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Chapter 1

Getting Started with Pyomo

1.1 Introduction

The Python Optimization Modeling Objects (Pyomo) software package supports the defini-
tion and solution of optimization applications using the Python scripting language. Python
is a powerful dynamic programming language that has a very clear, readable syntax and
intuitive object orientation. Pyomo includes Python classes for sparse sets, parameters, and
variables, which can be used to formulate algebraic expressions that define objectives and con-
straints. Thus, Pyomo can be used to concisely represent mixed-integer linear programming
(MILP) models for large-scale, real-world problems that involve thousands of constraints and
variables. Further, Pyomo includes a flexible framework for applying optimizers to analyze
these models.

The design of Pyomo is motivated by a variety of factors that have impacted applications
at Sandia National Laboratories. Sandia’s discrete mathematics group has successfully used
AMPL [1, 3] to model and solve large-scale integer programs for many years. This application
experience has highlighted the value of Algebraic Modeling Languages (AMLs) for solving
real-world applications, and AMLs are now an integral part of operations research solutions
at Sandia.

Pyomo was developed to provide an alternative platform for developing math program-
ming models that leverages Python’s rich programming environment to facilitate the ap-
plication and deployment of optimization capabilities. Pyomo provides a set of Python
classes and functions that define a modeling capability that is similar to AML’s like AMPL.
Further, Pyomo leverages a flexible plugin framework to provide a highly extensible and
flexible modeling framework. Pyomo is integrated into Coopr, a COmmon Optimization
Python Repository. Coopr packages provide optimization components that can be applied
to optimize Pyomo models in a flexible manner.

This chapter discusses how to install Coopr and verify that Pyomo can be run. The rest
of this document introduces the user to Pyomo and describes the details of the Pyomo’s
modeling objects. This presentation is principally intended for Pyomo end-users. Readers
may also find the following references useful when diving deeper into Coopr and Pyomo:
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Getting Started with Pyomo

• W. E. Hart, J. Siirola, and J.-P. Watson, ”Coopr User Manual: Customizing Coopr
with Plugins”, Sandia National Laboratories, 2009.

• W. E. Hart, J.-P. Watson, and D. L. Woodruff, ”Coopr User Manual: Pyomo Modeling
Language and Extension Packages”, Sandia National Laboratories, 2009.

• W. E. Hart, J.-P. Watson, and D. L. Woodruff, ”PYthon Optimization Modeling Ob-
jects (Pyomo)”, 2009, (in preparation).

1.2 Installing Coopr

There are several different ways that Coopr can be installed:

easy install Coopr releases can be directly installed using the Python easy install com-
mand.

source Coopr can be installed from source.

coopr install The coopr install command provides a one-step installation of Coopr and
the Python packages that Coopr depends on.

The first two options are the techniques that Python developers typically used. The easy install

command is the de facto standard python installation technique. For example, the following
command will download Coopr and the Python packages that it depends on, and install
them in Python’s site-packages directory:

e a s y i n s t a l l Coopr

In most cases, end-users will want to use the coopr install script to install Coopr and
other packages that Coopr depends on. This is a Python script that creates a directory that
contains a virtual Python installation, related Coor scripts, examples and related documen-
tation. This installation does not require administrator privileges, and the user can view the
Coopr documentation and examples in the installation directory.

The coopr install script does not rely on non-standard Python packages, so it can be
run as follows:

c o o p r i n s t a l l coopr

On MS Windows, the python command needs to be run explicitly:

python c o o p r i n s t a l l coopr

This creates the coopr directory, which has the following directory structure:

admin Administrative data for maintaining this distribution

bin Scripts and executables
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doc Coopr documentation and tutorials

examples Coopr examples

lib Python libraries and installed packages

include Python header files

src Python packages whose source files can be

modified and used directly within this virtual Python

installation.

Scripts Python bin directory (used on MS Windows)

util Coopr utility scripts (including coopr_install)

If the bin directory is put in user’s PATH environment, then the bin/python command can
be used to employ Coopr and associated packages without further configuration. Further,
Coopr’s Python scripts are installed in the bin directory such that they reference this virtual
Python installation directly.

