Introduction to IPOPT:
A tutorial for downloading, installing, and using IPOPT.

Revision number of this document: Revision : 1830

December 21, 2010

Abstract

This document is a guide to using IPOPT 3.9.1. It includes instructions on how to obtain and
compile IPOPT, a description of the interface, user options, etc., as well as a tutorial on how to solve
a nonlinear optimization problem with IPOPT.

History of this document

The initial version of this document was created by Yoshiaki Kawajir' as a course project for 47852
Open Source Software for Optimization, taught by Prof. Frangois Margot at Tepper School of Business,
Carnegie Mellon University. After this, Carl Laird?> has added significant portions, including the very
nice tutorials. The current version is maintained by Andreas Wichter3.

Contents
1 Introduction 3
1.1 Mathematical Background 3
1.2 Availability e 3
1.3 Prerequisites L 3
1.4 How touse IPOPT e 5
1.5 More Information and Contributions L. 6
1.6 History of IPOPT e 7
2 Installing Ipopt 7
2.1 Getting the IPOPT Code o 7
2.1.1 Getting the IPOPT code via subversion 7
2.1.2 Getting the IPOPT code as a tarball 7
2.2 Download External Code 8
2.2.1 Download BLAS, LAPACK and ASL 8
2.2.2 Download HSL Subroutines 8
2.2.3 Obtaining the MUMPS Linear Solver 9
2.2.4 Obtaining METIS e 10
2.2.5 Obtaining the Linear Solver Pardiso 10
2.2.6 Obtaining the Linear Solver WSMP 10
2.2.7 Using the Linear Solver Loader 11
2.3 Compiling and Installing IPOPT L 11
2.4 Imstallation on Windows L 12

Lthen Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh PA
2then Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh PA
3Department of Mathematical Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY

2.4.1 Installation with Cygwin using GNU compilers

2.4.2 Installation with Cygwin using the MSCV++ compiler
2.4.3 Installation with MSYS/MinGW
2.4.4 Using Microsoft Visual Studio

3 Interfacing your NLP to Ipopt: A tutorial example.

3.1 Using IPOPT through AMPL
3.1.1 Using Ipopt from the command line
3.2 Interfacing with IPOPT through code
3.3 The CH++ Interface o e
3.3.1 Coding the Problem Representation
3.3.2 Coding the Executable (main)
3.3.3 Compiling and Testing the Example
3.3.4 Additional methods in TNLP
3.4 The Clnterface e
3.5 The Fortran Interface e

4 Special Features
4.1 Derivative Checker L e
4.2 Quasi-Newton Approximation of Second Derivatives

5 Ipopt Options

=}

Ipopt Output
Triplet Format for Sparse Matrices

The Smart Pointer Implementation: SmartPtr<T>

Q w »

Options Reference

C.1 Output e
C.2 Termination e e
C.3 NLP Scaling e e
C.d NLP . . e
C.5 Inmitialization
C.6 Barrier Parameter
C.7 Multiplier Updates
C.8 Line Search e
C.9 Warm Start e
C.10 Restoration Phase e
C.11 Linear Solver e e
C.12 Hessian Perturbation e e
C.13 Quasi-Newton e e e
C.14 Derivative Test
C.15 MA27 Linear Solver e
C.16 MAS7 Linear Solver e
C.17 MUMPS Linear Solver e e
C.18 Pardiso Linear Solver e
C.19 WSMP Linear Solver

16
17
18
18
21
21
30
31
33
34
37

38
38
39

40

40

44

46

D Detailed Installation Information 66

The following names used in this document are trademarks or registered trademarks: AMPL, IBM, Intel, Matlab,
Microsoft, MKL, Visual Studio C++, Visual Studio C++ .NET
1 Introduction

IpopT (Interior Point Optimizer, pronounced “Eye-Pea—Opt”) is an open source software package for
large-scale nonlinear optimization. It can be used to solve general nonlinear programming problems of

the form
min - f(z) (1)
8.t g" < glx) <g" (2)
z <z< xU, (3)

where 2 € R™ are the optimization variables (possibly with lower and upper bounds, z* € (RU {—oc0})"
and z¥ € (RU {+oco})"), f : R® — R is the objective function, and g : R® — R™ are the general
nonlinear constraints. The functions f(z) and g(z) can be linear or nonlinear and convex or non-convex
(but should be twice continuously differentiable). The constraints, g(z), have lower and upper bounds,
gt € (RU{—00})™ and gV € (RU {+00})™. Note that equality constraints of the form g;(z) = g; can
be specified by setting gF = gV = g;.

1.1 Mathematical Background

IPOPT implements an interior point line search filter method that aims to find a local solution of (1)-(3).
The mathematical details of the algorithm can be found in several publications [3, 4, 7, 6, 5].

1.2 Availability

The TPOPT package is available from COIN-OR (www.coin-or.org) under the EPL (Eclipse Public
License) open-source license and includes the source code for IPOPT. This means, it is available free
of charge, also for commercial purposes. However, if you give away software including IPOPT code (in
source code or binary form) and you made changes to the IPOPT source code, you are required to make
those changes public and to clearly indicate which modifications you made. After all, the goal of open
source software is the continuous development and improvement of software. For details, please refer to
the Eclipse Public License.

Also, if you are using IPOPT to obtain results for a publication, we politely ask you to point out in
your paper that you used IPOPT, and to cite the publication [7]. Writing high-quality numerical software
takes a lot of time and effort, and does usually not translate into a large number of publications, therefore
we believe this request is only fair :). We also have space at the IPOPT project home page where we list
publications, projects, etc., in which IPOPT has been used. We would be very happy to hear about your
experiences

1.3 Prerequisites

In order to build TPOPT, some third party components are required:

e BLAS (Basic Linear Algebra Subroutines). Many vendors of compilers and operating systems
provide precompiled and optimized libraries for these dense linear algebra subroutines. You can
also get the source code for a simple reference implementation from www.netlib.org and have the
IpopT distribution compile it automatically. However, it is strongly recommended to use some

optimized BLAS implemetion, for large problems this can make a runtime difference of an order of
magnitude!

Examples for efficient BLAS implementations are:

— From hardware vendors:

* ACML (AMD Core Math Library) by AMD
*x ESSL (Engineering Scientific Subroutine Library) by IBM
* MKL (Math Kernel Library) by Intel

* Sun Performance Library by Sun
— Generic:

% Atlas (Automatically Tuned Linear Algebra Software)
* GotoBLAS

You find more information on the web by googling them.

Note: BLAS libraries distributed with Linux are usually not optimized.

e LAPACK (Linear Algebra PACKage). Also for LAPACK, some vendors offer precompiled and
optimized libraries. But like with BLAS, you can get the source code from www.netlib.org and
have the IPOPT distribution compile it automatically.

Note that currently LAPACK is only required if you intend to use the quasi-Newton options in
IpoPT. You can compile the code without LAPACK, but an error message will then occur if you
try to run the code with an option that requires LAPACK. Currently, the LAPACK routines that
are used by IPOPT are only DPOTRF, DPOTRS, and DSYEV.

Note: LAPACK libraries distributed with Linux are usually not optimized.

e A sparse symmetric indefinite linear solver. IPOPT needs to obtain the solution of sparse, symmetric,
indefinite linear systems, and for this it relies on third-party code.

Currently, the following linear solvers can be used:

— MAZ27 from the Harwell Subroutine Library
(see http://www.cse.clrc.ac.uk/nag/hsl/).

— MAS57 from the Harwell Subroutine Library
(see http://www.cse.clrc.ac.uk/nag/hsl/).

— MUMPS (MUltifrontal Massively Parallel sparse direct Solver)
(see http://graal.ens-lyon.fr/MUMPS/)

— The Parallel Sparse Direct Solver (PARDISO)
(see http://www.computational.unibas.ch/cs/scicomp/software/pardiso/).
Note: The Pardiso version in Intel’s MKL library does not yet support the features necessary
for IroPT.

— The Watson Sparse Matrix Package (WSMP)
(see http://www-users.cs.umn.edu/~agupta/wsmp.html)

You should include at least one of the linear solvers above in order to run IPOPT, and if you want
to be able to switch easily between different alternatives, you can compile IPOPT with all of them.

The IPOPT library also has mechanisms to load the MA27, MA57, and Pardiso linear solvers from
a shared library at runtime, if the library has not been compiled with them (see Section 2.2.7).

NOTE: The solution of the linear systems is a central ingredient in Ipopt and the
optimizer’s performance and robustness depends on your choice. The best choice
depends on your application, and it makes sense to try different options. Most of the

solvers also rely on efficient BLAS code (see above), so you should use a good BLAS
library tailored to your system. Please keep this in mind, particularly when you are
comparing Ipopt with other optimization codes.

