Introduction to IPOPT:
A tutorial for downloading, installing, and using IPOPT.

Revision number of this document: Revision : 799

November 29, 2006

Abstract

This document is a guide to using IPOPT 3.2.3 (the C++ version of IPOPT). It includes instructions
on how to obtain and compile IPOPT, a description of the interface, user options, etc., as well as a
tutorial on how to solve a nonlinear optimization problem with IPOPT.

The initial version of this document was created by Yoshiaki Kawajir' as a course project for
47852 Open Source Software for Optimization, taught by Prof. Frangois Margot at Tepper School of
Business, Carnegie Mellon University. The current version is maintained by Carl Laird® and Andreas

Wiichter?.

Contents
1 Introduction 1
1.1 Mathematical Backgroundo 1
1.2 Availability 2
1.3 Prerequisites L e 2
1.4 How to use IPOPT o e 3
1.5 More Information and Contributions L. 3
1.6 History of IPOPT e 4
2 Installing IropPT 4
2.1 Getting the TPOPT Code e 4
2.1.1 Getting the IPOPT code via subversion 4
2.1.2 Getting the IPOPT code as a tarball 5
2.2 Download External Code e 5
2.2.1 Download BLAS, LAPACK and ASL 6
2.2.2 Download HSL Subroutines 6
2.2.3 Obtaining the Linear Solver Pardiso 7
2.2.4 Obtaining the Linear Solver WSMP, 7
2.3 Compiling and Installing TPOPT 7
2.4 Imstallation on Windowso e 8
2.4.1 Installation with Cygwin using GNU compilers 9
2.4.2 Installation with Cygwin using native compilers 10
2.4.3 Installation with MinGW L o 11
2.4.4 Using Visual Studio e 11

IDepartment of Chemical Engineering, Carnegie Mellon University, Pittsburgh PA
2Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh PA
3Department of Mathematical Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY

3 Interfacing your NLP to IropPT: A tutorial example. 11

3.1 Using IPOPT through AMPL 12
3.2 Interfacing with IPOPT through code, 12
3.3 The CH++ Interface e 16
3.3.1 Coding the Problem Representation 16

3.3.2 Coding the Executable (main) 25

3.3.3 Compiling and Testing the Example 26

3.3.4 Additional methods in TNLP 28

3.4 The Clnterface e e 29
3.5 The Fortran Interface 32

4 Special Features 33
4.1 Derivative Checker e 33
4.2 Quasi-Newton Approximation of Second Derivatives 34

5 IroprT Options 34
6 IpopT Output 35
A Triplet Format for Sparse Matrices 39
B The Smart Pointer Implementation: SmartPtr<T> 41
C Options Reference 42
D Detailed Installation Information 54

The following names used in this document are trademarks or registered trademarks: AMPL, IBM, Intel, Matlab,
Microsoft, MKL, Visual Studio C++, Visual Studio C++ .NET

1 Introduction

IpopT (Interior Point Optimizer, pronounced “I-P-Opt”) is an open source software package for large-
scale nonlinear optimization. It can be used to solve general nonlinear programming problems of the

form
min f (z) (1)
8.t g" < glx) <g" (2)
z <z< xU, (3)

where z € R™ are the optimization variables (possibly with lower and upper bounds, z* € (RU {—occ})"
and z¥ € (RU {+oco})"), f : R® — R is the objective function, and g : R® — R™ are the general
nonlinear constraints. The functions f(x) and g(x) can be linear or nonlinear and convex or non-convex
(but should be twice continuously differentiable). The constraints, g(z), have lower and upper bounds,
gt € (RU{—o0})" and gV € (RU{+00})™. Note that equality constraints of the form g;(z) = g; can be
specified by setting g& = gV = g;.

1.1 Mathematical Background

IPOPT implements an interior point line search filter method that aims to find a local solution of (1)-(3).
The mathematical details of the algorithm can be found in several publications [3, 4, 7, 6, 5].

1.2 Availability

The IPOPT package is available from COIN-OR (www.coin-or.org) under the CPL (Common Public
License) open-source license and includes the source code for IpopT. This means, it is available free
of charge, also for commercial purposes. However, if you give away software including IPOPT code (in
source code or binary form) and you made changes to the IPOPT source code, you are required to make
those changes public and to clearly indicate which modifications you made. After all, the goal of open
source software is the continuous development and improvement of software. For details, please refer to
the Common Public License.

Also, if you are using IPOPT to obtain results for a publication, we politely ask you to point out in
your paper that you used IPOPT, and to cite the publication [7]. Writing high-quality numerical software
takes a lot of time and effort, and does usually not translate into a large number of publications, therefore
we believe this request is only fair :). We also have space at the IPOPT project home page where we list
publications, projects, etc., in which IPOPT has been used. We would be very happy to hear about your
experiences

1.3 Prerequisites
In order to build ITPOPT, some third party components are required:

e BLAS (Basic Linear Algebra Subroutines). Many vendors of compilers and operating systems
provide precompiled and optimized libraries for these dense linear algebra subroutines. But you
can also get the source code from www.netlib.org and have the IPOPT distribution compile it
automatically.

e LAPACK (Linear Algebra PACKage). Also for LAPACK, some vendors offer precompiled and

optimized libraries. But like with BLAS, you can get the source code from www.netlib.org and
have the IPOPT distribution compile it automatically.
Note that currently LAPACK is only required if you intend to use the quasi-Newton options in
IpoPT. You can compile the code without LAPACK, but an error message will then occur if you
try to run the code with an option that requires LAPACK. Currently, the LAPACK routines that
are used by ITPOPT are only DPOTRF, DPOTRS, and DSYEV.

e A sparse symmetric indefinite linear solver. The IPOPT needs to obtain the solution of sparse,
symmetric, indefinite linear systems, and for this it relies on third-party code.

Currently, the following linear solvers can be used:

— MA27 from the Harwell Subroutine Library
(see http://www.cse.clrc.ac.uk/nag/hsl/).

— MAS57 from the Harwell Subroutine Library
(see http://www.cse.clrc.ac.uk/nag/hsl/).

— The Parallel Sparse Direct Solver (PARDISO)
(see http://www.computational.unibas.ch/cs/scicomp/software/pardiso/).
Note: The Pardiso version in Intel’s MKL library does not yet support the features necessary
for IPoPT.

— The Watson Sparse Matrix Package (WSMP)
(see http://www-users.cs.umn.edu/ agupta/wsmp.html)

You need to include at least one of the linear solvers above in order to run IPOPT, and if you want
to be able to switch easily between different options, you can compile IPOPT with all of them.
Currently, there is development by contributors on integrating also MUMPS and TAUCS, but this
work has not yet been completed.

Interfaces to other linear solvers might be added in the future; if you are interested in contributing
such an interface please contact us! Note that IPOPT requires that the linear solver is able to
provide the inertia (number of positive and negative eigenvalues) of the symmetric matrix that is
factorized.

e Furthermore, IPOPT can also use the Harwell Subroutine MC19 for scaling of the linear systems
before they are passed to the linear solver. This may be particularly useful if IPOPT is used with
MA27 or MA57. However, it is not required to have MC19 to compile IPOPT; if this routine is
missing, the scaling is never performed?.

e ASL (AMPL Solver Library). The source code is available at www.netlib.org, and the IPOPT
makefiles will automatically compile it for you if you put the source code into a designated space.
NOTE: This is only required if you want to use IPOPT from AMPL and want to compile the IPOPT
AMPL solver executable.

For more information on third-party components and how to obtain them, see Section 2.2.

Since the IPOPT code is written in C++, you will need a C4++ compiler to build the IPOPT library.
We tried very hard to write the code as platform and compiler independent as possible.

In addition, the configuration script currently also searches for a Fortran, since some of the dependen-
cies above are written in Fortran. If all third party dependencies are available as self-contained libraries,
those compilers are in principle not necessary. Also, it is possible to use the Fortran-to-C compiler f£2c
from www.netlib.org to convert Fortran code to C, and compile the resulting C files with a C compiler
and create a library containing the required third party dependencies. But so far we have not tested this
ourselves, and currently the configuration script for IPOPT looks for a Fortran compiler.

1.4 How to use IPOPT

If desired, the IPOPT distribution generates an executable for the modeling environment AMPL. As well,
you can link your problem statement with IPOPT using interfaces for C++4-, C, or Fortran. IPOPT can be
used with most Linux/Unix environments, and on Windows using Visual Studio .NET or Cygwin. Below
in Section 3 this document demonstrates how to solve problems using IPOPT. This includes installation
and compilation of TPOPT for use with AMPL as well as linking with your own code.

Finally, the IPOPT distribution includes an interface for CUTEr®, if you want to use IPOPT to solve
problems modeled in SIF.

The old (Fortran 2.x) version of IPOPT has been interfaced with Matlab, the NLPAPT on COIN, and is
also available on NEOS. The new version might be available through similar means in the future. Please
check the IPOPT homepage for updates.

1.5 More Information and Contributions

More and up-to-date information can be found at the IPOPT homepage,
http://projects.coin-or.org/Ipopt.

Here, you can find FAQs, some (hopefully useful) hints, a bug report system etc. The website is
managed with Wiki, which means that every user can edit the webpages from the regular web browser.
In particular, we encourage IPOPT users to share their experiences and usage hints on
the “Success Stories” and “Hints and Tricks” pages, or to list the publications discussing
applications of IPOPT in the “Papers related to Ipopt” page®. In particular, if you have trouble
getting IPOPT work well for your optimization problem, you might find some ideas here. Also, if you had

4There are more recent scaling routines in the HSL, but they have not (yet) been integrated. Contributions are welcome!

5see http://cuter.rl.ac.uk/cuter-www/

6Since we had some malicious hacker attacks destroying the content of the web pages in the past, you are now required
to enter a user name and password; simply follow the instructions on top of the main project page.

some difficulties to solve a problem and found a way around it (e.g., by reformulating your problem or
by using certain IPOPT options), it would be very nice if you help other users by sharing your experience
at the “Hints and Tricks” page.

IPOPT is an open source project, and we encourage people to contribute code (such as interfaces to
appropriate linear solvers, modeling environments, or even algorithmic features). If you are interested
in contributing code, please have a look at the COIN contributions webpage”, and contact the IPOPT
project leader.

There is also a mailing list for IPOPT, available from the webpage

http://list.coin-or.org/mailman/listinfo/coin-ipopt,

where you can subscribe to get notified of updates, to ask general questions regarding installation and
usage, or to share your experience with IPOPT. (You might want to look at the archives before posting
a question.)

We try to answer questions posted to the mailing list in a reasonable manner. Please understand that
we cannot answer all questions in detail, and because of time constraints, we may not be able to help you
model and debug your particular optimization problem. However, if you have a challenging optimization
problem and are interested in consulting services by IBM Research, please contact the IPOPT project
leader, Andreas Wachter.

1.6 History of IrorPT

The original IpopT (Fortran version) was a product of the dissertation research of Andreas Wichter
[4], under Lorenz T. Biegler at the Chemical Engineering Department at Carnegie Mellon University.
The code was made open source and distributed by the COIN-OR initiative, which is now a non-profit
corporation. IPOPT has been actively developed under COIN-OR since 2002.

To continue natural extension of the code and allow easy addition of new features, IBM Research
decided to invest in an open source re-write of IPOPT in C++. The new C++ version of the IPOPT
optimization code (IPOPT 3.0.0 and beyond) is currently developed at IBM Research and remains part
of the COIN-OR initiative. Future development on the Fortran version will cease with the exception of
occasional bug fix releases.

2 Installing IPOPT

The following sections describe the installation procedures on UNIX/Linux systems. For installation
instructions on Windows see Section 2.4.

