
OS Release Procedure

1. Run the nightlyBuild.py script.

2. Test the examples. They are in OS/examples. Do a make install before running
these.

a. Connect to the algorithmicDiff folder, build and run OSAlgorithmicD-
iffTest.cpp. This takes no arguments. This will test a bunch of the AD
routines.

b. Connect to the instanceGenerator folder, build and run OSInstanceGen-
erator.cpp. This takes no arguments.

c. Connect to the osTestCode folder, build and run OSTestCode.cpp. This
takes a single argument which is the location of any OSiL file.

3. Test the applications. They are in OS/applications.

a. Test OSAmplClient. This is not a stand-alone application and is designed
to be called from ampl. Probably the easiest way to test this is to test the
OSAmplClient that gets installed in the bin directory as a result of make
install. To make life easy, temporarily copy your ampl executable into this bin
directory. Also copy the test problem hs71.nl from OS/data/amplFiles/ into
the bin directory. Do five tests. Three local and two remote.

Test 1: Inside ampl execute the following

model hs71.mod;
option solver OSAmplClient;
option OSAmplClient_options "solver xyz";
solve;

The result should be an error saying:

<message>a supported solver has not been selected</message>

Test 2: Inside ampl execute the following

model hs71.mod;
option solver OSAmplClient;
option OSAmplClient_options "solver ipopt";
solve;
display x1;

1

The result of display x3 should be 3.82115.

Test 3: Inside ampl execute the following

model hs71.mod;
option solver OSAmplClient;
option OSAmplClient_options "solver cbc";
solve;

You should get an error message saying:

<message>Cbc cannot do nonlinear or quadratic</message>

Test 4: Inside ampl execute the following

model hs71.mod;
option solver OSAmplClient;
option OSAmplClient_options "solver ipopt";
option ipopt_options "service http://gsbkip.chicagogsb.edu/os/OSSolverService.jws";
solve;
display x1;

The result of display x3 should be 3.82115.

Test 5: Inside ampl execute the following

model hs71.mod;
option solver OSAmplClient;
option OSAmplClient_options "solver clp";
option clp_options "service http://gsbkip.chicagogsb.edu/os/OSSolverService.jws";
solve;
display x3;

You should get an error message saying”

<message>Clp cannot do nonlinear or quadratic or integer</message>

There is command script, testAmpl.run in the directory OS/data/amplFiles
that contains the commands for all of these test. Simply start ampl and execute

include testAmpl.run;

b. Test the OSFileUpload application. Edit OSFileUpload.cpp. First com-
ment out line 79 and then modify line

osagent = new OSSolverAgent("http://******/os/servlet/OSFileUpload");

to

osagent = new OSSolverAgent("http://gsbkip.chicagogsb.edu/os/servlet/OSFileUpload");

2

Rebuild and run. This application takes one command line argument which is
the file to be uploaded.

4. Test the OSSolverService.

a. Test running a local solver. (These examples assume that the OS/data direc-
tory is one level above the directory in which OSSolverService is running.
Test for OSiL, mps, and nl files.

OSSolverService -config ../data/configFiles/testLocal.config
OSSolverService -config ../data/configFiles/testLocalMPS.config
OSSolverService -config ../data/configFiles/testLocalNL.config

You should get the OSrL for the simple test problem. In all of these look for <obj
idx="-1">-7667.94</obj> in the MPS test and <obj idx="-1">-7667.94</obj>
in the other two.

b. Test the service methods on the remote server.
Step 1: Test remote solve() method for OSiL, mps, and nl files.

OSSolverService -config ../data/configFiles/testRemote.config
OSSolverService -config ../data/configFiles/testRemoteMPS.config
OSSolverService -config ../data/configFiles/testRemoteNL.config

You should get the OSrL for the simple test problem in each case. In all of these
look for <obj idx="-1">-7667.94</obj>.

Step 2: Test remote getJobID() method.

OSSolverService -config ../data/configFiles/testRemotegetJobID.config

You will get a long jobID.

Step 3: Test remote send() method. Use the send() method with the jobID
just generated. To do this open the file

/data/osolFiles/sendWithJobID.osol

and replace the existing jobID with the one just generated. Then run

OSSolverService -config ../data/configFiles/testRemoteSend.config

The result should be “send is true.”

Step 4: Test remote knock() method. See if the job is complete.

OSSolverService -config ../data/configFiles/testRemoteKnock.config

3

You do not need to put in jobID information. The knock will get the status
of all jobs. However, if want just the status of the job you submitted put your
jobID in the knock.osol file.

Step 5: Test remote retrieve() method. Get the result.

OSSolverService -config ../data/configFiles/testRemoteRetrieve.config

Before executing this command make sure to put your jobID into the file re-
trieve.osol . Also, either delete the -browser option or put in the path to your
browser. The result of the optimization will be put into a file called test.osrl
that will be in the directory in which you are running the OSSolverService.

IMPORTANT: Please do NOT commit the changes to these config files.

5. Test OSCommon. Build the OSCommon library. Build the OSCommon library.
Do a make install. Then connect to apiExamples directory, build and run the
apiExample.

4