If you are compiling MA57 or MUMPS within the IPOPT build system, you should also include the
METIS linear system ordering package.

Interfaces to other linear solvers might be added in the future; if you are interested in contributing
such an interface please contact us! Note that IPOPT requires that the linear solver is able to
provide the inertia (number of positive and negative eigenvalues) of the symmetric matrix that is
factorized.

e Furthermore, IPOPT can also use the Harwell Subroutine MC19 for scaling of the linear systems
before they are passed to the linear solver. This may be particularly useful if TPOPT is used with
MAZ27 or MA57. However, it is not required to have MC19 to compile IPOPT; if this routine is
missing, the scaling is never performed?.

e ASL (AMPL Solver Library). The source code is available at www.netlib.org, and the IPOPT
makefiles will automatically compile it for you if you put the source code into a designated space.
NOTE: This is only required if you want to use IPOPT from AMPL and want to compile the IPopPT
AMPL solver executable.

For more information on third-party components and how to obtain them, see Section 2.2.

Since the IPOPT code is written in C4++, you will need a C++ compiler to build the IPOPT library.
We tried very hard to write the code as platform and compiler independent as possible.

In addition, the configuration script currently also searches for a Fortran, since some of the dependen-
cies above are written in Fortran. If all third party dependencies are available as self-contained libraries,
those compilers are in principle not necessary. Also, it is possible to use the Fortran-to-C compiler f2c
from www.netlib.org/f2c to convert Fortran code to C, and compile the resulting C files with a C
compiler and create a library containing the required third party dependencies. We have tested and used
this in connection with the Microsoft Visual C++ compiler, and instructions on how to use it in this
context are given below.

1.4 How to use Ipopt

If desired, the IPOPT distribution generates an executable for the modeling environment AMPL. As well,
you can link your problem statement with IPOPT using interfaces for C++, C, or Fortran. IPOPT can
be used with most Linux/Unix environments, and on Windows using Visual Studio .NET, Cygwin or
MSYS/MinGW. Below in Section 3 this document demonstrates how to solve problems using IPOPT.
This includes installation and compilation of TPOPT for use with AMPL as well as linking with your own
code.

The IPoPT distribution includes an interface for CUTEr® (for solving problems modeled in SIF), and
also a Matlab (mex) interface which allows you to use Ipopt from Matlab, see

https://projects.coin-or.org/Ipopt/wiki/MatlabInterface.

The distribution also includes an interface to the R project for statistical computing, see the files in
the Ipopt/contrib/RInterface directory.

There are also interfaces maintained by other people:

e GAMS (modeling environment)

The GAMSIlinks project on COIN-OR, maintained by Stefan Vigerske, includes a GAMS interface
for Ipopt, see https://projects.coin-or.org/GAMSlinks.

4There are more recent scaling routines in the HSL, but they have not (yet) been integrated. Contributions are welcome!
5see http://cuter.rl.ac.uk/cuter-www/

e AIMMS (modeling environment)

The AIMMSIlinks project on COIN-OR, maintained by Marcel Hunting, provides an interface for
Ipopt within the AIMMS modeling tool, see https://projects.coin-or.org/AIMMSlinks.

e Scilab (free Matlab-like envirnoment):

Edson Cordeiro do Valle has written an interface to use Ipopt from Scilab,
see http://www.scilab.org/contrib/displayContribution.php?fileID=839

Another Scilab interface is available here: http://forge.scilab.org/index.php/p/sci-ipopt

e Python:
An interface to the python language is available here: http://code.google.com/p/pyipopt

1.5 More Information and Contributions

More and up-to-date information can be found at the IPOPT homepage,
http://projects.coin-or.org/Ipopt.

Here, you can find FAQs, some (hopefully useful) hints, a bug report system etc. The website is
managed with Wiki, which means that every user can edit the webpages from the regular web browser.
In particular, we encourage Ipopt users to share their experiences and usage hints on
the “Success Stories” and “Hints and Tricks” pages, or to list the publications discussing
applications of Ipopt in the “Papers related to Ipopt” page®. In particular, if you have trouble
getting IPOPT work well for your optimization problem, you might find some ideas here. Also, if you had
some difficulties to solve a problem and found a way around it (e.g., by reformulating your problem or
by using certain IPOPT options), it would be very nice if you help other users by sharing your experience
at the “Hints and Tricks” page.

IPOPT is an open source project, and we encourage people to contribute code (such as interfaces to
appropriate linear solvers, modeling environments, or even algorithmic features). If you are interested
in contributing code, please have a look at the COIN contributions webpage”, and contact the IPOPT
project leader.

There is also a mailing list for IPOPT, available from the webpage

http://list.coin-or.org/mailman/listinfo/ipopt,

where you can subscribe to get notified of updates, to ask general questions regarding installation and
usage, or to share your experience with IPOPT. You might want to look at the archives before posting a
question. An easy way to search the archive with Google is to specify

“site:http://list.coin-or.org/pipermail/ipopt”
in addition to your keywords in the search string.

We try to answer questions posted to the mailing list in a reasonable manner. Please understand that
we cannot answer all questions in detail, and because of time constraints, we may not be able to help you
model and debug your particular optimization problem. However, if you have a challenging optimization
problem and are interested in consulting services by IBM Research, please contact the IPOPT project
leader, Andreas Wachter.

6Since we had some malicious hacker attacks destroying the content of the web pages in the past, you are now required
to enter a user name and password; simply follow the instructions on top of the main project page.
"see http://www.coin-or.org/contributions.html

1.6 History of Ipopt

The original IPOPT (Fortran version) was a product of the dissertation research of Andreas Wachter [4],
under the supervision of Lorenz T. Biegler at the Chemical Engineering Department at Carnegie Mellon
University. The code was made open source and distributed by the COIN-OR initiative, which is now a
non-profit corporation. IPOPT has been actively developed under COIN-OR since 2002.

To continue natural extension of the code and allow easy addition of new features, IBM Research
decided to invest in an open source re-write of IPOPT in C++. With the help of Carl Laird, who came
to the Mathematical Sciences Department at IBM Research as a summer intern in 2004 and 2005 during
his PhD studies, the code was re-implemented from scratch.

The new C++ version of the IPOPT optimization code (IPOPT 3.0.0 and beyond) is maintained at
IBM Research and remains part of the COIN-OR initiative. The development on the Fortran version has
ceased, but the source code can still be downloaded from
http://www.coin-or.org/download/source/Ipopt-Fortran/.

2 Installing Ipopt

The following sections describe the installation procedures on UNIX/Linux systems. For installation
instructions on Windows see Section 2.4.

2.1 Getting the Ipopt Code

IPOPT is available from the COIN-OR subversion repository. You can either download the code using
svn (the subversion® client similar to CVS) or simply retrieve a tarball (compressed archive file). While
the tarball is an easy method to retrieve the code, using the subversion system allows users the benefits
of the version control system, including easy updates and revision control.

2.1.1 Getting the Ipopt code via subversion

Of course, the subversion client must be installed on your system if you want to obtain the code this
way (the executable is called svn); it is already installed by default for many recent Linux distributions.
Information about subversion and how to download it can be found at http://subversion.tigris.org/.

To obtain the IPOPT source code via subversion, change into the directory in which you want to create

a subdirectory Ipopt with the IPOPT source code. Then follow the steps below:

1. Download the code from the repository
$ svn co https://projects.coin-or.org/svn/Ipopt/stable/3.9 CoinIpopt
Note: The $ indicates the command line prompt, do not type $, only the text following it.

2. Change into the root directory of the IPOPT distribution
$ cd CoinIpopt

In the following, “$éIPOPTDIR” will refer to the directory in which you are right now (output of pwd).

2.1.2 Getting the Ipopt code as a tarball

To use the tarball, follow the steps below:

1. Download the desired tarball from http://www.coin-or.org/download/source/Ipopt, it has the
form Ipopt-z.y.z.tgz, where z.y. 2 is the version number, such as 3.9.1. There might also be
daily snapshot from the stable branch. The number of the latest official release can be found on
the TpoPT Trac page.

8see http://subversion.tigris.org/

2. Issue the following commands to unpack the archive file:
$ gunzip Ipopt-z.y.z.tgz
$ tar xvf Ipopt-z.y.z.tar
Note: The $ indicates the command line prompt, do not type $, only the text following it.

3. Rename the directory you just extracted:
$ mv Ipopt-z.y.z CoinIpopt

4. Change into the root directory of the IPOPT distribution
$ cd CoinIpopt

In the following, “$IPOPTDIR” will refer to the directory in which you are right now (output of pwd).