Note: The COIN-wide installation help at https://projects.coin-or.org/CoinHelp might also be
useful.

2.1 Getting the IporT Code

IpoPT is available from the COIN-OR subversion repository. You can either download the code using
svn (the subversion® client similar to CVS) or simply retrieve a tarball (compressed archive file). While
the tarball is an easy method to retrieve the code, using the subversion system allows users the benefits
of the version control system, including easy updates and revision control.

2.1.1 Getting the IPOPT code via subversion

Of course, the subversion client must be installed on your system if you want to obtain the code this
way (the executable is called svn); it is already installed by default for many recent Linux distributions.

"see http://www.coin-or.org/contributions.html
8see http://subversion.tigris.org/

Information about subversion and how to download it can be found at http://subversion.tigris.org/.

To obtain the IPOPT source code via subversion, change into the directory in which you want to create
a subdirectory Ipopt with the IPOPT source code. Then follow the steps below:

1. Download the code from the repository
$ svn co https://projects.coin-or.org/svn/Ipopt/stable/3.2 CoinIpopt
Note: The $ indicates the command line prompt, do not type $, only the text following it.

2. Change into the root directory of the IPOPT distribution
$ cd CoinIpopt

In the following, “$IPOPTDIR” will refer to the directory in which you are right now (output of pwd).

Note, the instruction above give you the “stable branch” of the Ipopt project. This is meant to be the
latest stable version of Ipopt (possible not yet put into an official “release”). We suggest you download
this, because it will enable you to easily obtain improvements and updated.

For a discuss of the COIN release policy please have a look at

2.1.2 Getting the IPOPT code as a tarball

To use the tarball, follow the steps below:

1. Download the latest tarball from http://www.coin-or.org/Tarballs/Ipopt. The file you should
look for has the form Ipopt_z.y.z.tgz. If you choose the “highest” number z.y.z it contains the
latest release of IPOPT.

2. Issue the following commands to unpack the archive file:
$ gunzip Ipopt.z.y.z.tgz
$ tar xvf Ipopt_z.y.z.tar
Note: The $ indicates the command line prompt, do not type $, only the text following it.

3. Rename the directory you just extracted:
$ mv Ipopt_z.y.z CoinlIpopt

4. Change into the root directory of the IPOPT distribution
$ cd CoinIpopt

In the following, “$IPOPTDIR” will refer to the directory in which you are right now (output of pwd).

2.2 Download External Code

IPOPT uses a few external packages that are not included in the IPOPT source code distribution, namely
ASL (the AMPL Solver Library), BLAS, LAPACK. It also requires at least one linear solver for symmetric
indefinite matrices.

Since this third party software released under different licenses than IPOPT, we cannot distribute that
code together with the IPOPT packages and have to ask you to go through the hassle of obtaining it
yourself (even though we tried to make it as easy for you as we could). Keep in mind that it is still your
responsibility to ensure that your downloading and usage if the third party components conforms with
their licenses.

Note that you only need to obtain the ASL if you intend to use IPOPT from AMPL. It is not required
if you want to specify your optimization problem in a programming language (C++, C, or Fortran).
Also, currently, LAPACK is only required if you intend to use the quasi-Newton options implemented in
IpopT.

2.2.1 Download BLAS, LAPACK and ASL

If you have the download utility wget installed on your system, retrieving BLAS, LAPACK, and ASL is
straightforward using scripts included with the ipopt distribution. These scripts download the required
files from the Netlib Repository (www.netlib.org).

$ cd $IPOPTDIR/ThirdParty/Blas
$./get.Blas

$ cd ../Lapack

$./get.Lapack

$ cd ../ASL

$./get.ASL

If you do not have wget installed on your system, please read the INSTALL. * files in the $IPOPTDIR/ThirdParty/Blas,
$IPOPTDIR/ThirdParty/Lapack and $IPOPTDIR/ThirdParty/ASL directories for alternative instructions.

2.2.2 Download HSL Subroutines

IPOPT requires a sparse symmetric linear solver. There are different possibilities. In this section we
describe how to obtain the source code for MA27 (and MC19) from the Harwell Subroutine Library
(HSL). Those routines are freely available for non-commercial, academic use, but it is your responsibility
to investigate the licensing of all third party code.

The use of alternative linear solvers is described in Sections 2.2.3-2.2.4. You do not necessarily have
to use MA27 as described in this section, but at least one linear solver is required for IPOPT to function.

1. Go to http://hsl.rl.ac.uk/archive/hslarchive.html

2. Follow the instruction on the website, read the license, and submit the registration form.
3. Go to HSL Archive Programs, and find the package list.

4. In your browser window, click on MA27.

5. Make sure that Double precision: is checked. Click Download package (comments removed)

6. Save the file as ma27ad.f in $IPOPTDIR/ThirdParty/HSL/
Note: Some browsers append a file extension (.txt) when you save the file, in which case you have
to rename it.

7. Go back to the package list using the back button of your browser.
8. In your browser window, click on MC19.
9. Make sure Double precision: is checked. Click Download package (comments removed)

10. Save the file as mc19ad.f in $IPOPTDIR/ThirdParty/HSL/
Note: Some browsers append a file extension (.txt) when you save the file, so you may have to
rename it.

Note: Whereas it is essential to have at least one linear solver, the package MC19 could be omitted
(with the consequence that you cannot use this method for scaling the linear systems arising inside
the TPOPT algorithm). By default, MC19 is only used to scale the linear system when using one of the
Harwell solvers, but it can also be switched on for other linear solvers (which usually have internal scaling
mechanisms).

Note: If you have the source code for the linear solver MA57 (successor of MA27) in a file called
mab7ad.f (including all dependencies), you can simply put it into the $IPOPTDIR/ThirdParty/HSL/

directory. The IPOPT configuration script will then find this file and compile it into the IPOPT library
(just as is would compile MA27).

Yet another note: If you have a precompiled library containing the Harwell codes, you can specify the
location of this library with the —-with-hsl flag for the configure script described in Section 2.3.

2.2.3 Obtaining the Linear Solver Pardiso

If you would like to compile IPOPT with the Parallel Sparse Direct Linear Solver (Pardiso), you need to
obtain the Pardiso library for your operating system. Information about Pardiso can be found at

http://www.computational.unibas.ch/cs/scicomp/software/pardiso

You can obtain a free download for Pardiso if you want to use it for “non-commercial and non-profit
internal research purposes” and are an “academic, non-profit, or government agency” (taken from the
license agreement). Instructions for this are on the above mentioned website; make sure you read the
license agreement before filling out the download form.

Note: Pardiso is included in Intel’s MKL library. However, that version does not yet include the
changes done by the Pardiso developers to make the linear solver work smoothly with IPOPT.

Please consult Appendix D to find out how to configure your IPOPT installation to work with Pardiso.

2.2.4 Obtaining the Linear Solver WSMP

If you would like to compile IPOPT with the Watson Sparse Matrix Package (WSMP), you need to obtain
the WSMP library for your operating system. Information about WSMP can be found at

http://www.alphaworks.ibm.com/tech/wsmp

At this website you can obtain a “complimentary 90-day evaluation license” and download the library
for several operating systems; make sure you read the license agreement before downloading the code.
Once you obtained the code and the license, please check if the version number of the library matches
the one on the WSMP website at

http://www-users.cs.umn.edu/~agupta/wsmp

If a newer version is announced on that website, you can (and probably should) request the current
version by sending a message to wsmp@watson.ibm.com. Please include the operating system and other
details to describe which particular version of WSMP you need.

You can use the bugfix releases with the license you obtained from alphaWorks.

Note: Only the interface to the shared-memory version of WSMP is currently supported.

Please consult Appendix D to find out how to configure your IPOPT installation to work with WSMP.

2.3 Compiling and Installing IPOPT

IPOPT can be easily compiled and installed with the usual configure, make, make install commands.
We follow the precedure that is used for most of the COIN-OR, projects, based on the GNU autotools.
At https://projects.coin-or.org/BuildTools you can find a general description of the tools.

Below are the basic steps for the IPOPT compilation that should work on most systems. For special
compilations and for some troubleshooting see Appendix D and consult the IPOPT homepage before
submitting a ticket or sending a message to the mailing list.

1. Go to the main directory of IPOPT:
$ cd $IPOPTDIR

2. Run the configure script
$./configure

If the last output line of the script reads “configure: Main configuration of Ipopt successful”
then everything worked fine. Otherwise, look at the screen output, have a look at the config.log
output files and/or consult Appendix D.

The default configure (without any options) is sufficient for most users. If you want to see the
configure options, consult Appendix D, for example, if you want to use a non-HSL linear solver.

3. Build the code
$ make

4. If you want, you can run a short test to verify that the compilation was successful. For this, you
just enter
$ make test
This will test if the AMPL solver executable works (if you got the ASL code), and if the included
C++, C, and Fortran examples work.

Note: The configure script is not able to automatically determine the C++ runtime libraries for
the C++ compiler. For certain compilers we enabled default values for this, but those might not
exist or be wrong for your compiler. In that case, the C and Fortran example in the test will most
probably fail to compile. If you don’t want to hook up the compiled IPOPT library to some Fortran or
C code that you wrote you don’t need to worry about this. If you do want to link the IPOPT library
with a C or Fortran compiler, you need to find out the C++ runtime libraries (e.g., by running the
C++ compiler in verbose mode for a simple example program) and run configure again, and this
time specify all C++ runtime libraries with the CXXLIBS variable (see also Appendix D).

5. Install IPpOPT
$ make install
This installs

e the IPOPT AMPL solver executable (if ASL source was downloaded) in $IPOPTDIR/bin,
e the TPOPT library (1ibipopt.a) in $IPOPTDIR/1ib,

e text files ipopt_addlibs_cpp.txt and ipopt_addlibs_f.txt in $IPOPTDIR/1ib that contain
a line each with additional linking flags that are required for linking code with the IropPT
library, for C++ and Fortran main programs, respectively. (This is only for convenience if
you want to find out what additional flags are required, for example, to include the Fortran
runtime libraries with a C++ compiler.)

e the necessary header files in $IPOPTDIR/include/ipopt.

You can change the default installation directory (here $IPOPTDIR) to something else (such as
/usr/local) by using the —-prefix switch for configure.

6. Install IPOPT for use with CUTEr
If you have CUTEr already installed on your system and you want to use IPOPT as a solver for
problems modeled in SIF, type
$ make cuter
This assumes that you have the environment variable MYCUTER defined according to the CUTEr
instructions. After this, you can use the script sdipo as the CUTEr script to solve a SIF model.

Note: It is possible to compile the code in directories separate from the source files. This comes in
handy when you want to compile the code with different compilers, compiler options, or different operating
system that share a common file system. To use this feature, change into the directory where you want
to compile the code, and then type $IPOPTDIR/configure with all the options (replacing $IPOPTDIR by
the path to configure). For this, the directories with the IPOPT source must not have any configuration
and compiled code.

2.4 Installation on Windows

There are several ways to install IPOPT on Windows systems. The first two option, described in Sec-
tions 2.4.1 and 2.4.2, is to use Cygwin (see www.cygwin.com), which offers a UNIX-like environment on

Windows and in which the installation procedure described earlier in this section can be used. If you
want to use the (free) GNU compilers, follow the instructions in Section 2.4.1. If you have the Microsoft
C++ compiler (executable called cl.exe) and the Intel Fortran compiler (called ifort.exe) and want
to use those to compile IPOPT, please see Section 2.4.1. If you use MinGW, please consider the notes
in Section 2.4.3. The IPOPT distribution also includes projects files for the Microsoft Visual Studio (see
Section 2.4.4).

2.4.1 Installation with Cygwin using GNU compilers

Cygwin is a Linux-like environment for Windows; if you don’t know what it is you might want to have a
look at the Cygwin homepage, www.cygwin.com.