If coopr install is executed with no installation directory, then the script will search
the user’s PATH environment for the pyomo command. If found, the path of this command
will be used to identify the Coopr installation that is being updated or replaced. If not
found, then a default installation path is used: C:
coopr on Windows and ./coopr on Linux.

By default, coopr install installs the latest release of Coopr. The current development
trunk can be installed using the --trunk option:

c o o p r i n s t a l l −−trunk coopr

Also, Coopr has a stable branch, which is updated as major software revisions are finalized.
This can be installed with the --stable option:

c o o p r i n s t a l l −−trunk coopr

Users can reinstall Coopr using the --clear option:

c o o p r i n s t a l l −−c l e a r coopr

Note that this option is also needed to switch between the trunk, stable, and release installa-
tions, since that involves a reinstallation of Coopr. A Coopr installation can also be updated
with the --update option:

c o o p r i n s t a l l −−update coopr

This updates Coopr to the latest release, or the latest revision of trunk and stable installa-
tions.

The coopr install script installs a variety of Python packages that Coopr uses. This
script also has options for using third-party Coopr extensions that are available on the
Coopr Forum software repository ??. The Coopr Forum repository facilitates community
involvement in Coopr by allowing people to contribute code extensions and plugins without
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going directly through the Coopr software repository. For example, the coopr.plugins.neos
package provides a simple example of how Coopr can be extended with plugins to enable
optimization on the NEOS optimization server [2]. This plugin package can be installed with
Coopr using the --forum-pkg option:

c o o p r i n s t a l l −−forum−pkg=neos coopr

Multiple packages can be separated with a comma-separated list of package names.
The Python setuptools package is the de facto standard for deploying Python software.

This package extends Python’s distutils functionality. A key element of this extension
is the easy install command, which allows the installation of Python software from re-
mote repositories. In particular, the Python Package Index (PyPI) provides a convenient
repository for hosting Python packages. The easy install command can easily upload and
download packages from PyPI, thereby simplifying the distribution of Packages like Coopr,
which depends on a variety of freely available packages.

Finally, here are some notes about coopr install:

• This script installs packages by downloading files from the internet. If you are running
this from within a firewall, you may need to set the HTTP PROXY environment variable
to a value like http://<proxyhost>:<port>.

• By default, the virtual Python installation used with Coopr exposes the packages that
are installed with your Python installation. Occasionally, this can cause conflicts be-
tween different package version. The --no-site-packages option isolates the Coopr
installation from the Python packages that have been installed with the Python inter-
preter.
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Chapter 2

Introducing Pyomo

2.1 Pyomo Overview

Pyomo can be used to define abstract problems, create concrete problem instances, and
solve these instances with standard solvers. Pyomo can generate problem instances and
apply optimization solvers with a fully expressive programming language. Python’s clean
syntax allows Pyomo to express mathematical concepts with a reasonably intuitive syntax.
Further, Pyomo can be used within an interactive Python shell, thereby allowing a user to
interactively interrogate Pyomo-based models. Thus, Pyomo has many of the advantages of
both AML interfaces and modeling libraries.

2.1.1 A Simple Example

In this section we illustrate Pyomo’s syntax and capabilities by demonstrating how a simple
AMPL example can be replicated with Pyomo Python code. Consider the AMPL model,
prod.mod:

s e t P;

param a { j in P} ;
param b ;
param c { j in P} ;
param u { j in P} ;

var X { j in P} ;

maximize To t a l P r o f i t : sum { j in P} c [ j ] ∗ X[ j ] ;

s ub j e c t to Time : sum { j in P} (1/ a [ j ] ) ∗ X[ j ] <= b ;

sub j e c t to Limit { j in P} : 0 <= X[ j ] <= u [ j ] ;
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Introducing Pyomo

To translate this into Pyomo, the user must first import the Pyomo module and create
a Pyomo Model object:

# Imports
from coopr . pyomo import ∗

# Create the model o b j e c t
model = Model ( )

This import assumes that Pyomo is available on the users’s Python path (see Python doc-
umentation for further details about the PYTHONPATH environment variable). Next, we
create the sets and parameters that correspond to the data used in the AMPL model. This
can be done very intuitively using the Set and Param classes.