2.2 Download External Code

IPOPT uses a few external packages that are not included in the IPOPT source code distribution, namely
ASL (the AMPL Solver Library if you want to compile the Ipopt AMPL solver executable), Blas, Lapack.
It also requires at least one linear solver for symmetric indefinite matrices.

Since this third party software released under different licenses than IPOPT, we cannot distribute that
code together with the IPOPT packages and have to ask you to go through the hassle of obtaining it
yourself (even though we tried to make it as easy for you as we could). Keep in mind that it is still your
responsibility to ensure that your downloading and usage if the third party components conforms with
their licenses.

Note that you only need to obtain the ASL if you intend to use IPOPT from AMPL. It is not required
if you want to specify your optimization problem in a programming language (C++, C, or Fortran). Also,
currently, Lapack is only required if you intend to use the quasi-Newton options implemented in IPOPT.

2.2.1 Download BLAS, LAPACK and ASL

Note: It is highly recommended that you obtain an efficient implementation of the BLAS
library, tailored to your hardware; Section 1.3 lists a few options. Assuming that your precompiled effi-
cient BLAS library is libmyblas.a in $HOME/1ib, you need to add the flag —-with-blas="-L$HOME/1ib
-lmyblas" when you run configure (see Section 2.3). Some of those libraries also include LAPACK.

If you have the download utility wget installed on your system, retrieving source code for BLAS (the
inefficient reference implementation, not required if you have a precompiled library), as well as LAPACK
and ASL is straightforward using scripts included with the ipopt distribution. These scripts download
the required files from the Netlib Repository (www.netlib.org).

$ cd $IPOPTDIR/ThirdParty/Blas
$./get.Blas

$ cd ../Lapack

$./get.Lapack

$ cd ../ASL

$./get.ASL

If you do not have wget installed on your system, please read the INSTALL. * files in the $IPOPTDIR/ThirdParty/Blas,
$IPOPTDIR/ThirdParty/Lapack and $IPOPTDIR/ThirdParty/ASL directories for alternative instructions.

2.2.2 Download HSL Subroutines

IPOPT requires a sparse symmetric linear solver. There are different possibilities. It is important to
keep in mind that usually the largest fraction of computation time in the optimizer is spent
for solving the linear system, and that your choice of the linear solver impacts Ipopt’s speed

and robustness. It might be worthwhile to try different linear solver to experiment with
what is best for your application.

In this section we describe how to obtain the source code for MA27 (and MC19) from the Harwell
Subroutine Library (HSL) Archive. Those routines are freely available for non-commercial, academic use,
but it is your responsibility to investigate the licensing of all third party code. (Since recently, also MA57
(the successor of MA27) is available for free for academic institutions, via the “HSL 2007 for Researchers”
library, see below.)

The use of alternative linear solvers is described in Sections 2.2.3-2.2.6. You do not necessarily have
to use MA27 as described in this section, but at least one linear solver is required for IPOPT to function.

1. Go to http://hsl.rl.ac.uk/archive/hslarchive.html

2. Follow the instruction on the website, read the license, and submit the registration form.
3. Go to HSL Archive Programs, and find the package list.

4. In your browser window, click on MA27.

5. Make sure that Double precision: is checked. Click Download package (comments removed)

6. Save the file as ma27ad.f in $IPOPTDIR/ThirdParty/HSL/
Note: Some browsers append a file extension (.txt) when you save the file, in which case you have
to rename it.

7. Go back to the package list using the back button of your browser.
8. In your browser window, click on MC19.
9. Make sure Double precision: is checked. Click Download package (comments removed)

10. Save the file as mc19ad.f in $IPOPTDIR/ThirdParty/HSL/
Note: Some browsers append a file extension (.txt) when you save the file, so you may have to
rename it.

Note: Whereas it is essential to have at least one linear solver, the package MC19 could be omitted
(with the consequence that you cannot use this method for scaling the linear systems arising inside
the IpOPT algorithm). By default, MC19 is only used to scale the linear system when using one of the
Harwell solvers, but it can also be switched on for other linear solvers (which usually have internal scaling
mechanisms).

Note: If you satisfy the conditions to use the HSL 2007 for Researchers library
(see http://hsl.rl.ac.uk/hs12007/hs120074researchers.html), you can download the MA57 in a
way very similar to the procedure outlined above. To have Ipopt compile it for you, you need to
put the source code into a single file called ma57ad.f (including all dependencies!) that is in the
$IPOPTDIR/ThirdParty/HSL/ directory. The IPOPT configuration script will then find this file and com-
pile it into the TPOPT library (just as is would compile MA27). MA57 will perform better with METIS,
see Section 2.2.4.

Yet another note: If you have a precompiled library containing the Harwell codes, you can specify the
location of this library with the —-with-hsl flag for the configure script described in Section 2.3.

2.2.3 Obtaining the MUMPS Linear Solver

You can also use the (public domain) sparse linear solver MUMPS. Please visit the MUMPS home page
http://graal.ens-1lyon.fr/MUMPS/ for more information about the solver. MUMPS is provided as
Fortran 90 and C source code. You need to have a Fortran 90 compiler (for example, the GNU compiler
gfortran is a free one) to be able to use it.

You can obtain the MUMPS source code by requesting the latest version from the MUMPS home
page, and then extract the source code in the directory $IPOPTDIR/ThirdParty/Mumps. The extracted
MUMPS directory usually has the MUMPS version number in it, and you need to rename it to MUMPS so
that you have a file called $IPOPTDIR/ThirdParty/Mumps/MUMPS/Conditions_of Use.

You can also try to run the script get.Mumps in $IPOPTDIR/ThirdParty/Mumps if you have wget
installed in your system. The MUMPS version number in that file might be out of date; in that case edit
the value assigned to the mumps_ver variable at the beginning of the script.

Once you put the MUMPS source code into the correct place, the IPOPT configuration scripts will
automatically detect it and compile MUMPS together with IPOPT, if your Fortran compiler is able to
compile Fortran 90 code.

Note: MUMPS will perform better with METIS, see Section 2.2.4.

Note: MUMPS uses interally a fake implementation of MPI. If you are using Ipopt within an MPI
program together with MUMPS, the code will not run. You will have to modified the MUMPS sources
so that the MPI symbols inside the MUMPS code are renamed.

2.2.4 Obtaining METIS

The linear solvers MA57 and MUMPS can make use of the matrix ordering algorithms implemented

in METIS (see http://glaros.dtc.umn.edu/gkhome/metis/metis/overview). If you are using one of
those linear solvers, you should obtain the METIS source code and put it into $IPOPTDIR/ThirdParty/Metis.
Read the INSTALL.Metis file in that directory, and if you have the wget utility installed on your system,
you can download the code by running the ./get.Metis script.

2.2.5 Obtaining the Linear Solver Pardiso

If you would like to compile IPOPT with the Parallel Sparse Direct Linear Solver (Pardiso), you need to
obtain the Pardiso library for your operating system. Information about Pardiso can be found at
http://www.pardiso-project.org/

You can obtain a free download for Pardiso if you want to use it for “non-commercial and non-profit
internal research purposes” and are an “academic, non-profit, or government agency” (taken from the
license agreement). Instructions for this are on the above mentioned website; make sure you read the
license agreement before filling out the download form.

Note: Pardiso is included in Intel’s MKL library. However, that version does not include the changes
done by the Pardiso developers to make the linear solver work smoothly with IpopT.

Please consult Appendix D to find out how to configure your IPOPT installation to work with Pardiso.

2.2.6 Obtaining the Linear Solver WSMP

If you would like to compile IPOPT with the Watson Sparse Matrix Package (WSMP), you need to obtain
the WSMP library for your operating system. Information about WSMP can be found at

http://www.alphaworks.ibm.com/tech/wsmp

At this website you can obtain a “complimentary 90-day evaluation license” and download the library
for several operating systems; make sure you read the license agreement before downloading the code.
Once you obtained the code and the license, please check if the version number of the library matches
the one on the WSMP website at

http://www-users.cs.umn.edu/ agupta/wsmp

If a newer version is announced on that website, you can (and probably should) request the current
version by sending a message to wsmp@watson.ibm.com. Please include the operating system and other
details to describe which particular version of WSMP you need.

You can use the bugfix releases with the license you obtained from alphaWorks.

Note: Only the interface to the shared-memory version of WSMP is currently supported.

Please consult Appendix D to find out how to configure your IPOPT installation to work with WSMP.