It is possible to build the IrPorT AMPL solver executable in Cygwin for general use in Windows. You
can also hook up IPOPT to your own program if you compile it in the Cygwin environment®.

If you want to compile IPOPT under Cygwin, you first have to install Cygwin on your Windows system.
This is pretty straight forward; you simply download the “setup” program from www.cygwin.com and
start it.

Then you do the following steps (assuming here that you don’t have any complications with firewall
settings etc - in that case you might have to choose some connection settings differently):

1. Click next
2. Select “install from the internet” (default) and click next

3. Select a directory where Cygwin is to be installed (you can leave the default) and choose all other
things to your liking, then click next

4. Select a temp dir for Cygwin setup to store some files (if you put it on your desktop you will later
remember to delete it)

5. Select “direct connection” (default) and click next
6. Select some mirror site that seems close by to you and click next

7. OK, now comes the complicated part:

You need to select the packages that you want to have installed. By default, there are already
selections, but the compilers are usually not pre-chosen. You need to make sure that you select the
GNU compilers (for Fortran, C, and C++ — together with the MinGW options), the GNU Make,
and Subversion. For this, click on the ”Devel” branch (which opens a subtree) and select:

e gce

e gce-core

e gce-g7v

e gce-g++

e gcc-mingw

e gcc-mingw-core

e gcc-mingw-g77

e gcc-mingw-g++

e make

e subversion

91t is also possible to build an IPOPT DLL that can be used from non-cygwin compilers, but this is not (yet?) supported.

10

10.

Then, in the “Web” branch, please select “wget” (which will make the installation of third party
dependencies for IPOPT easier)

This will automatically also select some other packages.
Then you click on next, and Cygwin will be installed (follow the rest of the instructions and choose

everything else to your liking). At a later point you can easily add/remove packages with the setup
program.

Now that you have Cygwin, you can open a Cygwin window, which is like a UNIX shell window.

Now you just follow the instructions in the beginning of Sections 2: You download the IpoPT
code into your Cygwin home directory (from the Windows explorer that is usually something like
C:\Cygwin\home\your_user name). After that you obtain the third party code (like on Linux/UNIX),

type
./configure
and
make install

in the correct directories, and hopefully that will work. The IpoPT AMPL solver executable will
be in the subdirectory bin (called “ipopt.exe”). If you want to set the installation, type

make test

2.4.2 Installation with Cygwin using native compilers

The IPOPT configure script and Makefiles have been tested with the Microsoft Visual C++ .NET 2003
Standard compiler together with the Intel Visual Fortran Compiler 8.1. It might also work with other

compilers.

Here are the steps that work on my system:

1.

Follow the instructions in Section 2.4.1 until Step 10 and stop after your downloaded the third
party code.

Now you need to make sure that Cygwin knows about the native compilers. For this you need to
edit the file cygwin.bat in the Cygwin base directory (usually C:\cygwin). Here you need to add
the line

call ‘‘C:\Program Files\Intel\Fortran\compiler80\IA32\BIN\ifortvars.bat’’

or whatever the location of that batch file is on your computer.

Run the configuration script, and tell it that you want to use the native compilers:

./configure CC=cl CXX=cl F77=ifort

Make sure the last message is

Main Ipopt configuration successful

If want to compile the AMPL solver executable, you need to compile the ASL library from a script.

For this you need to change into the ASL compilation directory, execute the script compile MS_ASL,
and go back to the directory where you were:

cd ThirdParty/ASL
./compile MS_ASL
cd -

11

5. Now you can compile the code with
make,
test the installation with
make test,
and install everything with

make install

2.4.3 Installation with MinGW

You can compile IPOPT also under MinGW, which is another UNIX-like environment for Windows. It
can be obtained from http://www.mingw.org/.

A compilation with the GNU compilers works just like with any other UNIX system, as described in
Section 2.3. If you want to use the native compilers (e.g., c1 and ifort), you need to make sure they are
in the path for the MSys prompt. Also, as for the procedure described in Section 2.4.2, you need to run
the compile MS_ASL script in the ThirdParty/ASL immediately after you run the configuration script.

2.4.4 Using Visual Studio

The IpopPT distribution includes project files that can be used to compile the IPOPT library and a Fortran
and C++ example within the Microsoft Visual Studio. The project files have been created with Microsoft
Visual C++ .NET 2003 Standard, and the Intel Visual Fortran Compiler 8.1.

In order to use those project files, download the IPOPT source code, as well as the required third party
code (put it into the ThirdParty\Blas, ThirdParty\Lapack, and ThirdParty\HSL directories—ASL is
not required for the Fortran and C examples). Then open the solution file:

$IPOPTDIR\Ipopt\Windows\VisualStudio_dotNET\Ipopt\Ipopt.sln

Please also read the README file in $IPOPTDIR\Ipopt\Windows\VisualStudio_dotNET
Note: Since the project files were created only with the Standard edition of the C++ compiler, code
optimization might be disabled; for fast performance make sure you enable code optimization.

3 Interfacing your NLP to IpoPT: A tutorial example.

IPOPT has been designed to be flexible for a wide variety of applications, and there are a number of ways
to interface with IPOPT that allow specific data structures and linear solver techniques. Nevertheless, the
authors have included a standard representation that should meet the needs of most users.

This tutorial will discuss four interfaces to IPOPT, namely the AMPL modeling language[1] interface,
and the C++, C, and Fortran code interfaces. AMPL is a 3rd party modeling language tool that allows
users to write their optimization problem in a syntax that resembles the way the problem would be
written mathematically. Once the problem has been formulated in AMPL, the problem can be easily
solved using the (already compiled) IPopT AMPL solver executable, ipopt. Interfacing your problem by
directly linking code requires more effort to write, but can be far more efficient for large problems.

We will illustrate how to use each of the four interfaces using an example problem, number 71 from
the Hock-Schittkowsky test suite [2],

min x124(x1 + T2 + 23) + 23 (4)
zeRt
s.t. T1ToT3Ta > 25 (5)
o3+ wd +ad+a =40 (6)
1§.€C1,I’27I3,l‘4§5, (7)

12

with the starting point
zo = (1,5,5,1) (8)

and the optimal solution
x, = (1.00000000, 4.74299963, 3.82114998, 1.37940829).

You can find further, less documented examples for using IPOPT from your own source code in the
Ipopt/examples subdirectory.

3.1 Using IpoOPT through AMPL

Using the AMPL solver executable is by far the easiest way to solve a problem with IPOPT. The user must
simply formulate the problem in AMPL syntax, and solve the problem through the AMPL environment.
There are drawbacks, however. AMPL is a 3rd party package and, as such, must be appropriately licensed
(a free student version for limited problem size is available from the AMPL website, www.ampl.com). Fur-
thermore, the AMPL environment may be prohibitive for very large problems. Nevertheless, formulating
the problem in AMPL is straightforward and even for large problems, it is often used as a prototyping
tool before using one of the code interfaces.

This tutorial is not intended as a guide to formulating models in AMPL. If you are not already familiar
with AMPL, please consult [1].

The problem presented in equations (4)—(8) can be solved with IPOPT with the AMPL model file
given in Figure 1.

The line, “option solver ipopt;” tells AMPL to use IPOPT as the solver. The IPOPT executable
(installed in Section 2.3) must be in the PATH for AMPL to find it. The remaining lines specify the
problem in AMPL format. The problem can now be solved by starting AMPL and loading the mod file:

$ ampl
> model hs071_ampl.mod;

The problem will be solved using IPOPT and the solution will be displayed.
At this point, AMPL users may wish to skip the sections about interfacing with code, but should read
Section 5 concerning IPOPT options, and Section 6 which explains the output displayed by IPOPT.

3.2 Interfacing with IrorPT through code

In order to solve a problem, IPOPT needs more information than just the problem definition (for example,
the derivative information). If you are using a modeling language like AMPL, the extra information is
provided by the modeling tool and the IPOPT interface. When interfacing with IPOPT through your own
code, however, you must provide this additional information.

The information required by IPOPT is shown in Figure 2. The problem dimensions and bounds are
straightforward and come solely from the problem definition. The initial starting point is used by the
algorithm when it begins iterating to solve the problem. If IPOPT has difficulty converging, or if it
converges to a locally infeasible point, adjusting the starting point may help. Depending on the starting
point, IPOPT may also converge to different local solutions.

Providing the sparsity structure of derivative matrices is a bit more involved. IPOPT is a nonlinear
programming solver that is designed for solving large-scale, sparse problems. While IPOPT can be cus-
tomized for a variety of matrix formats, the triplet format is used for the standard interfaces in this
tutorial. For an overview of the triplet format for sparse matrices, see Appendix A. Before solving the
problem, IPOPT needs to know the number of nonzero elements and the sparsity structure (row and
column indices of each of the nonzero entries) of the constraint Jacobian and the Lagrangian function

13

tell ampl to use the ipopt executable as a solver
make sure ipopt is in the path!
option solver ipopt;

declare the variables and their bounds,
set notation could be used, but this is straightforward
var x1 >= 1, <= 5;

var x2 >= 1, <= 5;
var x3 >= 1, <= 5;
var x4 >= 1, <= 5;

specify the objective function
minimize obj:
x1 * x4 * (x1 + x2 + x3) + x3;

specify the constraints
s.t.
inequality:
x1 * X2 * x3 *x x4 >= 25;

equality:
x172 + x272 + x372 +x472 = 40;

specify the starting point

let x1 := 1;
let x2 := 5;
let x3 := 5;
let x4 := 1;

solve the problem
solve;

print the solution
display x1;
display x2;
display x3;
display x4;

Figure 1: AMPL model file hs071_ampl.mod

14

. Problem dimensions

e number of variables

e number of constraints
. Problem bounds

e variable bounds

e constraint bounds
. Initial starting point

e Initial values for the primal x variables

e Initial values for the multipliers (only required for a warm start option)
. Problem Structure

e number of nonzeros in the Jacobian of the constraints

e number of nonzeros in the Hessian of the Lagrangian function

e sparsity structure of the Jacobian of the constraints

e sparsity structure of the Hessian of the Lagrangian function

. Evaluation of Problem Functions

Information evaluated using a given point (x, A, o5 coming from IPOPT)
e Objective function, f(z)
o Gradient of the objective V f(z)

e Constraint function values, g(z)

Jacobian of the constraints, Vg(x)?

e Hessian of the Lagrangian function, o;V?f(z) + >, A\;V2g;(x)
(this is not required if a quasi-Newton options is chosen to approximate the second derivatives)

Figure 2: Information required by IPOPT

15

Hessian. Once defined, this nonzero structure MUST remain constant for the entire optimization proce-
dure. This means that the structure needs to include entries for any element that could ever be nonzero,
not only those that are nonzero at the starting point.

As TPOPT iterates, it will need the values for Item 5. in Figure 2 evaluated at particular points.
Before we can begin coding the interface, however, we need to work out the details of these equations
symbolically for example problem (4)-(7).