# Sets
model .P = Set ( )

# Parameters
model . a = Param( model .P)
model . b = Param( )
model . c = Param( model .P)
model . u = Param( model .P)

Note that parameter b is a scalar, while parameters a, c and u are arrays indexed by the set
P .

Next, we define the decision variables in this model.

# Var iab l e s
model .X = Var ( model .P)

Decision variables and model parameters are used to define the objectives and constraints in
the model. Parameters define constants and the variables are the values that are optimized.
Parameter values are typically defined by a data file that is processed by Pyomo.

Objectives and constraints are explicitly defined expressions in Pyomo. The Objective
and Constraint classes require a rule option that specifies how these expressions are con-
structed. This is a function that takes one or more arguments: the first arguments are
indices into a set that defines the set of objectives or constraints that are being defined, and
the last argument is the model that is used to define the expression.

# Obj e c t i v e
def Ob j e c t i v e r u l e ( model ) :

return sum ( [ model . c [ j ]∗model .X[ j ] for j in model .P ] )
model . To t a l P r o f i t = Object ive ( r u l e=Obj e c t i v e ru l e , s ense=maximize )
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# Time Constra in t
def Time rule ( model ) :

return summation ( model .X, denom=model . a ) < model . b
model . Time = Constra int ( r u l e=Time rule )

# Limit Cons tra in t
def L im i t ru l e ( j , model ) :

return (0 , model .X[ j ] , model . u [ j ] )
model . Limit = Constra int ( model .P, r u l e=L im i t ru l e )

The rules used to construct these objects use standard Python functions. The Objec-
tive rule function returns an algebraic expression that defines the objective; this expression
is generated using Python’s list comprehension syntax, which is used to create a list of terms
that are added together with the sum() function. The Time rule function returns a <
expression that defines an upper bound on the constraint body. The constraint body is
created with Python’s summation() function; in this example the summation is

∑
i Xi/ai.

The Limit rule function illustrates another convention that is supported by Pyomo; a rule
can return a tuple that defines the lower bound, body and upper bound for a constraint.
The value ’None’ can be returned for one of the limit values if a bound is not enforced.

Once an abstract model has been created, it can be printed as follows:

model . ppr int ( )

This summarize the information in the Pyomo model, but it does not print out explicit
expressions. This is due to the fact that an abstract model needs to be instanted with data
to generate the model objectives and constraints:

i n s t anc e = model . c r e a t e ( ”prod . dat” )
i n s t anc e . ppr int ( )

Once a model instance has been constructed, an optimizer can be applied to it to find
an optimal solution. For example, the PICO integer programming solver can be used within
Pyomo as follows:

opt = s o l v e r s . So lverFactory ( ” p ico ” )
opt . k e epF i l e s=True
r e s u l t s = opt . s o l v e ( i n s t anc e )

This creates an optimizer object for the PICO executable, and it indicates that temporary
files should be kept. The Pyomo model instance is optimized, and the optimizer returns an
object that contains the solutions generated during optimization.

2.1.2 Putting It All Together
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2.2 A Complete Pyomo Example

# Imports
from coopr . pyomo import ∗

# Create the model o b j e c t
model = Model ( )

# Sets
model .P = Set ( )

# Parameters
model . a = Param( model .P)
model . b = Param( )
model . c = Param( model .P)
model . u = Param( model .P)

# Var iab l e s
model .X = Var ( model .P)

# Obj e c t i v e
def Ob j e c t i v e r u l e ( model ) :

return sum ( [ model . c [ j ]∗model .X[ j ] for j in model .P ] )
model . To t a l P r o f i t = Object ive ( r u l e=Obj e c t i v e ru l e , s ense=maximize )

# Time Constra in t
def Time rule ( model ) :

return summation ( model .X, denom=model . a ) < model . b
model . Time = Constra int ( r u l e=Time rule )

# Limit Cons tra in t
def L im i t ru l e ( j , model ) :

return (0 , model .X[ j ] , model . u [ j ] )
model . Limit = Constra int ( model .P, r u l e=L im i t ru l e )