10

2.2.7 Using the Linear Solver Loader

By default, IPOPT will be compiled with a mechanism, the Linear Solver Loader, which can dynamically
load shared libraries with MA27, MAS57, or the Pardiso linear solver at runtime®. This means, if you
obtain one of those solvers after you already had compiled IPOPT, you don’t need to recompile IPOPT to
now use them. Instead, you can just put a shared library called 1ibhsl.so or libpardiso.so into the
shared library search path, LD_LIBRARY PATH. These are the names on most UNIX platforms, including
Linux. On Darwin, the names are libhsl.dylib, libpardiso.dylib, and DYLD_LIBRARY_PATH. On
Windows (where IPOPT cannot be used with Pardiso), the names are 1ibhsl.d11 and PATH.

The Pardiso shared library can be downloaded from the Pardiso website. To create a shared library
containing the HSL linear solvers, read the instructions in $IPOPTDIR/ThirdParty/HSL/INSTALL.HSL.

2.3 Compiling and Installing Ipopt

IPOPT can be easily compiled and installed with the usual configure, make, make install commands.
We follow the precedure that is used for most of the COIN-OR, projects, based on the GNU autotools.
At https://projects.coin-or.org/CoinHelp you can find a general description of the tools.

Below are the basic steps for the IPOPT compilation that should work on most systems. For special
compilations and for some troubleshooting see Appendix D and consult the generic COIN-OR help
page https://projects.coin-or.org/CoinHelp before submitting a ticket or sending a message to the
mailing list.

1. Create a directory where you want to compile IPOPT, for example
$ mkdir $IPOPTDIR/build
and go into this direcrory
$ cd $IPOPTDIR/build

Note: You can choose any location, including $IPOPTDIR itself, as the location of your compilation.
However, on COIN-OR we recommend to keep the source and compiled files separate.

2. Run the configure script
$ $IPOPTDIR/configure

One might have to give options to the configure script, e.g., in order to choose a non-default
compiler, or to tell it where some third party code is installed, see Appendix D.

If the last output line of the script reads “configure: Main configuration of Ipopt successful”
then everything worked fine. Otherwise, look at the screen output, have a look at the config.log
output files and/or consult Appendix D.

The default configure (without any options) is sufficient for most users that downloaded the source

code for the linear solver. If you want to see the configure options, consult Appendix D, and also

visit the generic COIN-OR configuration instruction page at
https://projects.coin-or.org/CoinHelp/wiki/user-configure

3. Build the code
$ make

Note: If you are using GNU make, you can also try to speed up the compilation by using the -jN
flag (e.g., make -3j3), where N is the number of parallel compilation jobs. A good number for N is
the number of available processors plus one. Under some circumstances, this fails, and you might
have to re-issue the command, or omit the -j flag.

9This is not enabled if you compile Ipopt with the Developer Studio project files provided in the Ipopt distribution. Fur-
ther, if you have problems compiling this new feature, you can disable this by specifying --disable-linear-solver-loader
for the configure script

11

4. If you want, you can run a short test to verify that the compilation was successful. For this, you
just enter
$ make test
This will test if the AMPL solver executable works (if you got the ASL code), and if the included
C++, C, and Fortran examples work.

Note: The configure script is not able to automatically determine the C++ runtime libraries for
the C++ compiler. For certain compilers we enabled default values for this, but those might not
exist or be wrong for your compiler. In that case, the C and Fortran example in the test will most
probably fail to compile. If you don’t want to hook up the compiled IPOPT library to some Fortran or
C code that you wrote you don’t need to worry about this. If you do want to link the IPOPT library
with a C or Fortran compiler, you need to find out the C++ runtime libraries (e.g., by running the
C++ compiler in verbose mode for a simple example program) and run configure again, and this
time specify all C++ runtime libraries with the CXXLIBS variable (see also Appendix D).

5. Install IPOPT
$ make install
This installs

e the IPOPT AMPL solver executable (if ASL source was downloaded) in $IPOPTDIR/build/bin,
e the IPOPT library (1ibipopt.so, libipopt.a or similar) in $IPOPTDIR/build/1lib,

o text files ipopt_addlibs_cpp.txt and ipopt_addlibs_f.txt in $IPOPTDIR/build/share/doc/coin/Ipopt
that contain a line each with additional linking flags that are required for linking code with the
Ipoprt library, for C++ and Fortran main programs, respectively. (This is only for convenience
if you want to find out what additional flags are required, for example, to include the Fortran
runtime libraries with a C++ compiler.)

e the necessary header files in $IPOPTDIR/build/include/coin.

You can change the default installation directory (here $IPOPTDIR) to something else (such as
/usr/local) by using the —-prefix switch for configure.

6. (Optional) Install IPOPT for use with CUTEr
If you have CUTEr already installed on your system and you want to use IPOPT as a solver for
problems modeled in SIF, type
$ make cuter
This assumes that you have the environment variable MYCUTER defined according to the CUTEr
instructions. After this, you can use the script sdipo as the CUTEr script to solve a SIF model.

Note: The above procedures show how to compile the code in directories separate from the source
files. This comes in handy when you want to compile the code with different compilers, compiler options,
or different operating system that share a common file system. To use this feature, change into the
directory where you want to compile the code, and then type $IPOPTDIR/configure with all the options.
For this, the directories with the IPOPT source must not have any configuration and compiled code.

2.4 Installation on Windows

There are several ways to install IPOPT on Windows systems. The first two option, described in Sec-
tions 2.4.1 and 2.4.2, is to use Cygwin (see www.cygwin.com), which offers a comprehensive UNIX-like
environment on Windows and in which the installation procedure described earlier in this section can be
used. If you want to use the (free) GNU compilers, follow the instructions in Section 2.4.1. If you have the
Microsoft C++ compiler and possibly a “native” Fortran compiler (e.g., the Intel Fortran compiler) and
want to use those to compile IPOPT, please see Section 2.4.2. If you use MSYS/MinGW (a light-weight
UNIX-like environment for Windows), please consider the notes in Section 2.4.3. The IpoPT distribution
also includes projects files for the Microsoft Visual Studio (see Section 2.4.4).

12

NEW: Some binaries for IPOPT are available on the COIN website at
http://www.coin-or.org/download/binary/Ipopt/
There are also precompiled versions of Ipopt as DLLs (generated from the MSVC solution in IPOPT’s
subdirecotry $IPOPTDIR/Ipopt/MSVisualStudio/v8-ifort. Look at the README files for details. An
example how to use these DLLs from your own MSVC project is in
$IPOPTDIR/Ipopt/MSVisualStudio/BinaryDLL-Link-Example.

2.4.1 Installation with Cygwin using GNU compilers

Cygwin is a Linux-like environment for Windows; if you don’t know what it is you might want to have a
look at the Cygwin homepage, www.cygwin.com.

It is possible to build the IrPorT AMPL solver executable in Cygwin for general use in Windows. You

can also hook up IPOPT to your own program if you compile it in the Cygwin environment!®.

If you want to compile IPOPT under Cygwin, you first have to install Cygwin on your Windows system.
This is pretty straight forward; you simply download the “setup” program from www.cygwin.com and
start it.

Then you do the following steps (assuming here that you don’t have any complications with firewall
settings etc - in that case you might have to choose some connection settings differently):

1. Click next
2. Select “install from the internet” (default) and click next

3. Select a directory where Cygwin is to be installed (you can leave the default) and choose all other
things to your liking, then click next

4. Select a temp dir for Cygwin setup to store some files (if you put it on your desktop you will later
remember to delete it)

5. Select “direct connection” (default) and click next
6. Select some mirror site that seems close by to you and click next

7. OK, now comes the complicated part:

You need to select the packages that you want to have installed. By default, there are already
selections, but the compilers are usually not pre-chosen. You need to make sure that you select the
GNU compilers (for Fortran, C, and C++ — together with the MinGW options), the GNU Make,
and Subversion. For this, click on the ”Devel” branch (which opens a subtree) and select:

e gce

e gce-core

e gce-g7v

e gcc-gt+-+

e gcc-mingw

e gcc-mingw-core

e gcc-mingw-g77

e gcc-mingw-g++

e make

e subversion

101t is also possible to build an IPOPT DLL that can be used from non-cygwin compilers, but this is not (yet?) supported.

13

Then, in the “Web” branch, please select “wget” (which will make the installation of third party
dependencies for IPOPT easier)

This will automatically also select some other packages.

8. Then you click on next, and Cygwin will be installed (follow the rest of the instructions and choose
everything else to your liking). At a later point you can easily add/remove packages with the setup
program.

