
CoinUtils
2.8

Generated by Doxygen 1.7.4

Wed Nov 9 2011 10:00:47

CONTENTS i

Contents

1 Module Index 1

1.1 Modules . 1

2 Namespace Index 1

2.1 Namespace List . 1

3 Class Index 1

3.1 Class Hierarchy . 2

4 Class Index 7

4.1 Class List . 7

5 File Index 12

5.1 File List . 12

6 Module Documentation 14

6.1 Presolve Matrix Manipulation Functions 14

6.1.1 Detailed Description . 16

6.1.2 Function Documentation . 16

6.2 Presolve Utility Functions . 19

6.2.1 Detailed Description . 19

6.2.2 Function Documentation . 19

6.3 Presolve Debug Functions . 20

6.3.1 Detailed Description . 21

6.3.2 Function Documentation . 21

7 Namespace Documentation 22

7.1 CoinParamUtils Namespace Reference 23

7.1.1 Detailed Description . 24

7.1.2 Function Documentation . 24

8 Class Documentation 27

8.1 _EKKfactinfo Struct Reference . 28

8.1.1 Detailed Description . 28

8.2 forcing_constraint_action::action Struct Reference 29

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

CONTENTS ii

8.2.1 Detailed Description . 29

8.3 tripleton_action::action Struct Reference 30

8.3.1 Detailed Description . 30

8.4 doubleton_action::action Struct Reference 31

8.4.1 Detailed Description . 31

8.5 remove_fixed_action::action Struct Reference 31

8.5.1 Detailed Description . 32

8.6 BitVector128 Class Reference . 33

8.6.1 Detailed Description . 33

8.7 CoinAbsFltEq Class Reference . 33

8.7.1 Detailed Description . 34

8.7.2 Constructor & Destructor Documentation 34

8.8 CoinArrayWithLength Class Reference 35

8.8.1 Detailed Description . 37

8.8.2 Constructor & Destructor Documentation 38

8.8.3 Member Function Documentation 38

8.9 CoinBaseModel Class Reference . 38

8.9.1 Detailed Description . 41

8.9.2 Member Data Documentation 41

8.10 CoinBigIndexArrayWithLength Class Reference 41

8.10.1 Detailed Description . 43

8.10.2 Constructor & Destructor Documentation 43

8.10.3 Member Function Documentation 43

8.11 CoinBuild Class Reference . 43

8.11.1 Detailed Description . 45

8.11.2 Constructor & Destructor Documentation 46

8.12 CoinDenseFactorization Class Reference 46

8.12.1 Detailed Description . 49

8.12.2 Member Function Documentation 49

8.13 CoinDenseVector< T > Class Template Reference 50

8.13.1 Detailed Description . 52

8.13.2 Member Function Documentation 53

8.14 CoinDoubleArrayWithLength Class Reference 53

8.14.1 Detailed Description . 55

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

CONTENTS iii

8.14.2 Constructor & Destructor Documentation 55

8.14.3 Member Function Documentation 55

8.15 CoinError Class Reference . 55

8.15.1 Detailed Description . 57

8.15.2 Friends And Related Function Documentation 57

8.16 CoinExternalVectorFirstGreater_2< S, T, V > Class Template Reference 58

8.16.1 Detailed Description . 58

8.17 CoinExternalVectorFirstGreater_3< S, T, U, V > Class Template Refer-
ence . 58

8.17.1 Detailed Description . 59

8.18 CoinExternalVectorFirstLess_2< S, T, V > Class Template Reference . 59

8.18.1 Detailed Description . 60

8.19 CoinExternalVectorFirstLess_3< S, T, U, V > Class Template Reference 60

8.19.1 Detailed Description . 61

8.20 CoinFactorization Class Reference . 61

8.20.1 Detailed Description . 74

8.20.2 Member Function Documentation 75

8.20.3 Member Data Documentation 78

8.21 CoinFactorizationDoubleArrayWithLength Class Reference 78

8.21.1 Detailed Description . 80

8.21.2 Constructor & Destructor Documentation 80

8.21.3 Member Function Documentation 80

8.22 CoinFileInput Class Reference . 81

8.22.1 Detailed Description . 83

8.22.2 Constructor & Destructor Documentation 83

8.22.3 Member Function Documentation 83

8.22.4 Friends And Related Function Documentation 84

8.23 CoinFileIOBase Class Reference . 85

8.23.1 Detailed Description . 86

8.23.2 Constructor & Destructor Documentation 86

8.24 CoinFileOutput Class Reference . 87

8.24.1 Detailed Description . 89

8.24.2 Member Enumeration Documentation 89

8.24.3 Constructor & Destructor Documentation 89

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

CONTENTS iv

8.24.4 Member Function Documentation 89

8.25 CoinFirstAbsGreater_2< S, T > Class Template Reference 91

8.25.1 Detailed Description . 91

8.26 CoinFirstAbsGreater_3< S, T, U > Class Template Reference 91

8.26.1 Detailed Description . 91

8.27 CoinFirstAbsLess_2< S, T > Class Template Reference 92

8.27.1 Detailed Description . 92

8.28 CoinFirstAbsLess_3< S, T, U > Class Template Reference 92

8.28.1 Detailed Description . 93

8.29 CoinFirstGreater_2< S, T > Class Template Reference 93

8.29.1 Detailed Description . 93

8.30 CoinFirstGreater_3< S, T, U > Class Template Reference 93

8.30.1 Detailed Description . 94

8.31 CoinFirstLess_2< S, T > Class Template Reference 94

8.31.1 Detailed Description . 94

8.32 CoinFirstLess_3< S, T, U > Class Template Reference 94

8.32.1 Detailed Description . 95

8.33 CoinMpsIO::CoinHashLink Struct Reference 95

8.33.1 Detailed Description . 95

8.34 CoinLpIO::CoinHashLink Struct Reference 96

8.34.1 Detailed Description . 96

8.35 CoinIndexedVector Class Reference 96

8.35.1 Detailed Description . 101

8.35.2 Constructor & Destructor Documentation 102

8.35.3 Member Function Documentation 103

8.35.4 Friends And Related Function Documentation 105

8.36 CoinIntArrayWithLength Class Reference 105

8.36.1 Detailed Description . 107

8.36.2 Constructor & Destructor Documentation 107

8.36.3 Member Function Documentation 107

8.37 CoinLpIO Class Reference . 108

8.37.1 Detailed Description . 115

8.37.2 Member Function Documentation 116

8.37.3 Member Data Documentation 124

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

CONTENTS v

8.38 CoinMessage Class Reference . 125

8.38.1 Detailed Description . 126

8.38.2 Constructor & Destructor Documentation 127

8.39 CoinMessageHandler Class Reference 127

8.39.1 Detailed Description . 131

8.39.2 Member Function Documentation 132

8.39.3 Friends And Related Function Documentation 136

8.40 CoinMessages Class Reference . 136

8.40.1 Detailed Description . 139

8.40.2 Member Enumeration Documentation 139

8.40.3 Constructor & Destructor Documentation 139

8.40.4 Member Function Documentation 139

8.40.5 Member Data Documentation 140

8.41 CoinModel Class Reference . 140

8.41.1 Detailed Description . 151

8.41.2 Constructor & Destructor Documentation 152

8.41.3 Member Function Documentation 152

8.42 CoinModelHash Class Reference . 158

8.42.1 Detailed Description . 159

8.42.2 Constructor & Destructor Documentation 159

8.43 CoinModelHash2 Class Reference . 160

8.43.1 Detailed Description . 161

8.43.2 Constructor & Destructor Documentation 161

8.44 CoinModelHashLink Struct Reference 161

8.44.1 Detailed Description . 162

8.45 CoinModelInfo2 Struct Reference . 162

8.45.1 Detailed Description . 163

8.46 CoinModelLink Class Reference . 163

8.46.1 Detailed Description . 165

8.46.2 Constructor & Destructor Documentation 165

8.47 CoinModelLinkedList Class Reference 166

8.47.1 Detailed Description . 168

8.47.2 Constructor & Destructor Documentation 168

8.47.3 Member Function Documentation 168

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

CONTENTS vi

8.48 CoinModelTriple Struct Reference . 169

8.48.1 Detailed Description . 169

8.49 CoinMpsCardReader Class Reference 169

8.49.1 Detailed Description . 173

8.49.2 Member Function Documentation 173

8.50 CoinMpsIO Class Reference . 173

8.50.1 Detailed Description . 182

8.50.2 Member Function Documentation 182

8.50.3 Friends And Related Function Documentation 186

8.50.4 Member Data Documentation 187

8.51 CoinOneMessage Class Reference . 187

8.51.1 Detailed Description . 188

8.51.2 Constructor & Destructor Documentation 189

8.51.3 Member Function Documentation 189

8.52 CoinOslFactorization Class Reference 189

8.52.1 Detailed Description . 193

8.52.2 Member Function Documentation 193

8.53 CoinOtherFactorization Class Reference 194

8.53.1 Detailed Description . 199

8.53.2 Member Function Documentation 199

8.53.3 Member Data Documentation 200

8.54 CoinPackedMatrix Class Reference . 200

8.54.1 Detailed Description . 208

8.54.2 Constructor & Destructor Documentation 209

8.54.3 Member Function Documentation 210

8.54.4 Friends And Related Function Documentation 222

8.54.5 Member Data Documentation 223

8.55 CoinPackedVector Class Reference . 224

8.55.1 Detailed Description . 228

8.55.2 Constructor & Destructor Documentation 229

8.55.3 Member Function Documentation 230

8.55.4 Friends And Related Function Documentation 231

8.56 CoinPackedVectorBase Class Reference 232

8.56.1 Detailed Description . 235

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

CONTENTS vii

8.56.2 Constructor & Destructor Documentation 236

8.56.3 Member Function Documentation 236

8.57 CoinPair< S, T > Struct Template Reference 237

8.57.1 Detailed Description . 238

8.58 CoinParam Class Reference . 238

8.58.1 Detailed Description . 242

8.58.2 Member Typedef Documentation 243

8.58.3 Member Enumeration Documentation 243

8.58.4 Constructor & Destructor Documentation 244

8.58.5 Member Function Documentation 245

8.58.6 Friends And Related Function Documentation 246

8.59 CoinPostsolveMatrix Class Reference 249

8.59.1 Detailed Description . 252

8.59.2 Constructor & Destructor Documentation 252

8.59.3 Member Function Documentation 253

8.59.4 Member Data Documentation 253

8.60 CoinPrePostsolveMatrix Class Reference 254

8.60.1 Detailed Description . 261

8.60.2 Member Enumeration Documentation 262

8.60.3 Constructor & Destructor Documentation 262

8.60.4 Member Function Documentation 263

8.60.5 Member Data Documentation 263

8.61 CoinPresolveAction Class Reference 264

8.61.1 Detailed Description . 267

8.61.2 Constructor & Destructor Documentation 268

8.61.3 Member Function Documentation 269

8.61.4 Member Data Documentation 269

8.62 CoinPresolveMatrix Class Reference 269

8.62.1 Detailed Description . 276

8.62.2 Constructor & Destructor Documentation 277

8.62.3 Member Function Documentation 277

8.62.4 Friends And Related Function Documentation 279

8.62.5 Member Data Documentation 279

8.63 CoinRelFltEq Class Reference . 281

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

CONTENTS viii

8.63.1 Detailed Description . 282

8.63.2 Constructor & Destructor Documentation 282

8.64 CoinSearchTree< Comp > Class Template Reference 283

8.64.1 Detailed Description . 285

8.65 CoinSearchTreeBase Class Reference 285

8.65.1 Detailed Description . 287

8.65.2 Member Function Documentation 287

8.66 CoinSearchTreeCompareBest Struct Reference 287

8.66.1 Detailed Description . 287

8.67 CoinSearchTreeCompareBreadth Struct Reference 287

8.67.1 Detailed Description . 287

8.68 CoinSearchTreeCompareDepth Struct Reference 287

8.68.1 Detailed Description . 288

8.69 CoinSearchTreeComparePreferred Struct Reference 288

8.69.1 Detailed Description . 288

8.70 CoinSearchTreeManager Class Reference 289

8.70.1 Detailed Description . 289

8.71 CoinSet Class Reference . 290

8.71.1 Detailed Description . 291

8.72 CoinShallowPackedVector Class Reference 292

8.72.1 Detailed Description . 294

8.72.2 Constructor & Destructor Documentation 295

8.72.3 Member Function Documentation 296

8.72.4 Friends And Related Function Documentation 296

8.73 CoinSimpFactorization Class Reference 297

8.73.1 Detailed Description . 305

8.73.2 Member Function Documentation 305

8.74 CoinSnapshot Class Reference . 306

8.74.1 Detailed Description . 311

8.74.2 Member Function Documentation 311

8.75 CoinSosSet Class Reference . 312

8.75.1 Detailed Description . 313

8.76 CoinStructuredModel Class Reference 314

8.76.1 Detailed Description . 317

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

CONTENTS ix

8.76.2 Constructor & Destructor Documentation 318

8.76.3 Member Function Documentation 318

8.77 CoinThreadRandom Class Reference 319

8.77.1 Detailed Description . 320

8.77.2 Constructor & Destructor Documentation 320

8.77.3 Member Function Documentation 321

8.78 CoinTimer Class Reference . 321

8.78.1 Detailed Description . 322

8.79 CoinTreeNode Class Reference . 322

8.79.1 Detailed Description . 323

8.80 CoinTreeSiblings Class Reference . 324

8.80.1 Detailed Description . 324

8.81 CoinTriple< S, T, U > Class Template Reference 325

8.81.1 Detailed Description . 325

8.82 CoinUnsignedIntArrayWithLength Class Reference 326

8.82.1 Detailed Description . 327

8.82.2 Constructor & Destructor Documentation 327

8.82.3 Member Function Documentation 328

8.83 CoinWarmStart Class Reference . 328

8.83.1 Detailed Description . 329

8.84 CoinWarmStartBasis Class Reference 329

8.84.1 Detailed Description . 333

8.84.2 Member Enumeration Documentation 333

8.84.3 Constructor & Destructor Documentation 333

8.84.4 Member Function Documentation 334

8.84.5 Member Data Documentation 336

8.85 CoinWarmStartBasisDiff Class Reference 336

8.85.1 Detailed Description . 338

8.85.2 Constructor & Destructor Documentation 338

8.86 CoinWarmStartDiff Class Reference 339

8.86.1 Detailed Description . 339

8.87 CoinWarmStartDual Class Reference 340

8.87.1 Detailed Description . 342

8.87.2 Member Function Documentation 342

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

CONTENTS x

8.88 CoinWarmStartDualDiff Class Reference 342

8.88.1 Detailed Description . 344

8.88.2 Constructor & Destructor Documentation 344

8.89 CoinWarmStartPrimalDual Class Reference 345

8.89.1 Detailed Description . 347

8.89.2 Member Function Documentation 347

8.90 CoinWarmStartPrimalDualDiff Class Reference 348

8.90.1 Detailed Description . 350

8.90.2 Constructor & Destructor Documentation 350

8.90.3 Member Function Documentation 350

8.91 CoinWarmStartVector< T > Class Template Reference 351

8.91.1 Detailed Description . 352

8.91.2 Member Function Documentation 353

8.92 CoinWarmStartVectorDiff< T > Class Template Reference 353

8.92.1 Detailed Description . 355

8.92.2 Constructor & Destructor Documentation 355

8.92.3 Member Function Documentation 355

8.93 CoinWarmStartVectorPair< T, U > Class Template Reference 356

8.93.1 Detailed Description . 357

8.94 CoinWarmStartVectorPairDiff< T, U > Class Template Reference 358

8.94.1 Detailed Description . 359

8.95 CoinYacc Class Reference . 359

8.95.1 Detailed Description . 359

8.96 do_tighten_action Class Reference . 360

8.96.1 Detailed Description . 361

8.96.2 Member Function Documentation 361

8.97 doubleton_action Class Reference . 361

8.97.1 Detailed Description . 363

8.97.2 Member Function Documentation 363

8.98 drop_empty_cols_action Class Reference 363

8.98.1 Detailed Description . 365

8.98.2 Member Function Documentation 365

8.99 drop_empty_rows_action Class Reference 365

8.99.1 Detailed Description . 367

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

CONTENTS xi

8.99.2 Member Function Documentation 367

8.100drop_zero_coefficients_action Class Reference 367

8.100.1 Detailed Description . 369

8.100.2 Member Function Documentation 369

8.101dropped_zero Struct Reference . 369

8.101.1 Detailed Description . 370

8.102dupcol_action Class Reference . 370

8.102.1 Detailed Description . 372

8.102.2 Member Function Documentation 372

8.103duprow_action Class Reference . 372

8.103.1 Detailed Description . 374

8.103.2 Member Function Documentation 374

8.104EKKHlink Struct Reference . 374

8.104.1 Detailed Description . 375

8.105FactorPointers Class Reference . 375

8.105.1 Detailed Description . 376

8.106forcing_constraint_action Class Reference 376

8.106.1 Detailed Description . 378

8.106.2 Member Function Documentation 378

8.107gubrow_action Class Reference . 378

8.107.1 Detailed Description . 380

8.107.2 Member Function Documentation 380

8.108implied_free_action Class Reference 380

8.108.1 Detailed Description . 382

8.108.2 Member Function Documentation 382

8.109isolated_constraint_action Class Reference 383

8.109.1 Detailed Description . 384

8.109.2 Member Function Documentation 384

8.110make_fixed_action Class Reference 384

8.110.1 Detailed Description . 386

8.110.2 Member Function Documentation 386

8.110.3 Friends And Related Function Documentation 386

8.111presolvehlink Class Reference . 387

8.111.1 Detailed Description . 387

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

CONTENTS xii

8.111.2 Friends And Related Function Documentation 388

8.112Coin::ReferencedObject Class Reference 388

8.112.1 Detailed Description . 389

8.113remove_dual_action Class Reference 391

8.113.1 Detailed Description . 392

8.113.2 Member Function Documentation 393

8.114remove_fixed_action Class Reference 393

8.114.1 Detailed Description . 395

8.114.2 Member Function Documentation 396

8.114.3 Friends And Related Function Documentation 396

8.115slack_doubleton_action Class Reference 396

8.115.1 Detailed Description . 398

8.115.2 Member Function Documentation 398

8.116slack_singleton_action Class Reference 398

8.116.1 Detailed Description . 400

8.116.2 Member Function Documentation 400

8.117Coin::SmartPtr< T > Class Template Reference 400

8.117.1 Detailed Description . 402

8.117.2 Constructor & Destructor Documentation 404

8.117.3 Member Function Documentation 405

8.117.4 Friends And Related Function Documentation 405

8.118subst_constraint_action Class Reference 406

8.118.1 Detailed Description . 407

8.118.2 Member Function Documentation 407

8.119symrec Struct Reference . 408

8.119.1 Detailed Description . 408

8.120tripleton_action Class Reference . 408

8.120.1 Detailed Description . 411

8.120.2 Member Function Documentation 411

8.121useless_constraint_action Class Reference 411

8.121.1 Detailed Description . 412

8.121.2 Member Function Documentation 412

9 File Documentation 413

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

1 Module Index 1

9.1 CoinFloatEqual.hpp File Reference . 413

9.1.1 Detailed Description . 414

9.2 CoinMessage.hpp File Reference . 414

9.2.1 Detailed Description . 415

9.3 CoinMessageHandler.hpp File Reference 415

9.3.1 Detailed Description . 417

9.3.2 Define Documentation . 417

9.3.3 Function Documentation . 417

9.4 CoinParam.hpp File Reference . 418

9.4.1 Detailed Description . 419

9.5 CoinPresolveDupcol.hpp File Reference 419

9.5.1 Detailed Description . 420

9.6 CoinPresolveEmpty.hpp File Reference 420

9.6.1 Detailed Description . 421

9.7 CoinPresolveForcing.hpp File Reference 421

9.7.1 Detailed Description . 422

9.8 CoinPresolveImpliedFree.hpp File Reference 422

9.8.1 Detailed Description . 422

9.9 CoinPresolveMatrix.hpp File Reference 422

9.9.1 Detailed Description . 424

9.9.2 Variable Documentation . 424

9.10 CoinPresolveSingleton.hpp File Reference 424

9.10.1 Detailed Description . 425

9.11 CoinPresolveZeros.hpp File Reference 425

9.11.1 Detailed Description . 425

9.12 CoinWarmStart.hpp File Reference . 425

9.12.1 Detailed Description . 426

1 Module Index

1.1 Modules

Here is a list of all modules:

Presolve Matrix Manipulation Functions 14

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

2 Namespace Index 2

Presolve Utility Functions 19

Presolve Debug Functions 20

2 Namespace Index

2.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

CoinParamUtils (Utility functions for processing CoinParam parameters) 23

3 Class Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

_EKKfactinfo 28

forcing_constraint_action::action 29

tripleton_action::action 30

doubleton_action::action 31

remove_fixed_action::action 31
std::basic_fstream< char >
std::basic_fstream< wchar_t >
std::basic_ifstream< char >
std::basic_ifstream< wchar_t >
std::basic_ios< char >
std::basic_ios< wchar_t >
std::basic_iostream< char >
std::basic_iostream< wchar_t >
std::basic_istream< char >
std::basic_istream< wchar_t >
std::basic_istringstream< char >
std::basic_istringstream< wchar_t >
std::basic_ofstream< char >
std::basic_ofstream< wchar_t >
std::basic_ostream< char >
std::basic_ostream< wchar_t >
std::basic_ostringstream< char >
std::basic_ostringstream< wchar_t >
std::basic_string< char >
std::basic_string< wchar_t >

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

3.1 Class Hierarchy 3

std::basic_stringstream< char >
std::basic_stringstream< wchar_t >

BitVector128 33

CoinAbsFltEq 33

CoinArrayWithLength 35

CoinBigIndexArrayWithLength 41

CoinDoubleArrayWithLength 53

CoinFactorizationDoubleArrayWithLength 78

CoinIntArrayWithLength 105

CoinUnsignedIntArrayWithLength 326

CoinBaseModel 38

CoinModel 140

CoinStructuredModel 314

CoinBuild 43

CoinDenseVector< T > 50

CoinError 55

CoinExternalVectorFirstGreater_2< S, T, V > 58

CoinExternalVectorFirstGreater_3< S, T, U, V > 58

CoinExternalVectorFirstLess_2< S, T, V > 59

CoinExternalVectorFirstLess_3< S, T, U, V > 60

CoinFactorization 61

CoinFileIOBase 85

CoinFileInput 81

CoinFileOutput 87

CoinFirstAbsGreater_2< S, T > 91

CoinFirstAbsGreater_3< S, T, U > 91

CoinFirstAbsLess_2< S, T > 92

CoinFirstAbsLess_3< S, T, U > 92

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

3.1 Class Hierarchy 4

CoinFirstGreater_2< S, T > 93

CoinFirstGreater_3< S, T, U > 93

CoinFirstLess_2< S, T > 94

CoinFirstLess_3< S, T, U > 94

CoinMpsIO::CoinHashLink 95

CoinLpIO::CoinHashLink 96

CoinIndexedVector 96

CoinLpIO 108

CoinMessageHandler 127

CoinMessages 136

CoinMessage 125

CoinModelHash 158

CoinModelHash2 160

CoinModelHashLink 161

CoinModelInfo2 162

CoinModelLink 163

CoinModelLinkedList 166

CoinModelTriple 169

CoinMpsCardReader 169

CoinMpsIO 173

CoinOneMessage 187

CoinOtherFactorization 194

CoinDenseFactorization 46

CoinOslFactorization 189

CoinSimpFactorization 297

CoinPackedMatrix 200

CoinPackedVectorBase 232

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

3.1 Class Hierarchy 5

CoinPackedVector 224

CoinShallowPackedVector 292

CoinPair< S, T > 237

CoinParam 238

CoinPrePostsolveMatrix 254

CoinPostsolveMatrix 249

CoinPresolveMatrix 269

CoinPresolveAction 264

do_tighten_action 360

doubleton_action 361

drop_empty_cols_action 363

drop_empty_rows_action 365

drop_zero_coefficients_action 367

dupcol_action 370

duprow_action 372

forcing_constraint_action 376

gubrow_action 378

implied_free_action 380

isolated_constraint_action 383

make_fixed_action 384

remove_dual_action 391

remove_fixed_action 393

slack_doubleton_action 396

slack_singleton_action 398

subst_constraint_action 406

tripleton_action 408

useless_constraint_action 411

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

3.1 Class Hierarchy 6

CoinRelFltEq 281

CoinSearchTreeBase 285

CoinSearchTree< Comp > 283

CoinSearchTreeCompareBest 287

CoinSearchTreeCompareBreadth 287

CoinSearchTreeCompareDepth 287

CoinSearchTreeComparePreferred 288

CoinSearchTreeManager 289

CoinSet 290

CoinSosSet 312

CoinSnapshot 306

CoinThreadRandom 319

CoinTimer 321

CoinTreeNode 322

CoinTreeSiblings 324

CoinTriple< S, T, U > 325

CoinWarmStart 328

CoinWarmStartBasis 329

CoinWarmStartDual 340

CoinWarmStartPrimalDual 345

CoinWarmStartVector< T > 351

CoinWarmStartVectorPair< T, U > 356

CoinWarmStartDiff 339

CoinWarmStartBasisDiff 336

CoinWarmStartDualDiff 342

CoinWarmStartPrimalDualDiff 348

CoinWarmStartVectorDiff< T > 353

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

4 Class Index 7

CoinWarmStartVectorPairDiff< T, U > 358

CoinYacc 359

dropped_zero 369

EKKHlink 374

FactorPointers 375

presolvehlink 387

Coin::ReferencedObject 388

Coin::SmartPtr< T > 400

symrec 408

4 Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

_EKKfactinfo 28

forcing_constraint_action::action 29

tripleton_action::action 30

doubleton_action::action 31

remove_fixed_action::action (Structure to hold information necessary to
reintroduce a column into the problem representation) 31

BitVector128 33

CoinAbsFltEq (Equality to an absolute tolerance) 33

CoinArrayWithLength (Pointer with length in bytes) 35

CoinBaseModel 38

CoinBigIndexArrayWithLength (CoinBigIndex ∗ version) 41

CoinBuild (In many cases it is natural to build a model by adding one row
at a time) 43

CoinDenseFactorization (This deals with Factorization and Updates This
is a simple dense version so other people can write a better one) 46

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

4.1 Class List 8

CoinDenseVector< T > (Dense Vector) 50

CoinDoubleArrayWithLength (Double ∗ version) 53

CoinError (Error Class thrown by an exception) 55

CoinExternalVectorFirstGreater_2< S, T, V > (Function operator) 58

CoinExternalVectorFirstGreater_3< S, T, U, V > (Function operator) 58

CoinExternalVectorFirstLess_2< S, T, V > (Function operator) 59

CoinExternalVectorFirstLess_3< S, T, U, V > (Function operator) 60

CoinFactorization (This deals with Factorization and Updates) 61

CoinFactorizationDoubleArrayWithLength (CoinFactorizationDouble ∗ ver-
sion) 78

CoinFileInput (Abstract base class for file input classes) 81

CoinFileIOBase (Base class for FileIO classes) 85

CoinFileOutput (Abstract base class for file output classes) 87

CoinFirstAbsGreater_2< S, T > (Function operator) 91

CoinFirstAbsGreater_3< S, T, U > (Function operator) 91

CoinFirstAbsLess_2< S, T > (Function operator) 92

CoinFirstAbsLess_3< S, T, U > (Function operator) 92

CoinFirstGreater_2< S, T > (Function operator) 93

CoinFirstGreater_3< S, T, U > (Function operator) 93

CoinFirstLess_2< S, T > (Function operator) 94

CoinFirstLess_3< S, T, U > (Function operator) 94

CoinMpsIO::CoinHashLink 95

CoinLpIO::CoinHashLink 96

CoinIndexedVector (Indexed Vector) 96

CoinIntArrayWithLength (Int ∗ version) 105

CoinLpIO (Class to read and write Lp files) 108

CoinMessage (The standard set of Coin messages) 125

CoinMessageHandler (Base class for message handling) 127

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

4.1 Class List 9

CoinMessages (Class to hold and manipulate an array of massaged mes-
sages) 136

CoinModel (This is a simple minded model which is stored in a format
which makes it easier to construct and modify but not efficient for
algorithms) 140

CoinModelHash 158

CoinModelHash2 (For int,int hashing) 160

CoinModelHashLink (For names and hashing) 161

CoinModelInfo2 (This is a model which is made up of Coin(Structured)Model
blocks) 162

CoinModelLink (This is for various structures/classes needed by Coin-
Model) 163

CoinModelLinkedList 166

CoinModelTriple (For linked lists) 169

CoinMpsCardReader (Very simple code for reading MPS data) 169

CoinMpsIO (MPS IO Interface) 173

CoinOneMessage (Class for one massaged message) 187

CoinOslFactorization 189

CoinOtherFactorization (Abstract base class which also has some scalars
so can be used from Dense or Simp) 194

CoinPackedMatrix (Sparse Matrix Base Class) 200

CoinPackedVector (Sparse Vector) 224

CoinPackedVectorBase (Abstract base class for various sparse vectors) 232

CoinPair< S, T > (An ordered pair) 237

CoinParam (A base class for ‘keyword value’ command line parameters) 238

CoinPostsolveMatrix (Augments CoinPrePostsolveMatrix with informa-
tion about the problem that is only needed during postsolve) 249

CoinPrePostsolveMatrix (Collects all the information about the problem
that is needed in both presolve and postsolve) 254

CoinPresolveAction (Abstract base class of all presolve routines) 264

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

4.1 Class List 10

CoinPresolveMatrix (Augments CoinPrePostsolveMatrix with information
about the problem that is only needed during presolve) 269

CoinRelFltEq (Equality to a scaled tolerance) 281

CoinSearchTree< Comp > 283

CoinSearchTreeBase 285

CoinSearchTreeCompareBest (Best first search) 287

CoinSearchTreeCompareBreadth 287

CoinSearchTreeCompareDepth (Depth First Search) 287

CoinSearchTreeComparePreferred (Function objects to compare search
tree nodes) 288

CoinSearchTreeManager 289

CoinSet (Very simple class for containing data on set) 290

CoinShallowPackedVector (Shallow Sparse Vector) 292

CoinSimpFactorization 297

CoinSnapshot (NON Abstract Base Class for interfacing with cut gener-
ators or branching code or) 306

CoinSosSet (Very simple class for containing SOS set) 312

CoinStructuredModel 314

CoinThreadRandom (Class for thread specific random numbers) 319

CoinTimer (This class implements a timer that also implements a tracing
functionality) 321

CoinTreeNode (A class from which the real tree nodes should be derived
from) 322

CoinTreeSiblings 324

CoinTriple< S, T, U > 325

CoinUnsignedIntArrayWithLength (Unsigned int ∗ version) 326

CoinWarmStart (Abstract base class for warm start information) 328

CoinWarmStartBasis (The default COIN simplex (basis-oriented) warm
start class) 329

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

4.1 Class List 11

CoinWarmStartBasisDiff (A ‘diff’ between two CoinWarmStartBasis ob-
jects) 336

CoinWarmStartDiff (Abstract base class for warm start ‘diff’ objects) 339

CoinWarmStartDual (WarmStart information that is only a dual vector) 340

CoinWarmStartDualDiff (A ‘diff’ between two CoinWarmStartDual objects)342

CoinWarmStartPrimalDual (WarmStart information that is only a dual vec-
tor) 345

CoinWarmStartPrimalDualDiff (A ‘diff’ between two CoinWarmStartPrimal-
Dual objects) 348

CoinWarmStartVector< T > (WarmStart information that is only a vector) 351

CoinWarmStartVectorDiff< T > (A ‘diff’ between two CoinWarmStartVec-
tor objects) 353

CoinWarmStartVectorPair< T, U > 356

CoinWarmStartVectorPairDiff< T, U > 358

CoinYacc 359

do_tighten_action 360

doubleton_action (Solve ax+by=c for y and substitute y out of the prob-
lem) 361

drop_empty_cols_action (Physically removes empty columns in presolve,
and reinserts empty columns in postsolve) 363

drop_empty_rows_action (Physically removes empty rows in presolve,
and reinserts empty rows in postsolve) 365

drop_zero_coefficients_action (Removal of explicit zeros) 367

dropped_zero (Tracking information for an explicit zero coefficient) 369

dupcol_action (Detect and remove duplicate columns) 370

duprow_action (Detect and remove duplicate rows) 372

EKKHlink (This deals with Factorization and Updates This is ripped off
from OSL!!!!!!!!!) 374

FactorPointers (Pointers used during factorization) 375

forcing_constraint_action (Detect and process forcing constraints and
useless constraints) 376

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

5 File Index 12

gubrow_action (Detect and remove entries whose sum is known) 378

implied_free_action (Detect and process implied free variables) 380

isolated_constraint_action 383

make_fixed_action (Fix a variable at a specified bound) 384

presolvehlink (Links to aid in packed matrix modification) 387

Coin::ReferencedObject (ReferencedObject class) 388

remove_dual_action (Attempt to fix variables by bounding reduced costs)391

remove_fixed_action (Excise fixed variables from the model) 393

slack_doubleton_action (Convert an explicit bound constraint to a col-
umn bound) 396

slack_singleton_action (For variables with one entry) 398

Coin::SmartPtr< T > (Template class for Smart Pointers) 400

subst_constraint_action 406

symrec (For string evaluation) 408

tripleton_action (We are only going to do this if it does not increase num-
ber of elements?) 408

useless_constraint_action 411

5 File Index

5.1 File List

Here is a list of all documented files with brief descriptions:

Coin_C_defines.h ??

CoinAlloc.hpp ??

CoinBuild.hpp ??

CoinDenseFactorization.hpp ??

CoinDenseVector.hpp ??

CoinDistance.hpp ??

CoinError.hpp ??

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

5.1 File List 13

CoinFactorization.hpp ??

CoinFileIO.hpp ??

CoinFinite.hpp ??

CoinFloatEqual.hpp (Function objects for testing equality of real num-
bers) 413

CoinHelperFunctions.hpp ??

CoinIndexedVector.hpp ??

CoinLpIO.hpp ??

CoinMessage.hpp (This file contains the enum for the standard set of
Coin messages and a class definition whose sole purpose is to sup-
ply a constructor) 414

CoinMessageHandler.hpp (This is a first attempt at a message handler) 415

CoinModel.hpp ??

CoinModelUseful.hpp ??

CoinMpsIO.hpp ??

CoinOslC.h ??

CoinOslFactorization.hpp ??

CoinPackedMatrix.hpp ??

CoinPackedVector.hpp ??

CoinPackedVectorBase.hpp ??

CoinParam.hpp (Declaration of a class for command line parameters) 418

CoinPragma.hpp ??

CoinPresolveDoubleton.hpp ??

CoinPresolveDual.hpp ??

CoinPresolveDupcol.hpp 419

CoinPresolveEmpty.hpp (Drop/reinsert empty rows/columns) 420

CoinPresolveFixed.hpp ??

CoinPresolveForcing.hpp 421

CoinPresolveImpliedFree.hpp 422

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

5.1 File List 14

CoinPresolveIsolated.hpp ??

CoinPresolveMatrix.hpp (Declarations for CoinPresolveMatrix and Coin-
PostsolveMatrix and their common base class CoinPrePostsolveMa-
trix) 422

CoinPresolvePsdebug.hpp ??