2.2.1 Pyomo Commandline Script

Appendix 2.2 provides a complete Python script for the model described in the previous
section. Although this Python script can be executed directly, Coopr includes a pyomo script
that can construct this model, apply an optimizer and summarize the results. For example,
the following command line executes Pyomo using a data file in a format consistent with
AMPL:
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pyomo prod . py prod . dat

This script executes the following steps:

• create abstract model

• read data

• generate instance

• presolve

• apply solver

• load results into instance

The pyomo script has a variety of command line options to provide information about the
optimization process. Options can control how debugging information is printed, including
logging information generated by the optimizer and a summary of the model generated
by Pyomo. Further, Pyomo can be configured to keep all intermediate files used during
optimization, which can support debugging of the model construction process.
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Chapter 3

Declaring Pyomo Models

This chapter and the next provide a reference for the Pyomo modeling language. This
modeling language consists of a set of Python objects and utility functions that

3.1 Sets

A set is any collection of data that relates to a model. Pyomo set objects either contain con-
crete data, or they are “virtual” sets that do not contain data, but which support operations
like set iteration and/or set membership validation. Several different classes can be used to
define sets in Pyomo models:

• Set

A generic set declaration class.

• RangeSet

A set that describe a range of numbers.

3.1.1 Set Declarations

A simple instance of Set objects declares an unordered set of arbitrary objects:

model .A = Set ( )

A set array can also be specified by providing sets as options to the Set object. Multi-
dimensional set arrays can be declared by simply including a list of sets as options to the
Set object:

model .B = Set ( )
model .C = Set ( model .A)
model .D = Set ( model .A, model .B)

Set declarations can also use standard set operations to declare a set in a constructive fashion:
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model .D = model .A | model .B
model .E = model .B & model .A
model .F = model .A − model .B
model .G = model .A ˆ model .B

Also, set cross-products can be specified as A*B

model .H = model .A ∗ model .B

Note that this is different from the following, which specifies that Hsub is a subset of this
cross-product.

model . Hsub = Set ( with in=model .A ∗ model .B)

3.1.2 Set Initialization

By default, a set object refers to an abstract set in a model. However, a set can be initialized
with data by using the initialize option, which is a function that accepts the set indices
and model and returns the value of that set element:

def I i n i t ( model ) :
ans =[ ]
for a in model .A:

for b in model .B:
ans . append ( (a , b) )

return ans
model . I = model .A∗model .B
model . I . i n i t i a l i z e = I i n i t

Note that the set model.I is not created when this set object is constructed. Instead,
I init() is called during the construction of a problem instance.

A set can also be explicitly constructed by add set elements:

model . J = Set ( )
model . J . add (1 , 4 , 9 )

The initialize option can also be used to specify the values in a set. These default values
may be overriden by later construction steps, or by data in an input file:

model .K = Set ( i n i t i a l i z e = [1 , 4 , 9 ] )
model . K 2 = Set ( i n i t i a l i z e = [ ( 1 , 4 ) , ( 9 , 1 6 ) ] , dimen=2)

A set array can be constructed with the initialize option, which is a function that
accepts the set indices and model and returns the set for that array index:
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def P in i t ( i , j , model ) :
return range (0 , i ∗ j )

model .P = Set ( model .B, model .B)
model .P . i n i t i a l i z e = P in i t

The initialize option can also be used to specify the values in a set array. These default
values are defined in a dictionary, which specifies how each array element is initialized:

R in i t={}
R in i t [ 2 ] = [ 1 , 3 , 5 ]
R in i t [ 3 ] = [ 2 , 4 , 6 ]
R in i t [ 4 ] = [ 3 , 5 , 7 ]
model .R = Set ( model .B, i n i t i a l i z e=R in i t )

Note that a set array cannot be explicitly constructed by adding set elements to individual
arrays. For example, the following is invalid:

model .Q = Set ( model .B)
model .Q[ 2 ] . add (4)
model .Q[ 4 ] . add (16)

The reason is that the line

model .Q = Set ( model .B)

declares set Q with an abstract index set B. However, B is not initialized until this model is
instantiated with the model.create() call. We could, however, execute

model .Q[ 2 ] . add (4)
model .Q[ 4 ] . add (16)

after the execution of model.create().