9. Now that you have Cygwin, you can open a Cygwin window, which is like a UNIX shell window.

10. Now you just follow the instructions in the beginning of Sections 2: You download the IPOPT
code into your Cygwin home directory (from the Windows explorer that is usually something like
C:\Cygwin\home\your_user name). After that you obtain the third party code (like on Linux/UNIX),
type
./configure
and

make install

in the correct directories, and hopefully that will work. The IpoPT AMPL solver executable will
be in the subdirectory bin (called “ipopt.exe”). If you want to set the installation, type

make test

NOTE: By default, the compiled binaries (library and executables) will be “Cygwin-native”, i.e., in
order to run executables using this, the Cygwinl.d11 has to be present (e.g., in a Cygwin window).
If you want to compile things in a way that allow your executables to run outside of Cygwin, e.g.,
in a regular DOS prompt, you need to specify the option
configure.

“--enable-doscompile” when you run

2.4.2 Installation with Cygwin using the MSCV++4 compiler

This section describes how you can compile IPOPT with the Microsoft Visual C++4 compiler under Cygwin.
Here you have two options for compiling the Fortran code in the third party dependencies:

e Using a Windows Fortran compiler, e.g. the Intel Fortran compiler, which is also able to compile
Fortran 90 code. This would allow you to compile the MUMPS linear solver if you desire to do so.

e Using the f2¢ Fortran to C compiler, available for free at Netlib (see http://www.netlib.org/f2c).
This can only compile Fortran 77 code (i.e., you won’t be able to compile MUMPS). Before doing
the following installation steps, you need to follow the instructions in
$IPOPTDIR/BuildTools/compile_f2c/INSTALL.

Once you have settled on this, do the following:

1. Follow the instructions in Section 2.4.1 until Step 10 and stop after your downloaded the third
party code.

2. Now you need to make sure that Cygwin knows about the native compilers. For this you need to
edit the file cygwin.bat in the Cygwin base directory (usually C:\cygwin). Here you need to add
a line like the following:

call "C:\Program Files\Microsoft Visual Studio 8\VC\vcvarsall.bat"
On my computer, this set the environment variables to that I can use the MSVC++ compiler.
If you want to use also a native Fortran compiler, you need to include something like this

call "C:\Program Files\Intel\Fortran\compiler80\IA32\BIN\ifortvars.bat"

14

You might have to search around a bit. The important thing is that, after your change, you can
type “cl” in a newly opened Cygwin windows, and it finds the Microsoft C++ compiler (and if
you want to use it, the Fortran compiler, such as the Intel’s ifort).

3. Run the configuration script, and tell it that you want to use the native compilers:
./configure --enable-doscompile=msvc
Make sure the last message is

Main Ipopt configuration successful

4. If want to compile the AMPL solver executable, you need to compile the ASL library from a script.
For this you need to change into the ASL compilation directory, execute the script compile MS_ASL,
and go back to the directory where you were:

cd ThirdParty/ASL
./compile MS_ASL
cd -

5. Now you can compile the code with
make,
test the installation with
make test,
and install everything with

make install

2.4.3 Installation with MSYS/MinGW

You can compile IPOPT also under MSYS/MinGW, which is another, more light-weight UNIX-like envi-
ronment for Windows. It can be obtained from http://www.mingw.org/.

If you want to use MSYS/MinGW to compiler IPOPT with native Windows compilers (see Sec-
tion 2.4.2), all you need to install is the basic version!!. If you also want to use the GNU compilers, you
need to install those as well, of course.

A compilation with the GNU compilers works just like with any other UNIX system, as described in
Section 2.3. If you want to use the native MSVC++ compiler (with £2¢ or a native Fortran compiler),
you essentially follow the steps outlined in Section 2.4.2. In the latter case, you again need to make sure
that the environment variables are set for the compilers (see step 2), this time adding the line to the
msys.bat file. Also, you need to run the compile MS_ASL script in the ThirdParty/ASL immediately
after you run the configuration script.

2.4.4 Using Microsoft Visual Studio

NEW: Some binaries for IPOPT are available on the COIN website at
http://www.coin-or.org/download/binary/Ipopt/
There are also precompiled versions of Ipopt as DLLs (generated from the MSVC solution in IPOPT’s
subdirecotry $IPOPTDIR/Ipopt/MSVisualStudio/v8-ifort. Look at the README files for details. An
example how to use these DLLs from your own MSVC project is in
$IPOPTDIR/Ipopt/MSVisualStudio/BinaryDLL-Link-Example.
The IpopT distribution includes project files that can be used to compile the TPOPT library, the
AMPL solver executable, and a C++ example within the Microsoft Visual Studio. The project files have

Hwhich used to come as a convenient Windows install program, but as I’'m writing this, I can’t find it on the web. ..

15

been created with Microsoft Visual 8 Express. Fortran files in the third party dependencies need to be
converted to C code using the f2¢ Fortran to C compiler!?.

In order to use those project files, download the IPOPT source code, as well as the required third
party code (put it into the ThirdParty\Blas, ThirdParty\Lapack, ThirdParty\HSL, ThirdParty\ASL
directories. Detailed step-by-step instructions on how to install £2c¢, translate the Fortran code to C files,
and further details are described in the file

$IPOPTDIR\Ipopt\MSVisualStudio\v8\README. TXT

After that, you can open the solution file

$IPOPTDIR\Ipopt\MSVisualStudio\v8\Ipopt.sln

If you are compiling IPOPT with different linear solvers, you need to edit the configuration header file
Ipopt\src\Common\IpoptConfig.h, in the section after

/***/

/% HERE DEFINE THE CONFIGURATION SPECIFIC MACROS */
/ sesksksk sk sk sk sk sk sk ko ok ok sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk sk koo sk sk sk sk sk sk sk sk sk sk ok kol sk sk sk sk sk sk sk sk sk kokokok sk sk sk sk sk sk kokokok /

and include the corresponding source files in Ipopt\src\Algorithm\LinearSolvers and add the corre-
sponding libraries to your project.

3 Interfacing your NLP to Ipopt: A tutorial example.

IPoPT has been designed to be flexible for a wide variety of applications, and there are a number of ways
to interface with IPOPT that allow specific data structures and linear solver techniques. Nevertheless, the
authors have included a standard representation that should meet the needs of most users.

This tutorial will discuss four interfaces to IPOPT, namely the AMPL modeling language[1] interface,
and the C++4, C, and Fortran code interfaces. AMPL is a 3rd party modeling language tool that allows
users to write their optimization problem in a syntax that resembles the way the problem would be
written mathematically. Once the problem has been formulated in AMPL, the problem can be easily
solved using the (already compiled) IpopT AMPL solver executable, ipopt. Interfacing your problem by
directly linking code requires more effort to write, but can be far more efficient for large problems.

We will illustrate how to use each of the four interfaces using an example problem, number 71 from
the Hock-Schittkowsky test suite [2],

min x124(21 + T2 + 23) + 23 4
reER
s.t. T1T2XT3T4 Z 25

¥+ as 4k 2l =40

1 < X1,T2,T3, T4 < 57

with the starting point
To = (1757571) (8)

and the optimal solution

x, = (1.00000000, 4.74299963, 3.82114998, 1.37940829).

You can find further, less documented examples for using IPOPT from your own source code in the
Ipopt/examples subdirectory.

2Projects files for a previous version of IPOPT that wused the Intel Fortran compiler are in
$IPOPTDIR\Ipopt\NoLongerMaintainedWindows, but they are probably outdated, and you will have to correct
them.

16

tell ampl to use the ipopt executable as a solver
make sure ipopt is in the path!
option solver ipopt;

declare the variables and their bounds,
set notation could be used, but this is straightforward
var x1 >= 1, <= 5;

var x2 >= 1, <= 5;
var x3 >= 1, <= 5;
var x4 >= 1, <= 5;

specify the objective function
minimize obj:
x1 * x4 * (x1 + x2 + x3) + x3;

specify the constraints
s.t.
inequality:
x1 * x2 * x3 *x x4 >= 25;

equality:
x172 + x272 + x372 +x472 = 40;

specify the starting point

let x1 := 1;
let x2 := 5;
let x3 := 5;
let x4 := 1;

H

solve the problem
solve;

print the solution
display x1;
display x2;
display x3;
display x4;

Figure 1: AMPL model file hs071_ampl.mod

3.1 Using Ipopt through AMPL

Using the AMPL solver executable is by far the easiest way to solve a problem with IPOPT. The user must
simply formulate the problem in AMPL syntax, and solve the problem through the AMPL environment.
There are drawbacks, however. AMPL is a 3rd party package and, as such, must be appropriately licensed
(a free student version for limited problem size is available from the AMPL website, www.ampl.com). Fur-
thermore, the AMPL environment may be prohibitive for very large problems. Nevertheless, formulating
the problem in AMPL is straightforward and even for large problems, it is often used as a prototyping
tool before using one of the code interfaces.

This tutorial is not intended as a guide to formulating models in AMPL. If you are not already familiar
with AMPL, please consult [1].