CoinPresolveSingleton.hpp 424

CoinPresolveSubst.hpp ??

CoinPresolveTighten.hpp ??

CoinPresolveTripleton.hpp ??

CoinPresolveUseless.hpp ??

CoinPresolveZeros.hpp (Drop/reintroduce explicit zeros) 425

CoinSearchTree.hpp ??

CoinShallowPackedVector.hpp ??

CoinSignal.hpp ??

CoinSimpFactorization.hpp ??

CoinSmartPtr.hpp ??

CoinSnapshot.hpp ??

CoinSort.hpp ??

CoinStructuredModel.hpp ??

CoinTime.hpp ??

CoinTypes.hpp ??

CoinUtility.hpp ??

CoinUtilsConfig.h ??

CoinWarmStart.hpp (Copyright (C) 2000 -- 2003, International Business
Machines Corporation and others) 425

CoinWarmStartBasis.hpp ??

CoinWarmStartDual.hpp ??

CoinWarmStartPrimalDual.hpp ??

CoinWarmStartVector.hpp ??

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

6 Module Documentation 15

config.h ??

config_coinutils.h ??

config_coinutils_default.h ??

config_default.h ??

6 Module Documentation

6.1 Presolve Matrix Manipulation Functions

Functions to work with the loosely packed and threaded packed matrix structures used
during presolve and postsolve.

Functions

• void CoinPrePostsolveMatrix::presolve_make_memlists (int ∗lengths, presolvehlink
∗link, int n)

Initialise linked list for major vector order in bulk storage.

• bool CoinPrePostsolveMatrix::presolve_expand_major (CoinBigIndex ∗majstrts,
double ∗majels, int ∗minndxs, int ∗majlens, presolvehlink ∗majlinks, int nmaj, int
k)

Make sure a major-dimension vector k has room for one more coefficient.

• bool CoinPrePostsolveMatrix::presolve_expand_col (CoinBigIndex ∗mcstrt, dou-
ble ∗colels, int ∗hrow, int ∗hincol, presolvehlink ∗clink, int ncols, int colx)

Make sure a column (colx) in a column-major matrix has room for one more coefficient.

• bool CoinPrePostsolveMatrix::presolve_expand_row (CoinBigIndex ∗mrstrt, dou-
ble ∗rowels, int ∗hcol, int ∗hinrow, presolvehlink ∗rlink, int nrows, int rowx)

Make sure a row (rowx) in a row-major matrix has room for one more coefficient.

• CoinBigIndex CoinPrePostsolveMatrix::presolve_find_minor (int tgt, CoinBigIndex
ks, CoinBigIndex ke, const int ∗minndxs)

Find position of a minor index in a major vector.

• CoinBigIndex CoinPrePostsolveMatrix::presolve_find_row (int row, CoinBigIndex
kcs, CoinBigIndex kce, const int ∗hrow)

Find position of a row in a column in a column-major matrix.

• CoinBigIndex CoinPostsolveMatrix::presolve_find_col (int col, CoinBigIndex krs,
CoinBigIndex kre, const int ∗hcol)

Find position of a column in a row in a row-major matrix.

• CoinBigIndex CoinPrePostsolveMatrix::presolve_find_minor1 (int tgt, CoinBigIn-
dex ks, CoinBigIndex ke, const int ∗minndxs)

Find position of a minor index in a major vector.

• CoinBigIndex CoinPrePostsolveMatrix::presolve_find_row1 (int row, CoinBigIn-
dex kcs, CoinBigIndex kce, const int ∗hrow)

Find position of a row in a column in a column-major matrix.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

6.1 Presolve Matrix Manipulation Functions 16

• CoinBigIndex CoinPrePostsolveMatrix::presolve_find_col1 (int col, CoinBigIndex
krs, CoinBigIndex kre, const int ∗hcol)

Find position of a column in a row in a row-major matrix.

• CoinBigIndex CoinPostsolveMatrix::presolve_find_minor2 (int tgt, CoinBigIndex
ks, int majlen, const int ∗minndxs, const CoinBigIndex ∗majlinks)

Find position of a minor index in a major vector in a threaded matrix.

• CoinBigIndex CoinPostsolveMatrix::presolve_find_row2 (int row, CoinBigIndex kcs,
int collen, const int ∗hrow, const CoinBigIndex ∗clinks)

Find position of a row in a column in a column-major threaded matrix.

• CoinBigIndex CoinPostsolveMatrix::presolve_find_minor3 (int tgt, CoinBigIndex
ks, int majlen, const int ∗minndxs, const CoinBigIndex ∗majlinks)

Find position of a minor index in a major vector in a threaded matrix.

• CoinBigIndex CoinPostsolveMatrix::presolve_find_row3 (int row, CoinBigIndex kcs,
int collen, const int ∗hrow, const CoinBigIndex ∗clinks)

Find position of a row in a column in a column-major threaded matrix.

• void CoinPrePostsolveMatrix::presolve_delete_from_major (int majndx, int min-
ndx, const CoinBigIndex ∗majstrts, int ∗majlens, int ∗minndxs, double ∗els)

Delete the entry for a minor index from a major vector.

• void CoinPrePostsolveMatrix::presolve_delete_from_col (int row, int col, const
CoinBigIndex ∗mcstrt, int ∗hincol, int ∗hrow, double ∗colels)

Delete the entry for row row from column col in a column-major matrix.

• void CoinPrePostsolveMatrix::presolve_delete_from_row (int row, int col, const
CoinBigIndex ∗mrstrt, int ∗hinrow, int ∗hcol, double ∗rowels)

Delete the entry for column col from row row in a row-major matrix.

• void CoinPostsolveMatrix::presolve_delete_from_major2 (int majndx, int minndx,
CoinBigIndex ∗majstrts, int ∗majlens, int ∗minndxs, int ∗majlinks, CoinBigIndex
∗free_listp)

Delete the entry for a minor index from a major vector in a threaded matrix.

• void CoinPostsolveMatrix::presolve_delete_from_col2 (int row, int col, CoinBigIn-
dex ∗mcstrt, int ∗hincol, int ∗hrow, int ∗clinks, CoinBigIndex ∗free_listp)

Delete the entry for row row from column col in a column-major threaded matrix.

6.1.1 Detailed Description

Functions to work with the loosely packed and threaded packed matrix structures used
during presolve and postsolve.

6.1.2 Function Documentation

6.1.2.1 bool presolve expand major (CoinBigIndex ∗ majstrts, double ∗ majels, int ∗ minndxs,
int ∗ majlens, presolvehlink ∗ majlinks, int nmaj, int k) [related]

Make sure a major-dimension vector k has room for one more coefficient.

You can use this directly, or use the inline wrappers presolve_expand_col and presolve_-
expand_row

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

6.1 Presolve Matrix Manipulation Functions 17

6.1.2.2 CoinBigIndex presolve find minor (int tgt, CoinBigIndex ks, CoinBigIndex ke, const int
∗ minndxs) [related]

Find position of a minor index in a major vector.

The routine returns the position k in minndxs for the specified minor index tgt. It
will abort if the entry does not exist. Can be used directly or via the inline wrappers
presolve_find_row and presolve_find_col.

Definition at line 1500 of file CoinPresolveMatrix.hpp.

6.1.2.3 CoinBigIndex presolve find row (int row, CoinBigIndex kcs, CoinBigIndex kce, const
int ∗ hrow) [related]

Find position of a row in a column in a column-major matrix.

The routine returns the position k in hrow for the specified row. It will abort if the entry
does not exist.

Definition at line 1523 of file CoinPresolveMatrix.hpp.

6.1.2.4 CoinBigIndex presolve find col (int col, CoinBigIndex krs, CoinBigIndex kre, const int
∗ hcol) [related]

Find position of a column in a row in a row-major matrix.

The routine returns the position k in hcol for the specified col. It will abort if the entry
does not exist.

Definition at line 1533 of file CoinPresolveMatrix.hpp.

6.1.2.5 CoinBigIndex presolve find minor1 (int tgt, CoinBigIndex ks, CoinBigIndex ke, const
int ∗ minndxs) [related]

Find position of a minor index in a major vector.

The routine returns the position k in minndxs for the specified minor index tgt. A
return value of ke means the entry does not exist. Can be used directly or via the inline
wrappers presolve_find_row1 and presolve_find_col1.

6.1.2.6 CoinBigIndex presolve find row1 (int row, CoinBigIndex kcs, CoinBigIndex kce, const
int ∗ hrow) [related]

Find position of a row in a column in a column-major matrix.

The routine returns the position k in hrow for the specified row. A return value of kce
means the entry does not exist.

Definition at line 1555 of file CoinPresolveMatrix.hpp.

6.1.2.7 CoinBigIndex presolve find col1 (int col, CoinBigIndex krs, CoinBigIndex kre, const
int ∗ hcol) [related]

Find position of a column in a row in a row-major matrix.

The routine returns the position k in hcol for the specified col. A return value of kre

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

6.1 Presolve Matrix Manipulation Functions 18

means the entry does not exist.

Definition at line 1565 of file CoinPresolveMatrix.hpp.

6.1.2.8 CoinBigIndex presolve find minor2 (int tgt, CoinBigIndex ks, int majlen, const int ∗
minndxs, const CoinBigIndex ∗ majlinks) [related]

Find position of a minor index in a major vector in a threaded matrix.

The routine returns the position k in minndxs for the specified minor index tgt. It
will abort if the entry does not exist. Can be used directly or via the inline wrapper
presolve_find_row2.

6.1.2.9 CoinBigIndex presolve find row2 (int row, CoinBigIndex kcs, int collen, const int ∗
hrow, const CoinBigIndex ∗ clinks) [related]

Find position of a row in a column in a column-major threaded matrix.

The routine returns the position k in hrow for the specified row. It will abort if the entry
does not exist.

Definition at line 1588 of file CoinPresolveMatrix.hpp.

6.1.2.10 CoinBigIndex presolve find minor3 (int tgt, CoinBigIndex ks, int majlen, const int ∗
minndxs, const CoinBigIndex ∗ majlinks) [related]

Find position of a minor index in a major vector in a threaded matrix.

The routine returns the position k in minndxs for the specified minor index tgt. It
will return -1 if the entry does not exist. Can be used directly or via the inline wrappers
presolve_find_row3.

6.1.2.11 CoinBigIndex presolve find row3 (int row, CoinBigIndex kcs, int collen, const int ∗
hrow, const CoinBigIndex ∗ clinks) [related]

Find position of a row in a column in a column-major threaded matrix.

The routine returns the position k in hrow for the specified row. It will return -1 if the
entry does not exist.

Definition at line 1612 of file CoinPresolveMatrix.hpp.

6.1.2.12 void presolve delete from major (int majndx, int minndx, const CoinBigIndex ∗
majstrts, int ∗ majlens, int ∗ minndxs, double ∗ els) [related]

Delete the entry for a minor index from a major vector.

Deletes the entry for minndx from the major vector majndx. Specifically, the relevant
entries are removed from the minor index (minndxs) and coefficient (els) arrays
and the vector length (majlens) is decremented. Loose packing is maintained by
swapping the last entry in the row into the position occupied by the deleted entry.

Definition at line 1626 of file CoinPresolveMatrix.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

6.2 Presolve Utility Functions 19

6.1.2.13 void presolve delete from col (int row, int col, const CoinBigIndex ∗ mcstrt, int ∗
hincol, int ∗ hrow, double ∗ colels) [related]

Delete the entry for row row from column col in a column-major matrix.

Deletes the entry for row from the major vector for col. Specifically, the relevant
entries are removed from the row index (hrow) and coefficient (colels) arrays and
the vector length (hincol) is decremented. Loose packing is maintained by swapping
the last entry in the row into the position occupied by the deleted entry.

Definition at line 1670 of file CoinPresolveMatrix.hpp.

6.1.2.14 void presolve delete from row (int row, int col, const CoinBigIndex ∗ mrstrt, int ∗
hinrow, int ∗ hcol, double ∗ rowels) [related]

Delete the entry for column col from row row in a row-major matrix.

Deletes the entry for col from the major vector for row. Specifically, the relevant en-
tries are removed from the column index (hcol) and coefficient (rowels) arrays and
the vector length (hinrow) is decremented. Loose packing is maintained by swapping
the last entry in the column into the position occupied by the deleted entry.

Definition at line 1685 of file CoinPresolveMatrix.hpp.

6.1.2.15 void presolve delete from major2 (int majndx, int minndx, CoinBigIndex ∗
majstrts, int ∗ majlens, int ∗ minndxs, int ∗ majlinks, CoinBigIndex ∗ free listp)
[related]

Delete the entry for a minor index from a major vector in a threaded matrix.

Deletes the entry for minndx from the major vector majndx. Specifically, the relevant
entries are removed from the minor index (minndxs) and coefficient (els) arrays
and the vector length (majlens) is decremented. The thread for the major vector is
relinked around the deleted entry and the space is returned to the free list.

6.1.2.16 void presolve delete from col2 (int row, int col, CoinBigIndex ∗ mcstrt, int ∗ hincol,
int ∗ hrow, int ∗ clinks, CoinBigIndex ∗ free listp) [related]

Delete the entry for row row from column col in a column-major threaded matrix.

Deletes the entry for row from the major vector for col. Specifically, the relevant
entries are removed from the row index (hrow) and coefficient (colels) arrays and
the vector length (hincol) is decremented. The thread for the major vector is relinked
around the deleted entry and the space is returned to the free list.

Definition at line 1715 of file CoinPresolveMatrix.hpp.

6.2 Presolve Utility Functions

Utilities used by multiple presolve transform objects.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

6.3 Presolve Debug Functions 20

Functions

• double ∗ presolve_dupmajor (const double ∗elems, const int ∗indices, int length,
CoinBigIndex offset, int tgt=-1)

Duplicate a major-dimension vector; optionally omit the entry with minor index tgt.

• void coin_init_random_vec (double ∗work, int n)

Initialize an array with random numbers.

6.2.1 Detailed Description

Utilities used by multiple presolve transform objects.

6.2.2 Function Documentation

6.2.2.1 double∗ presolve dupmajor (const double ∗ elems, const int ∗ indices, int length,
CoinBigIndex offset, int tgt = -1)

Duplicate a major-dimension vector; optionally omit the entry with minor index tgt.

Designed to copy a major-dimension vector from the paired coefficient (elems) and mi-
nor index (indices) arrays used in the standard packed matrix representation. Copies
length entries starting at offset.

If tgt is specified, the entry with minor index == tgt is omitted from the copy.

6.3 Presolve Debug Functions

These functions implement consistency checks on data structures involved in presolve
and postsolve and on the components of the lp solution.

Functions

• void CoinPresolveMatrix::presolve_no_dups (const CoinPresolveMatrix ∗preObj,
bool doCol=true, bool doRow=true)

Check column-major and/or row-major matrices for duplicate entries in the major vec-
tors.

• void CoinPresolveMatrix::presolve_links_ok (const CoinPresolveMatrix ∗preObj,
bool doCol=true, bool doRow=false)

Check the links which track storage order for major vectors in the bulk storage area.

• void CoinPresolveMatrix::presolve_no_zeros (const CoinPresolveMatrix ∗preObj,
bool doCol=true, bool doRow=true)

Check for explicit zeros in the column- and/or row-major matrices.

• void CoinPresolveMatrix::presolve_consistent (const CoinPresolveMatrix ∗preObj,
bool chkvals=true)

Checks for equivalence of the column- and row-major matrices.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

6.3 Presolve Debug Functions 21

• void CoinPostsolveMatrix::presolve_check_threads (const CoinPostsolveMatrix ∗obj)

Checks that column threads agree with column lengths.

• void CoinPostsolveMatrix::presolve_check_free_list (const CoinPostsolveMatrix
∗obj, bool chkElemCnt=false)

Checks the free list.

• void CoinPostsolveMatrix::presolve_check_reduced_costs (const CoinPostsolve-
Matrix ∗obj)

Check stored reduced costs for accuracy and consistency with variable status.

• void CoinPostsolveMatrix::presolve_check_duals (const CoinPostsolveMatrix ∗postObj)

Check the dual variables for consistency with row activity.

• void CoinPresolveMatrix::presolve_check_sol (const CoinPresolveMatrix ∗preObj,
int chkColSol=2, int chkRowAct=1, int chkStatus=1)

Check primal solution and architectural variable status.

• void CoinPostsolveMatrix::presolve_check_sol (const CoinPostsolveMatrix ∗postObj,
int chkColSol=2, int chkRowAct=2, int chkStatus=1)

Check primal solution and architectural variable status.

• void CoinPresolveMatrix::presolve_check_nbasic (const CoinPresolveMatrix ∗preObj)

Check for the proper number of basic variables.

• void CoinPostsolveMatrix::presolve_check_nbasic (const CoinPostsolveMatrix ∗postObj)

Check for the proper number of basic variables.

6.3.1 Detailed Description

These functions implement consistency checks on data structures involved in presolve
and postsolve and on the components of the lp solution. To use these functions,
include CoinPresolvePsdebug.hpp in your file and define the compile-time constants
PRESOLVE_SUMMARY, PRESOLVE_DEBUG, and PRESOLVE_CONSISTENCY (ei-
ther in individual files or in Coin/Makefile). A value is needed (i.e., PRESOLVE_-
DEBUG=1) but not at present used to control debug level. Be sure that the definition
occurs before any CoinPresolve∗.hpp file is processed.

6.3.2 Function Documentation

6.3.2.1 void presolve no dups (const CoinPresolveMatrix ∗ preObj, bool doCol = true,
bool doRow = true) [related]

Check column-major and/or row-major matrices for duplicate entries in the major vec-
tors.

By default, scans both the column- and row-major matrices. Set doCol (doRow) to false
to suppress one or the other.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

6.3 Presolve Debug Functions 22

6.3.2.2 void presolve links ok (const CoinPresolveMatrix ∗ preObj, bool doCol = true,
bool doRow = false) [related]

Check the links which track storage order for major vectors in the bulk storage area.

By default, scans only the column-major matrix. Set doCol = false to suppress the scan.
Set doRow = false to scan the row-major links. But be warned, the row-major links are
not maintained with the same zeal as the column-major links.

6.3.2.3 void presolve no zeros (const CoinPresolveMatrix ∗ preObj, bool doCol = true,
bool doRow = true) [related]

Check for explicit zeros in the column- and/or row-major matrices.

By default, scans both the column- and row-major matrices. Set doCol (doRow) to false
to suppress one or the other.

6.3.2.4 void presolve consistent (const CoinPresolveMatrix ∗ preObj, bool chkvals =
true) [related]

Checks for equivalence of the column- and row-major matrices.

Normally the routine will test for coefficient presence and value. Set chkvals to false
to suppress the check for equal value.

6.3.2.5 void presolve check free list (const CoinPostsolveMatrix ∗ obj, bool chkElemCnt =
false) [related]

Checks the free list.

Scans the thread of free locations in the bulk store and checks that all entries are rea-
sonable (0 <= index < bulk0_). If chkElemCnt is true, it Also checks that the total
number of entries in the matrix plus the locations on the free list total to the size of the
bulk store. Postsolve routines do not maintain an accurate element count, but this is
useful for checking a newly constructed postsolve matrix.

6.3.2.6 void presolve check reduced costs (const CoinPostsolveMatrix ∗ obj)
[related]

Check stored reduced costs for accuracy and consistency with variable status.

The routine will check the value of the reduced costs for architectural variables (CoinPrePostsolveMatrix::rcosts_-
). It performs an accuracy check by recalculating the reduced cost from scratch. It will
also check the value for consistency with the status information in CoinPrePostsolveMatrix::colstat_-
.

6.3.2.7 void presolve check duals (const CoinPostsolveMatrix ∗ postObj)
[related]

Check the dual variables for consistency with row activity.

The routine checks that the value of the dual variable is consistent with the state of the
constraint (loose, tight at lower bound, or tight at upper bound).

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

7 Namespace Documentation 23

6.3.2.8 void presolve check sol (const CoinPresolveMatrix ∗ preObj, int chkColSol = 2,
int chkRowAct = 1, int chkStatus = 1) [related]

Check primal solution and architectural variable status.

The architectural variables can be checked for bogus values, feasibility, and valid status.
The row activity is checked for bogus values, accuracy, and feasibility. By default, row
activity is not checked (presolve is sloppy about maintaining it). See the definitions in
CoinPresolvePsdebug.cpp for more information.

6.3.2.9 void presolve check sol (const CoinPostsolveMatrix ∗ postObj, int chkColSol = 2,
int chkRowAct = 2, int chkStatus = 1) [related]

Check primal solution and architectural variable status.

The architectural variables can be checked for bogus values, feasibility, and valid sta-
tus. The row activity is checked for bogus values, accuracy, and feasibility. See the
definitions in CoinPresolvePsdebug.cpp for more information.

7 Namespace Documentation

7.1 CoinParamUtils Namespace Reference

Utility functions for processing CoinParam parameters.

Functions

• void setInputSrc (FILE ∗src)

Take command input from the file specified by src.

• bool isCommandLine ()

Returns true if command line parameters are being processed.

• bool isInteractive ()

Returns true if parameters are being obtained from stdin.

• std::string getStringField (int argc, const char ∗argv[], int ∗valid)

Attempt to read a string from the input.

• int getIntField (int argc, const char ∗argv[], int ∗valid)

Attempt to read an integer from the input.

• double getDoubleField (int argc, const char ∗argv[], int ∗valid)

Attempt to read a real (double) from the input.

• int matchParam (const CoinParamVec ¶mVec, std::string name, int &match-
Ndx, int &shortCnt)

Scan a parameter vector for parameters whose keyword (name) string matches name
using minimal match rules.

• std::string getCommand (int argc, const char ∗argv[], const std::string prompt,
std::string ∗pfx=0)

Get the next command keyword (name)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

7.1 CoinParamUtils Namespace Reference 24

• int lookupParam (std::string name, CoinParamVec ¶mVec, int ∗matchCnt=0,
int ∗shortCnt=0, int ∗queryCnt=0)

Look up the command keyword (name) in the parameter vector. Print help if requested.

• void printIt (const char ∗msg)

Utility to print a long message as filled lines of text.

• void shortOrHelpOne (CoinParamVec ¶mVec, int matchNdx, std::string name,
int numQuery)

Utility routine to print help given a short match or explicit request for help.

• void shortOrHelpMany (CoinParamVec ¶mVec, std::string name, int num-
Query)

Utility routine to print help given multiple matches.

• void printGenericHelp ()

Print a generic ‘how to use the command interface’ help message.

• void printHelp (CoinParamVec ¶mVec, int firstParam, int lastParam, std::string
prefix, bool shortHelp, bool longHelp, bool hidden)

Utility routine to print help messages for one or more parameters.

7.1.1 Detailed Description

Utility functions for processing CoinParam parameters. The functions in CoinParamUtils
support command line or interactive parameter processing and a help facility. Consult
the ‘Related Functions’ section of the CoinParam class documentation for individual
function documentation.

7.1.2 Function Documentation

7.1.2.1 void CoinParamUtils::setInputSrc (FILE ∗ src)

Take command input from the file specified by src.

Use stdin for src to specify interactive prompting for commands.

7.1.2.2 std::string CoinParamUtils::getStringField (int argc, const char ∗ argv[], int ∗ valid)

Attempt to read a string from the input.

argc and argv are used only if isCommandLine() would return true. If valid is
supplied, it will be set to 0 if a string is parsed without error, 2 if no field is present.

7.1.2.3 int CoinParamUtils::getIntField (int argc, const char ∗ argv[], int ∗ valid)

Attempt to read an integer from the input.

argc and argv are used only if isCommandLine() would return true. If valid is
supplied, it will be set to 0 if an integer is parsed without error, 1 if there’s a parse error,
and 2 if no field is present.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

7.1 CoinParamUtils Namespace Reference 25

7.1.2.4 double CoinParamUtils::getDoubleField (int argc, const char ∗ argv[], int ∗ valid)

Attempt to read a real (double) from the input.

argc and argv are used only if isCommandLine() would return true. If valid is
supplied, it will be set to 0 if a real number is parsed without error, 1 if there’s a parse
error, and 2 if no field is present.

7.1.2.5 int CoinParamUtils::matchParam (const CoinParamVec & paramVec, std::string
name, int & matchNdx, int & shortCnt)

Scan a parameter vector for parameters whose keyword (name) string matches name
using minimal match rules.

matchNdx is set to the index of the last parameter that meets the minimal match cri-
teria (but note there should be at most one matching parameter if the parameter vector
is properly configured). shortCnt is set to the number of short matches (should be
zero for a properly configured parameter vector if a minimal match is found). The return
value is the number of matches satisfying the minimal match requirement (should be 0
or 1 in a properly configured vector).

7.1.2.6 std::string CoinParamUtils::getCommand (int argc, const char ∗ argv[], const
std::string prompt, std::string ∗ pfx = 0)

Get the next command keyword (name)

To be precise, return the next field from the current command input source, after a bit
of processing. In command line mode (isCommandLine() returns true) the next field will
normally be of the form ‘-keyword’ or ‘--keyword’ (i.e., a parameter keyword), and the
string returned would be ‘keyword’. In interactive mode (isInteractive() returns true), the
user will be prompted if necessary. It is assumed that the user knows not to use the ‘-’
or ‘--’ prefixes unless specifying parameters on the command line.

There are a number of special cases if we’re in command line mode. The order of
processing of the raw string goes like this:

• A stand-alone ‘-’ is forced to ‘stdin’.

• A stand-alone ’--’ is returned as a word; interpretation is up to the client.

• A prefix of ’-’ or ’--’ is stripped from the string.

If the result is the string ‘stdin’, command processing shifts to interactive mode and the
user is immediately prompted for a new command.

Whatever results from the above sequence is returned to the user as the return value of
the function. An empty string indicates end of input.

prompt will be used only if it’s necessary to prompt the user in interactive mode.

7.1.2.7 int CoinParamUtils::lookupParam (std::string name, CoinParamVec & paramVec, int
∗ matchCnt = 0, int ∗ shortCnt = 0, int ∗ queryCnt = 0)

Look up the command keyword (name) in the parameter vector. Print help if requested.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

7.1 CoinParamUtils Namespace Reference 26

In the most straightforward use, name is a string without ‘?’, and the value returned is
the index in paramVec of the single parameter that matched name. One or more ’?’
characters at the end of name is a query for information. The routine prints short (one
’?’) or long (more than one ’?’) help messages for a query. Help is also printed in the
case where the name is ambiguous (some of the matches did not meet the minimal
match length requirement).

Note that multiple matches meeting the minimal match requirement is a configuration
error. The mimimal match length for the parameters involved is too short.

If provided as parameters, on return

• matchCnt will be set to the number of matches meeting the minimal match
requirement

• shortCnt will be set to the number of matches that did not meet the miminal
match requirement

• queryCnt will be set to the number of ’?’ characters at the end of the name

The return values are:

• >0: index in paramVec of the single unique match for name

• -1: a query was detected (one or more ’?’ characters at the end of name

• -2: one or more short matches, not a query

• -3: no matches, not a query

• -4: multiple matches meeting the minimal match requirement (configuration error)

7.1.2.8 void CoinParamUtils::printIt (const char ∗ msg)

Utility to print a long message as filled lines of text.

The routine makes a best effort to break lines without exceeding the standard 80 char-
acter line length. Explicit newlines in msg will be obeyed.

7.1.2.9 void CoinParamUtils::shortOrHelpOne (CoinParamVec & paramVec, int matchNdx,
std::string name, int numQuery)

Utility routine to print help given a short match or explicit request for help.

The two really are related, in that a query (a string that ends with one or more ‘?’
characters) will often result in a short match. The routine expects that name matches a
single parameter, and does not look for multiple matches.

If called with matchNdx < 0, the routine will look up name in paramVec and print
the full name from the parameter. If called with matchNdx > 0, it just prints the name
from the specified parameter. If the name is a query, short (one ’?’) or long (more than
one ’?’) help is printed.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8 Class Documentation 27

7.1.2.10 void CoinParamUtils::shortOrHelpMany (CoinParamVec & paramVec, std::string
name, int numQuery)

Utility routine to print help given multiple matches.

If the name is not a query, or asks for short help (i.e., contains zero or one ’?’ charac-
ters), the list of matching names is printed. If the name asks for long help (contains two
or more ’?’ characters), short help is printed for each matching name.

7.1.2.11 void CoinParamUtils::printGenericHelp ()

Print a generic ‘how to use the command interface’ help message.

The message is hard coded to match the behaviour of the parsing utilities.

7.1.2.12 void CoinParamUtils::printHelp (CoinParamVec & paramVec, int firstParam, int
lastParam, std::string prefix, bool shortHelp, bool longHelp, bool hidden)

Utility routine to print help messages for one or more parameters.

Intended as a utility to implement explicit ‘help’ commands. Help will be printed for all pa-
rameters in paramVec from firstParam to lastParam, inclusive. If shortHelp
is true, short help messages will be printed. If longHelp is true, long help messages
are printed. shortHelp overrules longHelp. If neither is true, only command key-
words are printed. prefix is printed before each line; it’s an imperfect attempt at
indentation.

8 Class Documentation

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.1 _EKKfactinfo Struct Reference 28

8.1 EKKfactinfo Struct Reference

Collaboration diagram for _EKKfactinfo:

_EKKfactinfo

double

kadrpm
areaFactor
kw3adr
kw2adr
trueStart
kw1adr
drtpiv
xe2adr
xeeadr

R_etas_element
...

char

nonzero

EKKHlink

kp2adr
kp1adr

int

last_eta_size
xnetalval
nnentl

nR_etas
lastSlack

numberSlacks
last_dense
nrowmx
hpivcoR
krpadr
...

suc
pre

bool

rows_ok

8.1.1 Detailed Description

Definition at line 29 of file CoinOslFactorization.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.2 forcing_constraint_action::action Struct Reference 29

The documentation for this struct was generated from the following file:

• CoinOslFactorization.hpp

8.2 forcing constraint action::action Struct Reference

Collaboration diagram for forcing_constraint_action::action:

forcing_constraint_action::action

double

bounds

int

nup
row
nlo

rowcols

8.2.1 Detailed Description

Definition at line 32 of file CoinPresolveForcing.hpp.

The documentation for this struct was generated from the following file:

• CoinPresolveForcing.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.3 tripleton_action::action Struct Reference 30

8.3 tripleton action::action Struct Reference

Collaboration diagram for tripleton_action::action:

tripleton_action::action

double

colel
clox
cloy
costx
costy
rup
cupx
cupy
coeffx
coeffy
...

int

row
icolx
icoly
icolz
ncolx
ncoly

8.3.1 Detailed Description

Definition at line 17 of file CoinPresolveTripleton.hpp.

The documentation for this struct was generated from the following file:

• CoinPresolveTripleton.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.4 doubleton_action::action Struct Reference 31

8.4 doubleton action::action Struct Reference

Collaboration diagram for doubleton_action::action:

doubleton_action::action

double

colel
clox
costx
costy
cupx
coeffx
coeffy
rlo

int

row
icolx
icoly
ncolx
ncoly

8.4.1 Detailed Description

Definition at line 28 of file CoinPresolveDoubleton.hpp.

The documentation for this struct was generated from the following file:

• CoinPresolveDoubleton.hpp

8.5 remove fixed action::action Struct Reference

Structure to hold information necessary to reintroduce a column into the problem repre-
sentation.

#include <CoinPresolveFixed.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.5 remove_fixed_action::action Struct Reference 32

Collaboration diagram for remove_fixed_action::action:

remove_fixed_action::action

double

sol

int

col
start

Public Attributes

• int col

column index of variable

• int start

start of coefficients in colels_ and colrows_

• double sol

value of variable

8.5.1 Detailed Description

Structure to hold information necessary to reintroduce a column into the problem repre-
sentation.

Definition at line 30 of file CoinPresolveFixed.hpp.

The documentation for this struct was generated from the following file:

• CoinPresolveFixed.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.6 BitVector128 Class Reference 33

8.6 BitVector128 Class Reference

Collaboration diagram for BitVector128:

BitVector128

int

bits_

8.6.1 Detailed Description

Definition at line 21 of file CoinSearchTree.hpp.

The documentation for this class was generated from the following file:

• CoinSearchTree.hpp

8.7 CoinAbsFltEq Class Reference

Equality to an absolute tolerance.

#include <CoinFloatEqual.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.7 CoinAbsFltEq Class Reference 34

Collaboration diagram for CoinAbsFltEq:

CoinAbsFltEq

double

epsilon_

Public Member Functions

• bool operator() (const double f1, const double f2) const

Compare function.

Constructors and destructors

• CoinAbsFltEq ()
Default constructor.

• CoinAbsFltEq (const double epsilon)

Alternate constructor with epsilon as a parameter.
• virtual ∼CoinAbsFltEq ()

Destructor.
• CoinAbsFltEq (const CoinAbsFltEq &src)

Copy constructor.
• CoinAbsFltEq & operator= (const CoinAbsFltEq &rhs)

Assignment.

8.7.1 Detailed Description

Equality to an absolute tolerance.

Operands are considered equal if their difference is within an epsilon ; the test does not
consider the relative magnitude of the operands.

Definition at line 46 of file CoinFloatEqual.hpp.

8.7.2 Constructor & Destructor Documentation

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.8 CoinArrayWithLength Class Reference 35

8.7.2.1 CoinAbsFltEq::CoinAbsFltEq () [inline]

Default constructor.

Default tolerance is 1.0e-10.

Definition at line 66 of file CoinFloatEqual.hpp.

The documentation for this class was generated from the following file:

• CoinFloatEqual.hpp

8.8 CoinArrayWithLength Class Reference

Pointer with length in bytes.

#include <CoinIndexedVector.hpp>

Inheritance diagram for CoinArrayWithLength:

CoinArrayWithLength

CoinBigIndexArrayWithLength

CoinDoubleArrayWithLength

CoinFactorizationDoubleArrayWithLength

CoinIntArrayWithLength

CoinUnsignedIntArrayWithLength

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.8 CoinArrayWithLength Class Reference 36

Collaboration diagram for CoinArrayWithLength:

CoinArrayWithLength

char

array_

int

size_

Public Member Functions

Get methods.

• int getSize () const
Get the size.

• int rawSize () const
Get the size.

• bool switchedOn () const
See if persistence already on.

• int getCapacity () const
Get the capacity.

• void setCapacity ()
Set the capacity to >=0 if <=-2.

• const char ∗ array () const
Get Array.

Set methods

• void setSize (int value)
Set the size.

• void switchOff ()
Set the size to -1.

• void setPersistence (int flag, int currentLength)
Does what is needed to set persistence.

• void clear ()
Zero out array.

• void swap (CoinArrayWithLength &other)
Swaps memory between two members.

• void extend (int newSize)
Extend a persistent array keeping data (size in bytes)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.8 CoinArrayWithLength Class Reference 37

Condition methods

• char ∗ conditionalNew (long sizeWanted)
Conditionally gets new array.

• void conditionalDelete ()
Conditionally deletes.

Constructors and destructors

• CoinArrayWithLength ()
Default constructor - NULL.

• CoinArrayWithLength (int size)
Alternate Constructor - length in bytes - size_ -1.

• CoinArrayWithLength (int size, int mode)
Alternate Constructor - length in bytes mode - 0 size_ set to size 1 size_ set to size
and zeroed.

• CoinArrayWithLength (const CoinArrayWithLength &rhs)
Copy constructor.

