optimization Services instance Language)

OSiLL is an XML-based language for representing instances of large-scale optimization problems
including linear programs, mixed-integer programs, quadratic programs, and very general nonlinear
programs.

OSiL stores optimization problem instances as XML files. Consider the following problem
instance, which is a modification of an example of Rosenbrock [5]:

Minimize (1 — z0)? + 100(z; — 22)? + 92 (1)
s.t. xo +10.522 + 11.723 + 3xoz; < 25 (2)
In(xzox1) + 7.520 + 5.2521 > 10 (3)

xo,21 >0 (4)

There are two continuous variables, o and 1, in this instance, each with a lower bound of 0.
Figure 3 shows how we represent this information in an XML-based OSiL file. Like all XML files,

31

this is a text file that contains both markup and data. In this case there are two types of markup,
elements (or tags) and attributes that describe the elements. Specifically, there are a <variables>
element and two <var> elements. Each <var> element has attributes 1b, name, and type that
describe properties of a decision variable: its lower bound, “name”, and domain type (continuous,
binary, general integer).

To be useful for communication between solvers and modeling languages, OSiL instance files
must conform to a standard. An XML-based representation standard is imposed through the
use of a W3C XML Schema. The W3C, or World Wide Web Consortium (www.w3.org), promotes
standards for the evolution of the web and for interoperability between web products. XML Schema
(www.w3.org/XML/Schema) is one such standard. A schema specifies the elements and attributes
that define a specific XML vocabulary. The W3C XML Schema is thus a schema for schemas; it
specifies the elements and attributes for a schema that in turn specifies elements and attributes for
an XML vocabulary such as OSiL.. An XML file that conforms to a schema is called valid for that
schema.

By analogy to object-oriented programming, a schema is akin to a header file in C++ that
defines the members and methods in a class. Just as a class in C+4 very explicitly describes
member and method names and properties, a schema explicitly describes element and attribute
names and properties.

Figure 4 is a piece of our schema for OSiL.. In W3C XML Schema jargon, it defines a complez-
Type, whose purpose is to specify elements and attributes that are allowed to appear in a valid
XML instance file such as the one excerpted in Figure 3. In particular, Figure 4 defines the com-
plexType named Variables, which comprises an element named <var> and an attribute named
numberOfVariables. The numberOfVariables attribute is of a standard type positiveInteger,
whereas the <var> element is a user-defined complexType named Variable. Thus the complex-
Type Variables contains a sequence of <var> elements that are of complexType Variable. OSiL’s
schema must also provide a specification for the Variable complexType, which is shown in Figure 5.

In OSiL the linear part of the problem is stored in the <linearConstraintCoefficients>
element, which stores the coefficient matrix using three arrays as proposed in the earlier LPFML

<variables numberOfVariables="2">
<var 1lb="0" name="x0" type="C"/>
<var 1b="0" name="x1" type="C"/>
</variables>

Figure 3: The <variables> element for the example (1)—(4).

<xs:complexType name="Variables">
<Xs:sequence>
<xs:element name="var" type="Variable" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="numberOfVariables"
type="xs:positiveInteger" use="required"/>
</xs:complexType>

Figure 4: The Variables complexType in the OSiLi schema.

32

schema [2]. There is a child element of <linearConstraintCoefficients> to represent each array:
<value> for an array of nonzero coefficients, <rowIdx> or <colIdx> for a corresponding array of
row indices or column indices, and <start> for an array that indicates where each row or column
begins in the previous two arrays.

The quadratic part of the problem is represented in Figure 7.

The nonlinear part of the problem is given in Figure 8.

The complete OSiL representation can be found in the Appendix (Section 15.1).

6.2 OSrL (Optimization Services result Language)

OSrL is an XML-based language for representing the solution of large-scale optimization problems
including linear programs, mixed-integer programs, quadratic programs, and very general nonlinear
programs. An example solution (for the problem given in (1)—(4)) in OSrL format is given below.

<?xml version="1.0" encoding="UTF-8"7>
<7xml-stylesheet type = "text/xsl"
href = "/Users/kmartin/Documents/files/code/cpp/0Scpp/COIN-0SX/0S/stylesheets/0SrL.xslt"7?>
<osrl xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/0SiL.xsd">
<general>
<generalStatus type="normal"/>
<serviceName>Solved using a LINDO service</serviceName>
<instanceName>Modified Rosenbrock</instanceName>
</general>
<optimization numberOfSolutions="1" numberOfVariables="2" number0OfConstraints="2"
number0f0Objectives="1">
<solution targetObjectiveldx="-1">
<status type="optimal"/>
<variables>
<values numberQfVar="2">

<xs:complexType name="Variable">
<xs:attribute name="name" type="xs:string" use="optional'/>
<xs:attribute name="init" type="xs:string" use="optional"/>
<xs:attribute name="type" use="optional" default="C">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="C"/>
<xs:enumeration value="B"/>
<xs:enumeration value="I"/>
<xs:enumeration value="S"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="1b" type="xs:double" use="optional" default="0"/>
<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>
</xs:complexType>

Figure 5: The Variable complexType in the OSiL. schema.