3.1.3 Data Validation

Validation of set data is supported in two different ways. First, a superset can be specified
with the within option:

model . L = Set ( with in=model .A)

Validation of set data can also be performed with the validate option, which is a function
that returns True if a data belongs in this set:

def M val idate ( value , model ) :
return value in model .A
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model .M = Set ( v a l i d a t e=M val idate )

Although the within option is convenient, it can force the creation of a temporary set. For
example, consider the declaration

model .N = Set ( with in=model .A∗model .B)

In this example, the cross-product of sets A and B is needed to validate the members of set C.
Pyomo creates this set implicitly and uses it for validation. By contrast, a simple validation
function could be used in this example, though with a less intuitive syntax:

def O val idate ( value , model ) :
return value [ 0 ] in model .A and value [ 1 ] in model .B

model .O = Set ( v a l i d a t e=O va l idate )

Validation of a set array is supported with the within option. The elements of all sets
in the array must be in this set:

model . S = Set ( model .B, with in=model .A)

Validation of set arrays can also be performed with the validate option. This is applied to
all sets in the array:

def T va l ida te ( value , model ) :
return value in model .A

model .T = Set ( model .B, v a l i d a t e=M val idate )

3.1.4 Set Options

By default, sets are unordered. That is, the internal representation may place the set el-
ements in any order. In some cases, we need to know the order in which set elements are
declared. In such cases, we can declare a set to be ordered with an additional constructor
option.

An ordered set can take an initialization function, using the initialize options, with
an additional option that specifies the index into the ordered set. In this case, the function
is called repeatedly to construct each element in the set:

def U in i t ( z , model ) :
i f z==5:

return None
i f z==0:

return 1
else :
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return model .U[ z−1]∗( z+1)
model .U = Set ( ordered=True , i n i t i a l i z e=U in i t )

This example can be generalized to array sets. Note that in this case we can use ordered sets
to to index the array, thereby guaranteeing that data has been filled. The following example
illustrates the use of the RangeSet(a,b) object, which generates an ordered set from a to b

(inclusive).

def V in i t ( i , z , model ) :
i f z==5:

return None
i f i ==1:

i f z==0:
return 1

else :
return ( z+1)

return model .V[ i −1] [ z ]+z
model .V = Set ( RangeSet ( 1 , 4 ) , i n i t i a l i z e=V in i t , ordered=True )

3.1.5 Class Attributes

Pyomo set objects have the following attributes:

• name

The set name.

• validate
A function that a user can specify to define set membership.

• ordered
A boolean value that indicates whether this set is ordered.

• domain
A super-set of this set, which is used to define set membership.

• dimen
The ”dimension” of the data in this set. Each set member is either a singleton, or a
tuple with length ‘dimen‘.

• virtual
A boolean value that indicates whether this set is virtual.

• doc
A string describing this set.
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3.1.6 Predefined Sets

A variety of virtual sets are declared in Pyomo, including:

• Any
The set of all possible values.

• Reals
The set of floating point values.

• PositiveReals
The set of strictly positive floating point values.

• NonPositiveReals
The set of non-positive floating point values.

• NegativeReals
The set of strictly negative floating point values.

• NonNegativeReals
The set of non-negative floating point values.

• PercentFraction
The set of floating point values in the interval [0,1].

• Integers
The set of integer values.

• PositiveIntegers
The set of positive integer values.

• NonPositiveIntegers
The set of non-positive integer values.

• NegativeIntegers
The set of negative integer values.

• NonNegativeIntegers
The set of non-negative integer values.

• Boolean
The set of boolean values, which can be represented as False/True, 0/1, ’False’/’True’
and ’F’/’T’.

• Binary
The same as ‘Boolean‘.
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3.2 Parameters

A parameter is a numerical value that is used to formulate constraints and objectives in a
model. Pyomo parameters are managed with the Param class, which can denote a single,
independent value, or an array of values.