• CoinArrayWithLength (const CoinArrayWithLength ∗rhs)
Copy constructor.2.

• CoinArrayWithLength & operator= (const CoinArrayWithLength &rhs)
Assignment operator.

• void copy (const CoinArrayWithLength &rhs, int numberBytes=-1)
Assignment with length (if -1 use internal length)

• void allocate (const CoinArrayWithLength &rhs, int numberBytes)
Assignment with length - does not copy.

• ∼CoinArrayWithLength ()
Destructor.

Protected Attributes

Private member data

• char ∗ array_
Array.

• int size_
Size of array in bytes.

8.8.1 Detailed Description

Pointer with length in bytes.

This has a pointer to an array and the number of bytes in array. If number of bytes==-
1 then CoinConditionalNew deletes existing pointer and returns new pointer of correct
size (and number bytes still -1). CoinConditionalDelete deletes existing pointer and
NULLs it. So behavior is as normal (apart from New deleting pointer which will have no
effect with good coding practices. If number of bytes >=0 then CoinConditionalNew just
returns existing pointer if array big enough otherwise deletes existing pointer, allocates
array with spare 1%+64 bytes and updates number of bytes CoinConditionalDelete sets
number of bytes = -size-2 and then array returns NULL

Definition at line 496 of file CoinIndexedVector.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.9 CoinBaseModel Class Reference 38

8.8.2 Constructor & Destructor Documentation

8.8.2.1 CoinArrayWithLength::CoinArrayWithLength (const CoinArrayWithLength & rhs)

Copy constructor.

8.8.3 Member Function Documentation

8.8.3.1 CoinArrayWithLength& CoinArrayWithLength::operator= (const
CoinArrayWithLength & rhs)

Assignment operator.

The documentation for this class was generated from the following file:

• CoinIndexedVector.hpp

8.9 CoinBaseModel Class Reference

Inheritance diagram for CoinBaseModel:

CoinBaseModel

CoinModel CoinStructuredModel

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.9 CoinBaseModel Class Reference 39

Collaboration diagram for CoinBaseModel:

CoinBaseModel

double

optimizationDirection_
objectiveOffset_

int

numberRows_
numberColumns_

logLevel_

std::string

columnBlockName_
rowBlockName_
problemName_

std::basic_string< char >

Public Member Functions

Constructors, destructor

• CoinBaseModel ()

Default Constructor.
• CoinBaseModel (const CoinBaseModel &rhs)

Copy constructor.
• CoinBaseModel & operator= (const CoinBaseModel &rhs)

Assignment operator.
• virtual CoinBaseModel ∗ clone () const =0

Clone.
• virtual ∼CoinBaseModel ()

Destructor.

For getting information

• int numberRows () const

Return number of rows.
• int numberColumns () const

Return number of columns.
• virtual CoinBigIndex numberElements () const =0

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.9 CoinBaseModel Class Reference 40

Return number of elements.
• double objectiveOffset () const

Returns the (constant) objective offset This is the RHS entry for the objective row.
• void setObjectiveOffset (double value)

Set objective offset.
• double optimizationDirection () const

Direction of optimization (1 - minimize, -1 - maximize, 0 - ignore.
• void setOptimizationDirection (double value)

Set direction of optimization (1 - minimize, -1 - maximize, 0 - ignore.
• int logLevel () const

Get print level 0 - off, 1 - errors, 2 - more.
• void setLogLevel (int value)

Set print level 0 - off, 1 - errors, 2 - more.
• const char ∗ getProblemName () const

Return the problem name.
• void setProblemName (const char ∗name)

Set problem name.
• void setProblemName (const std::string &name)

Set problem name.
• const std::string & getRowBlock () const

Return the row block name.
• void setRowBlock (const std::string &name)

Set row block name.
• const std::string & getColumnBlock () const

Return the column block name.
• void setColumnBlock (const std::string &name)

Set column block name.

Protected Attributes

Data members

• int numberRows_
Current number of rows.

• int numberColumns_
Current number of columns.

• double optimizationDirection_
Direction of optimization (1 - minimize, -1 - maximize, 0 - ignore.

• double objectiveOffset_
Objective offset to be passed on.

• std::string problemName_
Problem name.

• std::string rowBlockName_
Rowblock name.

• std::string columnBlockName_
Columnblock name.

• int logLevel_
Print level.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.10 CoinBigIndexArrayWithLength Class Reference 41

8.9.1 Detailed Description

Definition at line 12 of file CoinModel.hpp.

8.9.2 Member Data Documentation

8.9.2.1 int CoinBaseModel::logLevel_ [protected]

Print level.

I could have gone for full message handling but this should normally be silent and
lightweight. I can always change. 0 - no output 1 - on errors 2 - more detailed

Definition at line 110 of file CoinModel.hpp.

The documentation for this class was generated from the following file:

• CoinModel.hpp

8.10 CoinBigIndexArrayWithLength Class Reference

CoinBigIndex ∗ version.

#include <CoinIndexedVector.hpp>

Inheritance diagram for CoinBigIndexArrayWithLength:

CoinBigIndexArrayWithLength

CoinArrayWithLength

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.10 CoinBigIndexArrayWithLength Class Reference 42

Collaboration diagram for CoinBigIndexArrayWithLength:

CoinBigIndexArrayWithLength

CoinArrayWithLength

char

array_

int

size_

Public Member Functions

Get methods.

• int getSize () const

Get the size.
• CoinBigIndex ∗ array () const

Get Array.

Set methods

• void setSize (int value)

Set the size.

Condition methods

• CoinBigIndex ∗ conditionalNew (int sizeWanted)

Conditionally gets new array.

Constructors and destructors

• CoinBigIndexArrayWithLength ()

Default constructor - NULL.
• CoinBigIndexArrayWithLength (int size)

Alternate Constructor - length in bytes - size_ -1.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.11 CoinBuild Class Reference 43

• CoinBigIndexArrayWithLength (int size, int mode)

Alternate Constructor - length in bytes mode - 0 size_ set to size 1 size_ set to size
and zeroed.

• CoinBigIndexArrayWithLength (const CoinBigIndexArrayWithLength &rhs)
Copy constructor.

• CoinBigIndexArrayWithLength (const CoinBigIndexArrayWithLength ∗rhs)

Copy constructor.2.
• CoinBigIndexArrayWithLength & operator= (const CoinBigIndexArrayWithLength

&rhs)
Assignment operator.

8.10.1 Detailed Description

CoinBigIndex ∗ version.

Definition at line 750 of file CoinIndexedVector.hpp.

8.10.2 Constructor & Destructor Documentation

8.10.2.1 CoinBigIndexArrayWithLength::CoinBigIndexArrayWithLength (const
CoinBigIndexArrayWithLength & rhs) [inline]

Copy constructor.

Definition at line 792 of file CoinIndexedVector.hpp.

8.10.3 Member Function Documentation

8.10.3.1 CoinBigIndexArrayWithLength& CoinBigIndexArrayWithLength::operator= (
const CoinBigIndexArrayWithLength & rhs) [inline]

Assignment operator.

Definition at line 798 of file CoinIndexedVector.hpp.

The documentation for this class was generated from the following file:

• CoinIndexedVector.hpp

8.11 CoinBuild Class Reference

In many cases it is natural to build a model by adding one row at a time.

#include <CoinBuild.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.11 CoinBuild Class Reference 44

Collaboration diagram for CoinBuild:

CoinBuild

double

lastItem_
currentItem_
firstItem_

int

numberOther_
numberItems_

numberElements_
type_

Public Member Functions

Useful methods

• void addRow (int numberInRow, const int ∗columns, const double ∗elements,
double rowLower=-COIN_DBL_MAX, double rowUpper=COIN_DBL_MAX)

add a row
• void addColumn (int numberInColumn, const int ∗rows, const double ∗elements,

double columnLower=0.0, double columnUpper=COIN_DBL_MAX, double ob-
jectiveValue=0.0)

add a column
• void addCol (int numberInColumn, const int ∗rows, const double ∗elements,

double columnLower=0.0, double columnUpper=COIN_DBL_MAX, double ob-
jectiveValue=0.0)

add a column
• int numberRows () const

Return number of rows or maximum found so far.
• int numberColumns () const

Return number of columns or maximum found so far.
• CoinBigIndex numberElements () const

Return number of elements.
• int row (int whichRow, double &rowLower, double &rowUpper, const int ∗&indices,

const double ∗&elements) const

Returns number of elements in a row and information in row.
• int currentRow (double &rowLower, double &rowUpper, const int ∗&indices,

const double ∗&elements) const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.11 CoinBuild Class Reference 45

Returns number of elements in current row and information in row Used as rows
may be stored in a chain.

• void setCurrentRow (int whichRow)

Set current row.
• int currentRow () const

Returns current row number.
• int column (int whichColumn, double &columnLower, double &columnUpper,

double &objectiveValue, const int ∗&indices, const double ∗&elements) const

Returns number of elements in a column and information in column.
• int currentColumn (double &columnLower, double &columnUpper, double &ob-

jectiveValue, const int ∗&indices, const double ∗&elements) const

Returns number of elements in current column and information in column Used as
columns may be stored in a chain.

• void setCurrentColumn (int whichColumn)

Set current column.
• int currentColumn () const

Returns current column number.
• int type () const

Returns type.

Constructors, destructor

• CoinBuild ()
Default constructor.

• CoinBuild (int type)
Constructor with type 0==for addRow, 1== for addColumn.

• ∼CoinBuild ()

Destructor.

Copy method

• CoinBuild (const CoinBuild &)
The copy constructor.

• CoinBuild & operator= (const CoinBuild &)

=

8.11.1 Detailed Description

In many cases it is natural to build a model by adding one row at a time.

In Coin this is inefficient so this class gives some help. An instance of CoinBuild can be
built up more efficiently and then added to the Clp/OsiModel in one go.

It may be more efficient to have fewer arrays and re-allocate them but this should give a
large gain over addRow.

I have now extended it to columns.

Definition at line 27 of file CoinBuild.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.12 CoinDenseFactorization Class Reference 46

8.11.2 Constructor & Destructor Documentation

8.11.2.1 CoinBuild::CoinBuild ()

Default constructor.

8.11.2.2 CoinBuild::CoinBuild (int type)

Constructor with type 0==for addRow, 1== for addColumn.

8.11.2.3 CoinBuild::CoinBuild (const CoinBuild &)

The copy constructor.

The documentation for this class was generated from the following file:

• CoinBuild.hpp

8.12 CoinDenseFactorization Class Reference

This deals with Factorization and Updates This is a simple dense version so other peo-
ple can write a better one.

#include <CoinDenseFactorization.hpp>

Inheritance diagram for CoinDenseFactorization:

CoinDenseFactorization

CoinOtherFactorization

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.12 CoinDenseFactorization Class Reference 47

Collaboration diagram for CoinDenseFactorization:

CoinDenseFactorization

CoinOtherFactorization

double

zeroTolerance_
workArea_

pivotTolerance_
slackValue_
elements_
relaxCheck_

int

pivotRow_
maximumRows_
maximumSpace_
maximumPivots_
numberGoodU_
numberPivots_
factorElements_

status_
solveMode_
numberRows_

...

Public Member Functions

• void gutsOfDestructor ()

The real work of desstructor.

• void gutsOfInitialize ()

The real work of constructor.

• void gutsOfCopy (const CoinDenseFactorization &other)

The real work of copy.

Constructors and destructor and copy

• CoinDenseFactorization ()
Default constructor.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.12 CoinDenseFactorization Class Reference 48

• CoinDenseFactorization (const CoinDenseFactorization &other)

Copy constructor.
• virtual ∼CoinDenseFactorization ()

Destructor.
• CoinDenseFactorization & operator= (const CoinDenseFactorization &other)

= copy
• virtual CoinOtherFactorization ∗ clone () const

Clone.

Do factorization - public

• virtual void getAreas (int numberRows, int numberColumns, CoinBigIndex max-
imumL, CoinBigIndex maximumU)

Gets space for a factorization.
• virtual void preProcess ()

PreProcesses column ordered copy of basis.
• virtual int factor ()

Does most of factorization returning status 0 - OK.
• virtual void postProcess (const int ∗sequence, int ∗pivotVariable)

Does post processing on valid factorization - putting variables on correct rows.
• virtual void makeNonSingular (int ∗sequence, int numberColumns)

Makes a non-singular basis by replacing variables.

general stuff such as number of elements

• virtual int numberElements () const

Total number of elements in factorization.
• double maximumCoefficient () const

Returns maximum absolute value in factorization.

rank one updates which do exist

• virtual int replaceColumn (CoinIndexedVector ∗regionSparse, int pivotRow, dou-
ble pivotCheck, bool checkBeforeModifying=false, double acceptablePivot=1.0e-
8)

Replaces one Column to basis, returns 0=OK, 1=Probably OK, 2=singular, 3=no
room If checkBeforeModifying is true will do all accuracy checks before modifying
factorization.

various uses of factorization (return code number elements)

which user may want to know about

• virtual int updateColumnFT (CoinIndexedVector ∗regionSparse, CoinIndexed-
Vector ∗regionSparse2, bool=false)

Updates one column (FTRAN) from regionSparse2 Tries to do FT update number
returned is negative if no room regionSparse starts as zero and is zero at end.

• virtual int updateColumn (CoinIndexedVector ∗regionSparse, CoinIndexedVec-
tor ∗regionSparse2, bool noPermute=false) const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.12 CoinDenseFactorization Class Reference 49

This version has same effect as above with FTUpdate==false so number returned
is always >=0.

• virtual int updateTwoColumnsFT (CoinIndexedVector ∗regionSparse1, CoinIn-
dexedVector ∗regionSparse2, CoinIndexedVector ∗regionSparse3, bool noP-
ermute=false)

does FTRAN on two columns
• virtual int updateColumnTranspose (CoinIndexedVector ∗regionSparse, CoinIn-

dexedVector ∗regionSparse2) const

Updates one column (BTRAN) from regionSparse2 regionSparse starts as zero
and is zero at end Note - if regionSparse2 packed on input - will be packed on
output.

various uses of factorization

∗∗∗ Below this user may not want to know about

which user may not want to know about (left over from my LP code)

• void clearArrays ()

Get rid of all memory.
• virtual int ∗ indices () const

Returns array to put basis indices in.
• virtual int ∗ permute () const

Returns permute in.

Protected Member Functions

• int checkPivot (double saveFromU, double oldPivot) const

Returns accuracy status of replaceColumn returns 0=OK, 1=Probably OK, 2=singular.

8.12.1 Detailed Description

This deals with Factorization and Updates This is a simple dense version so other peo-
ple can write a better one.

I am assuming that 32 bits is enough for number of rows or columns, but CoinBigIndex
may be redefined to get 64 bits.

Definition at line 282 of file CoinDenseFactorization.hpp.

8.12.2 Member Function Documentation

8.12.2.1 virtual int CoinDenseFactorization::factor () [virtual]

Does most of factorization returning status 0 - OK.

-99 - needs more memory -1 - singular - use numberGoodColumns and redo

Implements CoinOtherFactorization.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.13 CoinDenseVector< T > Class Template Reference 50

8.12.2.2 virtual int CoinDenseFactorization::replaceColumn (CoinIndexedVector ∗
regionSparse, int pivotRow, double pivotCheck, bool checkBeforeModifying =
false, double acceptablePivot = 1.0e-8) [virtual]

Replaces one Column to basis, returns 0=OK, 1=Probably OK, 2=singular, 3=no room If
checkBeforeModifying is true will do all accuracy checks before modifying factorization.

Whether to set this depends on speed considerations. You could just do this on first
iteration after factorization and thereafter re-factorize partial update already in U

Implements CoinOtherFactorization.

8.12.2.3 virtual int CoinDenseFactorization::updateColumnFT (CoinIndexedVector
∗ regionSparse, CoinIndexedVector ∗ regionSparse2, bool = false)
[inline, virtual]

Updates one column (FTRAN) from regionSparse2 Tries to do FT update number re-
turned is negative if no room regionSparse starts as zero and is zero at end.

Note - if regionSparse2 packed on input - will be packed on output

Implements CoinOtherFactorization.

Definition at line 360 of file CoinDenseFactorization.hpp.

The documentation for this class was generated from the following file:

• CoinDenseFactorization.hpp

8.13 CoinDenseVector< T > Class Template Reference

Dense Vector.

#include <CoinDenseVector.hpp>

Collaboration diagram for CoinDenseVector< T >:

CoinDenseVector< T >

T *

elements_

int

nElements_

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.13 CoinDenseVector< T > Class Template Reference 51

Public Member Functions

Get methods.

• int getNumElements () const
Get the size.

• int size () const
• const T ∗ getElements () const

Get element values.
• T ∗ getElements ()

Get element values.

Set methods

• void clear ()
Reset the vector (i.e. set all elemenets to zero)

• CoinDenseVector & operator= (const CoinDenseVector &)
Assignment operator.

• T & operator[] (int index) const
Member of array operator.

• void setVector (int size, const T ∗elems)
Set vector size, and elements.

• void setConstant (int size, T elems)
Elements set to have the same scalar value.

• void setElement (int index, T element)
Set an existing element in the dense vector The first argument is the "index" into
the elements() array.

• void resize (int newSize, T fill=T())
Resize the dense vector to be the first newSize elements.

• void append (const CoinDenseVector &)
Append a dense vector to this dense vector.

norms, sum and scale

• T oneNorm () const
1-norm of vector

• double twoNorm () const
2-norm of vector

• T infNorm () const
infinity-norm of vector

• T sum () const
sum of vector elements

• void scale (T factor)
scale vector elements

Arithmetic operators.

• void operator+= (T value)
add value to every entry

• void operator-= (T value)
subtract value from every entry

• void operator∗= (T value)
multiply every entry by value

• void operator/= (T value)
divide every entry by value

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.13 CoinDenseVector< T > Class Template Reference 52

Constructors and destructors

• CoinDenseVector ()

Default constructor.
• CoinDenseVector (int size, const T ∗elems)

Alternate Constructors - set elements to vector of Ts.
• CoinDenseVector (int size, T element=T())

Alternate Constructors - set elements to same scalar value.
• CoinDenseVector (const CoinDenseVector &)

Copy constructors.
• ∼CoinDenseVector ()

Destructor.

8.13.1 Detailed Description

template<typename T>class CoinDenseVector< T >

Dense Vector.

Stores a dense (or expanded) vector of floating point values. Type of vector elements
is controlled by templating. (Some working quantities such as accumulated sums are
explicitly declared of type double). This allows the components of the vector integer,
single or double precision.

Here is a sample usage:

const int ne = 4;
double el[ne] = { 10., 40., 1., 50. }

// Create vector and set its value
CoinDenseVector<double> r(ne,el);

// access each element
assert(r.getElements()[0]==10.);
assert(r.getElements()[1]==40.);
assert(r.getElements()[2]== 1.);
assert(r.getElements()[3]==50.);

// Test for equality
CoinDenseVector<double> r1;
r1=r;

// Add dense vectors.
// Similarly for subtraction, multiplication,
// and division.
CoinDenseVector<double> add = r + r1;
assert(add[0] == 10.+10.);
assert(add[1] == 40.+40.);
assert(add[2] == 1.+ 1.);
assert(add[3] == 50.+50.);

assert(r.sum() == 10.+40.+1.+50.);

Definition at line 67 of file CoinDenseVector.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.14 CoinDoubleArrayWithLength Class Reference 53

8.13.2 Member Function Documentation

8.13.2.1 template<typename T> void CoinDenseVector< T >::setVector (int size, const T
∗ elems)

Set vector size, and elements.

Size is the length of the elements vector. The element vector is copied into this class
instance’s member data.

8.13.2.2 template<typename T> void CoinDenseVector< T >::resize (int newSize, T fill =
T())

Resize the dense vector to be the first newSize elements.

If length is decreased, vector is truncated. If increased new entries, set to new default
element

The documentation for this class was generated from the following file:

• CoinDenseVector.hpp

8.14 CoinDoubleArrayWithLength Class Reference

double ∗ version

#include <CoinIndexedVector.hpp>

Inheritance diagram for CoinDoubleArrayWithLength:

CoinDoubleArrayWithLength

CoinArrayWithLength

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.14 CoinDoubleArrayWithLength Class Reference 54

Collaboration diagram for CoinDoubleArrayWithLength:

CoinDoubleArrayWithLength

CoinArrayWithLength

char

array_

int

size_

Public Member Functions

Get methods.

• int getSize () const

Get the size.
• double ∗ array () const

Get Array.

Set methods

• void setSize (int value)

Set the size.

Condition methods

• double ∗ conditionalNew (int sizeWanted)

Conditionally gets new array.

Constructors and destructors

• CoinDoubleArrayWithLength ()

Default constructor - NULL.
• CoinDoubleArrayWithLength (int size)

Alternate Constructor - length in bytes - size_ -1.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.15 CoinError Class Reference 55

• CoinDoubleArrayWithLength (int size, int mode)

Alternate Constructor - length in bytes mode - 0 size_ set to size 1 size_ set to size
and zeroed.

• CoinDoubleArrayWithLength (const CoinDoubleArrayWithLength &rhs)
Copy constructor.

• CoinDoubleArrayWithLength (const CoinDoubleArrayWithLength ∗rhs)

Copy constructor.2.
• CoinDoubleArrayWithLength & operator= (const CoinDoubleArrayWithLength

&rhs)
Assignment operator.

8.14.1 Detailed Description

double ∗ version

Definition at line 588 of file CoinIndexedVector.hpp.

8.14.2 Constructor & Destructor Documentation

8.14.2.1 CoinDoubleArrayWithLength::CoinDoubleArrayWithLength (const
CoinDoubleArrayWithLength & rhs) [inline]

Copy constructor.

Definition at line 630 of file CoinIndexedVector.hpp.

8.14.3 Member Function Documentation

8.14.3.1 CoinDoubleArrayWithLength& CoinDoubleArrayWithLength::operator= (const
CoinDoubleArrayWithLength & rhs) [inline]

Assignment operator.

Definition at line 636 of file CoinIndexedVector.hpp.

The documentation for this class was generated from the following file:

• CoinIndexedVector.hpp

8.15 CoinError Class Reference

Error Class thrown by an exception.

#include <CoinError.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.15 CoinError Class Reference 56

Collaboration diagram for CoinError:

CoinError

int

lineNumber_

bool

printErrors_

std::string

message_
class_

method_
file_

std::basic_string< char >

Public Member Functions

Get error attributes

• const std::string & message () const

get message text
• const std::string & methodName () const

get name of method instantiating error
• const std::string & className () const

get name of class instantiating error (or hint for assert)
• const std::string & fileName () const

get name of file for assert
• int lineNumber () const

get line number of assert (-1 if not assert)
• void print (bool doPrint=true) const

Just print (for asserts)

Constructors and destructors

• CoinError (std::string message__, std::string methodName__, std::string className_-
, std::string fileName=std::string(), int line=-1)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.15 CoinError Class Reference 57

Alternate Constructor.
• CoinError (const CoinError &source)

Copy constructor.
• CoinError & operator= (const CoinError &rhs)

Assignment operator.
• virtual ∼CoinError ()

Destructor.

Static Public Attributes

• static bool printErrors_

Whether to print every error.

Friends

• void CoinErrorUnitTest ()

A function that tests the methods in the CoinError class.

8.15.1 Detailed Description

Error Class thrown by an exception.

This class is used when exceptions are thrown. It contains:

• message text

• name of method throwing exception

• name of class throwing exception or hint

• name of file if assert

• line number

For asserts class=> optional hint

Definition at line 42 of file CoinError.hpp.

8.15.2 Friends And Related Function Documentation

8.15.2.1 void CoinErrorUnitTest () [friend]

A function that tests the methods in the CoinError class.

The only reason for it not to be a member method is that this way it doesn’t have to be
compiled into the library. And that’s a gain, because the library should be compiled with
optimization on, but this method should be compiled with debugging.

The documentation for this class was generated from the following file:

• CoinError.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.16 CoinExternalVectorFirstGreater_2< S, T, V > Class Template Reference 58

8.16 CoinExternalVectorFirstGreater 2< S, T, V > Class Template Reference

Function operator.

#include <CoinSort.hpp>

Collaboration diagram for CoinExternalVectorFirstGreater_2< S, T, V >:

CoinExternalVectorFirstGreater_2< S, T, V >

const V *

vec_

8.16.1 Detailed Description

template<class S, class T, class V>class CoinExternalVectorFirstGreater 2< S, T, V >

Function operator.

Compare based on the entries of an external vector, i.e., returns true if vec[t1.first >
vec[t2.first] (i.e., decreasing wrt. vec). Note that to use this comparison operator .first
must be a data type automatically convertible to int.

Definition at line 120 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

8.17 CoinExternalVectorFirstGreater 3< S, T, U, V > Class Template Reference

Function operator.

#include <CoinSort.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.18 CoinExternalVectorFirstLess_2< S, T, V > Class Template Reference 59

Collaboration diagram for CoinExternalVectorFirstGreater_3< S, T, U, V >:

CoinExternalVectorFirstGreater_3< S, T, U, V >

const V *

vec_

8.17.1 Detailed Description

template<class S, class T, class U, class V>class CoinExternalVectorFirstGreater 3< S, T, U, V >

Function operator.

Compare based on the entries of an external vector, i.e., returns true if vec[t1.first >
vec[t2.first] (i.e., decreasing wrt. vec). Note that to use this comparison operator .first
must be a data type automatically convertible to int.

Definition at line 452 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

8.18 CoinExternalVectorFirstLess 2< S, T, V > Class Template Reference

Function operator.

#include <CoinSort.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.19 CoinExternalVectorFirstLess_3< S, T, U, V > Class Template Reference 60

Collaboration diagram for CoinExternalVectorFirstLess_2< S, T, V >:

CoinExternalVectorFirstLess_2< S, T, V >

const V *

vec_

8.18.1 Detailed Description

template<class S, class T, class V>class CoinExternalVectorFirstLess 2< S, T, V >

Function operator.

Compare based on the entries of an external vector, i.e., returns true if vec[t1.first <
vec[t2.first] (i.e., increasing wrt. vec). Note that to use this comparison operator .first
must be a data type automatically convertible to int.

Definition at line 102 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

8.19 CoinExternalVectorFirstLess 3< S, T, U, V > Class Template Reference

Function operator.

#include <CoinSort.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 61

Collaboration diagram for CoinExternalVectorFirstLess_3< S, T, U, V >:

CoinExternalVectorFirstLess_3< S, T, U, V >

const V *

vec_

8.19.1 Detailed Description

template<class S, class T, class U, class V>class CoinExternalVectorFirstLess 3< S, T, U, V >

Function operator.

Compare based on the entries of an external vector, i.e., returns true if vec[t1.first <
vec[t2.first] (i.e., increasing wrt. vec). Note that to use this comparison operator .first
must be a data type automatically convertible to int.

Definition at line 434 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

8.20 CoinFactorization Class Reference

This deals with Factorization and Updates.

#include <CoinFactorization.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 62

Collaboration diagram for CoinFactorization:

CoinFactorization

double

btranAverageAfterL_
btranCountAfterR_

areaFactor_
zeroTolerance_
ftranCountInput_

btranAverageAfterR_
ftranAverageAfterL_
ftranCountAfterL_
btranCountInput_

btranAverageAfterU_
...

CoinUnsignedIntArrayWithLength

workArea2_

CoinArrayWithLength

CoinIntArrayWithLength

CoinFactorizationDoubleArrayWithLength

CoinBigIndexArrayWithLength

char
array_

int

lengthAreaR_
biggerDimension_

numberR_
numberL_

numberFtranCounts_
densePermute_
indexRowR_
lengthL_

maximumColumnsExtra_
sparseThreshold_

...

size_

saveColumn_
lastRow_

indexColumnL_
lastColumn_
nextCount_

pivotColumnBack_
pivotColumn_
nextRow_

numberInRow_
permuteBack_

...

bool

doForrestTomlin_
collectStatistics_

elementL_
pivotRegion_
workArea_

elementByRowL_
elementU_

startColumnR_
startRowU_
startColumnL_
startRowL_

convertRowToColumnU_
startColumnU_

Public Member Functions

Constructors and destructor and copy

• CoinFactorization ()

Default constructor.
• CoinFactorization (const CoinFactorization &other)

Copy constructor.
• ∼CoinFactorization ()

Destructor.
• void almostDestructor ()

Delete all stuff (leaves as after CoinFactorization())
• void show_self () const

Debug show object (shows one representation)
• int saveFactorization (const char ∗file) const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 63

Debug - save on file - 0 if no error.
• int restoreFactorization (const char ∗file, bool factor=false)

Debug - restore from file - 0 if no error on file.
• void sort () const

Debug - sort so can compare.
• CoinFactorization & operator= (const CoinFactorization &other)

= copy

Do factorization

• int factorize (const CoinPackedMatrix &matrix, int rowIsBasic[], int columnIsBasic[],
double areaFactor=0.0)

When part of LP - given by basic variables.
• int factorize (int numberRows, int numberColumns, CoinBigIndex numberEle-

ments, CoinBigIndex maximumL, CoinBigIndex maximumU, const int indicesRow[],
const int indicesColumn[], const double elements[], int permutation[], double
areaFactor=0.0)

When given as triplets.
• int factorizePart1 (int numberRows, int numberColumns, CoinBigIndex esti-

mateNumberElements, int ∗indicesRow[], int ∗indicesColumn[], CoinFactor-
izationDouble ∗elements[], double areaFactor=0.0)

Two part version for maximum flexibility This part creates arrays for user to fill.
• int factorizePart2 (int permutation[], int exactNumberElements)

This is part two of factorization Arrays belong to factorization and were returned by
part 1 If status okay, permutation has pivot rows - this is only needed If status is
singular, then basic variables have pivot row and ones thrown out have -1 returns 0
-okay, -1 singular, -99 memory.

• double conditionNumber () const
Condition number - product of pivots after factorization.

general stuff such as permutation or status

• int status () const
Returns status.

• void setStatus (int value)
Sets status.

• int pivots () const
Returns number of pivots since factorization.

• void setPivots (int value)
Sets number of pivots since factorization.

• int ∗ permute () const
Returns address of permute region.

• int ∗ pivotColumn () const
Returns address of pivotColumn region (also used for permuting)

• CoinFactorizationDouble ∗ pivotRegion () const
Returns address of pivot region.

• int ∗ permuteBack () const
Returns address of permuteBack region.

• int ∗ pivotColumnBack () const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 64

Returns address of pivotColumnBack region (also used for permuting) Now uses
firstCount to save memory allocation.

• CoinBigIndex ∗ startRowL () const
Start of each row in L.

• CoinBigIndex ∗ startColumnL () const
Start of each column in L.

• int ∗ indexColumnL () const
Index of column in row for L.

• int ∗ indexRowL () const
Row indices of L.

• CoinFactorizationDouble ∗ elementByRowL () const
Elements in L (row copy)

• int numberRowsExtra () const
Number of Rows after iterating.

• void setNumberRows (int value)
Set number of Rows after factorization.

• int numberRows () const
Number of Rows after factorization.

• CoinBigIndex numberL () const
Number in L.

• CoinBigIndex baseL () const
Base of L.

• int maximumRowsExtra () const
Maximum of Rows after iterating.

• int numberColumns () const
Total number of columns in factorization.

• int numberElements () const
Total number of elements in factorization.

• int numberForrestTomlin () const
Length of FT vector.

• int numberGoodColumns () const
Number of good columns in factorization.

• double areaFactor () const
Whether larger areas needed.

• void areaFactor (double value)
• double adjustedAreaFactor () const

Returns areaFactor but adjusted for dense.
• void relaxAccuracyCheck (double value)

Allows change of pivot accuracy check 1.0 == none >1.0 relaxed.
• double getAccuracyCheck () const
• int messageLevel () const

Level of detail of messages.
• void messageLevel (int value)
• int maximumPivots () const

Maximum number of pivots between factorizations.
• void maximumPivots (int value)
• int denseThreshold () const

Gets dense threshold.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 65

• void setDenseThreshold (int value)
Sets dense threshold.

• double pivotTolerance () const
Pivot tolerance.

• void pivotTolerance (double value)
• double zeroTolerance () const

Zero tolerance.
• void zeroTolerance (double value)
• double slackValue () const

Whether slack value is +1 or -1.
• void slackValue (double value)
• double maximumCoefficient () const

Returns maximum absolute value in factorization.
• bool forrestTomlin () const

true if Forrest Tomlin update, false if PFI
• void setForrestTomlin (bool value)
• bool spaceForForrestTomlin () const

True if FT update and space.

some simple stuff

• int numberDense () const
Returns number of dense rows.

• CoinBigIndex numberElementsU () const
Returns number in U area.

• void setNumberElementsU (CoinBigIndex value)
Setss number in U area.

• CoinBigIndex lengthAreaU () const
Returns length of U area.

• CoinBigIndex numberElementsL () const
Returns number in L area.

• CoinBigIndex lengthAreaL () const
Returns length of L area.

• CoinBigIndex numberElementsR () const
Returns number in R area.

• CoinBigIndex numberCompressions () const
Number of compressions done.

• int ∗ numberInRow () const
Number of entries in each row.

• int ∗ numberInColumn () const
Number of entries in each column.

• CoinFactorizationDouble ∗ elementU () const
Elements of U.

• int ∗ indexRowU () const
Row indices of U.

• CoinBigIndex ∗ startColumnU () const
Start of each column in U.

• int maximumColumnsExtra ()

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 66

Maximum number of Columns after iterating.
• int biasLU () const

L to U bias 0 - U bias, 1 - some U bias, 2 some L bias, 3 L bias.
• void setBiasLU (int value)
• int persistenceFlag () const

Array persistence flag If 0 then as now (delete/new) 1 then only do arrays if bigger
needed 2 as 1 but give a bit extra if bigger needed.

• void setPersistenceFlag (int value)

rank one updates which do exist

• int replaceColumn (CoinIndexedVector ∗regionSparse, int pivotRow, double
pivotCheck, bool checkBeforeModifying=false, double acceptablePivot=1.0e-
8)

Replaces one Column to basis, returns 0=OK, 1=Probably OK, 2=singular, 3=no
room If checkBeforeModifying is true will do all accuracy checks before modifying
factorization.

• void replaceColumnU (CoinIndexedVector ∗regionSparse, CoinBigIndex ∗deleted,
int internalPivotRow)

Combines BtranU and delete elements If deleted is NULL then delete elements
otherwise store where elements are.

various uses of factorization (return code number elements)

∗∗∗ Below this user may not want to know about

which user may not want to know about (left over from my LP code)

• int updateColumnFT (CoinIndexedVector ∗regionSparse, CoinIndexedVector
∗regionSparse2)

Updates one column (FTRAN) from regionSparse2 Tries to do FT update number
returned is negative if no room regionSparse starts as zero and is zero at end.

• int updateColumn (CoinIndexedVector ∗regionSparse, CoinIndexedVector ∗regionSparse2,
bool noPermute=false) const

This version has same effect as above with FTUpdate==false so number returned
is always >=0.

• int updateTwoColumnsFT (CoinIndexedVector ∗regionSparse1, CoinIndexed-
Vector ∗regionSparse2, CoinIndexedVector ∗regionSparse3, bool noPermuteRe-
gion3=false)

Updates one column (FTRAN) from region2 Tries to do FT update number returned
is negative if no room.