33

<linearConstraintCoefficients numberOfValues="3">
<start>
<el>0</el><el>2</el><el>3</el>
</start>
<rowldx>
<el>0</el><el>1</el><el>1</el>
</rowldx>
<value>
<el>1.</el><el>7.5</el><el>5.25</el>
</value>
</linearConstraintCoefficients>

Figure 6: The <linearConstraintCoefficients> element for constraints (2) and (3).

<quadraticCoefficients numberOfQuadraticTerms="3">
<qTerm idx="0" idxOne="0" idxTwo="0" coef="10.5"/>
<qTerm idx="0" idxOne="1" idxTwo="1" coef="11.7"/>
<qTerm idx="0" idxOne="0" idxTwo="1" coef="3."/>
</quadraticCoefficients>

Figure 7: The <quadraticCoefficients> element for constraint (2).

<var idx="0">0.87243</var>
<var idx="1">0.741417</var>
</values>
<other numberOfVar="2" name="reduced costs" description="the variable reduced costs">
<var idx="0">-4.06909e-08</var>
<var idx="1">0</var>
</other>
</variables>
<objectives>
<values numberQ0f0Obj="1">
<obj idx="-1">6.7279</obj>
</values>
</objectives>
<constraints>
<dualValues number0fCon="2">
<con idx="0">0</con>
<con 1idx="1">0.766294</con>
</dualValues>
</constraints>
</solution>
</optimization>

! Hide this stuff for now... !The OSrL schema is also used to return timer and system statistics
that are sometimes !gathered by the solvers themselves or generated as a result of using the knock
Imethod. (See the example given in Section 7.3.5.)

34

<nl idx="-1">
<plus>
<power>
<minus>
<number value="1.0"/>
<variable coef="1.0" idx="0"/>
</minus>
<number value="2.0"/>
</power>
<times>
<power>
<minus>
<variable coef="1.0" idx="0"/>
<power>
<variable coef="1.0" idx="1"/>
<number value="2.0"/>
</power>
</minus>
<number value="2.0"/>
</power>
<number value="100"/>
</times>
</plus>
</nl>

Figure 8: The <nl> element for the nonlinear part of the objective (1).

6.3 OSoL (Optimization Services option Language)

OSoL is an XML-based language for representing options that get passed to an optimization solver
or a hosted optimization solver Web service. It contains both standard options for generic services
and extendable option tags for solver-specific directives. Several examples of files in OSoL format
are presented in Section 7.3.

6.4 OSnL (Optimization Services nonlinear Language)

The OSnL schema is imported by the OSiL schema and is used to represent the nonlinear part of an
optimization instance. This is explained in greater detail in Section 10.2.4. Also refer to Figure 8
for an illustration of elements from the OSnL standard. This figure represents the nonlinear part
of the objective in equation (1), that is,

(1 —20) +100(z; — 23)2.

6.5 OSpL (Optimization Services process Language)

This is a standard used to enquire about dynamic process information that is kept by the Opti-
mization Services registry. The string passed to the knock method is in the OSpL format. See the
example given in Section 7.3.5.

35

7 The OSSolverService

The 0SSolverService is a command line executable designed to pass problem instances in either
OSiL, AMPL nl, or MPS format to solvers and get the optimization result back to be displayed
either to standard output or a specified browser. The 0SSolverService can be used to invoke
a solver locally or on a remote server. It can work either synchronously or asynchronously. At
present six service methods are implemented, solve, send, retrieve, getJobID, knock and kill.
These methods are explained in more detail in section 7.3.

7.1 OSSolverService Input Parameters

At present, the 0SSolverService takes the following parameters. The order of the parameters is
irrelevant. Not all the parameters are required. However, if the solve or send service methods
(see Section 7.3) are invoked a problem instance location must be specified.

-osil xxx.0sil This is the name of the file that contains the optimization instance in OSiL
format. It is assumed that this file is available in a directory on the machine that is running
0SSolverService. If this option is not specified then the instance location must be specified
in the OSoL solver options file.

-osol xxx.0sol This is the name of the file that contains the solver options. It is assumed
that this file is available in a directory on the machine that is running 0SSolverService. It
is not necessary to specify this option.