3.2.1 Param Declarations

A simple instance of Param declares a single numerical value:

model . Z = Param( )

A parameter array can also be specified by providing sets as options to the Param object.
Multi-dimensional parameter arrays can be declared by simply including a list of sets as
options to the Param object:

model .A = Set ( )
model .Y = Param( model .A)
model .B = Set ( )
model .X = Param( model .A, model .B)

3.2.2 Parameter Initialization

By default, a Param object refers to one or more abstract parameters in a model. However, a
Param object can be initialized with data by using the initialize option, which is a function
that accepts the parameter indices and model and returns the value of that parameter
element:

def W init ( i , j , model ) :
# Create the va lue o f model .W[ i , j ]
return i ∗ j

model .W = Param( model .A, model .B, i n i t i a l i z e=W init )

Note that the parameter model.W is not created when this object is constructed. Instead,
W init() is called during the construction of a model instance.

The initialize option can also be used to specify the values in a parameter. These
default values may be overriden by later construction steps, or by data in an input file:

V in i t={}
V in i t [1 ]=1
V in i t [2 ]=2
V in i t [3 ]=9
model .V = Param( model .A, i n i t i a l i z e=V in i t )
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Note that parameter V is initialized with a dictionary, which maps tuples from parameter
indices to parameter values. Simple, unindexed parameters can be initialized with a scalar
value.

model .U = Param( i n i t i a l i z e =9.9)

Pyomo assumes that parameter values are specified in a sparse manner. For example,
the instance Param(model.A,model.B) declares a parameter indexed over sets A and B.
However, not all of these values are necessarily declared in a model. The default value for
all parameters not declared is zero. This default can be overriden with the default option.

The following example illustrates how a parameter can be declared where every parameter
value is nonzero, but the parameter is stored with a sparse representation.

R in i t={}
R in i t [2 ,2 ]=1
R in i t [2 ,4 ]=1
R in i t [2 ,6 ]=1
R in i t [2 ,8 ]=1
model .R = Param( model .A, model .B, d e f au l t =99.0 , i n i t i a l i z e=R in i t )

Note that the parameter default value can also be specified in an input file. See data.dat

for an example.

Note that the explicit specification of a zero default changes Pyomo’s behavior. For
example, consider:

model . a = Param( model .A, d e f au l t =0.0)
model . b = Param( model .A)

When model.a[x] is accessed and the index has not been explicitly initialized, the value
zero is returned. This is true whether or not the parameter has been initialized with data.
Thus, the specification of a default value makes the parameter seem to be densely initialized.

However, when model.b[x] is accessed and the index has not been initialized, an error
occurs (and a Python exception is thrown). Since the user did not explicitly declare a default,
Pyomo treats the reference to model.b[x] as an error.

3.2.3 Data Validation

Validation of parameter data is supported in two different ways. First, the domain of feasible
parameter values can be specified with the within option:

model .T = Param( with in=model .B)

Note that the default domain for parameters is Reals, the set of floating point values.
Validation of parameter data can also be performed with the validate option, which is a
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function that returns True if a parameter value is valid:

def S va l i d a t e ( value , model ) :
return value in model .A

model . S = Param( va l i d a t e=S va l i d a t e )

3.2.4 Paramter Options

TBD

3.2.5 Class Attributes

3.3 Variable

A variable is a numerical value that is determined during optimization. Pyomo variables are
managed with the Var class, which can denote a single, independent value, or an array of
values. Variables define the search space for optimization. Variables can have initial values,
and the value of variable can be retrieved and set.

3.3.1 Var Declarations

A simple instance of Var declares a single variable:

model . x = Var ( )

A variable array can also be specified by providing sets as options to the Var object. Multi-
dimensional variable arrays can be declared by simply including a list of sets as options to
the Var object:

model .A = Set ( )
model .Y = Var ( model .A)
model .B = Set ( )
model .X = Var ( model .A, model .B)

3.3.2 Variable Initialization

By default, a Var object refers to one or more variables in a model. Variable values are
typically determined during optimization. However, variables can be initialized using the
initialize option. This option can specify a numerical value used to initialize a variable
or variable array:

model . x = Var ( i n i t i a l i z e =9)
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model . x = Var ( model .A, i n i t i a l i z e ={1:1 , 2 : 4 , 3 : 9} )
model . x = Var ( model .A, i n i t i a l i z e =2)

Additionally, this option can use a function that accepts the variable indices and model and
returns the value of that variable element:

def f ( i , model ) :
return 3∗ i

model . x = Var ( model .A, i n i t i a l i z e=f )

3.3.3 Variable Domain

The domain of a variable is specified with the within option:

model . x = Var ( with in=model .A)

This domain is used in various aspects of model construction. For example, binary variables
define zero-one constraints in integer programs, as well as upper and lower bounds for linear
programming relaxations.