• int updateColumnTranspose (CoinIndexedVector ∗regionSparse, CoinIndexed-
Vector ∗regionSparse2) const

Updates one column (BTRAN) from regionSparse2 regionSparse starts as zero
and is zero at end Note - if regionSparse2 packed on input - will be packed on
output.

• void goSparse ()
makes a row copy of L for speed and to allow very sparse problems

• int sparseThreshold () const
get sparse threshold

• void sparseThreshold (int value)
set sparse threshold

• void clearArrays ()
Get rid of all memory.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 67

various updates - none of which have been written!

• int add (CoinBigIndex numberElements, int indicesRow[], int indicesColumn[],
double elements[])

Adds given elements to Basis and updates factorization, can increase size of basis.
• int addColumn (CoinBigIndex numberElements, int indicesRow[], double elements[])

Adds one Column to basis, can increase size of basis.
• int addRow (CoinBigIndex numberElements, int indicesColumn[], double elements[])

Adds one Row to basis, can increase size of basis.
• int deleteColumn (int Row)

Deletes one Column from basis, returns rank.
• int deleteRow (int Row)

Deletes one Row from basis, returns rank.
• int replaceRow (int whichRow, int numberElements, const int indicesColumn[],

const double elements[])
Replaces one Row in basis, At present assumes just a singleton on row is in basis
returns 0=OK, 1=Probably OK, 2=singular, 3 no space.

• void emptyRows (int numberToEmpty, const int which[])
Takes out all entries for given rows.

used by ClpFactorization

• void checkSparse ()
See if worth going sparse.

• bool collectStatistics () const
For statistics.

• void setCollectStatistics (bool onOff) const
For statistics.

• void gutsOfDestructor (int type=1)
The real work of constructors etc 0 just scalars, 1 bit normal.

• void gutsOfInitialize (int type)
1 bit - tolerances etc, 2 more, 4 dummy arrays

• void gutsOfCopy (const CoinFactorization &other)
• void resetStatistics ()

Reset all sparsity etc statistics.

Protected Attributes

data

• double pivotTolerance_
Pivot tolerance.

• double zeroTolerance_
Zero tolerance.

• double slackValue_
Whether slack value is +1 or -1.

• double areaFactor_

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 68

How much to multiply areas by.
• double relaxCheck_

Relax check on accuracy in replaceColumn.
• int numberRows_

Number of Rows in factorization.
• int numberRowsExtra_

Number of Rows after iterating.
• int maximumRowsExtra_

Maximum number of Rows after iterating.
• int numberColumns_

Number of Columns in factorization.
• int numberColumnsExtra_

Number of Columns after iterating.
• int maximumColumnsExtra_

Maximum number of Columns after iterating.
• int numberGoodU_

Number factorized in U (not row singletons)
• int numberGoodL_

Number factorized in L.
• int maximumPivots_

Maximum number of pivots before factorization.
• int numberPivots_

Number pivots since last factorization.
• CoinBigIndex totalElements_

Number of elements in U (to go) or while iterating total overall.
• CoinBigIndex factorElements_

Number of elements after factorization.
• CoinIntArrayWithLength pivotColumn_

Pivot order for each Column.
• CoinIntArrayWithLength permute_

Permutation vector for pivot row order.
• CoinIntArrayWithLength permuteBack_

DePermutation vector for pivot row order.
• CoinIntArrayWithLength pivotColumnBack_

Inverse Pivot order for each Column.
• int status_

Status of factorization.
• int numberTrials_

0 - no increasing rows - no permutations, 1 - no increasing rows but permutations
2 - increasing rows

• CoinBigIndexArrayWithLength startRowU_
Start of each Row as pointer.

• CoinIntArrayWithLength numberInRow_
Number in each Row.

• CoinIntArrayWithLength numberInColumn_
Number in each Column.

• CoinIntArrayWithLength numberInColumnPlus_

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 69

Number in each Column including pivoted.
• CoinIntArrayWithLength firstCount_

First Row/Column with count of k, can tell which by offset - Rows then Columns.
• CoinIntArrayWithLength nextCount_

Next Row/Column with count.
• CoinIntArrayWithLength lastCount_

Previous Row/Column with count.
• CoinIntArrayWithLength nextColumn_

Next Column in memory order.
• CoinIntArrayWithLength lastColumn_

Previous Column in memory order.
• CoinIntArrayWithLength nextRow_

Next Row in memory order.
• CoinIntArrayWithLength lastRow_

Previous Row in memory order.
• CoinIntArrayWithLength saveColumn_

Columns left to do in a single pivot.
• CoinIntArrayWithLength markRow_

Marks rows to be updated.
• int messageLevel_

Detail in messages.
• int biggerDimension_

Larger of row and column size.
• CoinIntArrayWithLength indexColumnU_

Base address for U (may change)
• CoinIntArrayWithLength pivotRowL_

Pivots for L.
• CoinFactorizationDoubleArrayWithLength pivotRegion_

Inverses of pivot values.
• int numberSlacks_

Number of slacks at beginning of U.
• int numberU_

Number in U.
• CoinBigIndex maximumU_

Maximum space used in U.
• CoinBigIndex lengthU_

Base of U is always 0.
• CoinBigIndex lengthAreaU_

Length of area reserved for U.
• CoinFactorizationDoubleArrayWithLength elementU_

Elements of U.
• CoinIntArrayWithLength indexRowU_

Row indices of U.
• CoinBigIndexArrayWithLength startColumnU_

Start of each column in U.
• CoinBigIndexArrayWithLength convertRowToColumnU_

Converts rows to columns in U.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 70

• CoinBigIndex numberL_
Number in L.

• CoinBigIndex baseL_
Base of L.

• CoinBigIndex lengthL_
Length of L.

• CoinBigIndex lengthAreaL_
Length of area reserved for L.

• CoinFactorizationDoubleArrayWithLength elementL_
Elements of L.

• CoinIntArrayWithLength indexRowL_
Row indices of L.

• CoinBigIndexArrayWithLength startColumnL_
Start of each column in L.

• bool doForrestTomlin_
true if Forrest Tomlin update, false if PFI

• int numberR_
Number in R.

• CoinBigIndex lengthR_
Length of R stuff.

• CoinBigIndex lengthAreaR_
length of area reserved for R

• CoinFactorizationDouble ∗ elementR_
Elements of R.

• int ∗ indexRowR_
Row indices for R.

• CoinBigIndexArrayWithLength startColumnR_
Start of columns for R.

• double ∗ denseArea_
Dense area.

• int ∗ densePermute_
Dense permutation.

• int numberDense_
Number of dense rows.

• int denseThreshold_
Dense threshold.

• CoinFactorizationDoubleArrayWithLength workArea_
First work area.

• CoinUnsignedIntArrayWithLength workArea2_
Second work area.

• CoinBigIndex numberCompressions_
Number of compressions done.

• double ftranCountInput_
Below are all to collect.

• double ftranCountAfterL_
• double ftranCountAfterR_
• double ftranCountAfterU_

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 71

• double btranCountInput_
• double btranCountAfterU_
• double btranCountAfterR_
• double btranCountAfterL_
• int numberFtranCounts_

We can roll over factorizations.
• int numberBtranCounts_
• double ftranAverageAfterL_

While these are average ratios collected over last period.
• double ftranAverageAfterR_
• double ftranAverageAfterU_
• double btranAverageAfterU_
• double btranAverageAfterR_
• double btranAverageAfterL_
• bool collectStatistics_

For statistics.
• int sparseThreshold_

Below this use sparse technology - if 0 then no L row copy.
• int sparseThreshold2_

And one for "sparsish".
• CoinBigIndexArrayWithLength startRowL_

Start of each row in L.
• CoinIntArrayWithLength indexColumnL_

Index of column in row for L.
• CoinFactorizationDoubleArrayWithLength elementByRowL_

Elements in L (row copy)
• CoinIntArrayWithLength sparse_

Sparse regions.
• int biasLU_

L to U bias 0 - U bias, 1 - some U bias, 2 some L bias, 3 L bias.
• int persistenceFlag_

Array persistence flag If 0 then as now (delete/new) 1 then only do arrays if bigger
needed 2 as 1 but give a bit extra if bigger needed.

used by factorization

• void getAreas (int numberRows, int numberColumns, CoinBigIndex maximumL,
CoinBigIndex maximumU)

Gets space for a factorization, called by constructors.

• void preProcess (int state, int possibleDuplicates=-1)

PreProcesses raw triplet data.

• int factor ()

Does most of factorization.

• int replaceColumnPFI (CoinIndexedVector ∗regionSparse, int pivotRow, double
alpha)

Replaces one Column to basis for PFI returns 0=OK, 1=Probably OK, 2=singular, 3=no
room.

• int factorSparse ()

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 72

Does sparse phase of factorization return code is <0 error, 0= finished.

• int factorSparseSmall ()

Does sparse phase of factorization (for smaller problems) return code is <0 error, 0=
finished.

• int factorSparseLarge ()

Does sparse phase of factorization (for larger problems) return code is <0 error, 0=
finished.

• int factorDense ()

Does dense phase of factorization return code is <0 error, 0= finished.

• bool pivotOneOtherRow (int pivotRow, int pivotColumn)

Pivots when just one other row so faster?

• bool pivotRowSingleton (int pivotRow, int pivotColumn)

Does one pivot on Row Singleton in factorization.

• bool pivotColumnSingleton (int pivotRow, int pivotColumn)

Does one pivot on Column Singleton in factorization.

• bool getColumnSpace (int iColumn, int extraNeeded)

Gets space for one Column with given length, may have to do compression (returns
True if successful), also moves existing vector, extraNeeded is over and above present.

• bool reorderU ()

Reorders U so contiguous and in order (if there is space) Returns true if it could.

• bool getColumnSpaceIterateR (int iColumn, double value, int iRow)

getColumnSpaceIterateR.

• CoinBigIndex getColumnSpaceIterate (int iColumn, double value, int iRow)

getColumnSpaceIterate.

• bool getRowSpace (int iRow, int extraNeeded)

Gets space for one Row with given length, may have to do compression (returns True
if successful), also moves existing vector.

• bool getRowSpaceIterate (int iRow, int extraNeeded)

Gets space for one Row with given length while iterating, may have to do compression
(returns True if successful), also moves existing vector.

• void checkConsistency ()

Checks that row and column copies look OK.

• void addLink (int index, int count)

Adds a link in chain of equal counts.

• void deleteLink (int index)

Deletes a link in chain of equal counts.

• void separateLinks (int count, bool rowsFirst)

Separate out links with same row/column count.

• void cleanup ()

Cleans up at end of factorization.

• void updateColumnL (CoinIndexedVector ∗region, int ∗indexIn) const

Updates part of column (FTRANL)

• void updateColumnLDensish (CoinIndexedVector ∗region, int ∗indexIn) const

Updates part of column (FTRANL) when densish.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 73

• void updateColumnLSparse (CoinIndexedVector ∗region, int ∗indexIn) const

Updates part of column (FTRANL) when sparse.

• void updateColumnLSparsish (CoinIndexedVector ∗region, int ∗indexIn) const

Updates part of column (FTRANL) when sparsish.

• void updateColumnR (CoinIndexedVector ∗region) const

Updates part of column (FTRANR) without FT update.

• void updateColumnRFT (CoinIndexedVector ∗region, int ∗indexIn)

Updates part of column (FTRANR) with FT update.

• void updateColumnU (CoinIndexedVector ∗region, int ∗indexIn) const

Updates part of column (FTRANU)

• void updateColumnUSparse (CoinIndexedVector ∗regionSparse, int ∗indexIn) const

Updates part of column (FTRANU) when sparse.

• void updateColumnUSparsish (CoinIndexedVector ∗regionSparse, int ∗indexIn)
const

Updates part of column (FTRANU) when sparsish.

• int updateColumnUDensish (double ∗COIN_RESTRICT region, int ∗COIN_RESTRICT
regionIndex) const

Updates part of column (FTRANU)

• void updateTwoColumnsUDensish (int &numberNonZero1, double ∗COIN_RESTRICT
region1, int ∗COIN_RESTRICT index1, int &numberNonZero2, double ∗COIN_-
RESTRICT region2, int ∗COIN_RESTRICT index2) const

Updates part of 2 columns (FTRANU) real work.

• void updateColumnPFI (CoinIndexedVector ∗regionSparse) const

Updates part of column PFI (FTRAN) (after rest)

• void permuteBack (CoinIndexedVector ∗regionSparse, CoinIndexedVector ∗outVector)
const

Permutes back at end of updateColumn.

• void updateColumnTransposePFI (CoinIndexedVector ∗region) const

Updates part of column transpose PFI (BTRAN) (before rest)

• void updateColumnTransposeU (CoinIndexedVector ∗region, int smallestIndex)
const

Updates part of column transpose (BTRANU), assumes index is sorted i.e.

• void updateColumnTransposeUSparsish (CoinIndexedVector ∗region, int small-
estIndex) const

Updates part of column transpose (BTRANU) when sparsish, assumes index is sorted
i.e.

• void updateColumnTransposeUDensish (CoinIndexedVector ∗region, int small-
estIndex) const

Updates part of column transpose (BTRANU) when densish, assumes index is sorted
i.e.

• void updateColumnTransposeUSparse (CoinIndexedVector ∗region) const

Updates part of column transpose (BTRANU) when sparse, assumes index is sorted
i.e.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 74

• void updateColumnTransposeUByColumn (CoinIndexedVector ∗region, int small-
estIndex) const

Updates part of column transpose (BTRANU) by column assumes index is sorted i.e.
• void updateColumnTransposeR (CoinIndexedVector ∗region) const

Updates part of column transpose (BTRANR)
• void updateColumnTransposeRDensish (CoinIndexedVector ∗region) const

Updates part of column transpose (BTRANR) when dense.
• void updateColumnTransposeRSparse (CoinIndexedVector ∗region) const

Updates part of column transpose (BTRANR) when sparse.
• void updateColumnTransposeL (CoinIndexedVector ∗region) const

Updates part of column transpose (BTRANL)
• void updateColumnTransposeLDensish (CoinIndexedVector ∗region) const

Updates part of column transpose (BTRANL) when densish by column.
• void updateColumnTransposeLByRow (CoinIndexedVector ∗region) const

Updates part of column transpose (BTRANL) when densish by row.
• void updateColumnTransposeLSparsish (CoinIndexedVector ∗region) const

Updates part of column transpose (BTRANL) when sparsish by row.
• void updateColumnTransposeLSparse (CoinIndexedVector ∗region) const

Updates part of column transpose (BTRANL) when sparse (by Row)
• int checkPivot (double saveFromU, double oldPivot) const

Returns accuracy status of replaceColumn returns 0=OK, 1=Probably OK, 2=singular.
• template<class T >

bool pivot (int pivotRow, int pivotColumn, CoinBigIndex pivotRowPosition, Coin-
BigIndex pivotColumnPosition, CoinFactorizationDouble work[], unsigned int workArea2[],
int increment2, T markRow[], int largeInteger)

8.20.1 Detailed Description

This deals with Factorization and Updates.

This class started with a parallel simplex code I was writing in the mid 90’s. The need
for parallelism led to many complications and I have simplified as much as I could to get
back to this.

I was aiming at problems where I might get speed-up so I was looking at dense problems
or ones with structure. This led to permuting input and output vectors and to increasing
the number of rows each rank-one update. This is still in as a minor overhead.

I have also put in handling for hyper-sparsity. I have taken out all outer loop unrolling,
dense matrix handling and most of the book-keeping for slacks. Also I always use
FTRAN approach to updating even if factorization fairly dense. All these could improve
performance.

I blame some of the coding peculiarities on the history of the code but mostly it is just
because I can’t do elegant code (or useful comments).

I am assuming that 32 bits is enough for number of rows or columns, but CoinBigIndex
may be redefined to get 64 bits.

Definition at line 50 of file CoinFactorization.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 75

8.20.2 Member Function Documentation

8.20.2.1 int CoinFactorization::restoreFactorization (const char ∗ file, bool factor = false)

Debug - restore from file - 0 if no error on file.

If factor true then factorizes as if called from ClpFactorization

8.20.2.2 int CoinFactorization::factorize (const CoinPackedMatrix & matrix, int
rowIsBasic[], int columnIsBasic[], double areaFactor = 0.0)

When part of LP - given by basic variables.

Actually does factorization. Arrays passed in have non negative value to say basic. If
status is okay, basic variables have pivot row - this is only needed If status is singular,
then basic variables have pivot row and ones thrown out have -1 returns 0 -okay, -1
singular, -2 too many in basis, -99 memory

8.20.2.3 int CoinFactorization::factorize (int numberRows, int numberColumns, CoinBigIndex
numberElements, CoinBigIndex maximumL, CoinBigIndex maximumU, const int
indicesRow[], const int indicesColumn[], const double elements[], int permutation[],
double areaFactor = 0.0)

When given as triplets.

Actually does factorization. maximumL is guessed maximum size of L part of final
factorization, maximumU of U part. These are multiplied by areaFactor which can be
computed by user or internally. Arrays are copied in. I could add flag to delete arrays
to save a bit of memory. If status okay, permutation has pivot rows - this is only needed
If status is singular, then basic variables have pivot row and ones thrown out have -1
returns 0 -okay, -1 singular, -99 memory

8.20.2.4 int CoinFactorization::factorizePart1 (int numberRows, int numberColumns,
CoinBigIndex estimateNumberElements, int ∗ indicesRow[], int ∗ indicesColumn[],
CoinFactorizationDouble ∗ elements[], double areaFactor = 0.0)

Two part version for maximum flexibility This part creates arrays for user to fill.

estimateNumberElements is safe estimate of number returns 0 -okay, -99 memory

8.20.2.5 int CoinFactorization::replaceColumn (CoinIndexedVector ∗ regionSparse, int
pivotRow, double pivotCheck, bool checkBeforeModifying = false, double
acceptablePivot = 1.0e-8)

Replaces one Column to basis, returns 0=OK, 1=Probably OK, 2=singular, 3=no room If
checkBeforeModifying is true will do all accuracy checks before modifying factorization.

Whether to set this depends on speed considerations. You could just do this on first
iteration after factorization and thereafter re-factorize partial update already in U

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 76

8.20.2.6 int CoinFactorization::updateColumnFT (CoinIndexedVector ∗ regionSparse,
CoinIndexedVector ∗ regionSparse2)

Updates one column (FTRAN) from regionSparse2 Tries to do FT update number re-
turned is negative if no room regionSparse starts as zero and is zero at end.

Note - if regionSparse2 packed on input - will be packed on output

8.20.2.7 int CoinFactorization::updateTwoColumnsFT (CoinIndexedVector ∗ regionSparse1,
CoinIndexedVector ∗ regionSparse2, CoinIndexedVector ∗ regionSparse3,
bool noPermuteRegion3 = false)

Updates one column (FTRAN) from region2 Tries to do FT update number returned is
negative if no room.

Also updates region3 region1 starts as zero and is zero at end

8.20.2.8 int CoinFactorization::add (CoinBigIndex numberElements, int indicesRow[], int
indicesColumn[], double elements[])

Adds given elements to Basis and updates factorization, can increase size of basis.

Returns rank

8.20.2.9 int CoinFactorization::addColumn (CoinBigIndex numberElements, int indicesRow[],
double elements[])

Adds one Column to basis, can increase size of basis.

Returns rank

8.20.2.10 int CoinFactorization::addRow (CoinBigIndex numberElements, int indicesColumn[],
double elements[])

Adds one Row to basis, can increase size of basis.

Returns rank

8.20.2.11 void CoinFactorization::preProcess (int state, int possibleDuplicates = -1)

PreProcesses raw triplet data.

state is 0 - triplets, 1 - some counts etc , 2 - ..

8.20.2.12 bool CoinFactorization::getColumnSpaceIterateR (int iColumn, double value, int
iRow) [protected]

getColumnSpaceIterateR.

Gets space for one extra R element in Column may have to do compression (returns
true) also moves existing vector

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.20 CoinFactorization Class Reference 77

8.20.2.13 CoinBigIndex CoinFactorization::getColumnSpaceIterate (int iColumn, double value,
int iRow) [protected]

getColumnSpaceIterate.

Gets space for one extra U element in Column may have to do compression (returns
true) also moves existing vector. Returns -1 if no memory or where element was put
Used by replaceRow (turns off R version)

8.20.2.14 void CoinFactorization::updateColumnRFT (CoinIndexedVector ∗ region, int ∗
indexIn) [protected]

Updates part of column (FTRANR) with FT update.

Also stores update after L and R

8.20.2.15 void CoinFactorization::updateColumnTransposeU (CoinIndexedVector ∗ region,
int smallestIndex) const [protected]

Updates part of column transpose (BTRANU), assumes index is sorted i.e.

region is correct

8.20.2.16 void CoinFactorization::updateColumnTransposeUSparsish (CoinIndexedVector
∗ region, int smallestIndex) const [protected]

Updates part of column transpose (BTRANU) when sparsish, assumes index is sorted
i.e.

region is correct

8.20.2.17 void CoinFactorization::updateColumnTransposeUDensish (CoinIndexedVector ∗
region, int smallestIndex) const [protected]

Updates part of column transpose (BTRANU) when densish, assumes index is sorted
i.e.

region is correct

8.20.2.18 void CoinFactorization::updateColumnTransposeUSparse (CoinIndexedVector ∗
region) const [protected]

Updates part of column transpose (BTRANU) when sparse, assumes index is sorted
i.e.

region is correct

8.20.2.19 void CoinFactorization::updateColumnTransposeUByColumn (CoinIndexedVector
∗ region, int smallestIndex) const [protected]

Updates part of column transpose (BTRANU) by column assumes index is sorted i.e.

region is correct

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.21 CoinFactorizationDoubleArrayWithLength Class Reference 78

8.20.2.20 int CoinFactorization::replaceColumnPFI (CoinIndexedVector ∗ regionSparse, int
pivotRow, double alpha)

Replaces one Column to basis for PFI returns 0=OK, 1=Probably OK, 2=singular, 3=no
room.

In this case region is not empty - it is incoming variable (updated)

8.20.3 Member Data Documentation

8.20.3.1 int CoinFactorization::numberTrials_ [protected]

0 - no increasing rows - no permutations, 1 - no increasing rows but permutations 2 -
increasing rows

• taken out as always 2 Number of trials before rejection

Definition at line 1244 of file CoinFactorization.hpp.

8.20.3.2 CoinBigIndex CoinFactorization::lengthU_ [protected]

Base of U is always 0.

Length of U

Definition at line 1313 of file CoinFactorization.hpp.

The documentation for this class was generated from the following file:

• CoinFactorization.hpp

8.21 CoinFactorizationDoubleArrayWithLength Class Reference

CoinFactorizationDouble ∗ version.

#include <CoinIndexedVector.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.21 CoinFactorizationDoubleArrayWithLength Class Reference 79

Inheritance diagram for CoinFactorizationDoubleArrayWithLength:

CoinFactorizationDoubleArrayWithLength

CoinArrayWithLength

Collaboration diagram for CoinFactorizationDoubleArrayWithLength:

CoinFactorizationDoubleArrayWithLength

CoinArrayWithLength

char

array_

int

size_

Public Member Functions

Get methods.

• int getSize () const
Get the size.

• CoinFactorizationDouble ∗ array () const
Get Array.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.21 CoinFactorizationDoubleArrayWithLength Class Reference 80

Set methods

• void setSize (int value)
Set the size.

Condition methods

• CoinFactorizationDouble ∗ conditionalNew (int sizeWanted)
Conditionally gets new array.

Constructors and destructors

• CoinFactorizationDoubleArrayWithLength ()
Default constructor - NULL.

• CoinFactorizationDoubleArrayWithLength (int size)
Alternate Constructor - length in bytes - size_ -1.

• CoinFactorizationDoubleArrayWithLength (int size, int mode)
Alternate Constructor - length in bytes mode - 0 size_ set to size 1 size_ set to size
and zeroed.

• CoinFactorizationDoubleArrayWithLength (const CoinFactorizationDoubleArray-
WithLength &rhs)

Copy constructor.
• CoinFactorizationDoubleArrayWithLength (const CoinFactorizationDoubleArray-

WithLength ∗rhs)
Copy constructor.2.

• CoinFactorizationDoubleArrayWithLength & operator= (const CoinFactoriza-
tionDoubleArrayWithLength &rhs)

Assignment operator.

8.21.1 Detailed Description

CoinFactorizationDouble ∗ version.

Definition at line 642 of file CoinIndexedVector.hpp.

8.21.2 Constructor & Destructor Documentation

8.21.2.1 CoinFactorizationDoubleArrayWithLength::CoinFactorizationDoubleArrayWithLength (
const CoinFactorizationDoubleArrayWithLength & rhs) [inline]

Copy constructor.

Definition at line 684 of file CoinIndexedVector.hpp.

8.21.3 Member Function Documentation

8.21.3.1 CoinFactorizationDoubleArrayWithLength&
CoinFactorizationDoubleArrayWithLength::operator= (const
CoinFactorizationDoubleArrayWithLength & rhs) [inline]

Assignment operator.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.22 CoinFileInput Class Reference 81

Definition at line 690 of file CoinIndexedVector.hpp.

The documentation for this class was generated from the following file:

• CoinIndexedVector.hpp

8.22 CoinFileInput Class Reference

Abstract base class for file input classes.

#include <CoinFileIO.hpp>

Inheritance diagram for CoinFileInput:

CoinFileInput

CoinFileIOBase

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.22 CoinFileInput Class Reference 82

Collaboration diagram for CoinFileInput:

CoinFileInput

CoinFileIOBase

std::string

fileName_
readType_

std::basic_string< char >

Public Member Functions

• CoinFileInput (const std::string &fileName)

Constructor (don’t use this, use the create method instead).

• virtual ∼CoinFileInput ()

Destructor.

• virtual int read (void ∗buffer, int size)=0

Read a block of data from the file, similar to fread.

• virtual char ∗ gets (char ∗buffer, int size)=0

Reads up to (size-1) characters an stores them into the buffer, similar to fgets.

Static Public Member Functions

• static bool haveGzipSupport ()

indicates whether CoinFileInput supports gzip’ed files

• static bool haveBzip2Support ()

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.22 CoinFileInput Class Reference 83

indicates whether CoinFileInput supports bzip2’ed files

• static CoinFileInput ∗ create (const std::string &fileName)

Factory method, that creates a CoinFileInput (more precisely a subclass of it) for the
file specified.

Related Functions

(Note that these are not member functions.)

• bool fileAbsPath (const std::string &path)

Test if the given string looks like an absolute file path.

• bool fileCoinReadable (std::string &name, const std::string &dfltPrefix=std::string(""))

Test if the file is readable, using likely versions of the file name, and return the name
that worked.

8.22.1 Detailed Description

Abstract base class for file input classes.

Definition at line 37 of file CoinFileIO.hpp.

8.22.2 Constructor & Destructor Documentation

8.22.2.1 CoinFileInput::CoinFileInput (const std::string & fileName)

Constructor (don’t use this, use the create method instead).

Parameters
fileName The name of the file used by this object.

8.22.3 Member Function Documentation

8.22.3.1 static CoinFileInput∗ CoinFileInput::create (const std::string & fileName)
[static]

Factory method, that creates a CoinFileInput (more precisely a subclass of it) for the file
specified.

This method reads the first few bytes of the file and determines if this is a compressed
or a plain file and returns the correct subclass to handle it. If the file does not exist or
uses a compression not compiled in an exception is thrown.

Parameters
fileName The file that should be read.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.22 CoinFileInput Class Reference 84

8.22.3.2 virtual int CoinFileInput::read (void ∗ buffer, int size) [pure virtual]

Read a block of data from the file, similar to fread.

Parameters
buffer Address of a buffer to store the data into.

size Number of bytes to read (buffer should be large enough).

Returns

Number of bytes read.

8.22.3.3 virtual char∗ CoinFileInput::gets (char ∗ buffer, int size) [pure virtual]

Reads up to (size-1) characters an stores them into the buffer, similar to fgets.

Reading ends, when EOF or a newline occurs or (size-1) characters have been read.
The resulting string is terminated with ’\0’. If reading ends due to an encoutered new-
line, the ’

’ is put into the buffer, before the ’\0’ is appended.

Parameters
buffer The buffer to put the string into.

size The size of the buffer in characters.

Returns

buffer on success, or 0 if no characters have been read.

8.22.4 Friends And Related Function Documentation

8.22.4.1 bool fileAbsPath (const std::string & path) [related]

Test if the given string looks like an absolute file path.

The criteria are:

• unix: string begins with ‘/’

• windows: string begins with ‘\’ or with ‘drv:’ (drive specifier)

8.22.4.2 bool fileCoinReadable (std::string & name, const std::string & dfltPrefix =
std::string("")) [related]

Test if the file is readable, using likely versions of the file name, and return the name
that worked.

The file name is constructed from name using the following rules:

• An absolute path is not modified.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.23 CoinFileIOBase Class Reference 85

• If the name begins with ‘∼’, an attempt is made to replace ‘∼’ with the value of
the environment variable HOME.

• If a default prefix (dfltPrefix) is provided, it is prepended to the name.

If the constructed file name cannot be opened, and CoinUtils was built with support
for compressed files, fileCoinReadable will try any standard extensions for supported
compressed files.

The value returned in name is the file name that actually worked.

The documentation for this class was generated from the following file:

• CoinFileIO.hpp

8.23 CoinFileIOBase Class Reference

Base class for FileIO classes.

#include <CoinFileIO.hpp>

Inheritance diagram for CoinFileIOBase:

CoinFileIOBase

CoinFileInput CoinFileOutput

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.23 CoinFileIOBase Class Reference 86

Collaboration diagram for CoinFileIOBase:

CoinFileIOBase

std::string

fileName_
readType_

std::basic_string< char >

Public Member Functions

• CoinFileIOBase (const std::string &fileName)

Constructor.

• ∼CoinFileIOBase ()

Destructor.

• const char ∗ getFileName () const

Return the name of the file used by this object.

• std::string getReadType () const

Return the method of reading being used.

8.23.1 Detailed Description

Base class for FileIO classes.

Definition at line 11 of file CoinFileIO.hpp.

8.23.2 Constructor & Destructor Documentation

8.23.2.1 CoinFileIOBase::CoinFileIOBase (const std::string & fileName)

Constructor.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.24 CoinFileOutput Class Reference 87

Parameters
fileName The name of the file used by this object.

The documentation for this class was generated from the following file:

• CoinFileIO.hpp

8.24 CoinFileOutput Class Reference

Abstract base class for file output classes.

#include <CoinFileIO.hpp>

Inheritance diagram for CoinFileOutput:

CoinFileOutput

CoinFileIOBase

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.24 CoinFileOutput Class Reference 88

Collaboration diagram for CoinFileOutput:

CoinFileOutput

CoinFileIOBase

std::string

fileName_
readType_

std::basic_string< char >

Public Types

• enum Compression { COMPRESS_NONE = 0, COMPRESS_GZIP = 1, COMPRESS_-
BZIP2 = 2 }

The compression method.

Public Member Functions

• CoinFileOutput (const std::string &fileName)

Constructor (don’t use this, use the create method instead).

• virtual ∼CoinFileOutput ()

Destructor.

• virtual int write (const void ∗buffer, int size)=0

Write a block of data to the file, similar to fwrite.

• virtual bool puts (const char ∗s)

Write a string to the file (like fputs).

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.24 CoinFileOutput Class Reference 89

• bool puts (const std::string &s)

Convenience method: just a ’puts(s.c_str())’.

Static Public Member Functions

• static bool compressionSupported (Compression compression)

Returns whether the specified compression method is supported (i.e.

• static CoinFileOutput ∗ create (const std::string &fileName, Compression com-
pression)

Factory method, that creates a CoinFileOutput (more precisely a subclass of it) for the
file specified.

8.24.1 Detailed Description

Abstract base class for file output classes.

Definition at line 80 of file CoinFileIO.hpp.

8.24.2 Member Enumeration Documentation

8.24.2.1 enum CoinFileOutput::Compression

The compression method.

Enumerator:

COMPRESS_NONE No compression.

COMPRESS_GZIP gzip compression.

COMPRESS_BZIP2 bzip2 compression.

Definition at line 85 of file CoinFileIO.hpp.

8.24.3 Constructor & Destructor Documentation

8.24.3.1 CoinFileOutput::CoinFileOutput (const std::string & fileName)

Constructor (don’t use this, use the create method instead).

Parameters
fileName The name of the file used by this object.

8.24.4 Member Function Documentation

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.24 CoinFileOutput Class Reference 90

8.24.4.1 static bool CoinFileOutput::compressionSupported (Compression compression)
[static]

Returns whether the specified compression method is supported (i.e.

was compiled into COIN).

8.24.4.2 static CoinFileOutput∗ CoinFileOutput::create (const std::string & fileName,
Compression compression) [static]

Factory method, that creates a CoinFileOutput (more precisely a subclass of it) for the
file specified.

If the compression method is not supported an exception is thrown (so use compres-
sionSupported first, if this is a problem). The reason for not providing direct access to
the subclasses (and using such a method instead) is that depending on the build con-
figuration some of the classes are not available (or functional). This way we can handle
all required ifdefs here instead of polluting other files.

Parameters
fileName The file that should be read.

compression Compression method used.

8.24.4.3 virtual int CoinFileOutput::write (const void ∗ buffer, int size) [pure
virtual]

Write a block of data to the file, similar to fwrite.

Parameters
buffer Address of a buffer containing the data to be written.

size Number of bytes to write.

Returns

Number of bytes written.

8.24.4.4 virtual bool CoinFileOutput::puts (const char ∗ s) [virtual]

Write a string to the file (like fputs).

Just as with fputs no trailing newline is inserted! The terminating ’\0’ is not written to
the file. The default implementation determines the length of the string and calls write
on it.

Parameters
s The zero terminated string to be written.

Returns

true on success, false on error.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.25 CoinFirstAbsGreater_2< S, T > Class Template Reference 91

The documentation for this class was generated from the following file:

• CoinFileIO.hpp

8.25 CoinFirstAbsGreater 2< S, T > Class Template Reference

Function operator.

#include <CoinSort.hpp>

Public Member Functions

• bool operator() (CoinPair< S, T > t1, CoinPair< S, T > t2) const

Compare function.

8.25.1 Detailed Description

template<class S, class T>class CoinFirstAbsGreater 2< S, T >

Function operator.

Returns true if abs(t1.first) > abs(t2.first) (i.e., decreasing).

Definition at line 85 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

8.26 CoinFirstAbsGreater 3< S, T, U > Class Template Reference

Function operator.

#include <CoinSort.hpp>

Public Member Functions

• bool operator() (const CoinTriple< S, T, U > &t1, const CoinTriple< S, T, U >
&t2) const

Compare function.

8.26.1 Detailed Description

template<class S, class T, class U>class CoinFirstAbsGreater 3< S, T, U >

Function operator.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.27 CoinFirstAbsLess_2< S, T > Class Template Reference 92

Returns true if abs(t1.first) > abs(t2.first) (i.e., decreasing).

Definition at line 416 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

8.27 CoinFirstAbsLess 2< S, T > Class Template Reference

Function operator.

#include <CoinSort.hpp>

Public Member Functions

• bool operator() (const CoinPair< S, T > &t1, const CoinPair< S, T > &t2) const

Compare function.

8.27.1 Detailed Description

template<class S, class T>class CoinFirstAbsLess 2< S, T >

Function operator.

Returns true if abs(t1.first) < abs(t2.first) (i.e., increasing).