-osrl xxx.osrl This is the name of the file that contains the solver solution. A valid file
path must be given on the machine that is running 0SSolverService. It is not necessary to
specify this option. If this option is not specified then the solver solution is displayed to the
screen.

-serviceLocation url This is the URL of the solver service. It is not required, and if not
specified it is assumed that the problem is solved locally.

-serviceMethod methodName This is the method on the solver service to be invoked. The
options are solve, send, kill, knock, getJobID, and retrieve. The use of these options is
illustrated in the examples below. This option is not required, and the default value is solve.

-mps xxx.mps This is the name of the mps file if the problem instance is in mps for-
mat. It is assumed that this file is available in a directory on the machine that is running
0SSolverService. The default file format is OSiLL so this option is not required.

-nl xxx.nl This is the name of the AMPL nl file if the problem instance is in AMPL nl
format. It is assumed that this file is available in a directory on the machine that is running
0SSolverService. The default file format is OSiL so this option is not required.

-solver solverName Possible values of this parameter depend on the installation. The
default configurations can be read off from Table 3. Other solvers supported (if the necessary
libraries are present) are cplex (Cplex through COIN-OR Osi), glpk (GLPK through COIN-
OR Osi) and lindo (LINDO). If no value is specified for this parameter, then cbc is the
default value of this parameter for the solve or send service method.

36

Table 3: Solver configurations

binaries UNIX build | MSVS build
(Section 3.1) | (Section 4.1) | (Section 4.2)
Bonmin X x! x12
Chbc X X X
Clp X X X
Couenne X x! —
DyLP X X —
Ipopt X x! x1?
SYMPHONY X X X
Vol X X X
Explanations:

'Requires third-party software to be downloaded
2Requires Fortran compiler (see Section 4.4)

-browser browserName This parameter is a path to the browser on the local machine.
If this optional parameter is specified then the solver result in OSrL format is transformed
using XSLT into HTML and displayed in the browser.

-config pathToConfigureFile This parameter specifies a path on the local machine to
a text file containing values for the input parameters. This is convenient for the user not
wishing to constantly retype parameter values.

The input parameters to the 0SSolverService may be given entirely in the command line or
in a configuration file. We first illustrate giving all the parameters in the command line. The
following command will invoke the Clp solver on the local machine to solve the problem instance
parincLinear.osil. When invoking the commands below involving 0SSolverService we assume
that 1) the user is connected to the directory where the 0SSolverService executable is located,
and 2) that ../data/osilFiles is a valid path to COIN-0S/data/osilFiles. If the OS project
was built successfully, then there is a copy of 0SSolverService in COIN-0S/0S/src. The user may
wish to execute 0SSolverService from this src directory so that all that follows is correct in terms
of path definitions.

./0SSolverService -solver clp -osil ../data/osilFiles/parincLinear.osil

Alternatively, these parameters can be put into a configuration file. Assume that the configu-
ration file of interest is testlocalclp.config. It would contain the two lines of information

-osil ../data/osilFiles/parinclLinear.osil
-solver clp

Then the command line is
./0SSolverService -config ../data/configFiles/testlocalclp.config

Windows users should note that the folder separator is always the forward slash (‘/’) instead
of the customary backslash (‘\’).

Some Rules:

37

1. When using the send () or solve () methods a problem instance file location must be specified
either at the command line, in the configuration file, or in the <instanceLocation> element
in the OSoL options file.

2. The default serviceMethod is solve if another service method is not specified. The service
method cannot be specified in the OSoL options file.

3. If the solver option is not specified, the COIN-OR solver Cbc is the default solver used. In
this case an error is thrown if the problem instance has quadratic or other nonlinear terms.

4. If the options send, kill, knock, getJobID, or retrieve are specified, a serviceLocation
must be specified.

Parameters specified in the configure file are overridden by parameters specified at the command
line. This is convenient if a user has a base configure file and wishes to override only a few options.
For example,

./0S8SolverService -config ../data/configFiles/testlocalclp.config -solver lindo
or
./0S8SolverService -solver lindo -config ../data/configFiles/testlocalclp.config

will result in the LINDO solver being used even though Clp is specified in the testlocalclp
configure file.

7.2 Solving Problems Locally

Generally, when solving a problem locally the user will use the solve service method. The solve
method is invoked synchronously and waits for the solver to return the result. This is illustrated in
Figure 9. As illustrated, the 0SSolverService reads a file on the hard drive with the optimization
instance, usually in OSiL format. The optimization instance is parsed into a string which is passed
to the 0SLibrary (see 10), which is linked with various solvers. The result of the optimization is
passed back to the 0SSolverService as a string in OSrL format.