3.3.4 Variable Options

Variable bounds can be explicitly specified with the bounds option:

model . x = Var ( bounds =(0 . 0 , 1 . 0 ) )
def f ( i , model ) :

return ( model .A[ i ] , model .B[ i ] )
model . y = Var ( bounds=f )

The bounds option can specify a 2-tuple with lower and upper values. Alternatively, it can
specify a function that returns a 2-tuple for each variable index. Note that None can be used
to specify that a bound is not enforced.

3.3.5 Working With Variables

Variable objects have a variety of helper functions and utility methods that facilitate the
use of these objects. The float function can be used to coerce a Var object into a floating
point value:

tmp = f l o a t ( model . x )
tmp = f l o a t ( model . x [ i ] )

Similarly, the value function can be used to coerce a Var object into its natural numerical
value:
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tmp = value ( model . x )
tmp = value ( model . x [ i ] )

Variable values can be set using the equality operator:

model . x = tmp
model . x [ i ] = tmp

Finally, the len function returns the number of variables in a variable array.

l en ( model . x )

3.3.6 Class Attributes

Methods

• dim

Returns the number of dimensions of the variable index

• keys

Returns the indices of the variable array

• reset

Set the variable with the initial value. When a variable is constructed, its value is None

Options

• value

The value of the variable.

• initial

The initial value of the variable.

• lb

The value of the variable lower bound.

• ub

The value of the variable upper bound.

• fixed

A boolean value that indicates whether this variable is fixed during optimization.
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3.4 Objectives

An objective... variable is a numerical value that is determined during optimization. Pyomo
variables are managed with the Var class, which can denote a single, independent value, or
an array of values. Variables define the search space for optimization. Variables can have
initial values, and the value of variable can be retrieved and set.

3.4.1 Var Declarations

A simple instance of Var declares a single variable:

model . x = Var ( )

A variable array can also be specified by providing sets as options to the Var object. Multi-
dimensional variable arrays can be declared by simply including a list of sets as options to
the Var object:

model .A = Set ( )
model .Y = Var ( model .A)
model .B = Set ( )
model .X = Var ( model .A, model .B)

3.4.2 Variable Initialization

By default, a Var object refers to one or more abstract variables in a model. However, a Var

object can be initialized with data by using the initialize option, which is a function that
accepts the variable indices and model and returns the value of that variable element:

def f ( i , model ) :
return 3∗ i

model . x = Var ( model .A, i n i t i a l i z e=f )

Additionally, the initialize option can specify a numerical value used to initialize a variable
or variable array:

model . x = Var ( i n i t i a l i z e =9)
model . x = Var ( model .A, i n i t i a l i z e ={1:1 , 2 : 4 , 3 : 9} )
model . x = Var ( model .A, i n i t i a l i z e =2)

3.4.3 Data Validation

Validation of variable data is supported in two different ways. First, the domain of feasible
variable values can be specified with the within option:
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model . x = Var ( with in=model .A)

Note that the default domain for variables is Reals, the set of floating point values. Valida-
tion of variable data can also be performed with the validate option, which is a function
that returns True if a variable value is valid:

def S va l i d a t e ( value , model ) :
return value in model .A

model . S = Var ( va l i d a t e=S va l i d a t e )

3.4.4 Variable Options

The option bounds specifies upper and lower bounds for variables. Simple bounds can be
specified, or a function that defines bounds for different variables.

model . x = Var ( bounds =(0 . 0 , 1 . 0 ) )
def f ( i , model ) :

return ( model . x low [ i ] , model . x h igh [ i ] )
model . x = Var ( bounds=f )

3.4.5 Class Attributes

3.5 Constraints

A constraint is a numerical value that is determined during optimization. Pyomo variables
are managed with the Var class, which can denote a single, independent value, or an array of
values. Variables define the search space for optimization. Variables can have initial values,
and the value of variable can be retrieved and set.