Definition at line 70 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

8.28 CoinFirstAbsLess 3< S, T, U > Class Template Reference

Function operator.

#include <CoinSort.hpp>

Public Member Functions

• bool operator() (const CoinTriple< S, T, U > &t1, const CoinTriple< S, T, U >
&t2) const

Compare function.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.29 CoinFirstGreater_2< S, T > Class Template Reference 93

8.28.1 Detailed Description

template<class S, class T, class U>class CoinFirstAbsLess 3< S, T, U >

Function operator.

Returns true if abs(t1.first) < abs(t2.first) (i.e., increasing).

Definition at line 401 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

8.29 CoinFirstGreater 2< S, T > Class Template Reference

Function operator.

#include <CoinSort.hpp>

Public Member Functions

• bool operator() (const CoinPair< S, T > &t1, const CoinPair< S, T > &t2) const

Compare function.

8.29.1 Detailed Description

template<class S, class T>class CoinFirstGreater 2< S, T >

Function operator.

Returns true if t1.first > t2.first (i.e, decreasing).

Definition at line 59 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

8.30 CoinFirstGreater 3< S, T, U > Class Template Reference

Function operator.

#include <CoinSort.hpp>

Public Member Functions

• bool operator() (const CoinTriple< S, T, U > &t1, const CoinTriple< S, T, U >
&t2) const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.31 CoinFirstLess_2< S, T > Class Template Reference 94

Compare function.

8.30.1 Detailed Description

template<class S, class T, class U>class CoinFirstGreater 3< S, T, U >

Function operator.

Returns true if t1.first > t2.first (i.e, decreasing).

Definition at line 390 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

8.31 CoinFirstLess 2< S, T > Class Template Reference

Function operator.

#include <CoinSort.hpp>

Public Member Functions

• bool operator() (const CoinPair< S, T > &t1, const CoinPair< S, T > &t2) const

Compare function.

8.31.1 Detailed Description

template<class S, class T>class CoinFirstLess 2< S, T >

Function operator.

Returns true if t1.first < t2.first (i.e., increasing).

Definition at line 48 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

8.32 CoinFirstLess 3< S, T, U > Class Template Reference

Function operator.

#include <CoinSort.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.33 CoinMpsIO::CoinHashLink Struct Reference 95

Public Member Functions

• bool operator() (const CoinTriple< S, T, U > &t1, const CoinTriple< S, T, U >
&t2) const

Compare function.

8.32.1 Detailed Description

template<class S, class T, class U>class CoinFirstLess 3< S, T, U >

Function operator.

Returns true if t1.first < t2.first (i.e., increasing).

Definition at line 379 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

8.33 CoinMpsIO::CoinHashLink Struct Reference

Collaboration diagram for CoinMpsIO::CoinHashLink:

CoinMpsIO::CoinHashLink

int

next
index

8.33.1 Detailed Description

Definition at line 894 of file CoinMpsIO.hpp.

The documentation for this struct was generated from the following file:

• CoinMpsIO.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.34 CoinLpIO::CoinHashLink Struct Reference 96

8.34 CoinLpIO::CoinHashLink Struct Reference

Collaboration diagram for CoinLpIO::CoinHashLink:

CoinLpIO::CoinHashLink

int

next
index

8.34.1 Detailed Description

Definition at line 572 of file CoinLpIO.hpp.

The documentation for this struct was generated from the following file:

• CoinLpIO.hpp

8.35 CoinIndexedVector Class Reference

Indexed Vector.

#include <CoinIndexedVector.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.35 CoinIndexedVector Class Reference 97

Collaboration diagram for CoinIndexedVector:

CoinIndexedVector

double

elements_

int

indices_
offset_

nElements_
capacity_

bool

packedMode_

Public Member Functions

Get methods.

• int getNumElements () const

Get the size.
• const int ∗ getIndices () const

Get indices of elements.
• int ∗ getIndices ()

Get element values.
• double ∗ denseVector () const

Get the vector as a dense vector.
• void setDenseVector (double ∗array)

For very temporary use when user needs to borrow a dense vector.
• void setIndexVector (int ∗array)

For very temporary use when user needs to borrow an index vector.
• double & operator[] (int i) const

Access the i’th element of the full storage vector.

Set methods

• void setNumElements (int value)

Set the size.
• void clear ()

Reset the vector (as if were just created an empty vector). This leaves arrays!
• void empty ()

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.35 CoinIndexedVector Class Reference 98

Reset the vector (as if were just created an empty vector)
• CoinIndexedVector & operator= (const CoinIndexedVector &)

Assignment operator.
• CoinIndexedVector & operator= (const CoinPackedVectorBase &rhs)

Assignment operator from a CoinPackedVectorBase.
• void copy (const CoinIndexedVector &rhs, double multiplier=1.0)

Copy the contents of one vector into another.
• void borrowVector (int size, int numberIndices, int ∗inds, double ∗elems)

Borrow ownership of the arguments to this vector.
• void returnVector ()

Return ownership of the arguments to this vector.
• void setVector (int numberIndices, const int ∗inds, const double ∗elems)

Set vector numberIndices, indices, and elements.
• void setVector (int size, int numberIndices, const int ∗inds, const double ∗elems)

Set vector size, indices, and elements.
• void setConstant (int size, const int ∗inds, double elems)

Elements set to have the same scalar value.
• void setFull (int size, const double ∗elems)

Indices are not specified and are taken to be 0,1,...,size-1.
• void setElement (int index, double element)

Set an existing element in the indexed vector The first argument is the "index" into
the elements() array.

• void insert (int index, double element)
Insert an element into the vector.

• void quickInsert (int index, double element)
Insert a nonzero element into the vector.

• void add (int index, double element)
Insert or if exists add an element into the vector Any resulting zero elements will be
made tiny.

• void quickAdd (int index, double element)
Insert or if exists add an element into the vector Any resulting zero elements will be
made tiny.

• void quickAddNonZero (int index, double element)
Insert or if exists add an element into the vector Any resulting zero elements will be
made tiny.

• void zero (int index)
Makes nonzero tiny.

• int clean (double tolerance)
set all small values to zero and return number remaining

• int cleanAndPack (double tolerance)
Same but packs down.

• int cleanAndPackSafe (double tolerance)
Same but packs down and is safe (i.e. if order is odd)

• void setPacked ()
Mark as packed.

• void checkClear ()
For debug check vector is clear i.e. no elements.

• void checkClean ()

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.35 CoinIndexedVector Class Reference 99

For debug check vector is clean i.e. elements match indices.
• int scan ()

Scan dense region and set up indices (returns number found)
• int scan (int start, int end)

Scan dense region from start to < end and set up indices returns number found.
• int scan (double tolerance)

Scan dense region and set up indices (returns number found).
• int scan (int start, int end, double tolerance)

Scan dense region from start to < end and set up indices returns number found.
• int scanAndPack ()

These are same but pack down.
• int scanAndPack (int start, int end)
• int scanAndPack (double tolerance)
• int scanAndPack (int start, int end, double tolerance)
• void createPacked (int number, const int ∗indices, const double ∗elements)

Create packed array.
• void expand ()

This is mainly for testing - goes from packed to indexed.
• void append (const CoinPackedVectorBase &caboose)

Append a CoinPackedVector to the end.
• void append (const CoinIndexedVector &caboose)

Append a CoinIndexedVector to the end.
• void swap (int i, int j)

Swap values in positions i and j of indices and elements.
• void truncate (int newSize)

Throw away all entries in rows >= newSize.
• void print () const

Print out.

Arithmetic operators.

• void operator+= (double value)
add value to every entry

• void operator-= (double value)
subtract value from every entry

• void operator∗= (double value)
multiply every entry by value

• void operator/= (double value)
divide every entry by value (∗∗ 0 vanishes)

Comparison operators on two indexed vectors

• bool operator== (const CoinPackedVectorBase &rhs) const
Equal.

• bool operator!= (const CoinPackedVectorBase &rhs) const
Not equal.

• bool operator== (const CoinIndexedVector &rhs) const
Equal.

• bool operator!= (const CoinIndexedVector &rhs) const
Not equal.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.35 CoinIndexedVector Class Reference 100

Index methods

• int getMaxIndex () const
Get value of maximum index.

• int getMinIndex () const
Get value of minimum index.

Sorting

• void sort ()
Sort the indexed storage vector (increasing indices).

• void sortIncrIndex ()
• void sortDecrIndex ()
• void sortIncrElement ()
• void sortDecrElement ()

Arithmetic operators on packed vectors.

NOTE: These methods operate on those positions where at least one of the argu-
ments has a value listed.

At those positions the appropriate operation is executed, Otherwise the result of the
operation is considered 0.

NOTE 2: Because these methods return an object (they can’t return a reference,
though they could return a pointer...) they are very inefficient...

• CoinIndexedVector operator+ (const CoinIndexedVector &op2)
Return the sum of two indexed vectors.

• CoinIndexedVector operator- (const CoinIndexedVector &op2)
Return the difference of two indexed vectors.

• CoinIndexedVector operator∗ (const CoinIndexedVector &op2)
Return the element-wise product of two indexed vectors.

• CoinIndexedVector operator/ (const CoinIndexedVector &op2)
Return the element-wise ratio of two indexed vectors (0.0/0.0 => 0.0) (0 vanishes)

• void operator+= (const CoinIndexedVector &op2)
The sum of two indexed vectors.

• void operator-= (const CoinIndexedVector &op2)
The difference of two indexed vectors.

• void operator∗= (const CoinIndexedVector &op2)
The element-wise product of two indexed vectors.

• void operator/= (const CoinIndexedVector &op2)
The element-wise ratio of two indexed vectors (0.0/0.0 => 0.0) (0 vanishes)

Memory usage

• void reserve (int n)
Reserve space.

• int capacity () const
capacity returns the size which could be accomodated without having to reallocate
storage.

• void setPackedMode (bool yesNo)
Sets packed mode.

• bool packedMode () const
Gets packed mode.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.35 CoinIndexedVector Class Reference 101

Constructors and destructors

• CoinIndexedVector ()

Default constructor.
• CoinIndexedVector (int size, const int ∗inds, const double ∗elems)

Alternate Constructors - set elements to vector of doubles.
• CoinIndexedVector (int size, const int ∗inds, double element)

Alternate Constructors - set elements to same scalar value.
• CoinIndexedVector (int size, const double ∗elements)

Alternate Constructors - construct full storage with indices 0 through size-1.
• CoinIndexedVector (int size)

Alternate Constructors - just size.
• CoinIndexedVector (const CoinIndexedVector &)

Copy constructor.
• CoinIndexedVector (const CoinIndexedVector ∗)

Copy constructor.2.
• CoinIndexedVector (const CoinPackedVectorBase &rhs)

Copy constructor from a PackedVectorBase.
• ∼CoinIndexedVector ()

Destructor.

Friends

• void CoinIndexedVectorUnitTest ()

A function that tests the methods in the CoinIndexedVector class.

8.35.1 Detailed Description

Indexed Vector.

This stores values unpacked but apart from that is a bit like CoinPackedVector. It is
designed to be lightweight in normal use.

It now has a "packed" mode when it is even more like CoinPackedVector

Indices array has capacity_ extra chars which are zeroed and can be used for any
purpose - but must be re-zeroed

Stores vector of indices and associated element values. Supports sorting of indices.

Does not support negative indices.

Does NOT support testing for duplicates

getElements is no longer supported

Here is a sample usage:

const int ne = 4;
int inx[ne] = { 1, 4, 0, 2 }
double el[ne] = { 10., 40., 1., 50. }

// Create vector and set its valuex1

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.35 CoinIndexedVector Class Reference 102

CoinIndexedVector r(ne,inx,el);

// access as a full storage vector
assert(r[0]==1.);
assert(r[1]==10.);
assert(r[2]==50.);
assert(r[3]==0.);
assert(r[4]==40.);

// sort Elements in increasing order
r.sortIncrElement();

// access each index and element
assert(r.getIndices ()[0]== 0);
assert(r.getIndices ()[1]== 1);
assert(r.getIndices ()[2]== 4);
assert(r.getIndices ()[3]== 2);

// access as a full storage vector
assert(r[0]==1.);
assert(r[1]==10.);
assert(r[2]==50.);
assert(r[3]==0.);
assert(r[4]==40.);

// Tests for equality and equivalence
CoinIndexedVector r1;
r1=r;
assert(r==r1);
assert(r.equivalent(r1));
r.sortIncrElement();
assert(r!=r1);
assert(r.equivalent(r1));

// Add indexed vectors.
// Similarly for subtraction, multiplication,
// and division.
CoinIndexedVector add = r + r1;
assert(add[0] == 1.+ 1.);
assert(add[1] == 10.+10.);
assert(add[2] == 50.+50.);
assert(add[3] == 0.+ 0.);
assert(add[4] == 40.+40.);

assert(r.sum() == 10.+40.+1.+50.);

Definition at line 104 of file CoinIndexedVector.hpp.

8.35.2 Constructor & Destructor Documentation

8.35.2.1 CoinIndexedVector::CoinIndexedVector (int size, const double ∗ elements)

Alternate Constructors - construct full storage with indices 0 through size-1.

8.35.2.2 CoinIndexedVector::CoinIndexedVector (const CoinIndexedVector &)

Copy constructor.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.35 CoinIndexedVector Class Reference 103

8.35.2.3 CoinIndexedVector::CoinIndexedVector (const CoinPackedVectorBase & rhs)

Copy constructor from a PackedVectorBase.

8.35.3 Member Function Documentation

8.35.3.1 int∗ CoinIndexedVector::getIndices () [inline]

Get element values.

Get indices of elements

Definition at line 117 of file CoinIndexedVector.hpp.

8.35.3.2 double∗ CoinIndexedVector::denseVector () const [inline]

Get the vector as a dense vector.

This is normal storage method. The user should not not delete [] this.

Definition at line 121 of file CoinIndexedVector.hpp.

8.35.3.3 CoinIndexedVector& CoinIndexedVector::operator= (const CoinIndexedVector
&)

Assignment operator.

8.35.3.4 CoinIndexedVector& CoinIndexedVector::operator= (const
CoinPackedVectorBase & rhs)

Assignment operator from a CoinPackedVectorBase.

NOTE: This assumes no duplicates

8.35.3.5 void CoinIndexedVector::copy (const CoinIndexedVector & rhs, double multiplier =
1.0)

Copy the contents of one vector into another.

If multiplier is 1 It is the equivalent of = but if vectors are same size does not re-allocate
memory just clears and copies

8.35.3.6 void CoinIndexedVector::borrowVector (int size, int numberIndices, int ∗ inds, double
∗ elems)

Borrow ownership of the arguments to this vector.

Size is the length of the unpacked elements vector.

8.35.3.7 void CoinIndexedVector::returnVector ()

Return ownership of the arguments to this vector.

State after is empty .

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.35 CoinIndexedVector Class Reference 104

8.35.3.8 void CoinIndexedVector::setVector (int numberIndices, const int ∗ inds, const double
∗ elems)

Set vector numberIndices, indices, and elements.

NumberIndices is the length of both the indices and elements vectors. The indices and
elements vectors are copied into this class instance’s member data. Assumed to have
no duplicates

8.35.3.9 void CoinIndexedVector::setVector (int size, int numberIndices, const int ∗ inds,
const double ∗ elems)

Set vector size, indices, and elements.

Size is the length of the unpacked elements vector. The indices and elements vectors
are copied into this class instance’s member data. We do not check for duplicate indices

8.35.3.10 void CoinIndexedVector::quickAdd (int index, double element) [inline]

Insert or if exists add an element into the vector Any resulting zero elements will be
made tiny.

This version does no checking

Definition at line 206 of file CoinIndexedVector.hpp.

8.35.3.11 void CoinIndexedVector::quickAddNonZero (int index, double element)
[inline]

Insert or if exists add an element into the vector Any resulting zero elements will be
made tiny.

This knows element is nonzero This version does no checking

Definition at line 225 of file CoinIndexedVector.hpp.

8.35.3.12 void CoinIndexedVector::zero (int index) [inline]

Makes nonzero tiny.

This version does no checking

Definition at line 243 of file CoinIndexedVector.hpp.

8.35.3.13 int CoinIndexedVector::clean (double tolerance)

set all small values to zero and return number remaining

• < tolerance => 0.0

8.35.3.14 int CoinIndexedVector::scan (double tolerance)

Scan dense region and set up indices (returns number found).

Only ones >= tolerance

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.36 CoinIntArrayWithLength Class Reference 105

8.35.3.15 int CoinIndexedVector::scan (int start, int end, double tolerance)

Scan dense region from start to < end and set up indices returns number found.

Only >= tolerance

8.35.3.16 bool CoinIndexedVector::operator== (const CoinPackedVectorBase & rhs)
const

Equal.

Returns true if vectors have same length and corresponding element of each vector is
equal.

8.35.3.17 bool CoinIndexedVector::operator== (const CoinIndexedVector & rhs) const

Equal.

Returns true if vectors have same length and corresponding element of each vector is
equal.

8.35.3.18 void CoinIndexedVector::sort () [inline]

Sort the indexed storage vector (increasing indices).

Definition at line 340 of file CoinIndexedVector.hpp.

8.35.3.19 void CoinIndexedVector::reserve (int n)

Reserve space.

If one knows the eventual size of the indexed vector, then it may be more efficient to
reserve the space.

8.35.4 Friends And Related Function Documentation

8.35.4.1 void CoinIndexedVectorUnitTest () [friend]

A function that tests the methods in the CoinIndexedVector class.

The only reason for it not to be a member method is that this way it doesn’t have to be
compiled into the library. And that’s a gain, because the library should be compiled with
optimization on, but this method should be compiled with debugging.

The documentation for this class was generated from the following file:

• CoinIndexedVector.hpp

8.36 CoinIntArrayWithLength Class Reference

int ∗ version

#include <CoinIndexedVector.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.36 CoinIntArrayWithLength Class Reference 106

Inheritance diagram for CoinIntArrayWithLength:

CoinIntArrayWithLength

CoinArrayWithLength

Collaboration diagram for CoinIntArrayWithLength:

CoinIntArrayWithLength

CoinArrayWithLength

char

array_

int

size_

Public Member Functions

Get methods.

• int getSize () const
Get the size.

• int ∗ array () const
Get Array.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.36 CoinIntArrayWithLength Class Reference 107

Set methods

• void setSize (int value)
Set the size.

Condition methods

• int ∗ conditionalNew (int sizeWanted)
Conditionally gets new array.

Constructors and destructors

• CoinIntArrayWithLength ()
Default constructor - NULL.

• CoinIntArrayWithLength (int size)
Alternate Constructor - length in bytes - size_ -1.

• CoinIntArrayWithLength (int size, int mode)
Alternate Constructor - length in bytes mode - 0 size_ set to size 1 size_ set to size
and zeroed.

• CoinIntArrayWithLength (const CoinIntArrayWithLength &rhs)
Copy constructor.

• CoinIntArrayWithLength (const CoinIntArrayWithLength ∗rhs)
Copy constructor.2.

• CoinIntArrayWithLength & operator= (const CoinIntArrayWithLength &rhs)
Assignment operator.

8.36.1 Detailed Description

int ∗ version

Definition at line 696 of file CoinIndexedVector.hpp.

8.36.2 Constructor & Destructor Documentation

8.36.2.1 CoinIntArrayWithLength::CoinIntArrayWithLength (const CoinIntArrayWithLength
& rhs) [inline]

Copy constructor.

Definition at line 738 of file CoinIndexedVector.hpp.

8.36.3 Member Function Documentation

8.36.3.1 CoinIntArrayWithLength& CoinIntArrayWithLength::operator= (const
CoinIntArrayWithLength & rhs) [inline]

Assignment operator.

Definition at line 744 of file CoinIndexedVector.hpp.

The documentation for this class was generated from the following file:

• CoinIndexedVector.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 108

8.37 CoinLpIO Class Reference

Class to read and write Lp files.

#include <CoinLpIO.hpp>

Collaboration diagram for CoinLpIO:

CoinLpIO

CoinLpIO::CoinHashLink

hash_

int

maxHash_
numberHash_

numberAcross_
numberRows_

numberColumns_
card_previous_names_

decimals_
numberElements_

next
index

CoinMessages

numberMessages_
lengthMessages_

class_

CoinOneMessageexternalNumber_

CoinMessageHandler

prefix_
g_precision_

internalNumber_
logLevels_

highestNumber_
printStatus_
logLevel_

std::vector< int >

elements

CoinPackedMatrix

maxSize_
minorDim_
majorDim_

size_
maxMajorDim_

length_
start_
index_

messages_
char

rowsense_
previous_names_

names_
objName_
fileName_

integerType_
problemName_

source_

severity_
message_

detail_

g_format_
messageOut_

format_
messageBuffer_

std::vector< char >

elements

message_

currentMessage_

Language
language_

double

rowrange_
colupper_

objectiveOffset_
objective_

rhs_
rowlower_
infinity_

rowupper_
epsilon_
collower_

...

std::vector< double >

elements

extraGap_
extraMajor_

element_

handler_charValue_

std::vector< T >

< char >

< int >

std::vector< std::string >

< std::string >

< double >

T
elements

FILE *

fp_

std::string

source_

elements

std::basic_string< char >

longValue_

stringValue_

doubleValue_

bool

defaultHandler_

colOrdered_

matrixByRow_
matrixByColumn_

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 109

Classes

• struct CoinHashLink

Public Member Functions

• void convertBoundToSense (const double lower, const double upper, char &sense,
double &right, double &range) const

A quick inlined function to convert from lb/ub style constraint definition to sense/rhs/range
style.

Constructor and Destructor

• CoinLpIO ()
Default Constructor.

• ∼CoinLpIO ()
Destructor.

• void freePreviousNames (const int section)
Free the vector previous_names_[section] and set card_previous_names_[section]
to 0.

• void freeAll ()
Free all memory (except memory related to hash tables and objName_).

Queries

• const char ∗ getProblemName () const
Get the problem name.

• void setProblemName (const char ∗name)
Set problem name.

• int getNumCols () const
Get number of columns.

• int getNumRows () const
Get number of rows.

• int getNumElements () const
Get number of nonzero elements.

• const double ∗ getColLower () const
Get pointer to array[getNumCols()] of column lower bounds.

• const double ∗ getColUpper () const
Get pointer to array[getNumCols()] of column upper bounds.

• const double ∗ getRowLower () const
Get pointer to array[getNumRows()] of row lower bounds.

• const double ∗ getRowUpper () const
Get pointer to array[getNumRows()] of row upper bounds.

• const char ∗ getRowSense () const
Get pointer to array[getNumRows()] of constraint senses.

• const double ∗ getRightHandSide () const
Get pointer to array[getNumRows()] of constraint right-hand sides.

• const double ∗ getRowRange () const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 110

Get pointer to array[getNumRows()] of row ranges.
• const double ∗ getObjCoefficients () const

Get pointer to array[getNumCols()] of objective function coefficients.
• const CoinPackedMatrix ∗ getMatrixByRow () const

Get pointer to row-wise copy of the coefficient matrix.
• const CoinPackedMatrix ∗ getMatrixByCol () const

Get pointer to column-wise copy of the coefficient matrix.
• const char ∗ getObjName () const

Get objective function name.
• void getPreviousRowNames (char const ∗const ∗prev, int ∗card_prev) const

Get pointer to array[∗card_prev] of previous row names.
• void getPreviousColNames (char const ∗const ∗prev, int ∗card_prev) const

Get pointer to array[∗card_prev] of previous column names.
• char const ∗const getRowNames () const

Get pointer to array[getNumRows()+1] of row names, including objective function
name as last entry.

• char const ∗const getColNames () const
Get pointer to array[getNumCols()] of column names.

• const char ∗ rowName (int index) const
Return the row name for the specified index.

• const char ∗ columnName (int index) const
Return the column name for the specified index.

• int rowIndex (const char ∗name) const
Return the index for the specified row name.

• int columnIndex (const char ∗name) const
Return the index for the specified column name.

• double objectiveOffset () const
Returns the (constant) objective offset.

• void setObjectiveOffset (double value)
Set objective offset.

• bool isInteger (int columnNumber) const
Return true if a column is an integer (binary or general integer) variable.

• const char ∗ integerColumns () const
Get characteristic vector of integer variables.

Parameters

• double getInfinity () const
Get infinity.

• void setInfinity (const double)
Set infinity.

• double getEpsilon () const
Get epsilon.

• void setEpsilon (const double)
Set epsilon.

• int getNumberAcross () const
Get numberAcross, the number of monomials to be printed per line.

• void setNumberAcross (const int)
Set numberAcross.

• int getDecimals () const
Get decimals, the number of digits to write after the decimal point.

• void setDecimals (const int)
Set decimals.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 111

Public methods

• void setLpDataWithoutRowAndColNames (const CoinPackedMatrix &m, const
double ∗collb, const double ∗colub, const double ∗obj_coeff, const char ∗integrality,
const double ∗rowlb, const double ∗rowub)

Set the data of the object.
• int is_invalid_name (const char ∗buff, const bool ranged) const

Return 0 if buff is a valid name for a row, a column or objective function, return a
positive number otherwise.

• int are_invalid_names (char const ∗const ∗vnames, const int card_vnames,
const bool check_ranged) const

Return 0 if each of the card_vnames entries of vnames is a valid name, return a
positive number otherwise.

• void setDefaultRowNames ()
Set objective function name to the default "obj" and row names to the default
"cons0", "cons1", ...

• void setDefaultColNames ()
Set column names to the default "x0", "x1", ...

• void setLpDataRowAndColNames (char const ∗const ∗const rownames, char
const ∗const ∗const colnames)

Set the row and column names.
• int writeLp (const char ∗filename, const double epsilon, const int number-

Across, const int decimals, const bool useRowNames=true)
Write the data in Lp format in the file with name filename.

• int writeLp (FILE ∗fp, const double epsilon, const int numberAcross, const int
decimals, const bool useRowNames=true)

Write the data in Lp format in the file pointed to by the paramater fp.
• int writeLp (const char ∗filename, const bool useRowNames=true)

Write the data in Lp format in the file with name filename.
• int writeLp (FILE ∗fp, const bool useRowNames=true)

Write the data in Lp format in the file pointed to by the parameter fp.
• void readLp (const char ∗filename, const double epsilon)

Read the data in Lp format from the file with name filename, using the given value
for epsilon.

• void readLp (const char ∗filename)
Read the data in Lp format from the file with name filename.

• void readLp (FILE ∗fp, const double epsilon)
Read the data in Lp format from the file stream, using the given value for epsilon.

• void readLp (FILE ∗fp)
Read the data in Lp format from the file stream.

• void print () const
Dump the data. Low level method for debugging.

Message handling

• void passInMessageHandler (CoinMessageHandler ∗handler)
Pass in Message handler.

• void newLanguage (CoinMessages::Language language)
Set the language for messages.

• void setLanguage (CoinMessages::Language language)
Set the language for messages.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 112

• CoinMessageHandler ∗ messageHandler () const
Return the message handler.

• CoinMessages messages ()
Return the messages.

• CoinMessages ∗ messagesPointer ()
Return the messages pointer.

Protected Member Functions

• void startHash (char const ∗const ∗const names, const COINColumnIndex num-
ber, int section)

Build the hash table for the given names.

• void stopHash (int section)

Delete hash storage.

• COINColumnIndex findHash (const char ∗name, int section) const

Return the index of the given name, return -1 if the name is not found.

• void insertHash (const char ∗thisName, int section)

Insert thisName in the hash table if not present yet; does nothing if the name is already
in.

• void out_coeff (FILE ∗fp, double v, int print_1) const

Write a coefficient.

• int find_obj (FILE ∗fp) const

Locate the objective function.

• int is_subject_to (const char ∗buff) const

Return an integer indicating if the keyword "subject to" or one of its variants has been
read.

• int first_is_number (const char ∗buff) const

Return 1 if the first character of buff is a number.

• int is_comment (const char ∗buff) const

Return 1 if the first character of buff is ’/’ or ’\’.
• void skip_comment (char ∗buff, FILE ∗fp) const

Read the file fp until buff contains an end of line.

• void scan_next (char ∗buff, FILE ∗fp) const

Put in buff the next string that is not part of a comment.

• int is_free (const char ∗buff) const

Return 1 if buff is the keyword "free" or one of its variants.

• int is_inf (const char ∗buff) const

Return 1 if buff is the keyword "inf" or one of its variants.

• int is_sense (const char ∗buff) const

Return an integer indicating the inequality sense read.

• int is_keyword (const char ∗buff) const

Return an integer indicating if one of the keywords "Bounds", "Integers", "Generals",
"Binaries", "End", or one of their variants has been read.

• int read_monom_obj (FILE ∗fp, double ∗coeff, char ∗∗name, int ∗cnt, char ∗∗obj_-
name)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 113

Read a monomial of the objective function.

• int read_monom_row (FILE ∗fp, char ∗start_str, double ∗coeff, char ∗∗name, int
cnt_coeff) const

Read a monomial of a constraint.

• void realloc_coeff (double ∗∗coeff, char ∗∗∗colNames, int ∗maxcoeff) const

Reallocate vectors related to number of coefficients.

• void realloc_row (char ∗∗∗rowNames, int ∗∗start, double ∗∗rhs, double ∗∗rowlow,
double ∗∗rowup, int ∗maxrow) const

Reallocate vectors related to rows.

• void realloc_col (double ∗∗collow, double ∗∗colup, char ∗∗is_int, int ∗maxcol)
const

Reallocate vectors related to columns.

• void read_row (FILE ∗fp, char ∗buff, double ∗∗pcoeff, char ∗∗∗pcolNames, int
∗cnt_coeff, int ∗maxcoeff, double ∗rhs, double ∗rowlow, double ∗rowup, int ∗cnt_-
row, double inf) const

Read a constraint.

• void checkRowNames ()

Check that current objective name and all row names are distinct including row names
obtained by adding "_low" for ranged constraints.

• void checkColNames ()

Check that current column names are distinct.

Protected Attributes

• char ∗ problemName_

Problem name.

• CoinMessageHandler ∗ handler_

Message handler.

• bool defaultHandler_

Flag to say if the message handler is the default handler.

• CoinMessages messages_

Messages.

• int numberRows_

Number of rows.

• int numberColumns_

Number of columns.

• int numberElements_

Number of elements.

• CoinPackedMatrix ∗ matrixByColumn_

Pointer to column-wise copy of problem matrix coefficients.

• CoinPackedMatrix ∗ matrixByRow_

Pointer to row-wise copy of problem matrix coefficients.

• double ∗ rowlower_

Pointer to dense vector of row lower bounds.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 114

• double ∗ rowupper_

Pointer to dense vector of row upper bounds.

• double ∗ collower_

Pointer to dense vector of column lower bounds.

• double ∗ colupper_

Pointer to dense vector of column upper bounds.

• double ∗ rhs_

Pointer to dense vector of row rhs.

• double ∗ rowrange_

Pointer to dense vector of slack variable upper bounds for ranged constraints (unde-
fined for non-ranged constraints)

• char ∗ rowsense_

Pointer to dense vector of row senses.

• double ∗ objective_

Pointer to dense vector of objective coefficients.

• double objectiveOffset_

Constant offset for objective value.

• char ∗ integerType_

Pointer to dense vector specifying if a variable is continuous (0) or integer (1).

• char ∗ fileName_

Current file name.

• double infinity_

Value to use for infinity.

• double epsilon_

Value to use for epsilon.

• int numberAcross_

Number of monomials printed in a row.

• int decimals_

Number of decimals printed for coefficients.

• char ∗ objName_

Objective function name.

• char ∗∗ previous_names_ [2]

Row names (including objective function name) and column names when stopHash()
for the corresponding section was last called or for initial names (deemed invalid) read
from a file.

• int card_previous_names_ [2]

card_previous_names_[section] holds the number of entries in the vector previous_-
names_[section].

• char ∗∗ names_ [2]

Row names (including objective function name) and column names (linked to Hash
tables).

• int maxHash_ [2]

Maximum number of entries in a hash table section.

• int numberHash_ [2]

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 115

Number of entries in a hash table section.

• CoinHashLink ∗ hash_ [2]

Hash tables with two sections.

8.37.1 Detailed Description

Class to read and write Lp files.

Lp file format:

/ this is a comment

\ this too

Min

obj: x0 + x1 + 3 x2 - 4.5 xyr + 1

s.t.

cons1: x0 - x2 - 2.3 x4 <= 4.2 / this is another comment

c2: x1 + x2 >= 1

cc: x1 + x2 + xyr = 2

Bounds

0 <= x1 <= 3

1 >= x2

x3 = 1

-2 <= x4 <= Inf

xyr free

Integers

x0

Generals

x1 xyr

Binaries

x2

End

Notes:

• Keywords are: Min, Max, Minimize, Maximize, s.t., Subject To, Bounds, Integers,
Generals, Binaries, End, Free, Inf.

• Keywords are not case sensitive and may be in plural or singular form. They
should not be used as objective, row or column names.

• Bounds, Integers, Generals, Binaries sections are optional.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 116

• Generals and Integers are synonymous.

• Bounds section (if any) must come before Integers, Generals, and Binaries sec-
tions.

• Row names must be followed by ’:’ without blank space. Row names are optional.
If row names are present, they must be distinct (if the k-th constraint has no given
name, its name is set automatically to "consk" for k=0,...,). For valid row names,
see the method is_invalid_name().

• Column names must be followed by a blank space. They must be distinct. For
valid column names, see the method is_invalid_name().

• The objective function name must be followed by ’:’ without blank space. Objec-
tive function name is optional (if no objective function name is given, it is set to
"obj" by default). For valid objective function names, see the method is_invalid_-
name().

• Ranged constraints are written as two constraints. If a name is given for a ranged
constraint, the upper bound constraint has that name and the lower bound con-
straint has that name with "_low" as suffix. This should be kept in mind when as-
signing names to ranged constraint, as the resulting name must be distinct from
all the other names and be considered valid by the method is_invalid_name().

• At most one constant term may appear in the objective function; if present, it must
appear last.

• Default bounds are 0 for lower bound and +infinity for upper bound.

• Free variables get default lower bound -infinity and default upper bound +infinity.
Writing "x0 Free" in an LP file means "set lower bound on x0 to -infinity".

• If more than one upper (resp. lower) bound on a variable appears in the Bounds
section, the last one is the one taken into account. The bounds for a binary
variable are set to 0/1 only if this bound is stronger than the bound obtained from
the Bounds section.

• Numbers larger than DBL_MAX (or larger than 1e+400) in the input file might
crash the code.

• A comment must start with ’\’ or ’/’. That symbol must either be the first character
of a line or be preceded by a blank space. The comment ends at the end of the
line. Comments are skipped while reading an Lp file and they may be inserted
anywhere.

Definition at line 94 of file CoinLpIO.hpp.

8.37.2 Member Function Documentation

8.37.2.1 void CoinLpIO::freePreviousNames (const int section)

Free the vector previous_names_[section] and set card_previous_names_[section] to 0.

section = 0 for row names, section = 1 for column names.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 117

8.37.2.2 const char∗ CoinLpIO::getRowSense () const

Get pointer to array[getNumRows()] of constraint senses.

• ’L’: <= constraint

• ’E’: = constraint

• ’G’: >= constraint

• ’R’: ranged constraint

• ’N’: free constraint

8.37.2.3 const double∗ CoinLpIO::getRightHandSide () const

Get pointer to array[getNumRows()] of constraint right-hand sides.