Here is an example of using a configure file, testlocal.config, to invoke Ipopt locally using
the solve command.

-o0sil ../data/osilFiles/parincQuadratic.osil

-solver ipopt

-serviceMethod solve

-browser /Applications/Firefox.app/Contents/Mac0S/firefox
-osrl /Users/kmartin/temp/test.osrl

The first line of testlocal.config gives the local location of the OSiL file, parincQuadratic.osil,
that contains the problem instance. The second parameter, -solver ipopt, is the solver to be
invoked, in this case COIN-OR Ipopt. The third parameter -serviceMethod solve is not re-
ally needed, but included only for illustration. The default solver service is solve. The fourth
parameter is the location of the browser on the local machine. It will write the OSrL file on
the local machine using the path specified by the value of the osrl parameter, in this case
/Users/kmartin/temp/test.osrl.

Parameters may also be contained in an XML-file in OSoL format. In the configuration file
testlocalosol.config we illustrate specifying the instance location in an OSoL file.

38

0OSSolverService
Solve Method - Local

O
Hard
Drive
OSiL File EZZZZZZZZZZZZ;§
OSIL String
OSrL String
0SSolverService 0S Library

Figure 9: A local call to solve.

-osol ../data/osolFiles/demo.osol
-solver clp

The file demo.osol is

<?xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/08iL.xsd">
<general>
<instancelLocation locationType="local">
./data/osilFiles/parincLinear.osil
</instancelocation>
</general>
</osol>

7.3 Solving Problems Remotely with Web Services

In many cases the client machine may be a “weak client” and using a more powerful machine to
solve a hard optimization instance is required. Indeed, one of the major purposes of Optimization
Services is to facilitate optimization in a distributed environment. We now provide examples that
illustrate using the 0SSolverService executable to call a remote solver service. By remote solver
service we mean a solver service that is called using Web Services. The OS implementation of the
solver service uses Apache Tomcat. See tomcat.apache.org. The Web Service running on the
server is a Java program based on Apache Axis. See ws.apache.org/axis. This is described in
greater detail in Section 8. This Web Service is called 0SSolverService.jws. It is not necessary
to use the Tomcat/Axis combination.

See Figure 10 for an illustration of this process. The client machine uses 0SSolverService
executable to call one of the six service methods, e.g., solve. The information such as the problem

39

OSSolverService
Solve Method

SOAP
with
OSiL & OSoL

Tomcat/Axis
0SSolverService.jws

OSSolverService 0SSolverService

Figure 10: A remote call to solve.

instance in OSiL. format and solver options in OSoL format are packaged into a SOAP envelope and
sent to the server. The server is running the Java Web Service 0SSolverService. jws. This Java
program running in the Tomcat Java Servlet container implements the six service methods. If a
solve or send request is sent to the server from the client, an optimization problem must be solved.
The Java solver service solves the optimization instance by calling the OSSolverService on the server.
So there is an OSSolverService on the client that calls the Web Service 0SSolverService. jws that
in turn calls the executable 0SSolverService on the server. The Java solver service passes options
to the local 0SSolverService such as where the OSiL file is located and where to write the solution
result.
In the following sections we illustrate each of the six service methods.

7.3.1 The solve Service Method

First we illustrate a simple call to 0SSolverService. jws. The call on the client machine is
./0SSolverService -config ../data/configFiles/testremote.config

where the testremote.config file is

-osil ../data/osilFiles/parinclinear.osil
-servicelocation http://gsbkip.chicagogsb.edu/os/0SSolverService. jws

No solver is specified and by default the Cbc solver is used by the 0SSolverService. If, for
example, the user wished to solve the problem with the Clp solver then this is accomplished either
by using the -solver option on the command line

./0S8SolverService -config ../data/configFiles/testremote.config -solver clp
or by adding the line
-solver clp

to the testremote.config file.

Next we illustrate a call to the remote SolverService and specify an OSiL instance that is
actually residing on the remote machine that is hosting the 0SSolverService and not on the client
machine.

40

./0SSolverService -osol ../data/osolFiles/remoteSolvel.osol
-servicelocation http://gsbkip.chicagogsb.edu/os/0SSolverService. jus

where the remoteSolvel.osol file is

<?xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/0SiL.xsd">
<general>
<instanceLocation locationType="local">c:\parincLinear.osil</instanceLocation>
<contact transportType="smtp">kipp.martin@chicagogsb.edu</contact>
<solverToInvoke>ipopt</solverToInvoke>
</general>
</osol>

If we were to change the locationType attribute in the <instanceLocation> element to http
then we could specify the instance location on yet another machine. This is illustrated below for
remoteSolve2.osol. The scenario is depicted in Figure 11. The OSiL string passed from the client
to the solver service is empty. However, the OSoL. element <instancelLocation> has an attribute
locationType equal to http. In this case, the text of the <instanceLoction> element contains the
URL of a third machine which has the problem instance parincLinear.osil. The solver service will
contact the machine with URL http://www.coin-or.org/0S/parincLinear.osil and download
this test problem. So the 0SSolverService is running on the server gsbkip.chicagogsb.edu
which contacts the server www.coin-or.org for the model instance.