The problem presented in equations (4)—(8) can be solved with IPOPT with the AMPL model file
given in Figure 1.

The line, “option solver ipopt;” tells AMPL to use IPOPT as the solver. The IPOPT executable
(installed in Section 2.3) must be in the PATH for AMPL to find it. The remaining lines specify the
problem in AMPL format. The problem can now be solved by starting AMPL and loading the mod file:

$ ampl
> model hs071_ampl.mod;

17

The problem will be solved using IPOPT and the solution will be displayed.
At this point, AMPL users may wish to skip the sections about interfacing with code, but should read
Section 5 concerning IPOPT options, and Section 6 which explains the output displayed by IPOPT.

3.1.1 Using Ipopt from the command line

It is possible to solve AMPL problems with Ipopt directly from the command line. However, this requires
a file in format .nl produced by ampl. If you have a model and data loaded in Ampl, you can create the
corresponding .nl file with name, say, myprob.nl by using the Ampl command:

write gmyprob

There is a small .nl file available in the Ipopt distribution. It is located at Ipopt/test/mytoy.nl.
We use this file in the remainder of this section. We assume that the file mytoy.nl is in the current
directory and that the command ipopt is a shortcut for running the ipopt binary available in the bin
directory of the installation of Ipopt.

We list below commands to perform basic tasks from the Linux prompt.

e To solve mytoy.nl from the Linux prompt, use:

ipopt mytoy

e To see all command line options for Ipopt, use:

ipopt -=

e To see more detailed information on all options for Ipopt:

ipopt mytoy ’print_options_documentation yes’

e To run ipopt, setting the maximum number of iterations to 2 and print level to 4:

ipopt mytoy ’max_iter 2 print_level 4’

If many options are to be set, they can be collected in a file ipopt.opt that is automatically read by
Ipopt if present in the current directory, see Section 5.

3.2 Interfacing with Ipopt through code

In order to solve a problem, IPOPT needs more information than just the problem definition (for example,
the derivative information). If you are using a modeling language like AMPL, the extra information is
provided by the modeling tool and the IPOPT interface. When interfacing with IPOPT through your own
code, however, you must provide this additional information.

The information required by IPOPT is shown in Figure 2. The problem dimensions and bounds are
straightforward and come solely from the problem definition. The initial starting point is used by the
algorithm when it begins iterating to solve the problem. If IPOPT has difficulty converging, or if it
converges to a locally infeasible point, adjusting the starting point may help. Depending on the starting
point, IPOPT may also converge to different local solutions.

Providing the sparsity structure of derivative matrices is a bit more involved. IPOPT is a nonlinear
programming solver that is designed for solving large-scale, sparse problems. While IPOPT can be cus-
tomized for a variety of matrix formats, the triplet format is used for the standard interfaces in this
tutorial. For an overview of the triplet format for sparse matrices, see Appendix A. Before solving the
problem, IPOPT needs to know the number of nonzero elements and the sparsity structure (row and
column indices of each of the nonzero entries) of the constraint Jacobian and the Lagrangian function

18

. Problem dimensions

e number of variables

e number of constraints
. Problem bounds

e variable bounds

e constraint bounds
. Initial starting point

e Initial values for the primal x variables

e Initial values for the multipliers (only required for a warm start option)
. Problem Structure

e number of nonzeros in the Jacobian of the constraints

e number of nonzeros in the Hessian of the Lagrangian function

e sparsity structure of the Jacobian of the constraints

e sparsity structure of the Hessian of the Lagrangian function

. Evaluation of Problem Functions

Information evaluated using a given point (x, A, o5 coming from IPOPT)
e Objective function, f(z)
e Gradient of the objective V f(z)

e Constraint function values, g(z)

Jacobian of the constraints, Vg(x)?

e Hessian of the Lagrangian function, o;V?f(z) + >, \;V?g;(x)
(this is not required if a quasi-Newton options is chosen to approximate the second derivatives)

Figure 2: Information required by IPOPT

19

Hessian. Once defined, this nonzero structure MUST remain constant for the entire optimization proce-
dure. This means that the structure needs to include entries for any element that could ever be nonzero,
not only those that are nonzero at the starting point.

As TPOPT iterates, it will need the values for Item 5. in Figure 2 evaluated at particular points.
Before we can begin coding the interface, however, we need to work out the details of these equations
symbolically for example problem (4)-(7).

The gradient of the objective f(x) is given by

T174 + 24(21 + T2 + 73)
T1T4
r1T4 + 1
.’El(l'l + 20 + 1’3)

and the Jacobian of the constraints g(z) is

L2X3Tg T1T3Tg4 T1X2L4 T1XL2X3
2$1 21‘2 2.733 2$4

We also need to determine the Hessian of the Lagrangian'®. The Lagrangian function for the NLP

(4)-(7) is defined as f(z) + g(z)T X and the Hessian of the Lagrangian function is, technically, V2 f(zz) +
S AiV2gi(z). However, so that IPOPT can ask for the Hessian of the objective or the constraints
independently if required, we introduce a factor (o¢) in front of the objective term. For IPOPT then, the
symbolic form of the Hessian of the Lagrangian is

oV fan) + > NV2gi(wr) 9)

i=1

(with the o¢ parameter), and for the example problem this becomes

214 Ty x4 221+ 220+ 23 0 T3T4 ToTy Tolsg 2 0 0 0
0 O 0 0 2 0 O
O'f X4 X1 +/\1 T3X4 T1xyg T13 +>\2
Ty 0 0 T ToXy XT1T4 0 1T 0 0 2 0
200+ 20 +23 11 27 0 Tol3 T1T3 T1T2 0 0 0 0 2

where the first term comes from the Hessian of the objective function, and the second and third term
from the Hessian of the constraints (5) and (6), respectively. Therefore, the dual variables \; and Ay are
then the multipliers for constraints (5) and (6), respectively.

The remaining sections of the tutorial will lead you through the coding required to solve example
problem (4)—(7) using, first C++, then C, and finally Fortran. Completed versions of these examples can
be found in $IPOPTDIR/Ipopt/examples under hs071_cpp, hs071_c, hs071_f.

As a user, you are responsible for coding two sections of the program that solves a problem using
IpoPT: the main executable (e.g., main) and the problem representation. Typically, you will write an
executable that prepares the problem, and then passes control over to IPOPT through an Optimize or
Solve call. In this call, you will give IPOPT everything that it requires to call back to your code whenever
it needs functions evaluated (like the objective function, the Jacobian of the constraints, etc.). In each
of the three sections that follow (C++, C, and Fortran), we will first discuss how to code the problem
representation, and then how to code the executable.

13If a quasi-Newton option is chosen to approximate the second derivatives, this is not required. However, if second
derivatives can be computed, it is often worthwhile to let IPOPT use them, since the algorithm is then usually more robust
and converges faster. More on the quasi-Newton approximation in Section 4.2.

20

3.3 The C++ Interface

This tutorial assumes that you are familiar with the C++ programming language, however, we will lead
you through each step of the implementation. For the problem representation, we will create a class that
inherits off of the pure virtual base class, TNLP (IpTNLP.hpp). For the executable (the main function) we
will make the call to IPOPT through the IpoptApplication class (IpIpoptApplication.hpp). In addi-
tion, we will also be using the SmartPtr class (IpSmartPtr.hpp) which implements a reference counting
pointer that takes care of memory management (object deletion) for you (for details, see Appendix B).

After “make install” (see Section 2.3), the header files are installed in $IPOPTDIR/include/coin
(or in $PREFIX/include/coin if the switch —-prefix=$PREFIX was used for configure).

3.3.1 Coding the Problem Representation

We provide the information required in Figure 2 by coding the HSO71_NLP class, a specific implemen-
tation of the TNLP base class. In the executable, we will create an instance of the HS071_NLP class
and give this class to IPOPT so it can evaluate the problem functions through the TNLP interface. If
you have any difficulty as the implementation proceeds, have a look at the completed example in the
Ipopt/examples/hs071_cpp directory.

Start by creating a new directory under examples, called MyExample and create the files hs071_nlp.hpp
and hs071 nlp.cpp. In hs071 nlp.hpp, include IpTNLP.hpp (the base class), tell the compiler that we
are using the IPOPT namespace, and create the declaration of the HS071_NLP class, inheriting off of TNLP.
Have a look at the TNLP class in IpTNLP.hpp; you will see eight pure virtual methods that we must
implement. Declare these methods in the header file. Implement each of the methods in HS071_NLP. cpp
using the descriptions given below. In hs071 nlp.cpp, first include the header file for your class and tell
the compiler that you are using the IPOPT namespace. A full version of these files can be found in the
Ipopt/examples/hs071_cpp directory.