Given constraints with upper (rowupper) and/or lower (rowlower) bounds, the constraint
right-hand side (rhs) is set as

• if rowsense()[i] == ’L’ then rhs()[i] == rowupper()[i]

• if rowsense()[i] == ’G’ then rhs()[i] == rowlower()[i]

• if rowsense()[i] == ’R’ then rhs()[i] == rowupper()[i]

• if rowsense()[i] == ’N’ then rhs()[i] == 0.0

8.37.2.4 const double∗ CoinLpIO::getRowRange () const

Get pointer to array[getNumRows()] of row ranges.

Given constraints with upper (rowupper) and/or lower (rowlower) bounds, the constraint
range (rowrange) is set as

• if rowsense()[i] == ’R’ then rowrange()[i] == rowupper()[i] - rowlower()[i]

• if rowsense()[i] != ’R’ then rowrange()[i] is 0.0

Put another way, only ranged constraints have a nontrivial value for rowrange.

8.37.2.5 void CoinLpIO::getPreviousRowNames (char const ∗const ∗ prev, int ∗ card prev)
const

Get pointer to array[∗card_prev] of previous row names.

The value of ∗card_prev might be different than getNumRows()+1 if non distinct row
names were present or if no previous names were saved or if the object was holding a
different problem before.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 118

8.37.2.6 void CoinLpIO::getPreviousColNames (char const ∗const ∗ prev, int ∗ card prev)
const

Get pointer to array[∗card_prev] of previous column names.

The value of ∗card_prev might be different than getNumCols() if non distinct column
names were present of if no previous names were saved, or if the object was holding a
different problem before.

8.37.2.7 char const∗ const CoinLpIO::getRowNames () const

Get pointer to array[getNumRows()+1] of row names, including objective function name
as last entry.

8.37.2.8 const char∗ CoinLpIO::rowName (int index) const

Return the row name for the specified index.

Return the objective function name if index = getNumRows(). Return 0 if the index is
out of range or if row names are not defined.

8.37.2.9 const char∗ CoinLpIO::columnName (int index) const

Return the column name for the specified index.

Return 0 if the index is out of range or if column names are not defined.

8.37.2.10 int CoinLpIO::rowIndex (const char ∗ name) const

Return the index for the specified row name.

Return getNumRows() for the objective function name. Return -1 if the name is not
found.

8.37.2.11 int CoinLpIO::columnIndex (const char ∗ name) const

Return the index for the specified column name.

Return -1 if the name is not found.

8.37.2.12 void CoinLpIO::setInfinity (const double)

Set infinity.

Any number larger is considered infinity. Default: DBL_MAX

8.37.2.13 void CoinLpIO::setEpsilon (const double)

Set epsilon.

Default: 1e-5.

8.37.2.14 void CoinLpIO::setNumberAcross (const int)

Set numberAcross.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 119

Default: 10.

8.37.2.15 void CoinLpIO::setDecimals (const int)

Set decimals.

Default: 5

8.37.2.16 void CoinLpIO::setLpDataWithoutRowAndColNames (const CoinPackedMatrix &
m, const double ∗ collb, const double ∗ colub, const double ∗ obj coeff, const char
∗ integrality, const double ∗ rowlb, const double ∗ rowub)

Set the data of the object.

Set it from the coefficient matrix m, the lower bounds collb, the upper bounds colub,
objective function obj_coeff, integrality vector integrality, lower/upper bounds on the
constraints. The sense of optimization of the objective function is assumed to be a
minimization. Numbers larger than DBL_MAX (or larger than 1e+400) might crash the
code.

8.37.2.17 int CoinLpIO::is invalid name (const char ∗ buff, const bool ranged) const

Return 0 if buff is a valid name for a row, a column or objective function, return a positive
number otherwise.

If parameter ranged = true, the name is intended for a ranged constraint.

Return 1 if the name has more than 100 characters (96 characters for a ranged con-
straint name, as "_low" will be added to the name).

Return 2 if the name starts with a number.

Return 3 if the name is not built with the letters a to z, A to Z, the numbers 0 to 9 or the
characters " ! # $ % & () . ; ? @ _ ’ ‘ { } ∼

Return 4 if the name is a keyword.

Return 5 if the name is empty or NULL.

8.37.2.18 int CoinLpIO::are invalid names (char const ∗const ∗ vnames, const int
card vnames, const bool check ranged) const

Return 0 if each of the card_vnames entries of vnames is a valid name, return a positive
number otherwise.

The return value, if not 0, is the return value of is_invalid_name() for the last invalid
name in vnames. If check_ranged = true, the names are row names and names for
ranged constaints must be checked for additional restrictions since "_low" will be added
to the name if an Lp file is written. When check_ranged = true, card_vnames must have
getNumRows()+1 entries, with entry vnames[getNumRows()] being the name of the
objective function. For a description of valid names and return values, see the method
is_invalid_name().

This method must not be called with check_ranged = true before setLpDataWithoutRowAnd-
ColNames() has been called, since access to the indices of all the ranged constraints is
required.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 120

8.37.2.19 void CoinLpIO::setDefaultRowNames ()

Set objective function name to the default "obj" and row names to the default "cons0",
"cons1", ...

8.37.2.20 void CoinLpIO::setLpDataRowAndColNames (char const ∗const ∗const rownames,
char const ∗const ∗const colnames)

Set the row and column names.

The array rownames must either be NULL or have exactly getNumRows()+1 distinct
entries, each of them being a valid name (see is_invalid_name()) and the last entry
being the intended name for the objective function. If rownames is NULL, existing row
names and objective function name are not changed. If rownames is deemed invalid,
default row names and objective function name are used (see setDefaultRowNames()).
The memory location of array rownames (or its entries) should not be related to the
memory location of the array (or entries) obtained from getRowNames() or getPrevious-
RowNames(), as the call to setLpDataRowAndColNames() modifies the corresponding
arrays. Unpredictable results are obtained if this requirement is ignored.

Similar remarks apply to the array colnames, which must either be NULL or have exactly
getNumCols() entries.

8.37.2.21 int CoinLpIO::writeLp (const char ∗ filename, const double epsilon, const int
numberAcross, const int decimals, const bool useRowNames = true)

Write the data in Lp format in the file with name filename.

Coefficients with value less than epsilon away from an integer value are written as inte-
gers. Write at most numberAcross monomials on a line. Write non integer numbers with
decimals digits after the decimal point. Write objective function name and row names if
useRowNames = true.

Ranged constraints are written as two constraints. If row names are used, the upper
bound constraint has the name of the original ranged constraint and the lower bound
constraint has for name the original name with "_low" as suffix. If doing so creates two
identical row names, default row names are used (see setDefaultRowNames()).

8.37.2.22 int CoinLpIO::writeLp (FILE ∗ fp, const double epsilon, const int numberAcross,
const int decimals, const bool useRowNames = true)

Write the data in Lp format in the file pointed to by the paramater fp.

Coefficients with value less than epsilon away from an integer value are written as inte-
gers. Write at most numberAcross monomials on a line. Write non integer numbers with
decimals digits after the decimal point. Write objective function name and row names if
useRowNames = true.

Ranged constraints are written as two constraints. If row names are used, the upper
bound constraint has the name of the original ranged constraint and the lower bound
constraint has for name the original name with "_low" as suffix. If doing so creates two
identical row names, default row names are used (see setDefaultRowNames()).

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 121

8.37.2.23 int CoinLpIO::writeLp (const char ∗ filename, const bool useRowNames = true)

Write the data in Lp format in the file with name filename.

Write objective function name and row names if useRowNames = true.

8.37.2.24 int CoinLpIO::writeLp (FILE ∗ fp, const bool useRowNames = true)

Write the data in Lp format in the file pointed to by the parameter fp.

Write objective function name and row names if useRowNames = true.

8.37.2.25 void CoinLpIO::readLp (const char ∗ filename, const double epsilon)

Read the data in Lp format from the file with name filename, using the given value for
epsilon.

If the original problem is a maximization problem, the objective function is immediadtly
flipped to get a minimization problem.

8.37.2.26 void CoinLpIO::readLp (const char ∗ filename)

Read the data in Lp format from the file with name filename.

If the original problem is a maximization problem, the objective function is immediadtly
flipped to get a minimization problem.

8.37.2.27 void CoinLpIO::readLp (FILE ∗ fp, const double epsilon)

Read the data in Lp format from the file stream, using the given value for epsilon.

If the original problem is a maximization problem, the objective function is immediadtly
flipped to get a minimization problem.

8.37.2.28 void CoinLpIO::readLp (FILE ∗ fp)

Read the data in Lp format from the file stream.

If the original problem is a maximization problem, the objective function is immediadtly
flipped to get a minimization problem.

8.37.2.29 void CoinLpIO::passInMessageHandler (CoinMessageHandler ∗ handler)

Pass in Message handler.

Supply a custom message handler. It will not be destroyed when the CoinMpsIO object
is destroyed.

8.37.2.30 void CoinLpIO::startHash (char const ∗const ∗const names, const COINColumnIndex
number, int section) [protected]

Build the hash table for the given names.

The parameter number is the cardinality of parameter names. Remove duplicate names.

section = 0 for row names, section = 1 for column names.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 122

8.37.2.31 void CoinLpIO::stopHash (int section) [protected]

Delete hash storage.

If section = 0, it also frees objName_. section = 0 for row names, section = 1 for column
names.

8.37.2.32 COINColumnIndex CoinLpIO::findHash (const char ∗ name, int section) const
[protected]

Return the index of the given name, return -1 if the name is not found.

Return getNumRows() for the objective function name. section = 0 for row names (in-
cluding objective function name), section = 1 for column names.

8.37.2.33 void CoinLpIO::insertHash (const char ∗ thisName, int section) [protected]

Insert thisName in the hash table if not present yet; does nothing if the name is already
in.

section = 0 for row names, section = 1 for column names.

8.37.2.34 void CoinLpIO::out coeff (FILE ∗ fp, double v, int print 1) const [protected]

Write a coefficient.

print_1 = 0 : do not print the value 1.

8.37.2.35 int CoinLpIO::find obj (FILE ∗ fp) const [protected]

Locate the objective function.

Return 1 if found the keyword "Minimize" or one of its variants, -1 if found keyword
"Maximize" or one of its variants.

8.37.2.36 int CoinLpIO::is subject to (const char ∗ buff) const [protected]

Return an integer indicating if the keyword "subject to" or one of its variants has been
read.

Return 1 if buff is the keyword "s.t" or one of its variants. Return 2 if buff is the keyword
"subject" or one of its variants. Return 0 otherwise.

8.37.2.37 int CoinLpIO::first is number (const char ∗ buff) const [protected]

Return 1 if the first character of buff is a number.

Return 0 otherwise.

8.37.2.38 int CoinLpIO::is comment (const char ∗ buff) const [protected]

Return 1 if the first character of buff is ’/’ or ’\’.

Return 0 otherwise.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 123

8.37.2.39 int CoinLpIO::is free (const char ∗ buff) const [protected]

Return 1 if buff is the keyword "free" or one of its variants.

Return 0 otherwise.

8.37.2.40 int CoinLpIO::is inf (const char ∗ buff) const [protected]

Return 1 if buff is the keyword "inf" or one of its variants.

Return 0 otherwise.

8.37.2.41 int CoinLpIO::is sense (const char ∗ buff) const [protected]

Return an integer indicating the inequality sense read.

Return 0 if buff is ’<=’. Return 1 if buff is ’=’. Return 2 if buff is ’>=’. Return -1 otherwise.

8.37.2.42 int CoinLpIO::is keyword (const char ∗ buff) const [protected]

Return an integer indicating if one of the keywords "Bounds", "Integers", "Generals",
"Binaries", "End", or one of their variants has been read.

Return 1 if buff is the keyword "Bounds" or one of its variants. Return 2 if buff is the
keyword "Integers" or "Generals" or one of their variants. Return 3 if buff is the keyword
"Binaries" or one of its variants. Return 4 if buff is the keyword "End" or one of its
variants. Return 0 otherwise.

8.37.2.43 int CoinLpIO::read monom obj (FILE ∗ fp, double ∗ coeff, char ∗∗ name, int ∗ cnt,
char ∗∗ obj name) [protected]

Read a monomial of the objective function.

Return 1 if "subject to" or one of its variants has been read.

8.37.2.44 int CoinLpIO::read monom row (FILE ∗ fp, char ∗ start str, double ∗ coeff, char ∗∗
name, int cnt coeff) const [protected]

Read a monomial of a constraint.

Return a positive number if the sense of the inequality has been read (see method
is_sense() for the return code). Return -1 otherwise.

8.37.2.45 void CoinLpIO::checkRowNames () [protected]

Check that current objective name and all row names are distinct including row names
obtained by adding "_low" for ranged constraints.

If there is a conflict in the names, they are replaced by default row names (see setDe-
faultRowNames()).

This method must not be called before setLpDataWithoutRowAndColNames() has been
called, since access to the indices of all the ranged constraints is required.

This method must not be called before setLpDataRowAndColNames() has been called,

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.37 CoinLpIO Class Reference 124

since access to all the row names is required.

8.37.2.46 void CoinLpIO::checkColNames () [protected]

Check that current column names are distinct.

If not, they are replaced by default column names (see setDefaultColNames()).

This method must not be called before setLpDataRowAndColNames() has been called,
since access to all the column names is required.

8.37.3 Member Data Documentation

8.37.3.1 bool CoinLpIO::defaultHandler_ [protected]

Flag to say if the message handler is the default handler.

If true, the handler will be destroyed when the CoinMpsIO object is destroyed; if false, it
will not be destroyed.

Definition at line 482 of file CoinLpIO.hpp.

8.37.3.2 char∗ CoinLpIO::integerType_ [protected]

Pointer to dense vector specifying if a variable is continuous (0) or integer (1).

Definition at line 532 of file CoinLpIO.hpp.

8.37.3.3 char∗∗ CoinLpIO::previous_names_[2] [protected]

Row names (including objective function name) and column names when stopHash()
for the corresponding section was last called or for initial names (deemed invalid) read
from a file.

section = 0 for row names, section = 1 for column names.

Definition at line 558 of file CoinLpIO.hpp.

8.37.3.4 int CoinLpIO::card_previous_names_[2] [protected]

card_previous_names_[section] holds the number of entries in the vector previous_-
names_[section].

section = 0 for row names, section = 1 for column names.

Definition at line 564 of file CoinLpIO.hpp.

8.37.3.5 char∗∗ CoinLpIO::names_[2] [protected]

Row names (including objective function name) and column names (linked to Hash
tables).

section = 0 for row names, section = 1 for column names.

Definition at line 570 of file CoinLpIO.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.38 CoinMessage Class Reference 125

8.37.3.6 int CoinLpIO::maxHash_[2] [protected]

Maximum number of entries in a hash table section.

section = 0 for row names, section = 1 for column names.

Definition at line 579 of file CoinLpIO.hpp.

8.37.3.7 int CoinLpIO::numberHash_[2] [protected]

Number of entries in a hash table section.

section = 0 for row names, section = 1 for column names.

Definition at line 584 of file CoinLpIO.hpp.

8.37.3.8 CoinHashLink∗ CoinLpIO::hash_[2] [mutable, protected]

Hash tables with two sections.

section = 0 for row names (including objective function name), section = 1 for column
names.

Definition at line 589 of file CoinLpIO.hpp.

The documentation for this class was generated from the following file:

• CoinLpIO.hpp

8.38 CoinMessage Class Reference

The standard set of Coin messages.

#include <CoinMessage.hpp>

Inheritance diagram for CoinMessage:

CoinMessage

CoinMessages

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.38 CoinMessage Class Reference 126

Collaboration diagram for CoinMessage:

CoinMessage

CoinMessages

char

source_ CoinOneMessage

severity_
message_
detail_

message_

int

numberMessages_
lengthMessages_

class_

externalNumber_

Language

language_

Public Member Functions

Constructors etc

• CoinMessage (Language language=us_en)
Constructor.

8.38.1 Detailed Description

The standard set of Coin messages.

This class provides convenient access to the standard set of Coin messages. In a
nutshell, it’s a CoinMessages object with a constructor that preloads the standard Coin
messages.

Definition at line 79 of file CoinMessage.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.39 CoinMessageHandler Class Reference 127

8.38.2 Constructor & Destructor Documentation

8.38.2.1 CoinMessage::CoinMessage (Language language = us en)

Constructor.

Build a CoinMessages object and load it with the standard set of Coin messages.

The documentation for this class was generated from the following file:

• CoinMessage.hpp

8.39 CoinMessageHandler Class Reference

Base class for message handling.

#include <CoinMessageHandler.hpp>

Collaboration diagram for CoinMessageHandler:

CoinMessageHandler

std::vector< char >

charValue_

char

g_format_
messageOut_

format_
messageBuffer_

elements

CoinOneMessage

severity_
message_

detail_

std::vector< T >

< char >

std::vector< int >< int >

std::vector< std::string >

< std::string >
std::vector< double >

< double >
T

elements

FILE *
fp_

currentMessage_

int

prefix_
g_precision_

internalNumber_
logLevels_

highestNumber_
printStatus_
logLevel_

externalNumber_

elements

std::string

source_elements

std::basic_string< char >

longValue_

stringValue_

doubleValue_

double

elements

Public Member Functions

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.39 CoinMessageHandler Class Reference 128

Virtual methods that the derived classes may provide

• virtual int print ()
Print message, return 0 normally.

• virtual void checkSeverity ()
Check message severity - if too bad then abort.

Constructors etc

• CoinMessageHandler ()
Constructor.

• CoinMessageHandler (FILE ∗fp)
Constructor to put to file pointer (won’t be closed)

• virtual ∼CoinMessageHandler ()
Destructor.

• CoinMessageHandler (const CoinMessageHandler &)
The copy constructor.

• CoinMessageHandler & operator= (const CoinMessageHandler &)
Assignment operator.

• virtual CoinMessageHandler ∗ clone () const
Clone.

Get and set methods

• int detail (int messageNumber, const CoinMessages &normalMessage) const

Get detail level of a message.
• int logLevel () const

Get current log (detail) level.
• void setLogLevel (int value)

Set current log (detail) level.
• int logLevel (int which) const

Get alternative log level.
• void setLogLevel (int which, int value)

Set alternative log level value.
• void setPrecision (unsigned int new_precision)

Set the number of significant digits for printing floating point numbers.
• int precision ()

Current number of significant digits for printing floating point numbers.
• void setPrefix (bool yesNo)

Switch message prefix on or off.
• bool prefix () const

Current setting for printing message prefix.
• double doubleValue (int position) const

Values of double fields already processed.
• int numberDoubleFields () const

Number of double fields already processed.
• int intValue (int position) const

Values of integer fields already processed.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.39 CoinMessageHandler Class Reference 129

• int numberIntFields () const
Number of integer fields already processed.

• char charValue (int position) const
Values of char fields already processed.

• int numberCharFields () const
Number of char fields already processed.

• std::string stringValue (int position) const
Values of string fields already processed.

• int numberStringFields () const
Number of string fields already processed.

• CoinOneMessage currentMessage () const
Current message.

• std::string currentSource () const
Source of current message.

• const char ∗ messageBuffer () const
Output buffer.

• int highestNumber () const
Highest message number (indicates any errors)

• FILE ∗ filePointer () const
Get current file pointer.

• void setFilePointer (FILE ∗fp)
Set new file pointer.

Actions to create a message

• CoinMessageHandler & message (int messageNumber, const CoinMessages
&messages)

Start a message.
• CoinMessageHandler & message ()

Start or continue a message.
• CoinMessageHandler & message (int externalNumber, const char ∗header,

const char ∗msg, char severity)
Generate a standard prefix and append msg ‘as is’.

• CoinMessageHandler & operator<< (int intvalue)
Process an integer parameter value.

• CoinMessageHandler & operator<< (double doublevalue)
Process a double parameter value.

• CoinMessageHandler & operator<< (const std::string &stringvalue)
Process a STL string parameter value.

• CoinMessageHandler & operator<< (char charvalue)
Process a char parameter value.

• CoinMessageHandler & operator<< (const char ∗stringvalue)
Process a C-style string parameter value.

• CoinMessageHandler & operator<< (CoinMessageMarker)
Process a marker.

• int finish ()
Finish (and print) the message.

• CoinMessageHandler & printing (bool onOff)
Enable or disable printing of an optional portion of a message.

• char ∗ nextPerCent (char ∗start, const bool initial=false)
Internal function to locate next format code.

• int internalPrint ()
Internal printing function.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.39 CoinMessageHandler Class Reference 130

Protected Attributes

Protected member data

• std::vector< double > doubleValue_

values in message
• std::vector< int > longValue_
• std::vector< char > charValue_
• std::vector< std::string > stringValue_
• int logLevel_

Log level.
• int logLevels_ [COIN_NUM_LOG]

Log levels.
• int prefix_

Whether we want prefix (may get more subtle so is int)
• CoinOneMessage currentMessage_

Current message.
• int internalNumber_

Internal number for use with enums.
• char ∗ format_

Format string for message (remainder)
• char messageBuffer_ [COIN_MESSAGE_HANDLER_MAX_BUFFER_SIZE]

Output buffer.
• char ∗ messageOut_

Position in output buffer.
• std::string source_

Current source of message.
• int printStatus_

0 - normal, 1 - put in values, move along format, no print 2 - put in values, no print
3 - skip message

• int highestNumber_

Highest message number (indicates any errors)
• FILE ∗ fp_

File pointer.
• char g_format_ [8]

Current format for floating point numbers.
• int g_precision_

Current number of significant digits for floating point numbers.

Friends

• bool CoinMessageHandlerUnitTest ()

A function that tests the methods in the CoinMessageHandler class.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.39 CoinMessageHandler Class Reference 131

8.39.1 Detailed Description

Base class for message handling.

The default behavior is described here: messages are printed, and (if the severity is
sufficiently high) execution will be aborted. Inherit and redefine the methods print and
checkSeverity to augment the behaviour.

Messages can be printed with or without a prefix; the prefix will consist of a source
string, the external ID number, and a letter code, e.g., Clp6024W. A prefix makes the
messages look less nimble but is very useful for "grep" etc.

Usage

The general approach to using the COIN messaging facility is as follows:

• Define your messages. For each message, you must supply an external ID num-
ber, a log (detail) level, and a format string. Typically, you define a convenience
structure for this, something that’s easy to use to create an array of initialised
message definitions at compile time.

• Create a CoinMessages object, sized to accommodate the number of messages
you’ve defined. (Incremental growth will happen if necessary as messages are
loaded, but it’s inefficient.)

• Load the messages into the CoinMessages object. Typically this entails creat-
ing a CoinOneMessage object for each message and passing it as a parameter
to CoinMessages::addMessage(). You specify the message’s internal ID as the
other parameter to addMessage.

• Create and use a CoinMessageHandler object to print messages.

See, for example, CoinMessage.hpp and CoinMessage.cpp for an example of the first
three steps. ‘Format codes’ below has a simple example of printing a message.

External ID numbers and severity

CoinMessageHandler assumes the following relationship between the external ID num-
ber of a message and the severity of the message:

• <3000 are informational (’I’)

• <6000 warnings (’W’)

• <9000 non-fatal errors (’E’)

• >=9000 aborts the program (after printing the message) (’S’)

Format codes

CoinMessageHandler can print integers (normal, long, and long long), doubles, charac-
ters, and strings. See the descriptions of the various << operators.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.39 CoinMessageHandler Class Reference 132

When processing a standard message with a format string, the formatting codes spec-
ified in the format string will be passed to the sprintf function, along with the argument.
When generating a message with no format string, each << operator uses a simple
format code appropriate for its argument. Consult the documentation for the standard
printf facility for further information on format codes.

The special format code ‘%?’ provides a hook to enable or disable printing. For each
‘%?’ code, there must be a corresponding call to printing(bool). This provides a way
to define optional parts in messages, delineated by the code ‘%?’ in the format string.
Printing can be suppressed for these optional parts, but any operands must still be
supplied. For example, given the message string

"A message with%? an optional integer %d and%? a double %g."

installed in CoinMessages exampleMsgswith index 5, and CoinMessageHandler
hdl, the code

hdl.message(5,exampleMsgs) ;
hdl.printing(true) << 42 ;
hdl.printing(true) << 53.5 << CoinMessageEol ;

will print

A message with an optional integer 42 and a double 53.5.

while

hdl.message(5,exampleMsgs) ;
hdl.printing(false) << 42 ;
hdl.printing(true) << 53.5 << CoinMessageEol ;

will print

A message with a double 53.5.

For additional examples of usage, see CoinMessageHandlerUnitTest in CoinMessage-
HandlerTest.cpp.

Definition at line 313 of file CoinMessageHandler.hpp.

8.39.2 Member Function Documentation

8.39.2.1 CoinMessageHandler& CoinMessageHandler::operator= (const
CoinMessageHandler &)

Assignment operator.

8.39.2.2 int CoinMessageHandler::logLevel () const [inline]

Get current log (detail) level.

Definition at line 353 of file CoinMessageHandler.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.39 CoinMessageHandler Class Reference 133

8.39.2.3 void CoinMessageHandler::setLogLevel (int value)

Set current log (detail) level.

If the log level is equal or greater than the detail level of a message, the message will
be printed. A rough convention for the amount of output expected is

• 0 - none

• 1 - minimal

• 2 - normal low

• 3 - normal high

• 4 - verbose

Please assign log levels to messages accordingly. Log levels of 8 and above (8,16,32,
etc.) are intended for selective debugging. The logical AND of the log level specified in
the message and the current log level is used to determine if the message is printed.
(In other words, you’re using individual bits to determine which messages are printed.)

8.39.2.4 int CoinMessageHandler::logLevel (int which) const [inline]

Get alternative log level.

Definition at line 374 of file CoinMessageHandler.hpp.

8.39.2.5 void CoinMessageHandler::setLogLevel (int which, int value)

Set alternative log level value.

Can be used to store alternative log level information within the handler.

8.39.2.6 double CoinMessageHandler::doubleValue (int position) const [inline]

Values of double fields already processed.

As the parameter for a double field is processed, the value is saved and can be retrieved
using this function.

Definition at line 396 of file CoinMessageHandler.hpp.

8.39.2.7 int CoinMessageHandler::numberDoubleFields () const [inline]

Number of double fields already processed.

Incremented each time a field of type double is processed.

Definition at line 402 of file CoinMessageHandler.hpp.

8.39.2.8 int CoinMessageHandler::intValue (int position) const [inline]

Values of integer fields already processed.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.39 CoinMessageHandler Class Reference 134

As the parameter for a integer field is processed, the value is saved and can be retrieved
using this function.

Definition at line 409 of file CoinMessageHandler.hpp.

8.39.2.9 int CoinMessageHandler::numberIntFields () const [inline]

Number of integer fields already processed.

Incremented each time a field of type integer is processed.

Definition at line 415 of file CoinMessageHandler.hpp.

8.39.2.10 char CoinMessageHandler::charValue (int position) const [inline]

Values of char fields already processed.

As the parameter for a char field is processed, the value is saved and can be retrieved
using this function.

Definition at line 422 of file CoinMessageHandler.hpp.

8.39.2.11 int CoinMessageHandler::numberCharFields () const [inline]

Number of char fields already processed.

Incremented each time a field of type char is processed.

Definition at line 428 of file CoinMessageHandler.hpp.

8.39.2.12 std::string CoinMessageHandler::stringValue (int position) const [inline]

Values of string fields already processed.

As the parameter for a string field is processed, the value is saved and can be retrieved
using this function.

Definition at line 435 of file CoinMessageHandler.hpp.

8.39.2.13 int CoinMessageHandler::numberStringFields () const [inline]

Number of string fields already processed.

Incremented each time a field of type string is processed.

Definition at line 441 of file CoinMessageHandler.hpp.

8.39.2.14 CoinMessageHandler& CoinMessageHandler::message (int messageNumber,
const CoinMessages & messages)

Start a message.

Look up the specified message. A prefix will be generated if enabled. The message will
be printed if the current log level is equal or greater than the log level of the message.

8.39.2.15 CoinMessageHandler& CoinMessageHandler::message ()

Start or continue a message.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.39 CoinMessageHandler Class Reference 135

Does nothing except return a reference to the handler. This can be used with any of the
<< operators. One use is to start a message which will be constructed entirely from
scratch. Another use is continuation of a message after code that interrupts the usual
sequence of << operators.

8.39.2.16 CoinMessageHandler& CoinMessageHandler::message (int externalNumber,
const char ∗ header, const char ∗ msg, char severity)

Generate a standard prefix and append msg ‘as is’.

Intended as a transition mechanism. The standard prefix is generated (if enabled), and
msg is appended. Only the operator<<(CoinMessageMarker) operator can be used
with a message started with this call.

8.39.2.17 CoinMessageHandler& CoinMessageHandler::operator<< (int intvalue)

Process an integer parameter value.

The default format code is ‘d’.

8.39.2.18 CoinMessageHandler& CoinMessageHandler::operator<< (double doublevalue
)

Process a double parameter value.

The default format code is ‘d’.

8.39.2.19 CoinMessageHandler& CoinMessageHandler::operator<< (const std::string &
stringvalue)

Process a STL string parameter value.

The default format code is ‘g’.

8.39.2.20 CoinMessageHandler& CoinMessageHandler::operator<< (char charvalue)

Process a char parameter value.

The default format code is ‘s’.

8.39.2.21 CoinMessageHandler& CoinMessageHandler::operator<< (const char ∗
stringvalue)

Process a C-style string parameter value.

The default format code is ‘c’.

8.39.2.22 CoinMessageHandler& CoinMessageHandler::operator<< (CoinMessageMarker
)

Process a marker.

The default format code is ‘s’.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.40 CoinMessages Class Reference 136

8.39.2.23 int CoinMessageHandler::finish ()

Finish (and print) the message.

Equivalent to using the CoinMessageEol marker.

8.39.2.24 CoinMessageHandler& CoinMessageHandler::printing (bool onOff)

Enable or disable printing of an optional portion of a message.

Optional portions of a message are delimited by ‘%?’ markers, and printing processes
one %? marker. If onOff is true, the subsequent portion of the message (to the next
%? marker or the end of the format string) will be printed. If onOff is false, printing is
suppressed. Parameters must still be supplied, whether printing is suppressed or not.
See the class documentation for an example.

8.39.2.25 char∗ CoinMessageHandler::nextPerCent (char ∗ start, const bool initial = false)

Internal function to locate next format code.

Intended for internal use. Side effects modify the format string.

8.39.2.26 int CoinMessageHandler::internalPrint ()

Internal printing function.

Makes it easier to split up print into clean, print and check severity

8.39.3 Friends And Related Function Documentation

8.39.3.1 bool CoinMessageHandlerUnitTest () [friend]

A function that tests the methods in the CoinMessageHandler class.

The only reason for it not to be a member method is that this way it doesn’t have to be
compiled into the library. And that’s a gain, because the library should be compiled with
optimization on, but this method should be compiled with debugging.

The documentation for this class was generated from the following file:

• CoinMessageHandler.hpp

8.40 CoinMessages Class Reference

Class to hold and manipulate an array of massaged messages.

#include <CoinMessageHandler.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.40 CoinMessages Class Reference 137

Inheritance diagram for CoinMessages:

CoinMessages

CoinMessage

Collaboration diagram for CoinMessages:

CoinMessages

char

source_ CoinOneMessage

severity_
message_
detail_

message_

int

numberMessages_
lengthMessages_

class_

externalNumber_

Language

language_

Public Types

• enum Language

Supported languages.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.40 CoinMessages Class Reference 138

Public Member Functions

Constructors etc

• CoinMessages (int numberMessages=0)
Constructor with number of messages.

• ∼CoinMessages ()
Destructor.

• CoinMessages (const CoinMessages &)
The copy constructor.

• CoinMessages & operator= (const CoinMessages &)
assignment operator.

Useful stuff

• void addMessage (int messageNumber, const CoinOneMessage &message)

Installs a new message in the specified index position.
• void replaceMessage (int messageNumber, const char ∗message)

Replaces the text of the specified message.
• Language language () const

Language.
• void setLanguage (Language newlanguage)

Set language.
• void setDetailMessage (int newLevel, int messageNumber)

Change detail level for one message.
• void setDetailMessages (int newLevel, int numberMessages, int ∗messageNumbers)

Change detail level for several messages.
• void setDetailMessages (int newLevel, int low, int high)

Change detail level for all messages with low <= ID number < high.
• int getClass () const

Returns class.
• void toCompact ()

Moves to compact format.
• void fromCompact ()

Moves from compact format.

Public Attributes

member data

• int numberMessages_
Number of messages.

• Language language_
Language.

• char source_ [5]
Source (null-terminated string, maximum 4 characters).

• int class_

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.40 CoinMessages Class Reference 139

Class - see later on before CoinMessageHandler.
• int lengthMessages_

Length of fake CoinOneMessage array.
• CoinOneMessage ∗∗ message_

Messages.

8.40.1 Detailed Description

Class to hold and manipulate an array of massaged messages.

Note that the message index used to reference a message in the array of messages is
completely distinct from the external ID number stored with the message.

Definition at line 124 of file CoinMessageHandler.hpp.

8.40.2 Member Enumeration Documentation

8.40.2.1 enum CoinMessages::Language

Supported languages.

These are the languages that are supported. At present only us_en is serious and the
rest are for testing.

Definition at line 132 of file CoinMessageHandler.hpp.

8.40.3 Constructor & Destructor Documentation

8.40.3.1 CoinMessages::CoinMessages (int numberMessages = 0)

Constructor with number of messages.

8.40.4 Member Function Documentation

8.40.4.1 CoinMessages& CoinMessages::operator= (const CoinMessages &)

assignment operator.

8.40.4.2 void CoinMessages::addMessage (int messageNumber, const CoinOneMessage &
message)

Installs a new message in the specified index position.

Any existing message is replaced, and a copy of the specified message is installed.

8.40.4.3 void CoinMessages::replaceMessage (int messageNumber, const char ∗ message)

Replaces the text of the specified message.

Any existing text is deleted and the specified text is copied into the specified message.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 140

8.40.4.4 Language CoinMessages::language () const [inline]

Language.

Need to think about iso codes

Definition at line 165 of file CoinMessageHandler.hpp.

8.40.4.5 void CoinMessages::setDetailMessages (int newLevel, int numberMessages, int ∗
messageNumbers)

Change detail level for several messages.

messageNumbers is expected to contain the indices of the messages to be changed. If
numberMessages >= 10000 or messageNumbers is NULL, the detail level is changed
on all messages.

8.40.5 Member Data Documentation

8.40.5.1 int CoinMessages::lengthMessages_

Length of fake CoinOneMessage array.

First you get numberMessages_ pointers which point to stuff

Definition at line 206 of file CoinMessageHandler.hpp.

The documentation for this class was generated from the following file:

• CoinMessageHandler.hpp

8.41 CoinModel Class Reference

This is a simple minded model which is stored in a format which makes it easier to
construct and modify but not efficient for algorithms.