<?xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/08iL.xsd">
<general>
<instancelLocation locationType="http">
http://www.coin-or.org/0S/parincLinear.osil
</instancelocation>
<solverToInvoke>ipopt</solverToInvoke>
</general>
</osol>

Note: The solve method communicates synchronously with the remote solver service and once
started, these jobs cannot be killed. This may not be desirable for large problems when the user
does not want to wait for a response or when there is a possibility for the solver to enter an infinite
loop. The send service method should be used when asynchronous communication is desired.

7.3.2 The send Service Method

When the solve service method is used, the 0SSolverService does not finish execution until the
solution is returned from the remote solver service. When the send method is used the instance
is communicated to the remote service and the 0SSolverService terminates after submission. An
example of this is

41

Data Server

0siL
Instance

v

#| with OSoL

N——/—

O
- .| soap

Tomcat/Axis
0SSolverService.jws 0SSolverService

Figure 11: Downloading the instance from a remote source.

./08SolverService -config ../data/configFiles/testremoteSend.config
where the testremoteSend.config file is

-nl ../data/amplFiles/hs71.nl
-servicelocation http://gsbkip.chicagogsb.edu/os/0SSolverService. jus
-serviceMethod send

In this example the COIN-OR Ipopt solver is specified. The input file hs71.nl1 is in AMPL nl
format. Before sending this to the remote solver service the 0SSolverService executable converts
the nl format into the OSiL XML format and packages this into the SOAP envelope used by Web
Services.

Since the send method involves asynchronous communication the remote solver service must
keep track of jobs. The send method requires a JobID. In the above example no JobID was specified.
When no JobID is specified the 0SSolverService method first invokes the get JobID service method
to get a JobID, puts this information into an OSoL file it creates, and sends the information to
the server. More information on the getJobID service method is provided in Section 7.3.4. The
0SSolverService prints the OSoL file to standard output before termination. This is illustrated
below,

<?xml version="1.0" encoding="UTF-8"7>

<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/0SiL.xsd">

<general>
<jobID>
gsbrkm4__127.0.0.1__2007-06-16T15.46.46.075-05.00149771253

42

</jobID>
<solverToInvoke>ipopt</solverToInvoke>
</general>
</osol>

The JobID is one that is randomly generated by the server and passed back to the 0SSolverService
The user can also provide a JobID in their OSoL file. For example, below is a user-provided OSoL.
file that could be specified in a configuration file or on the command line.

<?7xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/08iL.xsd">
<general>
<jobID>123456abcd</jobID>
<solverToInvoke>ipopt</solverToInvoke>
</general>
</osol>

The same JobID cannot be used twice, so if 123456abcd was used earlier, the result of send
will be false.

In order to be of any use, it is necessary to get the result of the optimization. This is described
in Section 7.3.3. Before proceeding to this section, we describe two ways for knowing when the
optimization is complete. One feature of the standard OS remote SolverService is the ability to
send an email when the job is complete. Below is an example of the 0SoL that uses the email
feature.

<?xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/0SiL.xsd">
<general>
<jobID>123456abcd</jobID>
<contact transportType="smtp">
kipp.martin@chicagogsb.edu
</contact>
<solverToInvoke>ipopt</solverToInvoke>
</general>
</osol>

The remote Solver Service will send an email to the above address when the job is complete. A
second option for knowing when a job is complete is to use the knock method.

Note that in all of these examples we provided a value for the <solverToInvoke> element. The
remote solver service will use Cbc if another solver is not specified.

43

7.3.3 The retrieve Service Method

The retrieve method is used to get information about the instance solution. This method has
a single string argument which is an OSoL instance. Here is an example of using the retrieve
method with 0SSolverService.