The gradient of the objective f(x) is given by

T174 + 24(21 + T2 + 73)
T1T4
14 + 1
.’El(l'l + 20 + 1’3)

and the Jacobian of the constraints g(z) is

L2X3Tyg T1T3Tg4 T1X2L4 T1XL2X3
2$1 21‘2 2.733 2$4

We also need to determine the Hessian of the Lagrangian'®. The Lagrangian function for the NLP
(4)-(7) is defined as f(z) + g(x)T X and the Hessian of the Lagrangian function is, technically, V2 f(x) +
S AiV2gi(z). However, so that IPOPT can ask for the Hessian of the objective or the constraints
independently if required, we introduce a factor (o) in front of the objective term. For IPOPT then, the
symbolic form of the Hessian of the Lagrangian is

oV k) + > NV2gi(wr) 9)

i=1

(with the oy parameter), and for the example problem this becomes

214 Ty x4 221+ 220+ X3 0 T3Ty4 ToTy Tolsg 2 0 0 0
0 O 0 0 2 0 O
O'f X4 X1 +/\1 T3X4 T1xyg T13 +>\2
Ty 0 0 T ToXy X104 0 1o 0 0 2 0
200+ 22 +23 1 X7 0 Tol3 T1T3 T1T2 0 0 0 0 2

where the first term comes from the Hessian of the objective function, and the second and third term
from the Hessian of the constraints (5) and (6), respectively. Therefore, the dual variables A\; and Ay are
then the multipliers for constraints (5) and (6), respectively.

The remaining sections of the tutorial will lead you through the coding required to solve example
problem (4)—(7) using, first C++, then C, and finally Fortran. Completed versions of these examples can
be found in $IPOPTDIR/Ipopt/examples under hs071_cpp, hs071_c, hs071_f.

As a user, you are responsible for coding two sections of the program that solves a problem using
IpoPT: the main executable (e.g., main) and the problem representation. Typically, you will write an
executable that prepares the problem, and then passes control over to IPOPT through an Optimize or
Solve call. In this call, you will give IPOPT everything that it requires to call back to your code whenever
it needs functions evaluated (like the objective function, the Jacobian of the constraints, etc.). In each
of the three sections that follow (C++, C, and Fortran), we will first discuss how to code the problem
representation, and then how to code the executable.

10If a quasi-Newton option is chosen to approximate the second derivatives, this is not required. However, if second
derivatives can be computed, it is often worthwhile to let IPOPT use them, since the algorithm is then usually more robust
and converges faster. More on the quasi-Newton approximation in Section 4.2.

16

3.3 The C++ Interface

This tutorial assumes that you are familiar with the C++ programming language, however, we will lead
you through each step of the implementation. For the problem representation, we will create a class that
inherits off of the pure virtual base class, TNLP (IpTNLP.hpp). For the executable (the main function) we
will make the call to IPOPT through the IpoptApplication class (IpIpoptApplication.hpp). In addi-
tion, we will also be using the SmartPtr class (IpSmartPtr.hpp) which implements a reference counting
pointer that takes care of memory management (object deletion) for you (for details, see Appendix B).

After “make install” (see Section 2.3), the header files are installed in $IPOPTDIR/include/ipopt
(or in $PREFIX/include/ipopt if the switch —-prefix=$PREFIX was used for configure).

3.3.1 Coding the Problem Representation

We provide the information required in Figure 2 by coding the HSO71_NLP class, a specific implemen-
tation of the TNLP base class. In the executable, we will create an instance of the HS071_NLP class
and give this class to IPOPT so it can evaluate the problem functions through the TNLP interface. If
you have any difficulty as the implementation proceeds, have a look at the completed example in the
Ipopt/examples/hs071_cpp directory.

Start by creating a new directory under examples, called MyExample and create the files hs071_nlp.hpp
and hs071 nlp.cpp. In hs071 nlp.hpp, include IpTNLP.hpp (the base class), tell the compiler that we
are using the IPOPT namespace, and create the declaration of the HS071_NLP class, inheriting off of TNLP.
Have a look at the TNLP class in IpTNLP.hpp; you will see eight pure virtual methods that we must
implement. Declare these methods in the header file. Implement each of the methods in HS071_NLP. cpp
using the descriptions given below. In hs071 nlp.cpp, first include the header file for your class and tell
the compiler that you are using the IPOPT namespace. A full version of these files can be found in the
Ipopt/examples/hs071_cpp directory.

It is very easy to make mistakes in the implementation of the function evaluation methods, in particular
regarding the derivatives. IPOPT has a feature that can help you to debug the derivative code, using finite
differences, see Section 4.1.

Note that the return value of any bool-valued function should be true, unless an error occurred, for
example, because the value of a problem function could not be evaluated at the required point.

Method get_nlp_info with prototype

virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
Index& nnz_h_lag, IndexStyleEnum& index_style)

Give IPOPT the information about the size of the problem (and hence, the size of the arrays that it needs
to allocate).

e n: (out), the number of variables in the problem (dimension of).
e m: (out), the number of constraints in the problem (dimension of g(z)).

e nnz_jac_g: (out), the number of nonzero entries in the Jacobian.

nnz_h_lag: (out), the number of nonzero entries in the Hessian.

index_style: (out), the numbering style used for row/col entries in the sparse matrix format
(C_STYLE: 0-based, FORTRAN_STYLE: 1-based; see also Appendix A).

IPOPT uses this information when allocating the arrays that it will later ask you to fill with values. Be
careful in this method since incorrect values will cause memory bugs which may be very difficult to find.

Our example problem has 4 variables (n), and 2 constraints (m). The constraint Jacobian for this small
problem is actually dense and has 8 nonzeros (we still need to represent this Jacobian using the sparse
matrix triplet format). The Hessian of the Lagrangian has 10 “symmetric” nonzeros (i.e., nonzeros in the

17

lower left triangular part.). Keep in mind that the number of nonzeros is the total number of elements
that may ever be nonzero, not just those that are nonzero at the starting point. This information is set
once for the entire problem.
bool HSO71_NLP::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
Index& nnz_h_lag, IndexStyleEnum& index_style)
{
// The problem described in HSO71_NLP.hpp has 4 variables, x[0] through x[3]

n = 4;

// one equality constraint and one inequality constraint
m = 2;

// in this example the Jacobian is dense and contains 8 nonzeros
nnz_jac_g = 8;

// the Hessian is also dense and has 16 total nonzeros, but we
// only need the lower left corner (since it is symmetric)

nnz_h_lag = 10;

// use the C style indexing (O-based)
index_style = TNLP::C_STYLE;

return true;

Method get_bounds_info with prototype

virtual bool get_bounds_info(Index n, Number* x_1, Number* x_u,
Index m, Number* g_l, Number* g_u)

Give IPOPT the value of the bounds on the variables and constraints.
e n: (in), the number of variables in the problem (dimension of x).
e x_1: (out) the lower bounds z’ for .

e x_u: (out) the upper bounds 2V for .

m: (in), the number of constraints in the problem (dimension of g(x)).
e g 1: (out) the lower bounds g” for g(x).
e g u: (out) the upper bounds g for g(x).

The values of n and m that you specified in get_nlp_info are passed to you for debug checking. Setting a
lower bound to a value less than or equal to the value of the option nlp_lower _bound_inf will cause IPOPT
to assume no lower bound. Likewise, specifying the upper bound above or equal to the value of the option
nlp_upper_bound_inf will cause IPOPT to assume no upper bound. These options, nlp_lower_bound_inf
and nlp_upper_bound_inf, are set to —10'? and 10'?, respectively, by default, but may be modified by
changing the options (see Section 5).

In our example, the first constraint has a lower bound of 25 and no upper bound, so we set the lower
bound of constraint [0] to 25 and the upper bound to some number greater than 10'9. The second
constraint is an equality constraint and we set both bounds to 40. IPOPT recognizes this as an equality
constraint and does not treat it as two inequalities.

bool HSO71_NLP::get_bounds_info(Index n, Number* x_1, Number* x_u,
Index m, Number* g_l, Number* g_u)
{
// here, the n and m we gave IPOPT in get_nlp_info are passed back to us.
// 1f desired, we could assert to make sure they are what we think they are.

18

assert(n == 4);
assert(m == 2);

// the variables have lower bounds of 1
for (Index i=0; i<4; i++) {

x_1[i] = 1.0;
}

// the variables have upper bounds of 5
for (Index i=0; i<4; i++) {

x_ul[i] = 5.0;
}

// the first constraint gl has a lower bound of 25

g_1[0] = 25;

// the first constraint gl has NO upper bound, here we set it to 2e19.

// Ipopt interprets any number greater than nlp_upper_bound_inf as

// infinity. The default value of nlp_upper_bound_inf and nlp_lower_bound_inf
// is 1el9 and can be changed through ipopt options.

g_ul0] = 2e19;

// the second constraint g2 is an equality constraint, so we set the
// upper and lower bound to the same value

g_1[1] = g_ul1] = 40.0;

return true;

Method get_starting point with prototype

virtual bool get_starting point(Index n, bool init_x, Number* x,
bool init_z, Number* z_L, Numberx* z_U,
Index m, bool init_lambda, Number* lambda)

Give IPOPT the starting point before it begins iterating.

n: (in), the number of variables in the problem (dimension of z).
e init_x: (in), if true, this method must provide an initial value for z.
e x: (out), the initial values for the primal variables, x.

e init z: (in), if true, this method must provide an initial value for the bound multipliers z* and

2Y.

e z L: (out), the initial values for the bound multipliers, zL.

e z U: (out), the initial values for the bound multipliers, zU.

e m: (in), the number of constraints in the problem (dimension of g(z)).

e init_lambda: (in), if true, this method must provide an initial value for the constraint multipliers,

A
e lambda: (out), the initial values for the constraint multipliers, A.

The variables n and m are passed in for your convenience. These variables will have the same values
you specified in get nlp_info.

Depending on the options that have been set, IPOPT may or may not require bounds for the primal
variables z, the bound multipliers z” and 2V, and the constraint multipliers A\. The boolean flags init_x,
init_z, and init_lambda tell you whether or not you should provide initial values for z, z~, 2V, or A

19

respectively. The default options only require an initial value for the primal variables x. Note, the initial

values for bound multiplier components for “infinity” bounds (:17%) = —00 or a:g) = o0) are ignored.

In our example, we provide initial values for = as specified in the example problem. We do not provide
any initial values for the dual variables, but use an assert to immediately let us know if we are ever asked
for them.

bool HSO71_NLP::get_starting_point(Index n, bool init_x, Numberx* x,
bool init_z, Number* z_L, Number* z_U,
Index m, bool init_lambda,
Number* lambda)

// Here, we assume we only have starting values for x, if you code
// your own NLP, you can provide starting values for the dual variables
// if you wish to use a warmstart option

assert(init_x == true);
assert(init_z == false);
assert(init_lambda == false);

// initialize to the given starting point

x[0] = 1.0;
x[1] = 5.0;
x[2] = 5.0;
x[3] = 1.0;

return true;

Method eval f with prototype

virtual bool eval_f(Index n, const Number* x,
bool new_x, Number& obj_value)

Return the value of the objective function at the point .
e n: (in), the number of variables in the problem (dimension of x).
e x: (in), the values for the primal variables, , at which f(z) is to be evaluated.

e new x: (in), false if any evaluation method was previously called with the same values in x, true
otherwise.

e obj_value: (out) the value of the objective function (f(z)).

The boolean variable new_x will be false if the last call to any of the evaluation methods (eval_x) used
the same x values. This can be helpful when users have efficient implementations that calculate multiple
outputs at once. IPOPT internally caches results from the TNLP and generally, this flag can be ignored.

The variable n is passed in for your convenience. This variable will have the same value you specified
in get nlp_info.

For our example, we ignore the new_x flag and calculate the objective.
bool HSO71_NLP::eval_f(Index n, const Number* x, bool new_x, Number& obj_value)

{
assert(n == 4);

obj_value = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2];

return true;

}

20

Method eval_grad f with prototype

virtual bool eval_grad_f(Index n, const Number* x, bool new_x,
Number* grad_f)

Return the gradient of the objective function at the point x.
e n: (in), the number of variables in the problem (dimension of z).
e x: (in), the values for the primal variables, x, at which V f(z) is to be evaluated.

e new x: (in), false if any evaluation method was previously called with the same values in x, true
otherwise.

e grad f: (out) the array of values for the gradient of the objective function (Vf(z)).