3.5.1 Var Declarations

A simple instance of Var declares a single variable:

model . x = Var ( )

A variable array can also be specified by providing sets as options to the Var object. Multi-
dimensional variable arrays can be declared by simply including a list of sets as options to
the Var object:

model .A = Set ( )
model .Y = Var ( model .A)
model .B = Set ( )
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model .X = Var ( model .A, model .B)

3.5.2 Variable Initialization

By default, a Var object refers to one or more abstract variables in a model. However, a Var

object can be initialized with data by using the initialize option, which is a function that
accepts the variable indices and model and returns the value of that variable element:

def f ( i , model ) :
return 3∗ i

model . x = Var ( model .A, i n i t i a l i z e=f )

Additionally, the initialize option can specify a numerical value used to initialize a variable
or variable array:

model . x = Var ( i n i t i a l i z e =9)
model . x = Var ( model .A, i n i t i a l i z e ={1:1 , 2 : 4 , 3 : 9} )
model . x = Var ( model .A, i n i t i a l i z e =2)

3.5.3 Data Validation

Validation of variable data is supported in two different ways. First, the domain of feasible
variable values can be specified with the within option:

model . x = Var ( with in=model .A)

Note that the default domain for variables is Reals, the set of floating point values. Valida-
tion of variable data can also be performed with the validate option, which is a function
that returns True if a variable value is valid:

def S va l i d a t e ( value , model ) :
return value in model .A

model . S = Var ( va l i d a t e=S va l i d a t e )

3.5.4 Variable Options

The option bounds specifies upper and lower bounds for variables. Simple bounds can be
specified, or a function that defines bounds for different variables.

model . x = Var ( bounds =(0 . 0 , 1 . 0 ) )
def f ( i , model ) :

return ( model . x low [ i ] , model . x h igh [ i ] )
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model . x = Var ( bounds=f )

3.5.5 Class Attributes

3.6 Miscellaneous Model Components

A variable is a numerical value that is determined during optimization. Pyomo variables are
managed with the Var class, which can denote a single, independent value, or an array of
values. Variables define the search space for optimization. Variables can have initial values,
and the value of variable can be retrieved and set.

3.6.1 Var Declarations

A simple instance of Var declares a single variable:

model . x = Var ( )

A variable array can also be specified by providing sets as options to the Var object. Multi-
dimensional variable arrays can be declared by simply including a list of sets as options to
the Var object:

model .A = Set ( )
model .Y = Var ( model .A)
model .B = Set ( )
model .X = Var ( model .A, model .B)

3.6.2 Variable Initialization

By default, a Var object refers to one or more abstract variables in a model. However, a Var

object can be initialized with data by using the initialize option, which is a function that
accepts the variable indices and model and returns the value of that variable element:

def f ( i , model ) :
return 3∗ i

model . x = Var ( model .A, i n i t i a l i z e=f )

Additionally, the initialize option can specify a numerical value used to initialize a variable
or variable array:

model . x = Var ( i n i t i a l i z e =9)
model . x = Var ( model .A, i n i t i a l i z e ={1:1 , 2 : 4 , 3 : 9} )
model . x = Var ( model .A, i n i t i a l i z e =2)
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3.6.3 Data Validation

Validation of variable data is supported in two different ways. First, the domain of feasible
variable values can be specified with the within option:

model . x = Var ( with in=model .A)

Note that the default domain for variables is Reals, the set of floating point values. Valida-
tion of variable data can also be performed with the validate option, which is a function
that returns True if a variable value is valid:

def S va l i d a t e ( value , model ) :
return value in model .A

model . S = Var ( va l i d a t e=S va l i d a t e )

3.6.4 Variable Options

The option bounds specifies upper and lower bounds for variables. Simple bounds can be
specified, or a function that defines bounds for different variables.

model . x = Var ( bounds =(0 . 0 , 1 . 0 ) )
def f ( i , model ) :

return ( model . x low [ i ] , model . x h igh [ i ] )
model . x = Var ( bounds=f )

3.6.5 Class Attributes
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Chapter 4

Loading Data into Pyomo Models

4.1 AMPL Data Files

TODO

4.2 Tables

TODO

4.3 Excel Spreadsheets

TODO
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