#include <CoinModel.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 141

Inheritance diagram for CoinModel:

CoinModel

CoinBaseModel

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 142

Collaboration diagram for CoinModel:

CoinModel

CoinBaseModel

double

objective_
associated_

columnUpper_
rowLower_
rowUpper_

referenceSOS_
columnLower_
sortElements_

optimizationDirection_
objectiveOffset_

CoinModelTriple

value CoinPackedMatrix

extraGap_
extraMajor_

element_

int

startSOS_
numberQuadraticElements_

rowType_
memberSOS_

maximumQuadraticElements_
maximumColumns_

maximumRows_
numberSOS_
sortIndices_

links_
...

numberRows_
numberColumns_

logLevel_

CoinModelHash

numberItems_
lastSlot_

maximumItems_

CoinModelHashLink

next
index

row
column

CoinModelLinkedList

first_
last_

numberMajor_
next_

maximumMajor_
previous_

maximumElements_
numberElements_

type_

CoinModelHash2

numberItems_
lastSlot_

maximumItems_

maxSize_
minorDim_
majorDim_

size_
maxMajorDim_

length_
start_
index_

std::string

columnBlockName_
rowBlockName_
problemName_std::basic_string< char >

columnName_
rowName_

string_

char

names_

hash_

hash_

quadraticElements_
elements_

columnList_
rowList_

quadraticColumnList_
quadraticRowList_

hashQuadraticElements_
hashElements_

void *

moreInfo_

packedMatrix_

bool

colOrdered_

Public Member Functions

• int computeAssociated (double ∗associated)

Fills in all associated - returning number of errors.
• CoinPackedMatrix ∗ quadraticRow (int rowNumber, double ∗linear, int &number-

Bad) const

Gets correct form for a quadratic row - user to delete If row is not quadratic then
returns which other variables are involved with tiny (1.0e-100) elements and count of
total number of variables which could not be put in quadratic form.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 143

• void replaceQuadraticRow (int rowNumber, const double ∗linear, const CoinPacked-
Matrix ∗quadraticPart)

Replaces a quadratic row.

• CoinModel ∗ reorder (const char ∗mark) const

If possible return a model where if all variables marked nonzero are fixed the problem
will be linear.

• int expandKnapsack (int knapsackRow, int &numberOutput, double ∗buildObj,
CoinBigIndex ∗buildStart, int ∗buildRow, double ∗buildElement, int reConstruct=-
1) const

Expands out all possible combinations for a knapsack If buildObj NULL then just com-
putes space needed - returns number elements On entry numberOutput is maximum
allowed, on exit it is number needed or.

• void setCutMarker (int size, const int ∗marker)

Sets cut marker array.

• void setPriorities (int size, const int ∗priorities)

Sets priority array.

• const int ∗ priorities () const

priorities (given for all columns (-1 if not integer)

• void setOriginalIndices (const int ∗row, const int ∗column)

For decomposition set original row and column indices.

Useful methods for building model

• void addRow (int numberInRow, const int ∗columns, const double ∗elements,
double rowLower=-COIN_DBL_MAX, double rowUpper=COIN_DBL_MAX, const
char ∗name=NULL)

add a row - numberInRow may be zero
• void addColumn (int numberInColumn, const int ∗rows, const double ∗elements,

double columnLower=0.0, double columnUpper=COIN_DBL_MAX, double ob-
jectiveValue=0.0, const char ∗name=NULL, bool isInteger=false)

add a column - numberInColumn may be zero ∗/
• void addCol (int numberInColumn, const int ∗rows, const double ∗elements,

double columnLower=0.0, double columnUpper=COIN_DBL_MAX, double ob-
jectiveValue=0.0, const char ∗name=NULL, bool isInteger=false)

add a column - numberInColumn may be zero ∗/
• void operator() (int i, int j, double value)

Sets value for row i and column j.
• void setElement (int i, int j, double value)

Sets value for row i and column j.
• int getRow (int whichRow, int ∗column, double ∗element)

Gets sorted row - user must provide enough space (easiest is allocate number of
columns).

• int getColumn (int whichColumn, int ∗column, double ∗element)
Gets sorted column - user must provide enough space (easiest is allocate number
of rows).

• void setQuadraticElement (int i, int j, double value)

Sets quadratic value for column i and j.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 144

• void operator() (int i, int j, const char ∗value)
Sets value for row i and column j as string.

• void setElement (int i, int j, const char ∗value)
Sets value for row i and column j as string.

• int associateElement (const char ∗stringValue, double value)
Associates a string with a value. Returns string id (or -1 if does not exist)

• void setRowLower (int whichRow, double rowLower)
Sets rowLower (if row does not exist then all rows up to this are defined with default
values and no elements)

• void setRowUpper (int whichRow, double rowUpper)
Sets rowUpper (if row does not exist then all rows up to this are defined with default
values and no elements)

• void setRowBounds (int whichRow, double rowLower, double rowUpper)
Sets rowLower and rowUpper (if row does not exist then all rows up to this are
defined with default values and no elements)

• void setRowName (int whichRow, const char ∗rowName)
Sets name (if row does not exist then all rows up to this are defined with default
values and no elements)

• void setColumnLower (int whichColumn, double columnLower)
Sets columnLower (if column does not exist then all columns up to this are defined
with default values and no elements)

• void setColumnUpper (int whichColumn, double columnUpper)
Sets columnUpper (if column does not exist then all columns up to this are defined
with default values and no elements)

• void setColumnBounds (int whichColumn, double columnLower, double colum-
nUpper)

Sets columnLower and columnUpper (if column does not exist then all columns up
to this are defined with default values and no elements)

• void setColumnObjective (int whichColumn, double columnObjective)
Sets columnObjective (if column does not exist then all columns up to this are
defined with default values and no elements)

• void setColumnName (int whichColumn, const char ∗columnName)
Sets name (if column does not exist then all columns up to this are defined with
default values and no elements)

• void setColumnIsInteger (int whichColumn, bool columnIsInteger)
Sets integer state (if column does not exist then all columns up to this are defined
with default values and no elements)

• void setObjective (int whichColumn, double columnObjective)
Sets columnObjective (if column does not exist then all columns up to this are
defined with default values and no elements)

• void setIsInteger (int whichColumn, bool columnIsInteger)
Sets integer state (if column does not exist then all columns up to this are defined
with default values and no elements)

• void setInteger (int whichColumn)
Sets integer (if column does not exist then all columns up to this are defined with
default values and no elements)

• void setContinuous (int whichColumn)
Sets continuous (if column does not exist then all columns up to this are defined
with default values and no elements)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 145

• void setColLower (int whichColumn, double columnLower)
Sets columnLower (if column does not exist then all columns up to this are defined
with default values and no elements)

• void setColUpper (int whichColumn, double columnUpper)
Sets columnUpper (if column does not exist then all columns up to this are defined
with default values and no elements)

• void setColBounds (int whichColumn, double columnLower, double columnUp-
per)

Sets columnLower and columnUpper (if column does not exist then all columns up
to this are defined with default values and no elements)

• void setColObjective (int whichColumn, double columnObjective)
Sets columnObjective (if column does not exist then all columns up to this are
defined with default values and no elements)

• void setColName (int whichColumn, const char ∗columnName)
Sets name (if column does not exist then all columns up to this are defined with
default values and no elements)

• void setColIsInteger (int whichColumn, bool columnIsInteger)
Sets integer (if column does not exist then all columns up to this are defined with
default values and no elements)

• void setRowLower (int whichRow, const char ∗rowLower)
Sets rowLower (if row does not exist then all rows up to this are defined with default
values and no elements)

• void setRowUpper (int whichRow, const char ∗rowUpper)
Sets rowUpper (if row does not exist then all rows up to this are defined with default
values and no elements)

• void setColumnLower (int whichColumn, const char ∗columnLower)
Sets columnLower (if column does not exist then all columns up to this are defined
with default values and no elements)

• void setColumnUpper (int whichColumn, const char ∗columnUpper)
Sets columnUpper (if column does not exist then all columns up to this are defined
with default values and no elements)

• void setColumnObjective (int whichColumn, const char ∗columnObjective)
Sets columnObjective (if column does not exist then all columns up to this are
defined with default values and no elements)

• void setColumnIsInteger (int whichColumn, const char ∗columnIsInteger)
Sets integer (if column does not exist then all columns up to this are defined with
default values and no elements)

• void setObjective (int whichColumn, const char ∗columnObjective)
Sets columnObjective (if column does not exist then all columns up to this are
defined with default values and no elements)

• void setIsInteger (int whichColumn, const char ∗columnIsInteger)
Sets integer (if column does not exist then all columns up to this are defined with
default values and no elements)

• void deleteRow (int whichRow)
Deletes all entries in row and bounds.

• void deleteColumn (int whichColumn)
Deletes all entries in column and bounds and objective.

• void deleteCol (int whichColumn)
Deletes all entries in column and bounds.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 146

• int deleteElement (int row, int column)

Takes element out of matrix - returning position (<0 if not there);.
• void deleteThisElement (int row, int column, int position)

Takes element out of matrix when position known.
• int packRows ()

Packs down all rows i.e.
• int packColumns ()

Packs down all columns i.e.
• int packCols ()

Packs down all columns i.e.
• int pack ()

Packs down all rows and columns.
• void setObjective (int numberColumns, const double ∗objective)

Sets columnObjective array.
• void setColumnLower (int numberColumns, const double ∗columnLower)

Sets columnLower array.
• void setColLower (int numberColumns, const double ∗columnLower)

Sets columnLower array.
• void setColumnUpper (int numberColumns, const double ∗columnUpper)

Sets columnUpper array.
• void setColUpper (int numberColumns, const double ∗columnUpper)

Sets columnUpper array.
• void setRowLower (int numberRows, const double ∗rowLower)

Sets rowLower array.
• void setRowUpper (int numberRows, const double ∗rowUpper)

Sets rowUpper array.
• int writeMps (const char ∗filename, int compression=0, int formatType=0, int

numberAcross=2, bool keepStrings=false)
Write the problem in MPS format to a file with the given filename.

• int differentModel (CoinModel &other, bool ignoreNames)
Check two models against each other.

For structured models

• void passInMatrix (const CoinPackedMatrix &matrix)

Pass in CoinPackedMatrix (and switch off element updates)
• int convertMatrix ()

Convert elements to CoinPackedMatrix (and switch off element updates).
• const CoinPackedMatrix ∗ packedMatrix () const

Return a pointer to CoinPackedMatrix (or NULL)
• const int ∗ originalRows () const

Return pointers to original rows (for decomposition)
• const int ∗ originalColumns () const

Return pointers to original columns (for decomposition)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 147

For getting information

• CoinBigIndex numberElements () const
Return number of elements.

• const CoinModelTriple ∗ elements () const
Return elements as triples.

• double operator() (int i, int j) const
Returns value for row i and column j.

• double getElement (int i, int j) const
Returns value for row i and column j.

• double operator() (const char ∗rowName, const char ∗columnName) const
Returns value for row rowName and column columnName.

• double getElement (const char ∗rowName, const char ∗columnName) const
Returns value for row rowName and column columnName.

• double getQuadraticElement (int i, int j) const
Returns quadratic value for columns i and j.

• const char ∗ getElementAsString (int i, int j) const
Returns value for row i and column j as string.

• double ∗ pointer (int i, int j) const
Returns pointer to element for row i column j.

• int position (int i, int j) const
Returns position in elements for row i column j.

• CoinModelLink firstInRow (int whichRow) const
Returns first element in given row - index is -1 if none.

• CoinModelLink lastInRow (int whichRow) const
Returns last element in given row - index is -1 if none.

• CoinModelLink firstInColumn (int whichColumn) const
Returns first element in given column - index is -1 if none.

• CoinModelLink lastInColumn (int whichColumn) const
Returns last element in given column - index is -1 if none.

• CoinModelLink next (CoinModelLink ¤t) const
Returns next element in current row or column - index is -1 if none.

• CoinModelLink previous (CoinModelLink ¤t) const
Returns previous element in current row or column - index is -1 if none.

• CoinModelLink firstInQuadraticColumn (int whichColumn) const
Returns first element in given quadratic column - index is -1 if none.

• CoinModelLink lastInQuadraticColumn (int whichColumn) const
Returns last element in given quadratic column - index is -1 if none.

• double getRowLower (int whichRow) const
Gets rowLower (if row does not exist then -COIN_DBL_MAX)

• double getRowUpper (int whichRow) const
Gets rowUpper (if row does not exist then +COIN_DBL_MAX)

• const char ∗ getRowName (int whichRow) const
Gets name (if row does not exist then NULL)

• double rowLower (int whichRow) const
• double rowUpper (int whichRow) const

Gets rowUpper (if row does not exist then COIN_DBL_MAX)
• const char ∗ rowName (int whichRow) const

Gets name (if row does not exist then NULL)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 148

• double getColumnLower (int whichColumn) const
Gets columnLower (if column does not exist then 0.0)

• double getColumnUpper (int whichColumn) const
Gets columnUpper (if column does not exist then COIN_DBL_MAX)

• double getColumnObjective (int whichColumn) const
Gets columnObjective (if column does not exist then 0.0)

• const char ∗ getColumnName (int whichColumn) const
Gets name (if column does not exist then NULL)

• bool getColumnIsInteger (int whichColumn) const
Gets if integer (if column does not exist then false)

• double columnLower (int whichColumn) const
Gets columnLower (if column does not exist then 0.0)

• double columnUpper (int whichColumn) const
Gets columnUpper (if column does not exist then COIN_DBL_MAX)

• double columnObjective (int whichColumn) const
Gets columnObjective (if column does not exist then 0.0)

• double objective (int whichColumn) const
Gets columnObjective (if column does not exist then 0.0)

• const char ∗ columnName (int whichColumn) const
Gets name (if column does not exist then NULL)

• bool columnIsInteger (int whichColumn) const
Gets if integer (if column does not exist then false)

• bool isInteger (int whichColumn) const
Gets if integer (if column does not exist then false)

• double getColLower (int whichColumn) const
Gets columnLower (if column does not exist then 0.0)

• double getColUpper (int whichColumn) const
Gets columnUpper (if column does not exist then COIN_DBL_MAX)

• double getColObjective (int whichColumn) const
Gets columnObjective (if column does not exist then 0.0)

• const char ∗ getColName (int whichColumn) const
Gets name (if column does not exist then NULL)

• bool getColIsInteger (int whichColumn) const
Gets if integer (if column does not exist then false)

• const char ∗ getRowLowerAsString (int whichRow) const
Gets rowLower (if row does not exist then -COIN_DBL_MAX)

• const char ∗ getRowUpperAsString (int whichRow) const
Gets rowUpper (if row does not exist then +COIN_DBL_MAX)

• const char ∗ rowLowerAsString (int whichRow) const
• const char ∗ rowUpperAsString (int whichRow) const

Gets rowUpper (if row does not exist then COIN_DBL_MAX)
• const char ∗ getColumnLowerAsString (int whichColumn) const

Gets columnLower (if column does not exist then 0.0)
• const char ∗ getColumnUpperAsString (int whichColumn) const

Gets columnUpper (if column does not exist then COIN_DBL_MAX)
• const char ∗ getColumnObjectiveAsString (int whichColumn) const

Gets columnObjective (if column does not exist then 0.0)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 149

• const char ∗ getColumnIsIntegerAsString (int whichColumn) const
Gets if integer (if column does not exist then false)

• const char ∗ columnLowerAsString (int whichColumn) const
Gets columnLower (if column does not exist then 0.0)

• const char ∗ columnUpperAsString (int whichColumn) const
Gets columnUpper (if column does not exist then COIN_DBL_MAX)

• const char ∗ columnObjectiveAsString (int whichColumn) const
Gets columnObjective (if column does not exist then 0.0)

• const char ∗ objectiveAsString (int whichColumn) const
Gets columnObjective (if column does not exist then 0.0)

• const char ∗ columnIsIntegerAsString (int whichColumn) const
Gets if integer (if column does not exist then false)

• const char ∗ isIntegerAsString (int whichColumn) const
Gets if integer (if column does not exist then false)

• int row (const char ∗rowName) const
Row index from row name (-1 if no names or no match)

• int column (const char ∗columnName) const
Column index from column name (-1 if no names or no match)

• int type () const
Returns type.

• double unsetValue () const
returns unset value

• int createPackedMatrix (CoinPackedMatrix &matrix, const double ∗associated)

Creates a packed matrix - return number of errors.
• int countPlusMinusOne (CoinBigIndex ∗startPositive, CoinBigIndex ∗startNegative,

const double ∗associated)
Fills in startPositive and startNegative with counts for +-1 matrix.

• void createPlusMinusOne (CoinBigIndex ∗startPositive, CoinBigIndex ∗startNegative,
int ∗indices, const double ∗associated)

Creates +-1 matrix given startPositive and startNegative counts for +-1 matrix.
• int createArrays (double ∗&rowLower, double ∗&rowUpper, double ∗&columnLower,

double ∗&columnUpper, double ∗&objective, int ∗&integerType, double ∗&associated)

Creates copies of various arrays - return number of errors.
• bool stringsExist () const

Says if strings exist.
• const CoinModelHash ∗ stringArray () const

Return string array.
• double ∗ associatedArray () const

Returns associated array.
• double ∗ rowLowerArray () const

Return rowLower array.
• double ∗ rowUpperArray () const

Return rowUpper array.
• double ∗ columnLowerArray () const

Return columnLower array.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 150

• double ∗ columnUpperArray () const
Return columnUpper array.

• double ∗ objectiveArray () const
Return objective array.

• int ∗ integerTypeArray () const
Return integerType array.

• const CoinModelHash ∗ rowNames () const
Return row names array.

• const CoinModelHash ∗ columnNames () const
Return column names array.

• const int ∗ cutMarker () const
Returns array of 0 or nonzero if can be a cut (or returns NULL)

• double optimizationDirection () const
Direction of optimization (1 - minimize, -1 - maximize, 0 - ignore.

• void setOptimizationDirection (double value)
Set direction of optimization (1 - minimize, -1 - maximize, 0 - ignore.

• void ∗ moreInfo () const
Return pointer to more information.

• void setMoreInfo (void ∗info)
Set pointer to more information.

• int whatIsSet () const
Returns which parts of model are set 1 - matrix 2 - rhs 4 - row names 8 - column
bounds and/or objective 16 - column names 32 - integer types.

for block models - matrix will be CoinPackedMatrix

• void loadBlock (const CoinPackedMatrix &matrix, const double ∗collb, const
double ∗colub, const double ∗obj, const double ∗rowlb, const double ∗rowub)

Load in a problem by copying the arguments.
• void loadBlock (const CoinPackedMatrix &matrix, const double ∗collb, const

double ∗colub, const double ∗obj, const char ∗rowsen, const double ∗rowrhs,
const double ∗rowrng)

Load in a problem by copying the arguments.
• void loadBlock (const int numcols, const int numrows, const CoinBigIndex
∗start, const int ∗index, const double ∗value, const double ∗collb, const double
∗colub, const double ∗obj, const double ∗rowlb, const double ∗rowub)

Load in a problem by copying the arguments.
• void loadBlock (const int numcols, const int numrows, const CoinBigIndex
∗start, const int ∗index, const double ∗value, const double ∗collb, const double
∗colub, const double ∗obj, const char ∗rowsen, const double ∗rowrhs, const
double ∗rowrng)

Load in a problem by copying the arguments.

Constructors, destructor

• CoinModel ()
Default constructor.

• CoinModel (const char ∗fileName, int allowStrings=0)
Read a problem in MPS or GAMS format from the given filename.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 151

• CoinModel (int nonLinear, const char ∗fileName, const void ∗info)
Read a problem from AMPL nl file NOTE - as I can’t work out configure etc the
source code is in Cbc_ampl.cpp!

• CoinModel (int numberRows, int numberColumns, const CoinPackedMatrix
∗matrix, const double ∗rowLower, const double ∗rowUpper, const double ∗columnLower,
const double ∗columnUpper, const double ∗objective)

From arrays.
• virtual CoinBaseModel ∗ clone () const

Clone.
• virtual ∼CoinModel ()

Destructor.

Copy method

• CoinModel (const CoinModel &)
The copy constructor.

• CoinModel & operator= (const CoinModel &)
=

For debug

• void validateLinks () const
Checks that links are consistent.

8.41.1 Detailed Description

This is a simple minded model which is stored in a format which makes it easier to
construct and modify but not efficient for algorithms.

It has to be passed across to ClpModel or OsiSolverInterface by addRows, addCol(umn)s
or loadProblem.

It may have up to four parts - 1) A matrix of doubles (or strings - see note A) 2) Col-
umn information including integer information and names 3) Row information including
names 4) Quadratic objective (not implemented - but see A)

This class is meant to make it more efficient to build a model. It is at its most efficient
when all additions are done as addRow or as addCol but not mixed. If only 1 and 2
exist then solver.addColumns may be used to pass to solver, if only 1 and 3 exist then
solver.addRows may be used. Otherwise solver.loadProblem must be used.

If addRows and addColumns are mixed or if individual elements are set then the speed
will drop to some extent and more memory will be used.

It is also possible to iterate over existing elements and to access columns and rows by
name. Again each of these use memory and cpu time. However memory is unlikely to
be critical as most algorithms will use much more.

Notes: A) Although this could be used to pass nonlinear information around the only
use at present is to have named values e.g. value1 which can then be set to a value
after model is created. I have no idea whether that could be useful but I thought it might
be fun. Quadratic terms are allowed in strings! A solver could try and use this if so - the
convention is that 0.5∗ quadratic is stored

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 152

B) This class could be useful for modeling.

Definition at line 152 of file CoinModel.hpp.

8.41.2 Constructor & Destructor Documentation

8.41.2.1 CoinModel::CoinModel ()

Default constructor.

8.41.2.2 CoinModel::CoinModel (const CoinModel &)

The copy constructor.

8.41.3 Member Function Documentation

8.41.3.1 int CoinModel::getRow (int whichRow, int ∗ column, double ∗ element)

Gets sorted row - user must provide enough space (easiest is allocate number of
columns).

If column or element NULL then just returns number Returns number of elements

8.41.3.2 int CoinModel::getColumn (int whichColumn, int ∗ column, double ∗ element)

Gets sorted column - user must provide enough space (easiest is allocate number of
rows).

If row or element NULL then just returns number Returns number of elements

8.41.3.3 void CoinModel::deleteRow (int whichRow)

Deletes all entries in row and bounds.

Will be ignored by writeMps etc and will be packed down if asked for.

8.41.3.4 void CoinModel::deleteColumn (int whichColumn)

Deletes all entries in column and bounds and objective.

Will be ignored by writeMps etc and will be packed down if asked for.

8.41.3.5 void CoinModel::deleteCol (int whichColumn) [inline]

Deletes all entries in column and bounds.

If last column the number of columns will be decremented and true returned.

Definition at line 333 of file CoinModel.hpp.

8.41.3.6 int CoinModel::packRows ()

Packs down all rows i.e.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 153

removes empty rows permanently. Empty rows have no elements and feasible bounds.
returns number of rows deleted.

8.41.3.7 int CoinModel::packColumns ()

Packs down all columns i.e.

removes empty columns permanently. Empty columns have no elements and no objec-
tive. returns number of columns deleted.

8.41.3.8 int CoinModel::packCols () [inline]

Packs down all columns i.e.

removes empty columns permanently. Empty columns have no elements and no objec-
tive. returns number of columns deleted.

Definition at line 347 of file CoinModel.hpp.

8.41.3.9 int CoinModel::pack ()

Packs down all rows and columns.

i.e. removes empty rows and columns permanently. Empty rows have no elements and
feasible bounds. Empty columns have no elements and no objective. returns number of
rows+columns deleted.

8.41.3.10 int CoinModel::writeMps (const char ∗ filename, int compression = 0, int formatType
= 0, int numberAcross = 2, bool keepStrings = false)

Write the problem in MPS format to a file with the given filename.

Parameters
compression can be set to three values to indicate what kind of file should be written

• 0: plain text (default)

• 1: gzip compressed (.gz is appended to filename)

• 2: bzip2 compressed (.bz2 is appended to filename) (TODO)

If the library was not compiled with the requested compression then
writeMps falls back to writing a plain text file.

formatType specifies the precision to used for values in the MPS file

• 0: normal precision (default)

• 1: extra accuracy

• 2: IEEE hex

number-
Across

specifies whether 1 or 2 (default) values should be specified on every data
line in the MPS file.

not const as may change model e.g. fill in default bounds

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 154

8.41.3.11 int CoinModel::differentModel (CoinModel & other, bool ignoreNames)

Check two models against each other.

Return nonzero if different. Ignore names if that set. May modify both models by clean-
ing up

8.41.3.12 int CoinModel::convertMatrix ()

Convert elements to CoinPackedMatrix (and switch off element updates).

Returns number of errors

8.41.3.13 const char∗ CoinModel::getElementAsString (int i, int j) const

Returns value for row i and column j as string.

Returns NULL if does not exist. Returns "Numeric" if not a string

8.41.3.14 double∗ CoinModel::pointer (int i, int j) const

Returns pointer to element for row i column j.

Only valid until next modification. NULL if element does not exist

8.41.3.15 int CoinModel::position (int i, int j) const

Returns position in elements for row i column j.

Only valid until next modification. -1 if element does not exist

8.41.3.16 CoinModelLink CoinModel::firstInRow (int whichRow) const

Returns first element in given row - index is -1 if none.

Index is given by .index and value by .value

8.41.3.17 CoinModelLink CoinModel::lastInRow (int whichRow) const

Returns last element in given row - index is -1 if none.

Index is given by .index and value by .value

8.41.3.18 CoinModelLink CoinModel::firstInColumn (int whichColumn) const

Returns first element in given column - index is -1 if none.

Index is given by .index and value by .value

8.41.3.19 CoinModelLink CoinModel::lastInColumn (int whichColumn) const

Returns last element in given column - index is -1 if none.

Index is given by .index and value by .value

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 155

8.41.3.20 CoinModelLink CoinModel::next (CoinModelLink & current) const

Returns next element in current row or column - index is -1 if none.

Index is given by .index and value by .value. User could also tell because input.next
would be NULL

8.41.3.21 CoinModelLink CoinModel::previous (CoinModelLink & current) const

Returns previous element in current row or column - index is -1 if none.

Index is given by .index and value by .value. User could also tell because input.previous
would be NULL May not be correct if matrix updated.

8.41.3.22 CoinModelLink CoinModel::firstInQuadraticColumn (int whichColumn) const

Returns first element in given quadratic column - index is -1 if none.

Index is given by .index and value by .value May not be correct if matrix updated.

8.41.3.23 CoinModelLink CoinModel::lastInQuadraticColumn (int whichColumn) const

Returns last element in given quadratic column - index is -1 if none.

Index is given by .index and value by .value

8.41.3.24 int CoinModel::countPlusMinusOne (CoinBigIndex ∗ startPositive, CoinBigIndex ∗
startNegative, const double ∗ associated)

Fills in startPositive and startNegative with counts for +-1 matrix.

If not +-1 then startPositive[0]==-1 otherwise counts and startPositive[numberColumns]==
size

• return number of errors

8.41.3.25 void CoinModel::loadBlock (const CoinPackedMatrix & matrix, const double ∗
collb, const double ∗ colub, const double ∗ obj, const double ∗ rowlb, const double
∗ rowub)

Load in a problem by copying the arguments.

The constraints on the rows are given by lower and upper bounds.

If a pointer is 0 then the following values are the default:

• colub: all columns have upper bound infinity

• collb: all columns have lower bound 0

• rowub: all rows have upper bound infinity

• rowlb: all rows have lower bound -infinity

• obj: all variables have 0 objective coefficient

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 156

Note that the default values for rowub and rowlb produce the constraint -infty <= ax <=
infty. This is probably not what you want.

8.41.3.26 void CoinModel::loadBlock (const CoinPackedMatrix & matrix, const double ∗
collb, const double ∗ colub, const double ∗ obj, const char ∗ rowsen, const double
∗ rowrhs, const double ∗ rowrng)

Load in a problem by copying the arguments.

The constraints on the rows are given by sense/rhs/range triplets.

If a pointer is 0 then the following values are the default:

• colub: all columns have upper bound infinity

• collb: all columns have lower bound 0

• obj: all variables have 0 objective coefficient

• rowsen: all rows are >=

• rowrhs: all right hand sides are 0

• rowrng: 0 for the ranged rows

Note that the default values for rowsen, rowrhs, and rowrng produce the constraint ax
>= 0.

8.41.3.27 void CoinModel::loadBlock (const int numcols, const int numrows, const
CoinBigIndex ∗ start, const int ∗ index, const double ∗ value, const double ∗ collb,
const double ∗ colub, const double ∗ obj, const double ∗ rowlb, const double ∗
rowub)

Load in a problem by copying the arguments.

The constraint matrix is is specified with standard column-major column starts / row
indices / coefficients vectors. The constraints on the rows are given by lower and upper
bounds.

The matrix vectors must be gap-free. Note that start must have numcols+1 entries
so that the length of the last column can be calculated as start[numcols]-start[numcols-1].

See the previous loadBlock method using rowlb and rowub for default argument values.

8.41.3.28 void CoinModel::loadBlock (const int numcols, const int numrows, const
CoinBigIndex ∗ start, const int ∗ index, const double ∗ value, const double ∗ collb,
const double ∗ colub, const double ∗ obj, const char ∗ rowsen, const double ∗
rowrhs, const double ∗ rowrng)

Load in a problem by copying the arguments.

The constraint matrix is is specified with standard column-major column starts / row
indices / coefficients vectors. The constraints on the rows are given by sense/rhs/range
triplets.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.41 CoinModel Class Reference 157

The matrix vectors must be gap-free. Note that start must have numcols+1 entries
so that the length of the last column can be calculated as start[numcols]-start[numcols-1].

See the previous loadBlock method using sense/rhs/range for default argument values.

8.41.3.29 CoinModel∗ CoinModel::reorder (const char ∗ mark) const

If possible return a model where if all variables marked nonzero are fixed the problem
will be linear.

At present may only work if quadratic. Returns NULL if not possible

8.41.3.30 int CoinModel::expandKnapsack (int knapsackRow, int & numberOutput, double ∗
buildObj, CoinBigIndex ∗ buildStart, int ∗ buildRow, double ∗ buildElement, int
reConstruct = -1) const

Expands out all possible combinations for a knapsack If buildObj NULL then just com-
putes space needed - returns number elements On entry numberOutput is maximum
allowed, on exit it is number needed or.

-1 (as will be number elements) if maximum exceeded. numberOutput will have at least
space to return values which reconstruct input. Rows returned will be original rows but
no entries will be returned for any rows all of whose entries are in knapsack. So up to
user to allow for this. If reConstruct >=0 then returns number of entrie which make up
item "reConstruct" in expanded knapsack. Values in buildRow and buildElement;

The documentation for this class was generated from the following file:

• CoinModel.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.42 CoinModelHash Class Reference 158

8.42 CoinModelHash Class Reference

Collaboration diagram for CoinModelHash:

CoinModelHash

char

names_

CoinModelHashLink

hash_

int

numberItems_
lastSlot_

maximumItems_

next
index

Public Member Functions

Constructors, destructor

• CoinModelHash ()
Default constructor.

• ∼CoinModelHash ()
Destructor.

Copy method

• CoinModelHash (const CoinModelHash &)
The copy constructor.

• CoinModelHash & operator= (const CoinModelHash &)
=

sizing (just increases)

• void resize (int maxItems, bool forceReHash=false)
Resize hash (also re-hashs)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.42 CoinModelHash Class Reference 159

• int numberItems () const

Number of items i.e. rows if just row names.
• void setNumberItems (int number)

Set number of items.
• int maximumItems () const

Maximum number of items.
• const char ∗const names () const

Names.

hashing

• int hash (const char ∗name) const

Returns index or -1.

• void addHash (int index, const char ∗name)

Adds to hash.

• void deleteHash (int index)

Deletes from hash.

• const char ∗ name (int which) const

Returns name at position (or NULL)

• char ∗ getName (int which) const

Returns non const name at position (or NULL)

• void setName (int which, char ∗name)

Sets name at position (does not create)

• void validateHash () const

Validates.

8.42.1 Detailed Description

Definition at line 180 of file CoinModelUseful.hpp.

8.42.2 Constructor & Destructor Documentation

8.42.2.1 CoinModelHash::CoinModelHash ()

Default constructor.

8.42.2.2 CoinModelHash::CoinModelHash (const CoinModelHash &)

The copy constructor.

The documentation for this class was generated from the following file:

• CoinModelUseful.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.43 CoinModelHash2 Class Reference 160

8.43 CoinModelHash2 Class Reference

For int,int hashing.

#include <CoinModelUseful.hpp>

Collaboration diagram for CoinModelHash2:

CoinModelHash2

CoinModelHashLink

hash_

int

numberItems_
lastSlot_

maximumItems_

next
index

Public Member Functions

Constructors, destructor

• CoinModelHash2 ()
Default constructor.

• ∼CoinModelHash2 ()

Destructor.

Copy method

• CoinModelHash2 (const CoinModelHash2 &)
The copy constructor.

• CoinModelHash2 & operator= (const CoinModelHash2 &)

=

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.44 CoinModelHashLink Struct Reference 161

sizing (just increases)

• void resize (int maxItems, const CoinModelTriple ∗triples, bool forceReHash=false)

Resize hash (also re-hashs)
• int numberItems () const

Number of items.
• void setNumberItems (int number)

Set number of items.
• int maximumItems () const

Maximum number of items.

hashing

• int hash (int row, int column, const CoinModelTriple ∗triples) const

Returns index or -1.

• void addHash (int index, int row, int column, const CoinModelTriple ∗triples)

Adds to hash.

• void deleteHash (int index, int row, int column)

Deletes from hash.

8.43.1 Detailed Description

For int,int hashing.

Definition at line 253 of file CoinModelUseful.hpp.

8.43.2 Constructor & Destructor Documentation

8.43.2.1 CoinModelHash2::CoinModelHash2 ()

Default constructor.

8.43.2.2 CoinModelHash2::CoinModelHash2 (const CoinModelHash2 &)

The copy constructor.

The documentation for this class was generated from the following file:

• CoinModelUseful.hpp

8.44 CoinModelHashLink Struct Reference

for names and hashing

#include <CoinModelUseful.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.45 CoinModelInfo2 Struct Reference 162

Collaboration diagram for CoinModelHashLink:

CoinModelHashLink

int

next
index

8.44.1 Detailed Description

for names and hashing

Definition at line 128 of file CoinModelUseful.hpp.

The documentation for this struct was generated from the following file:

• CoinModelUseful.hpp

8.45 CoinModelInfo2 Struct Reference

This is a model which is made up of Coin(Structured)Model blocks.

#include <CoinStructuredModel.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.46 CoinModelLink Class Reference 163

Collaboration diagram for CoinModelInfo2:

CoinModelInfo2

char

matrix
rowName
bounds

columnName
rhs

integer

int

columnBlock
rowBlock

8.45.1 Detailed Description

This is a model which is made up of Coin(Structured)Model blocks.

Definition at line 15 of file CoinStructuredModel.hpp.

The documentation for this struct was generated from the following file:

• CoinStructuredModel.hpp

8.46 CoinModelLink Class Reference

This is for various structures/classes needed by CoinModel.

#include <CoinModelUseful.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.46 CoinModelLink Class Reference 164

Collaboration diagram for CoinModelLink:

CoinModelLink

double

value_

int

position_
row_

column_

bool

onRow_

Public Member Functions

Constructors, destructor

• CoinModelLink ()
Default constructor.

• ∼CoinModelLink ()
Destructor.

Copy method

• CoinModelLink (const CoinModelLink &)
The copy constructor.

• CoinModelLink & operator= (const CoinModelLink &)
=

Sets and gets method

• int row () const
Get row.