./08SolverService -config ../data/configFiles/testremoteRetrieve.config
The testremoteRetrieve.config file is

-servicelocation http://gsbkip.chicagogsb.edu/os/0SSolverService. jus
-osol ../data/osolFiles/retrieve.osol

-serviceMethod retrieve

-osrl /home/kmartin/temp/test.osrl

and the retrieve.osol file is

<?7xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/0SiL.xsd">
<general>
<jobID>123456abcd</jobID>
</general>
</osol>

The OSoL file retrieve.osol contains a tag <jobID> that is communicated to the remote
service. The remote service locates the result and returns it as a string. The <jobID> should reflect
a <jobID> that was previously submitted using a send() command. The result is returned as a
string in OSrL format. The user must modify the line

-osrl /home/kmartin/temp/test.osrl

to reflect a valid path for their own machine. (It is also possible to delete the line in which case
the result will be displayed on the screen instead of being saved to the file indicated in the -osrl
option.)

7.3.4 The getJobID Service Method

Before submitting a job with the send method a JobID is required. The 0SSolverService can get
a JobID with the following options.

-servicelocation http://gsbkip.chicagogsb.edu/os/0SSolverService. jus
-serviceMethod getJobID

Note that no OSoL input file is specified. In this case, the 0SSolverService sends an empty string.
A string is returned with the JobID. This JobID is then put into a <jobID> element in an OSoL
string that would be used by the send method.

44

7.3.5 The knock Service Method

The OSSolverService terminates after executing the send method. Therefore, it is necessary to
know when the job is completed on the remote server. One way is to include an email address
in the <contact> element with the attribute transportType set to smtp. This was illustrated in
Section 7.3.1. A second way to check on the status of a job is to use the knock service method.
For example, assume a user wants to know if the job with JobID 123456abcd is complete. A user
would make the request

./0SSolverService -config ../data/configFiles/testRemoteKnock.config
where the testRemoteKnock.config file is

-servicelocation http://gsbkip.chicagogsb.edu/os/0SSolverService. jws
-osplInput ../data/osolFiles/demo.ospl

-osol ../data/osolFiles/retrieve.osol

-serviceMethod knock

the demo.ospl file is
lheader to be temporarily hidden... !jospl xmlns="o0s.optimizationservices.org”; ! xmlns:xsi="http://www.w3.c
instance” ! xsi:schemalocation="o0s.optimizationservices.org ! http://www.optimizationservices.org/schemas,/2.0,

<?xml version="1.0" encoding="UTF-8"7>
<ospl xmlns="os.optimizationservices.org">
<processHeader>
<request action="getAll"/>
</processHeader>
<processData/>
</ospl>

and the retrieve.osol file is

<?7xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/0SiL.xsd">
<general>
<jobID>123456abcd</jobID>
</general>
</osol>

The result of this request is a string in OSpL format, with the data contained in its processData
section. The result is displayed on the screen; if the user desires it to be redirected to a file, a
command should be added to the testRemoteKnock.config file with a valid path name on the
local system, e.g.,

-osplOutput ./result.ospl

Part of the return format is illustrated below.
! Header to be temporarily hidden !jospl xmlns="os.optimizationservices.org” ! xmlns:xsi="http://www.w3.org
instance” | xsi:schemalocation="o0s.optimizationservices.org ! http://www.optimizationservices.org/schemas/2.0,

45

<?xml version="1.0" encoding="UTF-8"7>
<ospl xmlns="os.optimizationservices.org">
<processHeader>
<serviceURI>http://localhost:8080/0s/ossolver/CGSolverService. jws</serviceURI>
<serviceName>CGSolverService</serviceName>
<time>2006-05-10T15:49:26.7509413-05:00</time>
<processHeader>
<processData>
<statistics>
<currentState>idle</currentState>
<availableDiskSpace>23440343040</availableDiskSpace>
<availableMemory>70128</availableMemory>
<currentJobCount>0</currentJobCount>
<totalJobsSoFar>1</totalJobsSoFar>
<timeServiceStarted>2006-05-10T10:49:24.9700000-05:00</timeServiceStarted>
<serviceUtilization>0.1</serviceUtilization>
<jobs>
<job jobID="123456abcd">
<state>finished</state>
<serviceURI>http://gsbkip.chicagogsb.edu/ipopt/IPOPTSolverService. jws</serviceURI>
<submitTime>2007-06-16T14:57:36.678-05:00</submitTime>
<startTime>2007-06-16T14:57:36.678-05:00</startTime>
<endTime>2007-06-16T14:57:39.404-05:00</endTime>
<duration>2.726</duration>
</job>
</jobs>
</statistics>
</processData>
</ospl>

Notice that the <state> element in <job jobID="123456abcd"> indicates that the job is finished.