The gradient array is in the same order as the x variables (i.e., the gradient of the objective with
respect to x[2] should be put in grad_f[2]).

The boolean variable new_x will be false if the last call to any of the evaluation methods (eval_x) used
the same x values. This can be helpful when users have efficient implementations that calculate multiple
outputs at once. IPOPT internally caches results from the TNLP and generally, this flag can be ignored.

The variable n is passed in for your convenience. This variable will have the same value you specified
in get nlp_info.

In our example, we ignore the new_x flag and calculate the values for the gradient of the objective.

bool HSO71_NLP: :eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f)
{

assert(n == 4);

grad_f[0] = x[0] = x[3] + x[3] * (x[0] + x[1] + x[2]);
grad_f[1] = x[0] * x[3];

grad_f[2] = x[0] * x[3] + 1;

grad_f[3] = x[0] * (x[0] + x[1] + x[2]);

return true;

Method eval_g with prototype

virtual bool eval_g(Index n, const Number* x,
bool new_x, Index m, Numberx g)

Return the value of the constraint function at the point x.

n: (in), the number of variables in the problem (dimension of z).

x: (in), the values for the primal variables, x, at which the constraint functions, g(z), are to be
evaluated.

e new x: (in), false if any evaluation method was previously called with the same values in x, true
otherwise.

m: (in), the number of constraints in the problem (dimension of g(z)).

e g: (out) the array of constraint function values, g(x).

The values returned in g should be only the g(x) values, do not add or subtract the bound values g”
or gY.

The boolean variable new_x will be false if the last call to any of the evaluation methods (eval_*) used

the same x values. This can be helpful when users have efficient implementations that calculate multiple
outputs at once. IPOPT internally caches results from the TNLP and generally, this flag can be ignored.

21

The variables n and m are passed in for your convenience. These variables will have the same values
you specified in get nlp_info.
In our example, we ignore the new_x flag and calculate the values of constraint functions.

bool HSO71_NLP::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g)

{
assert(n == 4);
assert(m == 2);
glol = x[0] * x[1] * x[2] * x[3];
gl1] = x[0]*x[0] + x[11*x[1] + x[2]*x[2] + x[3]1*x[3];

return true;

}

Method eval_jac_g with prototype

virtual bool eval_jac_g(Index n, const Number* x, bool new_x,
Index m, Index nele_jac, Index* iRow,
Index *jCol, Number* values)

Return either the sparsity structure of the Jacobian of the constraints, or the values for the Jacobian of
the constraints at the point x.

e n: (in), the number of variables in the problem (dimension of).

x: (in), the values for the primal variables, z, at which the constraint Jacobian, Vg(x)T, is to be
evaluated.

e new x: (in), false if any evaluation method was previously called with the same values in x, true
otherwise.

e m: (in), the number of constraints in the problem (dimension of g(z)).

e n ele_jac: (in), the number of nonzero elements in the Jacobian (dimension of iRow, jCol, and
values).

e iRow: (out), the row indices of entries in the Jacobian of the constraints.

jCol: (out), the column indices of entries in the Jacobian of the constraints.
e values: (out), the values of the entries in the Jacobian of the constraints.

The Jacobian is the matrix of derivatives where the derivative of constraint ¢(¥) with respect to variable
29 is placed in row 7 and column j. See Appendix A for a discussion of the sparse matrix format used
in this method.

If the iRow and jCol arguments are not NULL, then IPOPT wants you to fill in the sparsity structure of
the Jacobian (the row and column indices only). At this time, the x argument and the values argument
will be NULL.

If the x argument and the values argument are not NULL, then IPOPT wants you to fill in the values
of the Jacobian as calculated from the array x (using the same order as you used when specifying the
sparsity structure). At this time, the iRow and jCol arguments will be NULL;

The boolean variable new_x will be false if the last call to any of the evaluation methods (eval_x) used
the same x values. This can be helpful when users have efficient implementations that calculate multiple
outputs at once. IPOPT internally caches results from the TNLP and generally, this flag can be ignored.

The variables n, m, and nele_jac are passed in for your convenience. These arguments will have the
same values you specified in get_nlp_info.

In our example, the Jacobian is actually dense, but we still specify it using the sparse format.

22

bool HSO71_NLP::eval_jac_g(Index n, const Number* x, bool new_x,

{

Index m, Index nele_jac, Index* iRow, Index *jCol,
Number* values)

if (values == NULL) {

// return

the structure of the Jacobian

// this particular Jacobian is dense

iRow[0] =
iRow[1] =
iRow[2] =
iRow[3] =
iRow[4] =
iRow[5] =
iRow[6] =
iRow[7] =
}
else {
// return

values[0]
values[1]
values[2]
values[3]

values [4]
values [5]
values [6]
values[7]

return true;

}

0; jCol[0] = 0;
0; jColl[1]l = 1;
0; jCol[2] =
0; jColl[3] =
1; jCol[4] =
1
1
1

B

H

; jColl[b] =
; jColl6l =
; jCol[7] =

W N R, O WN

the values of the Jacobian of the constraints

= x[1]*x[2]*x[3]; // 0,0
= x[0]*x[2]*x[3]; // 0,1
= x[0]*x[1]1*x[3]; // 0,2
= x[0]*x[1]*x[2]; // 0,3

= 2xx[0]; // 1,0
= 2*x[1]; // 1,1
= 2xx[2]; // 1,2
= 2*x[3]; // 1,3

Method eval h with prototype

virtual bool eval_h(Index n, const Number* x, bool new_x,

Return either the sparsity structure of the Hessian of the Lagrangian, or the values of the Hessian of the

Number obj_factor, Index m, const Number* lambda,
bool new_lambda, Index nele_hess, Indexx* iRow,

Index* jCol, Number* values)

Lagrangian (9) for the given values for z, oy, and .

e n: (in),

e x: (in),

® nNew_Xx:

the number of variables in the problem (dimension of z).

the values for the primal variables, z, at which the Hessian is to be evaluated.

(in), false if any evaluation method was previously called with the same values in x, true

otherwise.

e obj_factor: (in), factor in front of the objective term in the Hessian, sigmay.
e m: (in),
e lambda: (in), the values for the constraint multipliers, A, at which the Hessian is to be evaluated.

e new_lambda: (in), false if any evaluation method was previously called with the same values in

the number of constraints in the problem (dimension of g(x)).

lambda, true otherwise.

e nele hess: (in), the number of nonzero elements in the Hessian (dimension of iRow, jCol, and

values).

23

e iRow: (out), the row indices of entries in the Hessian.
e jCol: (out), the column indices of entries in the Hessian.
e values: (out), the values of the entries in the Hessian.

The Hessian matrix that IPOPT uses is defined in Eq. 9. See Appendix A for a discussion of the sparse
symmetric matrix format used in this method.

If the iRow and jCol arguments are not NULL, then IPOPT wants you to fill in the sparsity structure
of the Hessian (the row and column indices for the lower or upper triangular part only). In this case, the
%, lambda, and values arrays will be NULL.

If the x, lambda, and values arrays are not NULL, then IPOPT wants you to fill in the values of the
Hessian as calculated using x and lambda (using the same order as you used when specifying the sparsity
structure). In this case, the iRow and jCol arguments will be NULL.

The boolean variables new_x and new_lambda will both be false if the last call to any of the evaluation
methods (eval_*) used the same values. This can be helpful when users have efficient implementations
that calculate multiple outputs at once. IPOPT internally caches results from the TNLP and generally, this
flag can be ignored.

The variables n, m, and nele_hess are passed in for your convenience. These arguments will have the
same values you specified in get_nlp_info.

In our example, the Hessian is dense, but we still specify it using the sparse matrix format. Because
the Hessian is symmetric, we only need to specify the lower left corner.

bool HSO71_NLP::eval_h(Index n, const Number* x, bool new_x,
Number obj_factor, Index m, const Number* lambda,
bool new_lambda, Index nele_hess, Index* iRow,
Index* jCol, Number* values)
{
if (values == NULL) {
// return the structure. This is a symmetric matrix, fill the lower left
// triangle only.

// the Hessian for this problem is actually dense
Index idx=0;
for (Index row = 0; row < 4; row++) {
for (Index col = 0; col <= row; col++) {
iRow[idx] = row;
jCol[idx] = col;
idx++;
}
}

assert(idx == nele_hess);

}

else {
// return the values. This is a symmetric matrix, fill the lower left
// triangle only

// £ill the objective portion
values[0] = obj_factor * (2*x[3]); // 0,0

values[1] = obj_factor * (x[31); // 1,0
values[2] = 0; // 1,1

values[3] = obj_factor * (x[31); // 2,0
values[4] = 0; // 2,1
values[5] = 0; // 2,2

values[6] = obj_factor * (2*x[0] + x[1] + x[2]); // 3,0

values[7] = obj_factor * (x[0]); // 3,1
values[8] = obj_factor * (x[0]); // 3,2

24

values[9] = 0; // 3,3

// add the portion for the first constraint
values[1] += lambdal[0] * (x[2] * x[3]1); // 1,0

values[3] += lambdal[0] * (x[1] * x[31); // 2,0
values[4] += lambdal[0] * (x[0] * x[31); // 2,1

values[6] += lambdal[0] * (x[1] * x[21); // 3,0
values[7] += lambda[0] * (x[0] * x[2]); // 3,1
values[8] += lambdal[0] * (x[0] * x[1]); // 3,2

// add the portion for the second constraint
values[0] += lambdal[1] * 2; // 0,0

values[2] += lambdal[1] * 2; // 1,1

values[5] += lambdal[1] * 2; // 2,2

values[9] += lambda[1] * 2; // 3,3

return true;

}

Method finalize solution with prototype

virtual void finalize_solution(SolverReturn status, Index n,

const Number* x, const Numberx z_L,
const Number* z_U, Index m, const Number* g,
const Number* lambda, Number obj_value)

This is the only method that is not mentioned in Figure 2. This method is called by IPoOPT after the
algorithm has finished (successfully or even with most errors).

e status: (in), gives the status of the algorithm as specified in IpAlgTypes.hpp,

SUCCESS: Algorithm terminated successfully at a locally optimal point, satisfying the conver-
gence tolerances (can be specified by options).

MAXITER EXCEEDED: Maximum number of iterations exceeded (can be specified by an option).
STOP_AT_TINY_STEP: Algorithm proceeds with very little progress.
STOP_AT_ACCEPTABLE_POINT: Algorithm stopped at a point that was converged, not to “de-

sired” tolerances, but to “acceptable” tolerances (see the acceptable-... options).
LOCAL_INFEASIBILITY: Algorithm converged to a point of local infeasibility. Problem may be
infeasible.

USER_REQUESTED_STOP: The user call-back function intermediate_callback (see Section 3.3.4)
returned false, i.e., the user code requested a premature termination of the optimization.
DIVERGING_ITERATES: It seems that the iterates diverge.

RESTORATION _FAILURE: Restoration phase failed, algorithm doesn’t know how to proceed.
ERROR_IN_STEP_COMPUTATION: An unrecoverable error occurred while IPOPT tried to compute
the search direction.

INVALID NUMBER DETECTED: Algorithm received an invalid number (such as NaN or Inf) from
the NLP; see also option check derivatives_for naninf.

INTERNAL_ERROR: An unknown internal error occurred. Please contact the IPOPT authors
through the mailing list.

25

n: (in), the number of variables in the problem (dimension of x).

e x: (in), the final values for the primal variables, x..

L
o

e z L: (in), the final values for the lower bound multipliers, z

U

* -

e z U: (in), the final values for the upper bound multipliers, z

m: (in), the number of constraints in the problem (dimension of g(x)).
e g: (in), the final value of the constraint function values, g(z.).

e lambda: (in), the final values of the constraint multipliers, A..

e obj_value: (in), the final value of the objective, f(x.).