It is very easy to make mistakes in the implementation of the function evaluation methods, in particular
regarding the derivatives. IPOPT has a feature that can help you to debug the derivative code, using finite
differences, see Section 4.1.

Note that the return value of any bool-valued function should be true, unless an error occurred, for
example, because the value of a problem function could not be evaluated at the required point.

Method get_nlp_info with prototype

virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
Index& nnz_h_lag, IndexStyleEnum& index_style)

Give IPOPT the information about the size of the problem (and hence, the size of the arrays that it needs
to allocate).

e n: (out), the number of variables in the problem (dimension of).
e m: (out), the number of constraints in the problem (dimension of g(z)).

e nnz_jac_g: (out), the number of nonzero entries in the Jacobian.

nnz_h_lag: (out), the number of nonzero entries in the Hessian.

index_style: (out), the numbering style used for row/col entries in the sparse matrix format
(C_STYLE: 0-based, FORTRAN_STYLE: 1-based; see also Appendix A).

IPOPT uses this information when allocating the arrays that it will later ask you to fill with values. Be
careful in this method since incorrect values will cause memory bugs which may be very difficult to find.

Our example problem has 4 variables (n), and 2 constraints (m). The constraint Jacobian for this small
problem is actually dense and has 8 nonzeros (we still need to represent this Jacobian using the sparse
matrix triplet format). The Hessian of the Lagrangian has 10 “symmetric” nonzeros (i.e., nonzeros in the

21

lower left triangular part.). Keep in mind that the number of nonzeros is the total number of elements
that may ever be nonzero, not just those that are nonzero at the starting point. This information is set
once for the entire problem.
bool HSO71_NLP::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
Index& nnz_h_lag, IndexStyleEnum& index_style)
{
// The problem described in HSO71_NLP.hpp has 4 variables, x[0] through x[3]

n = 4;

// one equality constraint and one inequality constraint
m = 2;

// in this example the Jacobian is dense and contains 8 nonzeros
nnz_jac_g = 8;

// the Hessian is also dense and has 16 total nonzeros, but we
// only need the lower left corner (since it is symmetric)

nnz_h_lag = 10;

// use the C style indexing (O-based)
index_style = TNLP::C_STYLE;

return true;

Method get_bounds_info with prototype

virtual bool get_bounds_info(Index n, Number* x_1, Number* x_u,
Index m, Number* g_l, Number* g_u)

Give IPOPT the value of the bounds on the variables and constraints.
e n: (in), the number of variables in the problem (dimension of x).
e x_1: (out) the lower bounds z’ for .

e x_u: (out) the upper bounds 2V for .

m: (in), the number of constraints in the problem (dimension of g(x)).
e g 1: (out) the lower bounds g” for g(x).
e g u: (out) the upper bounds g for g(x).

The values of n and m that you specified in get_nlp_info are passed to you for debug checking. Setting a
lower bound to a value less than or equal to the value of the option nlp_lower _bound_inf will cause IPOPT
to assume no lower bound. Likewise, specifying the upper bound above or equal to the value of the option
nlp_upper_bound_inf will cause IPOPT to assume no upper bound. These options, nlp_lower_bound_inf
and nlp_upper_bound_inf, are set to —10'? and 10'?, respectively, by default, but may be modified by
changing the options (see Section 5).

In our example, the first constraint has a lower bound of 25 and no upper bound, so we set the lower
bound of constraint [0] to 25 and the upper bound to some number greater than 10'9. The second
constraint is an equality constraint and we set both bounds to 40. IPOPT recognizes this as an equality
constraint and does not treat it as two inequalities.

bool HSO71_NLP::get_bounds_info(Index n, Number* x_1, Number* x_u,
Index m, Number* g_l, Number* g_u)
{
// here, the n and m we gave IPOPT in get_nlp_info are passed back to us.
// If desired, we could assert to make sure they are what we think they are.

22

assert(n == 4);
assert(m == 2);

// the variables have lower bounds of 1
for (Index i=0; i<4; i++) {

x_1[i] = 1.0;
}

// the variables have upper bounds of 5
for (Index i=0; i<4; i++) {

x_ul[i] = 5.0;
}

// the first constraint gl has a lower bound of 25

g_1[0] = 25;

// the first constraint gl has NO upper bound, here we set it to 2e19.

// Ipopt interprets any number greater than nlp_upper_bound_inf as

// infinity. The default value of nlp_upper_bound_inf and nlp_lower_bound_inf
// is 1el9 and can be changed through ipopt options.

g_ul0] = 2e19;

// the second constraint g2 is an equality constraint, so we set the
// upper and lower bound to the same value

g_1[1] = g_ul1] = 40.0;

return true;

Method get_starting point with prototype

virtual bool get_starting point(Index n, bool init_x, Number* x,
bool init_z, Number* z_L, Numberx z_U,
Index m, bool init_lambda, Number* lambda)

Give IPOPT the starting point before it begins iterating.

n: (in), the number of variables in the problem (dimension of z).
e init_x: (in), if true, this method must provide an initial value for .
e x: (out), the initial values for the primal variables, x.

e init z: (in), if true, this method must provide an initial value for the bound multipliers z¥ and

2Y.

e z L: (out), the initial values for the bound multipliers, zL.

e z U: (out), the initial values for the bound multipliers, zU.

e m: (in), the number of constraints in the problem (dimension of g(z)).

e init_lambda: (in), if true, this method must provide an initial value for the constraint multipliers,

A
e lambda: (out), the initial values for the constraint multipliers, A.

The variables n and m are passed in for your convenience. These variables will have the same values
you specified in get nlp_info.

Depending on the options that have been set, IPOPT may or may not require bounds for the primal
variables z, the bound multipliers z” and 2V, and the constraint multipliers A\. The boolean flags init_x,
init_z, and init_lambda tell you whether or not you should provide initial values for x, z~, 2V, or A

23

respectively. The default options only require an initial value for the primal variables x. Note, the initial
values for bound multiplier components for “infinity” bounds (:17%) = —00 or a:g) = o0) are ignored.

In our example, we provide initial values for = as specified in the example problem. We do not provide
any initial values for the dual variables, but use an assert to immediately let us know if we are ever asked

for them.

bool HSO71_NLP::get_starting_point(Index n, bool init_x, Numberx* x,
bool init_z, Number* z_L, Number* z_U,
Index m, bool init_lambda,
Number* lambda)

// Here, we assume we only have starting values for x, if you code
// your own NLP, you can provide starting values for the dual variables
// if you wish to use a warmstart option

assert(init_x == true);
assert(init_z == false);
assert(init_lambda == false);

// initialize to the given starting point

x[0] = 1.0;
x[1] = 5.0;
x[2] = 5.0;
x[3] = 1.0;

return true;

Method eval f with prototype

virtual bool eval_f(Index n, const Number* x,
bool new_x, Number& obj_value)

Return the value of the objective function at the point x.
e n: (in), the number of variables in the problem (dimension of x).
e x: (in), the values for the primal variables, x, at which f(z) is to be evaluated.

e new x: (in), false if any evaluation method was previously called with the same values in x, true
otherwise.

e obj_value: (out) the value of the objective function (f(z)).

The boolean variable new_x will be false if the last call to any of the evaluation methods (eval_x) used
the same x values. This can be helpful when users have efficient implementations that calculate multiple
outputs at once. IPOPT internally caches results from the TNLP and generally, this flag can be ignored.

The variable n is passed in for your convenience. This variable will have the same value you specified
in get nlp_info.

For our example, we ignore the new_x flag and calculate the objective.
bool HSO71_NLP::eval_f(Index n, const Number* x, bool new_x, Number& obj_value)

{
assert(n == 4);

obj_value = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];

return true;

}

24

Method eval_grad f with prototype

virtual bool eval_grad_f(Index n, const Number* x, bool new_x,
Number* grad_f)

Return the gradient of the objective function at the point x.
e n: (in), the number of variables in the problem (dimension of z).
e x: (in), the values for the primal variables, x, at which V f(z) is to be evaluated.

e new x: (in), false if any evaluation method was previously called with the same values in x, true
otherwise.

e grad f: (out) the array of values for the gradient of the objective function (V f(z)).

The gradient array is in the same order as the x variables (i.e., the gradient of the objective with
respect to x[2] should be put in grad_f[2]).

The boolean variable new_x will be false if the last call to any of the evaluation methods (eval_x) used
the same x values. This can be helpful when users have efficient implementations that calculate multiple
outputs at once. IPOPT internally caches results from the TNLP and generally, this flag can be ignored.

The variable n is passed in for your convenience. This variable will have the same value you specified
in get nlp_info.