When making a knock request, the OSoL: string can be empty. In this example, if the OSoL
string had been empty the status of all jobs kept in the file ospl.xml is reported. In our de-
fault solver service implementation, there is a configuration file 0SParameter that has a parameter
MAX_JOBIDS_TO_KEEP . The current default setting is 100. In a large-scale or commercial imple-
mentation it might be wise to keep problem results and statistics in a database. Also, there are
values other than getAll (i.e., get all process information related to the jobs) for the OSpL action
attribute in the <request> tag. For example, the action can be set to a value of ping if the user
just wants to check if the remote solver service is up and running. For details, check the OSpL
schema.

7.3.6 The kill Service Method

If the user submits a job that is taking too long or is a mistake, it is possible to kill the job on
the remote server using the kill service method. For example, to kill job 123456abcd, at the
command line type

./0SSolverService -config ../data/configFiles/kill.config

where the configure file kill.config is

46

-osol ../data/osolFiles/kill.osol
-servicelocation http://gsbkip.chicagogsb.edu/os/0SSolverService. jus
-serviceMethod kill

and the kill.osol file is

<?7xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/0SiL.xsd">
<general>
<jobID>123456abcd</jobID>
</general>
</osol>

The result is returned in OSpL format.

7.3.7 Summary and description of the API

The six service methods just described are also available as callable routines. Below is a summary
of the inputs and outputs of the six methods. See also Figure 12. A test program illustrating the
use of the methods is described in Section 12.8.

e solve(osil, osol):

— Inputs: a string with the instance in OSiL format and an optional string with the solver
options in OSoL format

— Returns: a string with the solver solution in OSrL format

— Synchronous call, blocking request/response
e send(osil, osol):

— Inputs: a string with the instance in OSiL. format and a string with the solver options
in OSoL format (same as in solve)

— Returns: a boolean, true if the problem was successfully submitted, false otherwise
— Has the same signature as solve
— Asynchronous (server side), non-blocking call

— The osol string should have a JobID in the <jobID> element
e getJobID(osol):

— Inputs: a string with the solver options in OSoL format (in this case, the string may be
empty because no options are required to get the JobID)

— Returns: a string which is the unique job id generated by the solver service

— Used to maintain session and state on a distributed system

e knock(ospl, osol):

47

— Inputs: a string in OSpL format and an optional string with the solver options in OSoL
format

— Returns: process and job status information from the remote server in OSpL format

e retrieve(osol):

— Inputs: a string with the solver options in OSoL format
— Returns: a string with the solver solution in OSrL format

— The osol string should have a JobID in the <jobID> element
e kill(osol):

— Inputs: a string with the solver options in OSoL format
— Returns: process and job status information from the remote server in OSpL format

— Critical in long running optimization jobs

0OS Communication Methods

solve() Method knock() Method

=y
OSiL and OSolL 0SpL and OSoL s[ﬂg
—> a
B — 5
< <
0SpL
osrL Client P
send() Method retrieve() Method

o
0SoL Sﬂlg

OSiL and OSoL
—_
[£:3]
— > | =
E

-— -— i
true or false osrL EBE B
Solver Client Solver
getJobID() Method kill() Method
OSolL OSolL
—_—
H <
string - JobID
Solver Client OSpL Solver

Client Computer

Figure 12: The OS Communication Methods

7.4 Passing Options to Solvers

The OSoL (Optimization Services option Language) protocol is used to pass options to solvers.
When using the 0SSolverService executable this will typically be done through an OSoL. XML

48

file by specifying the —osol option followed by the location of the file. However, it is also possible to
write a custom application that links to the OS library and to build an OSOption object in-memory
and then pass this to a solver. We next describe the feature of the OSoL protocol that will be the
most useful to the typical user.

In the OSoL protocol there is an element <solverOptions> that can have any number of
<solverOption> children. (See the file parsertest.osol in OS/data/osolFiles.) Each <solverOption>
child can have six attributes, all of which except one are optional. These attributes are:

e name: this is the only required attribute and is the option name. It should be unique.
e value: the value of the option.
e solver: the name of the solver associated with the option.

e type: this will usually be a data type (such as integer, string, double, etc.) but this is not
necessary.

e category: the same solver option may apply to multiple categories so it may be necessary to
specify a category for solver. For example, in LINDO an option can apply to a specific model
or to every model in an environment. Hence we might have

<solverOption name="LS_TPARAM_LP_PRINTLEVEL"

solver="1lindo" category="model" type="integer" value="0"/>
<solverOption name="LS_IPARAM_LP_PRINTLEVEL"

solver="1lindo" category="environment" type="integer" value="1"/>

where we specify the print level for a specific model or the entire environment. The category
attribute should be separated by a colon (‘:”) if there is more than one category or additional
subcategories, as in the following hypothetical example.

<solverOption name="hypothetical"
solver="SOLVER" category="catl:subcat2:subsubcat3"
type="string" value="illustration"/>

e description: a description of the option, typically this would not get passed to the solver.