This method gives you the return status of the algorithm (SolverReturn), and the values of the
variables, the objective and constraint function values when the algorithm exited.
In our example, we will print the values of some of the variables to the screen.

void HSO71_NLP::finalize_solution(SolverReturn status,
Index n, const Number* x, const Number* z_L,
const Number* z_U, Index m, const Number* g,
const Number* lambda, Number obj_value)

// here is where we would store the solution to variables, or write to a file, etc
// so we could use the solution.

// For this example, we write the solution to the console
printf ("\n\nSolution of the primal variables, x\n");
for (Index i=0; i<n; i++) {
printf ("x[%d] = %e\n", i, x[il]);
}

printf ("\n\nSolution of the bound multipliers, z_L and z_U\n");
for (Index i=0; i<n; i++) {
printf("z_L[%d] = %e\n", i, z_L[il]);
}
for (Index i=0; i<n; i++) {
printf("z_U[%d] = %e\n", i, z_U[il);
}

printf ("\n\nObjective value\n");
printf ("f(x*) = %e\n", obj_value);

This is all that is required for our HS071 _NLP class and the coding of the problem representation.

3.3.2 Coding the Executable (main)

Now that we have a problem representation, the HS071_NLP class, we need to code the main function that
will call IPOPT and ask IPOPT to find a solution.

Here, we must create an instance of our problem (HS071_NLP), create an instance of the IPOPT solver
(IpoptApplication), initialize it, and ask the solver to find a solution. We always use the SmartPtr
template class instead of raw C++ pointers when creating and passing IPOPT objects. To find out more
information about smart pointers and the SmartPtr implementation used in IPOPT, see Appendix B.

Create the file MyExample . cpp in the MyExample directory. Include HS071_NLP.hpp and IpIpoptApplication.hpp,
tell the compiler to use the Ipopt namespace, and implement the main function.

26

#include "IpIpoptApplication.hpp"
#include "hsO71_nlp.hpp"

using namespace Ipopt;

int main(int argv, char* argc[])

{
// Create a new instance of your nlp
// (use a SmartPtr, not raw)
SmartPtr<TNLP> mynlp = new HSO71_NLP();
// Create a new instance of IpoptApplication
// (use a SmartPtr, not raw)
SmartPtr<IpoptApplication> app = new IpoptApplication();
// Change some options
// Note: The following choices are only examples, they might not be
// suitable for your optimization problem.
app->0Options () ->SetNumericValue("tol", 1e-9);
app->Options()->SetStringValue("mu_strategy", "adaptive");
app->Options()->SetStringValue("output_file", "ipopt.out");
// Intialize the IpoptApplication and process the options
app->Initialize();
// Ask Ipopt to solve the problem
ApplicationReturnStatus status = app->OptimizeTNLP (mynlp) ;
if (status == Solve_Succeeded) {

printf ("\n\n*** The problem solved!\n");
}
else {
printf ("\n\n*** The problem FAILED!\n");

}
// As the SmartPtrs go out of scope, the reference count
// will be decremented and the objects will automatically
// be deleted.
return (int) status;

}

The first line of code in main creates an instance of HS071 _NLP. We then create an instance of the
IPOPT solver, IpoptApplication. The call to app->Initialize(...) will initialize that object, process
this options (particularly the output related options), and the call to app->0ptimizeTNLP(...) will run
IpoPT and try to solve the problem. By default, IPOPT will write to its progress to the console, and
return the SolverReturn status.

3.3.3 Compiling and Testing the Example

Our next task is to compile and test the code. If you are familiar with the compiler and linker
used on your system, you can build the code, including the IPoOPT library libipopt.a (and other
necessary libraries, as listed in the ipopt_addlibs_cpp.txt and ipopt_addlibs_f.txt files). If you
are using Linux/UNIX, then a sample makefile exists already that was created by configure. Copy
Ipopt/examples/hs071_cpp/Makefile into your MyExample directory. This makefile was created for
the hs071_cpp code, but it can be easily modified for your example problem. Edit the file, making the
following changes,

e change the EXE variable
EXE = my_example

27

e change the OBJS variable
0BJS = HSO71_NLP.o MyExample.o

and the problem should compile easily with,

$ make

Now run the executable,

$./my_example

and you should see output resembling the following,

stk sk sk ok sk sk sk of sk ok ke ok sk ok sk sk ok sk ok ok ks s sk sk ke ok sk s ok ks s ok sk s ke sk sk sk sk s ok sk sk sk s sk sk ke ok sk s sk sk ke sk sk ke sk sk sk ok sk sk ok ok
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Common Public License (CPL).
For more information visit http://projects.coin-or.org/Ipopt
koo e skok ok ko koo ok o o sk ok ko o ok e ok ok o ko s ok sk ko s stk ok sk ok ok koo sk ks ko ok sk ok

Number of nonzeros in equality constraint Jacobian...: 4
Number of nonzeros in inequality constraint Jacobian.: 4
Number of nonzeros in Lagrangian Hessian.............: 10

Total number of variables.....................00t
variables with only lower bounds:

variables with lower and upper bounds:

variables with only upper bounds:

Total number of equality comstraints.................:
Total number of inequality comstraints...............:
inequality constraints with only lower bounds:
inequality constraints with lower and upper bounds:
inequality constraints with only upper bounds:

O O R B B O Bd OB

iter objective inf_pr inf_du 1g(mu) |ldl|l 1g(rg) alpha_du alpha_pr 1s
0 1.6109693e+01 1.12e+01 5.28e-01 0.0 0.00e+00 - 0.00e+00 0.00e+00 O
1 1.7410406e+01 8.38e-01 2.25e+01 -0.3 7.97e-01 - 3.19e-01 1.00e+00f 1
2 1.8001613e+01 1.06e-02 4.96e+00 -0.3 5.60e-02 2.0 9.97e-01 1.00e+00h 1
3 1.7199482e+01 9.04e-02 4.24e-01 -1.0 9.91e-01 - 9.98e-01 1.00e+00f 1
4 1.6940955e+01 2.09e-01 4.58e-02 -1.4 2.88e-01 - 9.66e-01 1.00e+00h 1
5 1.7003411e+01 2.29e-02 8.42e-03 -2.9 7.03e-02 - 9.68e-01 1.00e+00h 1
6 1.7013974e+01 2.59e-04 8.65e-05 -4.5 6.22e-03 - 1.00e+00 1.00e+00h 1
7 1.7014017e+01 2.26e-07 5.71e-08 -8.0 1.43e-04 - 1.00e-00 1.00e+00h 1
8 1.7014017e+01 4.62e-14 9.09e-14 -8.0 6.95e-08 - 1.00e+00 1.00e+00h 1

Number of Iterations....: 8

Number of objective function evaluations =9

Number of objective gradient evaluations =9

Number of equality constraint evaluations =9

Number of inequality constraint evaluations =9

Number of equality constraint Jacobian evaluations = 9

Number of inequality constraint Jacobian evaluations = 9

Number of Lagrangian Hessian evaluations =8

Total CPU secs in IPOPT (w/o function evaluations) = 0.220
Total CPU secs in NLP function evaluations 0.000

EXIT: Optimal Solution Found.

Solution of the primal variables, x
x[0] = 1.000000e+00

x[1] = 4.743000e+00
x[2] = 3.821150e+00
x[3] = 1.379408e+00

Solution of the bound multipliers, z_L and z_U
z_L[0] = 1.087871e+00

28

z_L[1]
z_L[2]
z_L[3]
z_U[0]
z_U[1]
z_U[2]
z_U[3]

N N W NN WN

.428776e-09
.222413e-09
.396076e-08
.272727e-09
.537314e-08
.711676e-09
.510890e-09

Objective value

f(xx) =

*** The problem solved!

1.701402e+01

This completes the basic C++ tutorial, but see Section 6 which explains the standard console output
of IpOPTand Section 5 for information about the use of options to customize the behavior of IPOPT.
The Ipopt/examples/ScalableProblems directory contains other NLP problems coded in C++.

3.3.4 Additional methods in TNLP

The following methods are available to additional features that are not explained in the example. Default
implementations for those methods are provided, so that a user can safely ignore them, unless she wants
to make use of those features. These features is not yet(?) available from C or Fortran.

Method intermediate_callback with prototype

virtual bool intermediate_callback(AlgorithmMode mode,

Index iter, Number obj_value,
Number inf_pr, Number inf_du,
Number mu, Number d_norm,

Number regularization_size,
Number alpha_du, Number alpha_pr,
Index 1ls_trials,

const IpoptData* ip_data,
IpoptCalculatedQuantities* ip_cq)

It is not required to implement (overload) this method. This method is called once per iteration (during
the convergence check), and can be used to obtain information about the optimization status while IPOPT
solves the problem, and also to requires a premature termination.

The information provided by the entities in the argument list corresponds to what IPOPT prints in
the iteration summary (see also Section 6). Further information can be obtained from the ip_data and

ip_cq objects (for experts only :).

You you let this method return false, IPOPT will terminate with the User_Requested_Stop status. If

you do not implement this method (as we do in this example), the default implementation always returns

true.

Method get_scaling parameters

with prototype

virtual bool get_scaling_parameters(Number& obj_scaling,

bool& use_x_scaling, Index n,
Number* x_scaling,
bool& use_g_scaling, Index m,
Number* g_scaling)

29

This method is called if the nlp_scaling method is chosen as user-scaling. Then the user is
to provide scaling factors for the objective function, as well as for the optimization variables and/or
constraints. The return value should be true, unless an error occurred, and the program is to be aborted.

The value returned in obj_scaling determines, how IPOPT should internally scale the objective
function. For example, if this number is chosen to be 10, then IPOPT solves internally an optimization
problem that has 10 times the value of the original objective function provided by the TNLP. In particular,
if this value is negative, then IPOPT will maximize the objective function instead of minimizing it.

The scaling factors for the variables can be returned in x_scaling, which has the same length as x in
the other TNLP methods, and the factors are ordered like x. You need to set use_x_scaling to true, if you
want IPOPT so scale the variables. If it is false, no internal scaling of the variables is done. Similarly, the
scaling factors for the constraints can be returned in g_scaling, and this scaling is activated by setting
use_g_scaling to true.

As a guideline, we suggest to scale the optimization problem (either directly in the original formulation,
or after using scaling factors) so that all sensitivities, i.e., all non-zero first partial derivatives, are typically
of the order 0.1 — 10.

Method get_number_of nonlinear variables with prototype
virtual Index get_number_of_nonlinear_variables()

This method is only important if the limited-memory quasi-Newton options is used, see Section 4.2.
It is to be used to return the number of variables that appear nonlinearly in the objective function or in
at least one constraint function. If a negative number is returned, IPOPT assumes that all variables are
nonlinear.

If the user doesn’t overload this method in her implementation of the class derived from TNLP, the
default implementation returns -1, i.e., then all variables are assumed to be nonlinear.

Method get_list_of nonlinear variables with prototype

virtual bool get_list_of_nonlinear_variables(Index num_nonlin_vars,
Index* pos_nonlin_vars)

This method is called by IPOPT only if the limited-memory quasi-Newton options is used, and if the
get_number_of nonlinear_variables method returns a positive number; this number is then identical
with num nonlin vars and the length of the array posnonlin vars. In this call, you need to list
the indices of all nonlinear variables in pos_nonlin vars, where the numbering starts with 0 order 1,
depending on the numbering style determined in get_nlp_info.