In our example, we ignore the new_x flag and calculate the values for the gradient of the objective.

bool HSO71_NLP: :eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f)
{

assert(n == 4);

grad_f[0] = x[0] = x[3] + x[3] * (x[0] + x[1] + x[2]);
grad_f[1] = x[0] * x[3];

grad_f[2] = x[0] * x[3] + 1;

grad_f[3] = x[0] * (x[0] + x[1] + x[2]);

return true;

Method eval_g with prototype

virtual bool eval_g(Index n, const Number* x,
bool new_x, Index m, Numberx g)

Return the value of the constraint function at the point x.

n: (in), the number of variables in the problem (dimension of z).

x: (in), the values for the primal variables, x, at which the constraint functions, g(z), are to be
evaluated.

e new x: (in), false if any evaluation method was previously called with the same values in x, true
otherwise.

m: (in), the number of constraints in the problem (dimension of g(z)).

e g: (out) the array of constraint function values, g(x).

The values returned in g should be only the g(x) values, do not add or subtract the bound values g”
or gY.

The boolean variable new_x will be false if the last call to any of the evaluation methods (eval_*) used

the same x values. This can be helpful when users have efficient implementations that calculate multiple
outputs at once. IPOPT internally caches results from the TNLP and generally, this flag can be ignored.

25

The variables n and m are passed in for your convenience. These variables will have the same values
you specified in get nlp_info.
In our example, we ignore the new_x flag and calculate the values of constraint functions.

bool HSO71_NLP::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g)

{
assert(n == 4);
assert(m == 2);
glol = x[0] * x[1] * x[2] * x[3];
gl1] = x[0]1*x[0] + x[11*x[1] + x[2]*x[2] + x[3]1*x[3];

return true;

}

Method eval_jac_g with prototype

virtual bool eval_jac_g(Index n, const Number* x, bool new_x,
Index m, Index nele_jac, Index* iRow,
Index *jCol, Number* values)

Return either the sparsity structure of the Jacobian of the constraints, or the values for the Jacobian of
the constraints at the point x.

e n: (in), the number of variables in the problem (dimension of).

x: (in), the values for the primal variables, z, at which the constraint Jacobian, Vg(x)T, is to be
evaluated.

e new x: (in), false if any evaluation method was previously called with the same values in x, true
otherwise.

e m: (in), the number of constraints in the problem (dimension of g(z)).

e n ele_jac: (in), the number of nonzero elements in the Jacobian (dimension of iRow, jCol, and
values).

e iRow: (out), the row indices of entries in the Jacobian of the constraints.

jCol: (out), the column indices of entries in the Jacobian of the constraints.
e values: (out), the values of the entries in the Jacobian of the constraints.

The Jacobian is the matrix of derivatives where the derivative of constraint ¢(¥) with respect to variable
29 is placed in row 7 and column j. See Appendix A for a discussion of the sparse matrix format used
in this method.

If the iRow and jCol arguments are not NULL, then IPOPT wants you to fill in the sparsity structure of
the Jacobian (the row and column indices only). At this time, the x argument and the values argument
will be NULL.

If the x argument and the values argument are not NULL, then IPOPT wants you to fill in the values
of the Jacobian as calculated from the array x (using the same order as you used when specifying the
sparsity structure). At this time, the iRow and jCol arguments will be NULL;

The boolean variable new_x will be false if the last call to any of the evaluation methods (eval_x) used
the same x values. This can be helpful when users have efficient implementations that calculate multiple
outputs at once. IPOPT internally caches results from the TNLP and generally, this flag can be ignored.

The variables n, m, and nele_jac are passed in for your convenience. These arguments will have the
same values you specified in get_nlp_info.

In our example, the Jacobian is actually dense, but we still specify it using the sparse format.

26

bool HSO71_NLP::eval_jac_g(Index n, const Number* x, bool new_x,

{

Index m, Index nele_jac, Index* iRow, Index *jCol,
Number* values)

if (values == NULL) {

// return

the structure of the Jacobian

// this particular Jacobian is dense

iRow[0] =
iRow[1] =
iRow[2] =
iRow[3] =
iRow[4] =
iRow[5] =
iRow[6] =
iRow[7] =
}
else {
// return

values [0]
values[1]
values[2]
values[3]

values [4]
values [5]
values[6]
values[7]

return true;

}

0; jCol[0] = 0;
0; jColl[1]l = 1;
0; jCol[2] =
0; jCol[3] =
1; jCol[4] =
1
1
1

B

H

; jColl[b] =
; jCollel =
; jCol[7] =

W NP, O WN

the values of the Jacobian of the constraints

= x[1]*x[2]*x[3]; // 0,0
= x[0]*x[2]*x[3]; // 0,1
= x[0]*x[1]1*x[3]; // 0,2
= x[0]*x[1]*x[2]; // 0,3

= 2xx[0]; // 1,0
= 2*x[1]; // 1,1
= 2xx[2]; // 1,2
= 2*x[3]; // 1,3

Method eval h with prototype

virtual bool eval_h(Index n, const Number* x, bool new_x,

Return either the sparsity structure of the Hessian of the Lagrangian, or the values of the Hessian of the

Number obj_factor, Index m, const Number* lambda,
bool new_lambda, Index nele_hess, Indexx* iRow,

Index* jCol, Number* values)

Lagrangian (9) for the given values for z, oy, and .

e n: (in),

e x: (in),

® nNew_Xx:

the number of variables in the problem (dimension of x).

the values for the primal variables, z, at which the Hessian is to be evaluated.

(in), false if any evaluation method was previously called with the same values in x, true

otherwise.

e obj_factor: (in), factor in front of the objective term in the Hessian, sigmay.
e m: (in),
e lambda: (in), the values for the constraint multipliers, A, at which the Hessian is to be evaluated.

e new_lambda: (in), false if any evaluation method was previously called with the same values in

the number of constraints in the problem (dimension of g(x)).

lambda, true otherwise.

e nele hess: (in), the number of nonzero elements in the Hessian (dimension of iRow, jCol, and

values).

27

e iRow: (out), the row indices of entries in the Hessian.
e jCol: (out), the column indices of entries in the Hessian.
e values: (out), the values of the entries in the Hessian.

The Hessian matrix that IPOPT uses is defined in Eq. 9. See Appendix A for a discussion of the sparse
symmetric matrix format used in this method.

If the iRow and jCol arguments are not NULL, then IPOPT wants you to fill in the sparsity structure
of the Hessian (the row and column indices for the lower or upper triangular part only). In this case, the
%, lambda, and values arrays will be NULL.

If the x, lambda, and values arrays are not NULL, then IPOPT wants you to fill in the values of the
Hessian as calculated using x and lambda (using the same order as you used when specifying the sparsity
structure). In this case, the iRow and jCol arguments will be NULL.

The boolean variables new_x and new_lambda will both be false if the last call to any of the evaluation
methods (eval_*) used the same values. This can be helpful when users have efficient implementations
that calculate multiple outputs at once. IPOPT internally caches results from the TNLP and generally, this
flag can be ignored.

The variables n, m, and nele_hess are passed in for your convenience. These arguments will have the
same values you specified in get_nlp_info.

In our example, the Hessian is dense, but we still specify it using the sparse matrix format. Because
the Hessian is symmetric, we only need to specify the lower left corner.

bool HSO71_NLP::eval_h(Index n, const Number* x, bool new_x,
Number obj_factor, Index m, const Number* lambda,
bool new_lambda, Index nele_hess,
Index* jCol, Number* values)

Index* iRow,

{
if (values == NULL) {
// return the structure. This is a symmetric matrix, fill the lower left
// triangle only.

// the Hessian for this problem is actually dense
Index idx=0;
for (Index row = 0; row < 4; row++) {

for (Index col = 0; col <= row; col++) {

iRow[idx] = row;
jColl[idx] = col;
idx++;
}
}
assert(idx == nele_hess);
}
else {

// return the values. This is a symmetric matrix, fill the lower left
// triangle only

// £ill the objective portion

values[0] = obj_factor * (2*x[3]); // 0,0

values[1] = obj_factor * (x[31); // 1,0

values[2] = 0; // 1,1

values[3] = obj_factor * (x[31); // 2,0

values[4] = 0; /] 2,1

values[5] = 0; // 2,2

values[6] = obj_factor * (2*x[0] + x[1] + x[2]); // 3,0
values[7] = obj_factor * (x[0]); // 3,1
values[8] = obj_factor * (x[0]); // 3,2

28

values[9] = 0; // 3,3

// add the portion for the first constraint
values[1] += lambdal[0] * (x[2] * x[3]1); // 1,0

values[3] += lambdal[0] * (x[1