As of trunk version 2164 the reading of an OSoL file is implemented in the 0SCoinSolver,
0SBonmin, and 0SIpopt solver interfaces. The 0SBonmin, and 0SIpopt solvers have particularly
easy interfaces. They have methods for integer, string, and numeric data types and then take
options in format of (name, value) pairs. Below is an example of options for Ipopt.

<solverOption name="mu_strategy" solver="ipopt"
type="string" value="adaptive"/>

<solverOption name="tol" solver="ipopt"
type="numeric" value="1.e-9"/>

<solverOption name="print_level" solver="ipopt"
type="integer" value="5"/>

<solver(Option name="max_iter" solver="ipopt"
type="integer" value="2000"/>

49

We have also implemented the 0SOption class for the 0SCoinSolver interface. This can be
done in two ways. First, options can be set through the Osi Solver interface (the OSCoinSolver
interface wraps around the Osi Solver interface). We have implemented all of the options listed in
OsiSolverParameters.hpp in Osi trunk version 1316. In the Osi solver interface, in addition to
string, double, and integer types there is a type called HintParam and a type called OsiHintParam.
The value of the OsiHintParam is an OsiHintStrength type, which may be confusing. For example,
to have the following Osi method called

setHintParam(OsiDoReducePrint, true, hintStrength);

the user should set the following <solverOption> tags:

<solverOption name="OsiDoReducePrint" solver="osi"
type="0OsiHintParam" value="true" />

<solverOption name="(OsiHintIgnore" solver="osi"
type="0siHintStrength" />

There should be only one <solverOption> with type OsiHintStrength and if there are more than
one in the OSoL file (string) the last one is the one implemented.

In addition to setting options using the Osi Solver interface, it is possible to pass options directly
to the Cbc solver. By default the following options are sent to the Cbc solver,

-log=0 -solve

The option -log=0 will keep the branch-and-bound output to a minimum. Default options are
overridden by putting into the OSoL file at least one <solverOption> tag with the solver attribute
set to cbc. For example, the following sequence of options will limit the search to 100 nodes, cut
generation turned off.

<solverOption name="maxN" solver="cbc" value="100" />
<solverOption name="cuts" solver="cbc" value="off" />
<solverOption name="solve" solver="cbc" />

Any option that Cbc accepts at the command line can be put into a <solverOption> tag. We
list those below.

Double parameters:
dualB(ound) dualT(olerance) primalT(olerance) primalW(eight)

Branch and Cut double parameters:
allow(ableGap) cuto(ff) inc(rement) inf(easibilityWeight) integerT(olerance)
preT(olerance) ratio(Gap) sec(onds)

Integer parameters:
cpp(Generate) force(Solution) idiot(Crash) maxF(actor) maxIt(erations)
output (Format) slog(Level) sprint(Crash)

Branch and Cut integer parameters:
cutD(epth) log(Level) maxN(odes) maxS(olutions) passC(uts)
passF(easibilityPump) passT(reeCuts) pumpT(une) strat(egy) strong(Branching)
trust (PseudoCosts)

Keyword parameters:
chol(esky) crash cross(over) direction dualP(ivot)
error(sAllowed) keepN(ames) mess(ages) perturb(ation) presolve
primalP(ivot) printi(ngOptions) scal(ing)

50

Branch and Cut keyword parameters:
clique(Cuts) combine(Solutions) cost(Strategy) cuts(On0ff) Dins
DivingS(ome) DivingC(oefficient) DivingF(ractional) DivingG(uided) DivingL(ineSearch)
DivingP(seudoCost) DivingV(ectorLength) feas(ibilityPump) flow(CoverCuts) gomory(Cuts)

greedy (Heuristic) heur(isticsOn0ff) knapsack(Cuts) 1lift(AndProjectCuts) local(TreeSearch)

mixed(IntegerRoundingCuts) node(Strategy) pivot(AndFix) preprocess probing(Cuts)
rand (omizedRounding) reduce(AndSplitCuts) residual(CapacityCuts) Rens Rins
round (ingHeuristic) sos(Options) two(MirCuts)
Actions or string parameters:
allS(lack) barr(ier) basisI(n) basisO(ut) directory
dirSample dirNetlib dirMiplib dualS(implex) either(Simplex)
end exit export help import
initialS(olve) max(imize) min(imize) mnetlib netlibD(ual)
netlibP(rimal) netlibT(une) primalS(implex) printM(ask) quit
restore(Model) saveM(odel) saveS(olution) solu(tion) stat(istics)
stop unitTest userClp
Branch and Cut actions:
branch(AndCut) doH(euristic) miplib prio(rity