3.4 The C Interface

The C interface for IPOPT is declared in the header file IpStdCInterface.h, which is found in
$IPOPTDIR/include/ipopt (or in $PREFIX/include/ipopt if the switch —-prefix=$PREFIX was used
for configure); while reading this section, it will be helpful to have a look at this file.

In order to solve an optimization problem with the C interface, one has to create an IpoptProblem!!
with the function CreateIpoptProblem, which later has to be passed to the IpoptSolve function.

The IpoptProblem created by CreateIpoptProblem contains the problem dimensions, the variable
and constraint bounds, and the function pointers for callbacks that will be used to evaluate the NLP
problem functions and their derivatives (see also the discussion of the C++ methods get nlp_info and
get_bounds_info in Section 3.3.1 for information about the arguments of CreateIpoptProblem).

The prototypes for the callback functions, Eval _F_CB, Eval_Grad_F_CB, etc., are defined in the header
file IpStdCInterface.h. Their arguments correspond one-to-one to the arguments for the C++ methods

HIpoptProblem is a pointer to a C structure; you should not access this structure directly, only through the functions
provided in the C interface.

30

discussed in Section 3.3.1; for example, for the meaning of n, x, new_x, obj_value in the declaration of
Eval_F_CB see the discussion of “eval_f”. The callback functions should return TRUE, unless there was
a problem doing the requested function/derivative evaluation at the given point x (then it should return
FALSE).

Note the additional argument of type UserDataPtr in the callback functions. This pointer argument
is available for you to communicate information between the main program that calls IpoptSolve and
any of the callback functions. This pointer is simply passed unmodified by IPOPT among those functions.
For example, you can use this to pass constants that define the optimization problem and are computed
before the optimization in the main C program to the callback functions.

After an IpoptProblem has been created, you can set algorithmic options for IPOPT (see Section 5)
using the AddIpopt...0Option functions. Finally, the IPOPT algorithm is called with IpoptSolve, giving
IpopPT the IpoptProblem, the starting point, and arrays to store the solution values (primal and dual
variables), if desired. Finally, after everything is done, you should call FreeIpoptProblem to release
internal memory that is still allocated inside IPOPT.

In the remainder of this section we discuss how the example problem (4)—(7) can be solved using the
C interface. A completed version of this example can be found in Ipopt/examples/hs071 c.

In order to implement the example problem on your own, create a new directory MyCExample and
create a new file, hs071_c.c. Here, include the interface header file IpStdCInterface.h, along with
other necessary header files, such as stdlib.h and assert.h. Add the prototypes and implementa-
tions for the five callback functions. Have a look at the C++ implementation for eval f, eval_g,
eval_grad_f, eval_jac_g, and eval_h in Section 3.3.1. The C implementations have somewhat different
prototypes, but are implemented almost identically to the C++ code. See the completed example in
Ipopt/examples/hs071_c/hs071_c.c if you are not sure how to do this.

We now need to implement the main function, create the IpoptProblem, set options, and call
IpoptSolve. The CreateIpoptProblem function requires the problem dimensions, the variable and
constraint bounds, and the function pointers to the callback routines. The IpoptSolve function requires
the IpoptProblem, the starting point, and allocated arrays for the solution. The main function from the
example is shown next, and discussed below.

int main()

{
Index n=-1; /* number of variables */
Index m=-1; /* number of constraints */
Number* x_L = NULL; /* lower bounds on x */
Number* x_U = NULL; /* upper bounds on x */
Number* g_L = NULL; /* lower bounds on g */
Number* g_U = NULL; /* upper bounds on g */
IpoptProblem nlp = NULL; /* IpoptProblem */
enum ApplicationReturnStatus status; /* Solve return code */
Number* x = NULL; /* starting point and solution vector */
Number* mult_x_L = NULL; /* lower bound multipliers
at the solution */
Number* mult_x_U = NULL; /* upper bound multipliers
at the solution */
Number obj; /* objective value */
Index ij; /* generic counter */

/* set the number of variables and allocate space for the bounds */

n=4;
x_L = (Number*)malloc(sizeof (Number)*n) ;
x_U = (Number*)malloc(sizeof (Number)*n) ;

/* set the values for the variable bounds */
for (i=0; i<n; i++) {

x_L[i] = 1.0;

x_U[i] = 5.0;
}

31

/* set the number of constraints and allocate space for the bounds */
m=2;
g_L
g U
/* set the values of the constraint bounds */
g_L[0] = 25; g U[0] = 2e19;

g_L[1] = 40; g_U[1] = 40;

(Number*)malloc (sizeof (Number) *m) ;
(Number*)malloc (sizeof (Number)*m) ;

/* create the IpoptProblem */

nlp = CreateIpoptProblem(n, x_L, x_U, m, g_L, g_U, 8, 10, O,
&eval_f, &eval_g, &eval_grad_f,

&eval_jac_g, &eval_h);

/* We can free the memory now - the values for the bounds have been
copied internally in CreatelIpoptProblem */

free(x_L);

free(x_U);

free(g_L);

free(g_U);

/* set some options */
AddIpoptNumOption(nlp, "tol", 1e-9);
AddIpoptStrOption(nlp, "mu_strategy", "adaptive");

/* allocate space for the initial point and set the values */
x = (Number*)malloc(sizeof (Number)x*n) ;

x[0] = 1.0;
x[1] = 5.0;
x[2] = 5.0;
x[3] = 1.0;

/* allocate space to store the bound multipliers at the solution */
mult_x_L = (Number*)malloc(sizeof (Number)*n);
mult_x_U = (Number*)malloc(sizeof (Number)*n) ;

/* solve the problem */
status = IpoptSolve(nlp, x, NULL, &obj, NULL, mult_x_L, mult_x_U, NULL);

if (status == Solve_Succeeded) {
printf ("\n\nSolution of the primal variables, x\n");
for (i=0; i<n; i++) {
printf("x[%d] = %e\n", i, x[i]);
}

printf ("\n\nSolution of the bound multipliers, z_L and z_U\n");
for (i=0; i<m; i++) {
printf("z_L[%d] = %e\n", i, mult_x_L[il);
}
for (i=0; i<n; i++) {
printf("z_U[%d] = %e\n", i, mult_x_U[i]);
}

printf ("\n\nObjective value\n");
printf ("f(x*) = %e\n", obj);

/* free allocated memory */
FreeIpoptProblem(nlp) ;
free(x);

free(mult_x_L);
free(mult_x_U);

return O;

32

Here, we declare all the necessary variables and set the dimensions of the problem. The problem has
4 variables, so we set n and allocate space for the variable bounds (don’t forget to call free for each of
your malloc calls before the end of the program). We then set the values for the variable bounds.

The problem has 2 constraints, so we set m and allocate space for the constraint bounds. The first
constraint has a lower bound of 25 and no upper bound. Here we set the upper bound to 2e19. IpopPT
interprets any number greater than or equal to nlp_upper_bound_inf as infinity. The default value of
nlp_ lower_bound_inf and nlp_ upper_bound_ inf is -1e19 and 1el9, respectively, and can be changed
through IPOPT options. The second constraint is an equality with right hand side 40, so we set both the
upper and the lower bound to 40.

We next create an instance of the IpoptProblem by calling CreateIpoptProblem, giving it the prob-
lem dimensions and the variable and constraint bounds. The arguments nele_jac and nele_hess are the
number of elements in Jacobian and the Hessian, respectively. See Appendix A for a description of the
sparse matrix format. The index_style argument specifies whether we want to use C style indexing for
the row and column indices of the matrices or Fortran style indexing. Here, we set it to O to indicate C
style. We also include the references to each of our callback functions. IPOPT uses these function pointers
to ask for evaluation of the NLP when required.

After freeing the bound arrays that are no longer required, the next two lines illustrate how you can
change the value of options through the interface. IPOPT options can also be changed by creating a
ipopt.opt file (see Section 5). We next allocate space for the initial point and set the values as given in
the problem definition.

The call to IpoptSolve can provide us with information about the solution, but most of this is
optional. Here, we want values for the bound multipliers at the solution and we allocate space for these.

We can now make the call to IpoptSolve and find the solution of the problem. We pass in the
IpoptProblem, the starting point x (IPOPT will use this array to return the solution or final point as
well). The next 5 arguments are pointers so IPOPT can fill in values at the solution. If these pointers
are set to NULL, IPOPT will ignore that entry. For example, here, we do not want the constraint function
values at the solution or the constraint multipliers, so we set those entries to NULL. We do want the value
of the objective, and the multipliers for the variable bounds. The last argument is a void* for user data.
Any pointer you give here will also be passed to you in the callback functions.

The return code is an ApplicationReturnStatus enumeration, see the header file ReturnCodes_inc.h
which is installed along IpStdCInterface.h in the IPOPT include directory.

After the optimizer terminates, we check the status and print the solution if successful. Finally, we
free the IpoptProblem and the remaining memory, and return from main.

3.5 The Fortran Interface

The Fortran interface is essentially a wrapper of the C interface discussed in Section 3.4. The way
to hook up IPOPT in a Fortran program is very similar to how it is done for the C interface, and
the functions of the Fortran interface correspond one-to-one to the those of the C and C++ inter-
face, including their arguments. You can find an implementation of the example problem (4)—(7) in
$IPOPTDIR/Ipopt/examples/hs071_f.

The only special things to consider are:

e The return value of the function IPCREATE is of an INTEGER type that must be large enough to
capture a pointer on the particular machine. This means, that you have to declare the “handle” for
the IpoptProblem as INTEGER*8 if your program is compiled in 64-bit mode. All other INTEGER-type
variables must be of the regular type.

e For the call of IPSOLVE (which is the function that is to be called to run IPOPT), all arrays, including
those for the dual variables, must be given (in contrast to the C interface). The return value IERR
of this function indicates the outcome of the optimization (see the include file IpReturnCodes.inc
in the IPOPT include directory).

33

e The return IERR value of the remaining functions has to be set to zero, unless there was a problem
during execution of the function call.

e The callback functions (EV_* in the example) include the arguments IDAT and DAT, which are
INTEGER and DOUBLE PRECISION arrays that are passed unmodified between the main program
calling IPSOLVE and the evaluation subroutines EV_* (similarly to UserDataPtr arguments in the
C interface). These arrays can be used to pass “private” data between the main program and the
user-provided Fortran subroutines.

The last argument of the EV_* subroutines, IERR, is to be set to 0 by the user on return, unless
there was a problem during the evaluation of the optimization problem function/derivative for the
given point X (then it should return a non-zero value).

4 Special Features

4.1 Derivative Checker

When writing code for the evaluation of derivatives it is very easy to make mistakes (much easier than
writing it correctly the first time :). As a convenient feature, IPOPT provides the option to run a simple
derivative checker, based on finite differences, before the optimization is started.

To use the derivative checker, you need to use the option derivative_test. By default, this option is
set to none, i.e., no finite difference test is performed, It is set to first-order, then the first derivatives
of the objective function and the constraints are verified, and for the setting second-order, the second
derivatives are tested as well.

The verification is done by a simple finite differences approximation, where each component of the user-
provided starting point is perturbed one of the other. The relative size of the perturbation is determined
by the option derivative test_perturbation. The default value (108, about the square root of the
machine precision) is probably fine in most cases, but if you believe that you see wrong warnings, you
might want to play with this parameter. When the test is performed, IPOPT prints out a line for every
partial derivative, for which the user-provided derivative value deviates too much from the finite difference
approximation. The relative tolerance for deciding when a warning should be issued, is determined by the
option derivative_test_tol. If you want to see the user-provided and estimated derivative values with
the relative deviation for each single partial derivative, you can switch the derivative_test_print_all
option to yes.

A typical output is:

Starting derivative checker.

* grad_f[2] = -6.5159999999999991e+02 ~ -6.5559997134793468e+02 [6.101e-03]
* jac_g [4, 4] = 0.0000000000000000e+00 ~ 2.2160643690464592e-02 [2.216e-02]
* jac_g [4, 5] = 1.3798494268463347e+01 v~ 1.3776333629422766e+01 [1.609e-03]
* jac_g [6, 7] = 1.4776333636790881e+01 v ~ 1.3776333629422766e+01 [7.259e-02]

Derivative checker detected 4 error(s).

The start (“#”) in the first column indicates that this line corresponds to some partial derivative for
which the error tolerance was exceeded. Next, we see which partial derivative is concerned in this output
line. For example, in the first line, it is the second component of the objective function gradient (or the
third, if the C_STYLE numbering is used, i.e., when counting of indices starts with 0 instead of 1). The
first floating point number is the value given by the user code, and the second number (after “~”) is the
finite differences estimation. Finally, the number in square brackets is the relative difference between
those two numbers.

For constraints, the first index after jac_g is the number of the constraint, and the second one
corresponds to the variable number (again, the choice of the numbering style matters).

34

Since also the sparsity structure of the constraint Jacobian has to be provided by the user, it can be

(1))

faulty as well. For this, the “v” after a user-provided derivative value indicates that this component of
the Jacobian is part of the user provided sparsity structure. If there is no “v”, it means that the user
did not include this partial derivative in the list of non-zero elements. In the above output, the partial
derivative “jac_g[4,4]” is non-zero (based on the finite difference approximation), but it is not included
in the list of non-zero elements (missing “v”), so that the user probably made a mistake in the sparsity
structure. The other two Jacobian entries are provided in the non-zero structure but their values seem
to be off.

For second derivatives, the output lines look like:

1.8810000000000000e+03 v~ 1.8820000036612328e+03 [5.314e-04]
1.0000000000000000e+00 v~ 0.0000000000000000e+00 [1.000e+00]

obj_hess[1, 1]
* 3-th constr_hess[2, 4]

There, the first line shows the deviation of the user-provided partial second derivative in the Hessian
for the objective function, and the second line show an error in a partial derivative for the Hessian of the
third constraint (again, the numbering style matters).

Since the second derivatives are approximates by finite differences of the first derivatives, you should
first correct errors for the first derivatives. Also, since the finite difference approximations are quite
expensive, you should try to debug a small instance of your problem if you can. Finally, it is of course
also a good idea to run your code through some memory checker, such as valgrind on Linux.

4.2 Quasi-Newton Approximation of Second Derivatives

IPOPT has an option to approximate the Hessian of the Lagrangian by a limited-memory quasi-Newton
method (L-BFGS). You can use this feature using the hessian approximation and limited memory. ..
options. In this case, it is not necessary to implement the Hessian computation method eval_h in TNLP.
If you are using the C or Fortran interface, you still need to implement these functions, but they should
return false or IERR=1, respectively, and don’t need to do anything else.

In general, when second derivatives can be computed with reasonable computational effort, it is usually
a good idea to use them, since then ITPOPT normally converges in fewer iterations and is more robust.
An exception here might be the case, where your optimization problem has a dense Hessian or a large
percentage of non-zero entries in the Hessian, and then using the quasi-Newton approximation might be
better, even if it the number of iterations increases, since the computation time per iteration might be
significantly higher due to the very large number of non-zero elements in the linear systems that IPOPT
solves in order to compute the search direction, if exact second derivatives are used.

Since the Hessian of the Lagrangian is zero for all variables that appear only linearly in the ob-
jective and constraint functions, the Hessian approximation should only take place in the space of
all nonlinear variables. By default, it is assumed that all variables are nonlinear, but you can tell
IpoPT explicitly which variables are nonlinear, using the get_number_of nonlinear_variables and
get_list_of nonlinear variables method of the TNLP class, see Section 3.3.4. (Those methods have
been implemented for the AMPL interface, so you would automatically only approximate the Hessian
in the space of the nonlinear variables, if you are using the quasi-Newton option for AMPL models.)
Currently, those two methods are not available through the C or Fortran interface.

5 IproprpT Options

Ipopt has many (maybe too many) options that can be adjusted for the algorithm. Options are all
identified by a string name, and their values can be of one of three types: Number (real), Integer,
or String. Number options are used for things like tolerances, integer options are used for things like
maximum number of iterations, and string options are used for setting algorithm details, like the NLP
scaling method. Options can be set through code, through the AMPL interface if you are using AMPL,
or by creating a ipopt.opt file in the directory you are executing IPOPT.

35

The ipopt.opt file is read line by line and each line should contain the option name, followed by
whitespace, and then the value. Comments can be included with the # symbol. Don’t forget to ensure
you have a newline at the end of the file. For example,

This is a comment

Turn off the NLP scaling
nlp_scaling_method none

Change the initial barrier parameter
mu_init le-2

Set the max number of iterations
max_iter 500

is a valid ipopt.opt file.

Options can also be set in code. Have a look at the examples to see how this is done.

A subset of IPOPT options are available through AMPL. To set options through AMPL, use the
internal AMPL command options. For example,
options ipopt_options "nlp_scaling method=none mu_init=le-2 max_iter=500"
is a valid options command in AMPL. The most important options are referenced in Appendix C. To
see which options are available through AMPL, you can run the AMPL solver executable with the “-="
flag from the command prompt. To specify other options when using AMPL, you can always create
ipopt.opt. Note, the ipopt.opt file is given preference when setting options. This way, you can easily
override any options set in a particular executable or AMPL model by specifying new values in ipopt . opt.

For a list of the most important valid options, see the Appendix C. You can print the documentation
for all IPOPT options by using the option

print_options_documentation yes

and running IPOPT (like the AMPL solver executable, for instance). This will output all of the options
documentation to the console.

6 IpopT Output

This section describes the standard IPOPT console output with the default setting for print_level. The
output is designed to provide a quick summary of each iteration as IPOPT solves the problem.

Before IPOPT starts to solve the problem, it displays the problem statistics (number of nonzero-
elements in the matrices, number of variables, etc.). Note that if you have fixed variables (both upper
and lower bounds are equal), IPOPT may remove these variables from the problem internally and not
include them in the problem statistics.

Following the problem statistics, IPOPT will begin to solve the problem and you will see output
resembling the following,

iter objective inf_pr inf_du 1lg(mu) |[l|dl| 1g(rg) alpha_du alpha_pr 1ls
0 1.6109693e+01 1.12e+01 5.28e-01 0.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 1.8029749e+01 9.90e-01 6.62e+01 0.1 2.05e+00 - 2.14e-01 1.00e+00f 1
2 1.8719906e+01 1.25e-02 9.04e+00 -2.2 5.94e-02 2.0 8.04e-01 1.00e+00h 1

and the columns of output are defined as,

iter: The current iteration count. This includes regular iterations and iterations while in restoration
phase. If the algorithm is in the restoration phase, the letter r’> will be appended to the iteration
number.

36

objective: The unscaled objective value at the current point. During the restoration phase, this value
remains the unscaled objective value for the original problem.

inf_pr: The scaled primal infeasibility at the current point. During the restoration phase, this value is
the primal infeasibility of the original problem at the current point.

inf_du: The scaled dual infeasibility at the current point. During the restoration phase, this is the value
of the dual infeasibility for the restoration phase problem.

lg(mu): log,, of the value of the barrier parameter mu.

[1dall: The infinity norm (max) of the primal step (for the original variables z and the internal slack
variables s). During the restoration phase, this value includes the values of additional variables, p
and n (see Eq. (30) in [7]).

1lg(rg): log,, of the value of the regularization term for the Hessian of the Lagrangian in the augmented
system.

alpha_du: The stepsize for the dual variables.
alpha_pr: The stepsize for the primal variables.
1s: The number of backtracking line search steps.

When the algorithm terminates, IPOPT will output a message to the screen based on the return status
of the call to Optimize. The following is a list of the possible return codes, their corresponding output
message to the console, and a brief description.

Solve_Succeeded:
Console Message: EXIT: Optimal Solution Found.
This message indicates that IPOPT found a (locally) optimal point within the desired tolerances.

Solved_To_Acceptable_Level:
Console Message: EXIT: Solved To Acceptable Level.
This indicates that the algorithm did not converge to the “desired” tolerances, but that it was able
to obtain a point satisfying the “acceptable” tolerance level as specified by acceptable-* options.
This may happen if the desired tolerances are too small for the current problem.

Infeasible Problem Detected:

Console Message: EXIT: Converged to a point of local infeasibility. Problem may be
infeasible.

The restoration phase converged to a point that is a minimizer for the constraint violation (in the
£1-norm), but is not feasible for the original problem. This indicates that the problem may be
infeasible (or at least that the algorithm is stuck at a locally infeasible point). The returned point
(the minimizer of the constraint violation) might help you to find which constraint is causing the
problem. If you believe that the NLP is feasible, it might help to start the optimization from a
different point.

Search Direction_Becomes_Too_Small:
Console Message: EXIT: Search Direction is becoming Too Small.
This indicates that IPOPT is calculating very small step sizes and making very little progress. This
could happen if the problem has been solved to the best numerical accuracy possible given the
current scaling.

Diverging Iterates:
Console Message: EXIT: Iterates divering; problem might be unbounded.
This message is printed if the max-norm of the iterates becomes larger than the value of the option
diverging iterates_tol. This can happen if the problem is unbounded below and the iterates
are diverging.

37

User_Requested_Stop:
Console Message: EXIT: Stopping optimization at current point as requested by user.
This message is printed if the user call-back method intermediate_callback returned false (see
Section 3.3.4).

Maximum_Iterations_Exceeded:
Console Message: EXIT: Maximum Number of Iterations Exceeded.
This indicates that IPOPT has exceeded the maximum number of iterations as specified by the
option max_iter.

Restoration Failed:
Console Message: EXIT: Restoration Failed!
This indicates that the restoration phase failed to find a feasible point that was acceptable to the
filter line search for the original problem. This could happen if the problem is highly degenerate,
does not satisfy the constraint qualification, or if your NLP code provides incorrect derivative
information.

Error_In Step_Computation:
Console Message: EXIT: Error in step computation (regularization becomes too large?)!
This messages is printed if IPOPT is unable to compute a search direction, despite several attempts
to modify the iteration matrix. Usually, the value of the regularization parameter then becomes
too large. One situation where this can happen is when values in the Hessian are invalid (NaN or
Inf). You can check whether this is true by using the check_derivatives_for naninf option.

Invalid Option:
Console Message: (details about the particular error will be output to the console)
This indicates that there was some problem specifying the options. See the specific message for
details.

Not_Enough Degrees_0f _Freedom:
Console Message: EXIT: Problem has too few degrees of freedom.
This indicates that your problem, as specified, has too few degrees of freedom. This can happen
if you have too many equality constraints, or if you fix too many variables (IPOPT removes fixed
variables).

Invalid_Problem Definition:
Console Message: (no console message, this is a return code for the C and Fortran interfaces only.)
This indicates that there was an exception of some sort when building the IpoptProblem structure
in the C or Fortran interface. Likely there is an error in your model or the main routine.

Unrecoverable_Exception:
Console Message: (details about the particular error will be output to the console)
This indicates that IPOPT has thrown an exception that does not have an internal return code. See
the specific message for details.

NonIpopt_Exception_Thrown:
Console Message: Unknown Exception caught in Ipopt
An unknown exception was caught in IPOPT. This exception could have originated from your model
or any linked in third party code.

Insufficient_Memory:
Console Message: EXIT: Not enough memory.
An error occurred while trying to allocate memory. The problem may be too large for your current
memory and swap configuration.

38

Internal Error:
Console Message: EXIT: INTERNAL ERROR: Unknown SolverReturn value - Notify IPOPT Authors.
An