• int column () const
Get column.

• double value () const
Get value.

• double element () const
Get value.

• int position () const
Get position.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.46 CoinModelLink Class Reference 165

• bool onRow () const

Get onRow.
• void setRow (int row)

Set row.
• void setColumn (int column)

Set column.
• void setValue (double value)

Set value.
• void setElement (double value)

Set value.
• void setPosition (int position)

Set position.
• void setOnRow (bool onRow)

Set onRow.

8.46.1 Detailed Description

This is for various structures/classes needed by CoinModel.

CoinModelLink CoinModelLinkedList CoinModelHash for going through row or column

Definition at line 30 of file CoinModelUseful.hpp.

8.46.2 Constructor & Destructor Documentation

8.46.2.1 CoinModelLink::CoinModelLink ()

Default constructor.

8.46.2.2 CoinModelLink::CoinModelLink (const CoinModelLink &)

The copy constructor.

The documentation for this class was generated from the following file:

• CoinModelUseful.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.47 CoinModelLinkedList Class Reference 166

8.47 CoinModelLinkedList Class Reference

Collaboration diagram for CoinModelLinkedList:

CoinModelLinkedList

int

first_
last_

numberMajor_
next_

maximumMajor_
previous_

maximumElements_
numberElements_

type_

Public Member Functions

Constructors, destructor

• CoinModelLinkedList ()
Default constructor.

• ∼CoinModelLinkedList ()

Destructor.

Copy method

• CoinModelLinkedList (const CoinModelLinkedList &)
The copy constructor.

• CoinModelLinkedList & operator= (const CoinModelLinkedList &)

=

sizing (just increases)

• void resize (int maxMajor, int maxElements)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.47 CoinModelLinkedList Class Reference 167

Resize list - for row list maxMajor is maximum rows.
• void create (int maxMajor, int maxElements, int numberMajor, int numberMinor,

int type, int numberElements, const CoinModelTriple ∗triples)
Create list - for row list maxMajor is maximum rows.

• int numberMajor () const
Number of major items i.e. rows if just row links.

• int maximumMajor () const
Maximum number of major items i.e. rows if just row links.

• int numberElements () const
Number of elements.

• int maximumElements () const
Maximum number of elements.

• int firstFree () const
First on free chain.

• int lastFree () const
Last on free chain.

• int first (int which) const
First on chain.

• int last (int which) const
Last on chain.

• const int ∗ next () const
Next array.

• const int ∗ previous () const
Previous array.

does work

• int addEasy (int majorIndex, int numberOfElements, const int ∗indices, const
double ∗elements, CoinModelTriple ∗triples, CoinModelHash2 &hash)

Adds to list - easy case i.e.
• void addHard (int minorIndex, int numberOfElements, const int ∗indices, const

double ∗elements, CoinModelTriple ∗triples, CoinModelHash2 &hash)
Adds to list - hard case i.e.

• void addHard (int first, const CoinModelTriple ∗triples, int firstFree, int lastFree,
const int ∗nextOther)

Adds to list - hard case i.e.
• void deleteSame (int which, CoinModelTriple ∗triples, CoinModelHash2 &hash,

bool zapTriples)
Deletes from list - same case i.e.

• void updateDeleted (int which, CoinModelTriple ∗triples, CoinModelLinkedList
&otherList)

Deletes from list - other case i.e.
• void deleteRowOne (int position, CoinModelTriple ∗triples, CoinModelHash2

&hash)
Deletes one element from Row list.

• void updateDeletedOne (int position, const CoinModelTriple ∗triples)
Update column list for one element when one element deleted from row copy.

• void fill (int first, int last)
Fills first,last with -1.

• void synchronize (CoinModelLinkedList &other)
Puts in free list from other list.

• void validateLinks (const CoinModelTriple ∗triples) const
Checks that links are consistent.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.47 CoinModelLinkedList Class Reference 168

8.47.1 Detailed Description

Definition at line 312 of file CoinModelUseful.hpp.

8.47.2 Constructor & Destructor Documentation

8.47.2.1 CoinModelLinkedList::CoinModelLinkedList ()

Default constructor.

8.47.2.2 CoinModelLinkedList::CoinModelLinkedList (const CoinModelLinkedList &)

The copy constructor.

8.47.3 Member Function Documentation

8.47.3.1 void CoinModelLinkedList::create (int maxMajor, int maxElements, int numberMajor,
int numberMinor, int type, int numberElements, const CoinModelTriple ∗ triples)

Create list - for row list maxMajor is maximum rows.

type 0 row list, 1 column list

8.47.3.2 int CoinModelLinkedList::addEasy (int majorIndex, int numberOfElements, const int ∗
indices, const double ∗ elements, CoinModelTriple ∗ triples, CoinModelHash2
& hash)

Adds to list - easy case i.e.

add row to row list Returns where chain starts

8.47.3.3 void CoinModelLinkedList::addHard (int minorIndex, int numberOfElements,
const int ∗ indices, const double ∗ elements, CoinModelTriple ∗ triples,
CoinModelHash2 & hash)

Adds to list - hard case i.e.

add row to column list

8.47.3.4 void CoinModelLinkedList::addHard (int first, const CoinModelTriple ∗ triples, int
firstFree, int lastFree, const int ∗ nextOther)

Adds to list - hard case i.e.

add row to column list This is when elements have been added to other copy

8.47.3.5 void CoinModelLinkedList::deleteSame (int which, CoinModelTriple ∗ triples,
CoinModelHash2 & hash, bool zapTriples)

Deletes from list - same case i.e.

delete row from row list

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.48 CoinModelTriple Struct Reference 169

8.47.3.6 void CoinModelLinkedList::updateDeleted (int which, CoinModelTriple ∗ triples,
CoinModelLinkedList & otherList)

Deletes from list - other case i.e.

delete row from column list This is when elements have been deleted from other copy

The documentation for this class was generated from the following file:

• CoinModelUseful.hpp

8.48 CoinModelTriple Struct Reference

for linked lists

#include <CoinModelUseful.hpp>

Collaboration diagram for CoinModelTriple:

CoinModelTriple

double

value

int

row
column

8.48.1 Detailed Description

for linked lists

Definition at line 107 of file CoinModelUseful.hpp.

The documentation for this struct was generated from the following file:

• CoinModelUseful.hpp

8.49 CoinMpsCardReader Class Reference

Very simple code for reading MPS data.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.49 CoinMpsCardReader Class Reference 170

#include <CoinMpsIO.hpp>

Collaboration diagram for CoinMpsCardReader:

CoinMpsCardReader

CoinMpsIO

cardReader_

CoinFileInput

input_

CoinFileIOBase

std::string

fileName_
readType_

CoinMessageHandler

source_

std::vector< std::string >elements
std::basic_string< char >

CoinMessages
messages_ messages_

char

valueString_
columnName_

rowName_
position_

card_
eol_

source_

CoinOneMessage

severity_
message_

detail_

g_format_
messageOut_

format_
messageBuffer_

std::vector< char >

elements

rowsense_
rangeName_
rhsName_

objectiveName_
names_

stringElements_
fileName_

integerType_
boundName_

problemName_
...

message_

currentMessage_

int

cardNumber_
ieeeFormat_

numberMessages_
lengthMessages_

class_

externalNumber_

prefix_
g_precision_

internalNumber_
logLevels_

highestNumber_
printStatus_
logLevel_

std::vector< int >

elements

allowStringElements_
numberHash_
numberRows_

numberColumns_
numberStringElements_

maximumStringElements_
defaultBound_

numberElements_

CoinMpsIO::CoinHashLink

next
index

CoinPackedMatrix

maxSize_
minorDim_
majorDim_

size_
maxMajorDim_

length_
start_
index_

Language language_

double

value_

std::vector< double >

elements

smallElement_
colupper_
rowrange_

objectiveOffset_
objective_

rhs_
rowlower_
infinity_

rowupper_
collower_

...

extraGap_
extraMajor_

element_

handler_ handler_

charValue_

std::vector< T >

< char >

< int >

< std::string >

< double >

T
elements

FILE *

fp_

longValue_

stringValue_

doubleValue_

COINMpsType mpsType_

COINSectionType
section_

bool

stringsAllowed_
freeFormat_
eightChar_

convertObjective_
defaultHandler_

colOrdered_

reader_

hash_

matrixByRow_
matrixByColumn_

Public Member Functions

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.49 CoinMpsCardReader Class Reference 171

Constructor and destructor

• CoinMpsCardReader (CoinFileInput ∗input, CoinMpsIO ∗reader)
Constructor expects file to be open This one takes gzFile if fp null.

• ∼CoinMpsCardReader ()
Destructor.

card stuff

• COINSectionType readToNextSection ()
Read to next section.

• COINSectionType nextField ()
Gets next field and returns section type e.g. COIN_COLUMN_SECTION.

• int nextGmsField (int expectedType)
Gets next field for .gms file and returns type.

• COINSectionType whichSection () const
Returns current section type.

• void setWhichSection (COINSectionType section)
Sets current section type.

• bool freeFormat () const
Sees if free format.

• void setFreeFormat (bool yesNo)
Sets whether free format. Mainly for blank RHS etc.

• COINMpsType mpsType () const
Only for first field on card otherwise BLANK_COLUMN e.g.

• int cleanCard ()
Reads and cleans card - taking out trailing blanks - return 1 if EOF.

• const char ∗ rowName () const
Returns row name of current field.

• const char ∗ columnName () const
Returns column name of current field.

• double value () const
Returns value in current field.

• const char ∗ valueString () const
Returns value as string in current field.

• const char ∗ card () const
Whole card (for printing)

• char ∗ mutableCard ()
Whole card - so we look at it (not const so nextBlankOr will work for gms reader)

• void setPosition (char ∗position)
set position (again so gms reader will work)

• char ∗ getPosition () const
get position (again so gms reader will work)

• CoinBigIndex cardNumber () const
Returns card number.

• CoinFileInput ∗ fileInput () const
Returns file input.

• void setStringsAllowed ()
Sets whether strings allowed.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.49 CoinMpsCardReader Class Reference 172

Protected Attributes

data

• double value_
Current value.

• char card_ [MAX_CARD_LENGTH]
Current card image.

• char ∗ position_
Current position within card image.

• char ∗ eol_
End of card.

• COINMpsType mpsType_
Current COINMpsType.

• char rowName_ [COIN_MAX_FIELD_LENGTH]
Current row name.

• char columnName_ [COIN_MAX_FIELD_LENGTH]
Current column name.

• CoinFileInput ∗ input_
File input.

• COINSectionType section_
Which section we think we are in.

• CoinBigIndex cardNumber_
Card number.

• bool freeFormat_
Whether free format. Just for blank RHS etc.

• int ieeeFormat_
Whether IEEE - 0 no, 1 INTEL, 2 not INTEL.

• bool eightChar_
If all names <= 8 characters then allow embedded blanks.

• CoinMpsIO ∗ reader_
MpsIO.

• CoinMessageHandler ∗ handler_
Message handler.

• CoinMessages messages_
Messages.

• char valueString_ [COIN_MAX_FIELD_LENGTH]
Current element as characters (only if strings allowed)

• bool stringsAllowed_
Whether strings allowed.

methods

• double osi_strtod (char ∗ptr, char ∗∗output, int type)

type - 0 normal, 1 INTEL IEEE, 2 other IEEE
• double osi_strtod (char ∗ptr, char ∗∗output)

For strings.
• static void strcpyAndCompress (char ∗to, const char ∗from)

remove blanks
• static char ∗ nextBlankOr (char ∗image)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 173

8.49.1 Detailed Description

Very simple code for reading MPS data.

Definition at line 58 of file CoinMpsIO.hpp.

8.49.2 Member Function Documentation

8.49.2.1 int CoinMpsCardReader::nextGmsField (int expectedType)

Gets next field for .gms file and returns type.

-1 - EOF 0 - what we expected (and processed so pointer moves past) 1 - not what we
expected leading blanks always ignored input types 0 - anything - stops on non blank
card 1 - name (in columnname) 2 - value 3 - value name pair 4 - equation type 5 - ;

8.49.2.2 COINMpsType CoinMpsCardReader::mpsType () const [inline]

Only for first field on card otherwise BLANK_COLUMN e.g.

COIN_E_ROW

Definition at line 109 of file CoinMpsIO.hpp.

The documentation for this class was generated from the following file:

• CoinMpsIO.hpp

8.50 CoinMpsIO Class Reference

MPS IO Interface.

#include <CoinMpsIO.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 174

Collaboration diagram for CoinMpsIO:

CoinMpsIO

CoinMpsCardReader

reader_

CoinMessages

messages_

messages_

char

rowsense_
rangeName_
rhsName_

objectiveName_
names_

stringElements_
fileName_

integerType_
boundName_

problemName_
...

source_

CoinOneMessage
severity_

message_
detail_

CoinMessageHandler
g_format_

messageOut_
format_

messageBuffer_

std::vector< char >

elements

valueString_
columnName_

rowName_
position_

card_
eol_

message_

currentMessage_

int

allowStringElements_
numberHash_
numberRows_

numberColumns_
numberStringElements_

maximumStringElements_
defaultBound_

numberElements_

numberMessages_
lengthMessages_

class_

externalNumber_
prefix_

g_precision_
internalNumber_

logLevels_
highestNumber_

printStatus_
logLevel_

std::vector< int >

elements

CoinMpsIO::CoinHashLinknext
index

cardNumber_
ieeeFormat_

CoinPackedMatrix

maxSize_
minorDim_
majorDim_

size_
maxMajorDim_

length_
start_
index_

Language

language_

double

smallElement_
colupper_
rowrange_

objectiveOffset_
objective_

rhs_
rowlower_
infinity_

rowupper_
collower_

...

std::vector< double >

elements value_

extraGap_
extraMajor_

element_

handler_

handler_

charValue_
std::vector< T >

< char >

< int >

std::vector< std::string >

< std::string >

< double >

T
elements

FILE *

fp_

std::string

source_

elements

CoinFileIOBase

fileName_
readType_

std::basic_string< char >

longValue_

stringValue_

doubleValue_

hash_

bool

convertObjective_
defaultHandler_

stringsAllowed_
freeFormat_
eightChar_

colOrdered_

cardReader_

CoinFileInput
input_

COINMpsType

mpsType_

COINSectionType

section_

matrixByRow_
matrixByColumn_

Classes

• struct CoinHashLink

Public Member Functions

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 175

Methods to retrieve problem information

These methods return information about the problem held by the CoinMpsIO
object. Querying an object that has no data associated with it result in zeros
for the number of rows and columns, and NULL pointers from the methods
that return vectors. Const pointers returned from any data-query method are
always valid

• int getNumCols () const

Get number of columns.
• int getNumRows () const

Get number of rows.
• int getNumElements () const

Get number of nonzero elements.
• const double ∗ getColLower () const

Get pointer to array[getNumCols()] of column lower bounds.
• const double ∗ getColUpper () const

Get pointer to array[getNumCols()] of column upper bounds.
• const char ∗ getRowSense () const

Get pointer to array[getNumRows()] of constraint senses.
• const double ∗ getRightHandSide () const

Get pointer to array[getNumRows()] of constraint right-hand sides.
• const double ∗ getRowRange () const

Get pointer to array[getNumRows()] of row ranges.
• const double ∗ getRowLower () const

Get pointer to array[getNumRows()] of row lower bounds.
• const double ∗ getRowUpper () const

Get pointer to array[getNumRows()] of row upper bounds.
• const double ∗ getObjCoefficients () const

Get pointer to array[getNumCols()] of objective function coefficients.
• const CoinPackedMatrix ∗ getMatrixByRow () const

Get pointer to row-wise copy of the coefficient matrix.
• const CoinPackedMatrix ∗ getMatrixByCol () const

Get pointer to column-wise copy of the coefficient matrix.
• bool isContinuous (int colNumber) const

Return true if column is a continuous variable.
• bool isInteger (int columnNumber) const

Return true if a column is an integer variable.
• const char ∗ integerColumns () const

Returns array[getNumCols()] specifying if a variable is integer.
• const char ∗ rowName (int index) const

Returns the row name for the specified index.
• const char ∗ columnName (int index) const

Returns the column name for the specified index.
• int rowIndex (const char ∗name) const

Returns the index for the specified row name.
• int columnIndex (const char ∗name) const

Returns the index for the specified column name.
• double objectiveOffset () const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 176

Returns the (constant) objective offset.
• void setObjectiveOffset (double value)

Set objective offset.
• const char ∗ getProblemName () const

Return the problem name.
• const char ∗ getObjectiveName () const

Return the objective name.
• const char ∗ getRhsName () const

Return the RHS vector name.
• const char ∗ getRangeName () const

Return the range vector name.
• const char ∗ getBoundName () const

Return the bound vector name.
• int numberStringElements () const

Number of string elements.
• const char ∗ stringElement (int i) const

String element.

Methods to set problem information

Methods to load a problem into the CoinMpsIO object.

• void setMpsData (const CoinPackedMatrix &m, const double infinity, const
double ∗collb, const double ∗colub, const double ∗obj, const char ∗integrality,
const double ∗rowlb, const double ∗rowub, char const ∗const ∗const colnames,
char const ∗const ∗const rownames)

Set the problem data.
• void setMpsData (const CoinPackedMatrix &m, const double infinity, const

double ∗collb, const double ∗colub, const double ∗obj, const char ∗integrality,
const double ∗rowlb, const double ∗rowub, const std::vector< std::string >
&colnames, const std::vector< std::string > &rownames)

• void setMpsData (const CoinPackedMatrix &m, const double infinity, const
double ∗collb, const double ∗colub, const double ∗obj, const char ∗integrality,
const char ∗rowsen, const double ∗rowrhs, const double ∗rowrng, char const
∗const ∗const colnames, char const ∗const ∗const rownames)

• void setMpsData (const CoinPackedMatrix &m, const double infinity, const
double ∗collb, const double ∗colub, const double ∗obj, const char ∗integrality,
const char ∗rowsen, const double ∗rowrhs, const double ∗rowrng, const std::vector<
std::string > &colnames, const std::vector< std::string > &rownames)

• void copyInIntegerInformation (const char ∗integerInformation)
Pass in an array[getNumCols()] specifying if a variable is integer.

• void setProblemName (const char ∗name)

Set problem name.
• void setObjectiveName (const char ∗name)

Set objective name.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 177

Parameter set/get methods

Methods to set and retrieve MPS IO parameters.

• void setInfinity (double value)
Set infinity.

• double getInfinity () const
Get infinity.

• void setDefaultBound (int value)
Set default upper bound for integer variables.

• int getDefaultBound () const
Get default upper bound for integer variables.

• int allowStringElements () const
Whether to allow string elements.

• void setAllowStringElements (int yesNo)
Whether to allow string elements (0 no, 1 yes, 2 yes and try flip)

• double getSmallElementValue () const
Small element value - elements less than this set to zero on input default is 1.0e-14.

• void setSmallElementValue (double value)

Methods for problem input and output

Methods to read and write MPS format problem files.

The read and write methods return the number of errors that occurred during the IO
operation, or -1 if no file is opened.

Note

If the CoinMpsIO class was compiled with support for libz then readMps will
automatically try to append .gz to the file name and open it as a compressed
file if the specified file name cannot be opened. (Automatic append of the .bz2
suffix when libbz is used is on the TODO list.)

• void setFileName (const char ∗name)
Set the current file name for the CoinMpsIO object.

• const char ∗ getFileName () const
Get the current file name for the CoinMpsIO object.

• int readMps (const char ∗filename, const char ∗extension="mps")
Read a problem in MPS format from the given filename.

• int readMps (const char ∗filename, const char ∗extension, int &numberSets,
CoinSet ∗∗&sets)

Read a problem in MPS format from the given filename.
• int readMps ()

Read a problem in MPS format from a previously opened file.
• int readMps (int &numberSets, CoinSet ∗∗&sets)

and
• int readBasis (const char ∗filename, const char ∗extension, double ∗solution,

unsigned char ∗rowStatus, unsigned char ∗columnStatus, const std::vector<
std::string > &colnames, int numberColumns, const std::vector< std::string >
&rownames, int numberRows)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 178

Read a basis in MPS format from the given filename.
• int readGms (const char ∗filename, const char ∗extension="gms", bool con-

vertObjective=false)
Read a problem in GAMS format from the given filename.

• int readGms (const char ∗filename, const char ∗extension, int &numberSets,
CoinSet ∗∗&sets)

Read a problem in GAMS format from the given filename.
• int readGms (int &numberSets, CoinSet ∗∗&sets)

Read a problem in GAMS format from a previously opened file.
• int readGMPL (const char ∗modelName, const char ∗dataName=NULL, bool

keepNames=false)
Read a problem in GMPL (subset of AMPL) format from the given filenames.

• int writeMps (const char ∗filename, int compression=0, int formatType=0, int
numberAcross=2, CoinPackedMatrix ∗quadratic=NULL, int numberSOS=0, const
CoinSet ∗setInfo=NULL) const

Write the problem in MPS format to a file with the given filename.
• const CoinMpsCardReader ∗ reader () const

Return card reader object so can see what last card was e.g. QUADOBJ.
• int readQuadraticMps (const char ∗filename, int ∗&columnStart, int ∗&column,

double ∗&elements, int checkSymmetry)
Read in a quadratic objective from the given filename.

• int readConicMps (const char ∗filename, int ∗&columnStart, int ∗&column, int
&numberCones)

Read in a list of cones from the given filename.
• void setConvertObjective (bool trueFalse)

Set whether to move objective from matrix.
• int copyStringElements (const CoinModel ∗model)

copies in strings from a CoinModel - returns number

Constructors and destructors

• CoinMpsIO ()
Default Constructor.

• CoinMpsIO (const CoinMpsIO &)
Copy constructor.

• CoinMpsIO & operator= (const CoinMpsIO &rhs)
Assignment operator.

• ∼CoinMpsIO ()
Destructor.

Message handling

• void passInMessageHandler (CoinMessageHandler ∗handler)
Pass in Message handler.

• void newLanguage (CoinMessages::Language language)
Set the language for messages.

• void setLanguage (CoinMessages::Language language)
Set the language for messages.

• CoinMessageHandler ∗ messageHandler () const
Return the message handler.

• CoinMessages messages ()
Return the messages.

• CoinMessages ∗ messagesPointer ()
Return the messages pointer.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 179

Methods to release storage

These methods allow the client to reduce the storage used by the CoinMpsIO object
be selectively releasing unneeded problem information.

• void releaseRedundantInformation ()
Release all information which can be re-calculated.

• void releaseRowInformation ()
Release all row information (lower, upper)

• void releaseColumnInformation ()
Release all column information (lower, upper, objective)

• void releaseIntegerInformation ()
Release integer information.

• void releaseRowNames ()
Release row names.

• void releaseColumnNames ()
Release column names.

• void releaseMatrixInformation ()
Release matrix information.

Protected Member Functions

Miscellaneous helper functions

• void setMpsDataWithoutRowAndColNames (const CoinPackedMatrix &m, const
double infinity, const double ∗collb, const double ∗colub, const double ∗obj,
const char ∗integrality, const double ∗rowlb, const double ∗rowub)

Utility method used several times to implement public methods.
• void setMpsDataColAndRowNames (const std::vector< std::string > &col-

names, const std::vector< std::string > &rownames)
• void setMpsDataColAndRowNames (char const ∗const ∗const colnames,

char const ∗const ∗const rownames)
• void gutsOfDestructor ()

Does the heavy lifting for destruct and assignment.
• void gutsOfCopy (const CoinMpsIO &)

Does the heavy lifting for copy and assignment.
• void freeAll ()

Clears problem data from the CoinMpsIO object.
• void convertBoundToSense (const double lower, const double upper, char &sense,

double &right, double &range) const
A quick inlined function to convert from lb/ub style constraint definition to sense/rhs/range
style.

• void convertSenseToBound (const char sense, const double right, const dou-
ble range, double &lower, double &upper) const

A quick inlined function to convert from sense/rhs/range stryle constraint definition
to lb/ub style.

• int dealWithFileName (const char ∗filename, const char ∗extension, CoinFileIn-
put ∗&input)

Deal with a filename.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 180

• void addString (int iRow, int iColumn, const char ∗value)
Add string to list iRow==numberRows is objective, nr+1 is lo, nr+2 is up iCol-
umn==nc is rhs (can’t cope with ranges at present)

• void decodeString (int iString, int &iRow, int &iColumn, const char ∗&value)
const

Decode string.

Hash table methods

• void startHash (char ∗∗names, const int number, int section)
Creates hash list for names (section = 0 for rows, 1 columns)

• void startHash (int section) const
This one does it when names are already in.

• void stopHash (int section)
Deletes hash storage.

• int findHash (const char ∗name, int section) const
Finds match using hash, -1 not found.

Protected Attributes

Cached problem information

• char ∗ problemName_
Problem name.

• char ∗ objectiveName_
Objective row name.

• char ∗ rhsName_
Right-hand side vector name.

• char ∗ rangeName_
Range vector name.

• char ∗ boundName_
Bounds vector name.

• int numberRows_
Number of rows.

• int numberColumns_
Number of columns.

• CoinBigIndex numberElements_
Number of coefficients.

• char ∗ rowsense_
Pointer to dense vector of row sense indicators.

• double ∗ rhs_
Pointer to dense vector of row right-hand side values.

• double ∗ rowrange_
Pointer to dense vector of slack variable upper bounds for range constraints (unde-
fined for non-range rows)

• CoinPackedMatrix ∗ matrixByRow_
Pointer to row-wise copy of problem matrix coefficients.

• CoinPackedMatrix ∗ matrixByColumn_

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 181

Pointer to column-wise copy of problem matrix coefficients.
• double ∗ rowlower_

Pointer to dense vector of row lower bounds.
• double ∗ rowupper_

Pointer to dense vector of row upper bounds.
• double ∗ collower_

Pointer to dense vector of column lower bounds.
• double ∗ colupper_

Pointer to dense vector of column upper bounds.
• double ∗ objective_

Pointer to dense vector of objective coefficients.
• double objectiveOffset_

Constant offset for objective value (i.e., RHS value for OBJ row)
• char ∗ integerType_

Pointer to dense vector specifying if a variable is continuous (0) or integer (1).
• char ∗∗ names_ [2]

Row and column names Linked to hash table sections (0 - row names, 1 column
names)

Hash tables

• char ∗ fileName_
Current file name.

• int numberHash_ [2]
Number of entries in a hash table section.

• CoinHashLink ∗ hash_ [2]
Hash tables (two sections, 0 - row names, 1 - column names)

CoinMpsIO object parameters

• int defaultBound_
Upper bound when no bounds for integers.

• double infinity_
Value to use for infinity.

• double smallElement_
Small element value.

• CoinMessageHandler ∗ handler_
Message handler.

• bool defaultHandler_
Flag to say if the message handler is the default handler.

• CoinMessages messages_
Messages.

• CoinMpsCardReader ∗ cardReader_
Card reader.

• bool convertObjective_
If .gms file should it be massaged to move objective.

• int allowStringElements_
Whether to allow string elements.

• int maximumStringElements_
Maximum number of string elements.

• int numberStringElements_
Number of string elements.

• char ∗∗ stringElements_
String elements.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 182

Friends

• void CoinMpsIOUnitTest (const std::string &mpsDir)

A function that tests the methods in the CoinMpsIO class.

8.50.1 Detailed Description

MPS IO Interface.

This class can be used to read in mps files without a solver. After reading the file,
the CoinMpsIO object contains all relevant data, which may be more than a particular
OsiSolverInterface allows for. Items may be deleted to allow for flexibility of data storage.

The implementation makes the CoinMpsIO object look very like a dummy solver, as the
same conventions are used.

Definition at line 328 of file CoinMpsIO.hpp.

8.50.2 Member Function Documentation

8.50.2.1 const char∗ CoinMpsIO::getRowSense () const

Get pointer to array[getNumRows()] of constraint senses.

• ’L’: <= constraint

• ’E’: = constraint

• ’G’: >= constraint

• ’R’: ranged constraint

• ’N’: free constraint

8.50.2.2 const double∗ CoinMpsIO::getRightHandSide () const

Get pointer to array[getNumRows()] of constraint right-hand sides.

Given constraints with upper (rowupper) and/or lower (rowlower) bounds, the constraint
right-hand side (rhs) is set as

• if rowsense()[i] == ’L’ then rhs()[i] == rowupper()[i]

• if rowsense()[i] == ’G’ then rhs()[i] == rowlower()[i]

• if rowsense()[i] == ’R’ then rhs()[i] == rowupper()[i]

• if rowsense()[i] == ’N’ then rhs()[i] == 0.0

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 183

8.50.2.3 const double∗ CoinMpsIO::getRowRange () const

Get pointer to array[getNumRows()] of row ranges.

Given constraints with upper (rowupper) and/or lower (rowlower) bounds, the constraint
range (rowrange) is set as

• if rowsense()[i] == ’R’ then rowrange()[i] == rowupper()[i] - rowlower()[i]

• if rowsense()[i] != ’R’ then rowrange()[i] is 0.0

Put another way, only range constraints have a nontrivial value for rowrange.

8.50.2.4 bool CoinMpsIO::isInteger (int columnNumber) const

Return true if a column is an integer variable.

Note: This function returns true if the the column is a binary or general integer variable.

8.50.2.5 const char∗ CoinMpsIO::integerColumns () const

Returns array[getNumCols()] specifying if a variable is integer.

At present, simply coded as zero (continuous) and non-zero (integer) May be extended
at a later date.

8.50.2.6 const char∗ CoinMpsIO::rowName (int index) const

Returns the row name for the specified index.

Returns 0 if the index is out of range.

8.50.2.7 const char∗ CoinMpsIO::columnName (int index) const

Returns the column name for the specified index.

Returns 0 if the index is out of range.

8.50.2.8 int CoinMpsIO::rowIndex (const char ∗ name) const

Returns the index for the specified row name.

Returns -1 if the name is not found. Returns numberRows for the objective row and >
numberRows for dropped free rows.

8.50.2.9 int CoinMpsIO::columnIndex (const char ∗ name) const

Returns the index for the specified column name.

Returns -1 if the name is not found.

8.50.2.10 double CoinMpsIO::objectiveOffset () const

Returns the (constant) objective offset.

This is the RHS entry for the objective row

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 184

8.50.2.11 void CoinMpsIO::copyInIntegerInformation (const char ∗ integerInformation)

Pass in an array[getNumCols()] specifying if a variable is integer.

At present, simply coded as zero (continuous) and non-zero (integer) May be extended
at a later date.

8.50.2.12 int CoinMpsIO::readMps (const char ∗ filename, const char ∗ extension = "mps")

Read a problem in MPS format from the given filename.

Use "stdin" or "-" to read from stdin.

8.50.2.13 int CoinMpsIO::readMps (const char ∗ filename, const char ∗ extension, int &
numberSets, CoinSet ∗∗& sets)

Read a problem in MPS format from the given filename.

Use "stdin" or "-" to read from stdin. But do sets as well

8.50.2.14 int CoinMpsIO::readMps ()

Read a problem in MPS format from a previously opened file.

More precisely, read a problem using a CoinMpsCardReader object already associated
with this CoinMpsIO object.

8.50.2.15 int CoinMpsIO::readBasis (const char ∗ filename, const char ∗ extension, double ∗
solution, unsigned char ∗ rowStatus, unsigned char ∗ columnStatus, const
std::vector< std::string > & colnames, int numberColumns, const std::vector<
std::string > & rownames, int numberRows)

Read a basis in MPS format from the given filename.

If VALUES on NAME card and solution not NULL fills in solution status values as for
CoinWarmStartBasis (but one per char) -1 file error, 0 normal, 1 has solution values

Use "stdin" or "-" to read from stdin.

If sizes of names incorrect - read without names

8.50.2.16 int CoinMpsIO::readGms (const char ∗ filename, const char ∗ extension = "gms",
bool convertObjective = false)

Read a problem in GAMS format from the given filename.

Use "stdin" or "-" to read from stdin. if convertObjective then massages objective column

8.50.2.17 int CoinMpsIO::readGms (const char ∗ filename, const char ∗ extension, int &
numberSets, CoinSet ∗∗& sets)

Read a problem in GAMS format from the given filename.

Use "stdin" or "-" to read from stdin. But do sets as well

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 185

8.50.2.18 int CoinMpsIO::readGms (int & numberSets, CoinSet ∗∗& sets)

Read a problem in GAMS format from a previously opened file.

More precisely, read a problem using a CoinMpsCardReader object already associated
with this CoinMpsIO object. and

8.50.2.19 int CoinMpsIO::writeMps (const char ∗ filename, int compression = 0, int formatType
= 0, int numberAcross = 2, CoinPackedMatrix ∗ quadratic = NULL, int
numberSOS = 0, const CoinSet ∗ setInfo = NULL) const

Write the problem in MPS format to a file with the given filename.

Parameters
compression can be set to three values to indicate what kind of file should be written

• 0: plain text (default)

• 1: gzip compressed (.gz is appended to filename)

• 2: bzip2 compressed (.bz2 is appended to filename) (TODO)

If the library was not compiled with the requested compression then
writeMps falls back to writing a plain text file.

formatType specifies the precision to used for values in the MPS file

• 0: normal precision (default)

• 1: extra accuracy

• 2: IEEE hex

number-
Across

specifies whether 1 or 2 (default) values should be specified on every data
line in the MPS file.

quadratic specifies quadratic objective to be output

8.50.2.20 int CoinMpsIO::readQuadraticMps (const char ∗ filename, int ∗& columnStart, int ∗&
column, double ∗& elements, int checkSymmetry)

Read in a quadratic objective from the given filename.

If filename is NULL (or the same as the currently open file) then reading continues from
the current file. If not, the file is closed and the specified file is opened.

Code should be added to general MPS reader to read this if QSECTION Data is as-
sumed to be Q and objective is c + 1/2 xT Q x No assumption is made for symmetry,
positive definite, etc. No check is made for duplicates or non-triangular if checkSymme-
try==0. If 1 checks lower triangular (so off diagonal should be 2∗Q) if 2 makes lower
triangular and assumes full Q (but adds off diagonals)

Arrays should be deleted by delete []

Returns number of errors:

• -1: bad file

• -2: no Quadratic section

• -3: an empty section

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.50 CoinMpsIO Class Reference 186

• +n: then matching errors etc (symmetry forced)

• -4: no matching errors but fails triangular test (triangularity forced)

columnStart is numberColumns+1 long, others numberNonZeros

8.50.2.21 int CoinMpsIO::readConicMps (const char ∗ filename, int ∗& columnStart, int ∗&
column, int & numberCones)

Read in a list of cones from the given filename.

If filename is NULL (or the same as the currently open file) then reading continues from
the current file. If not, the file is closed and the specified file is opened.

Code should be added to general MPS reader to read this if CSECTION No checking is
done that in unique cone

Arrays should be deleted by delete []

Returns number of errors, -1 bad file, -2 no conic section, -3 empty section

columnStart is numberCones+1 long, other number of columns in matrix

8.50.2.22 void CoinMpsIO::passInMessageHandler (CoinMessageHandler ∗ handler)

Pass in Message handler.

Supply a custom message handler. It will not be destroyed when the CoinMpsIO object
is destroyed.

8.50.2.23 void CoinMpsIO::releaseRedundantInformation ()

Release all information which can be re-calculated.

E.g., row sense, copies of rows, hash tables for names.

8.50.2.24 int CoinMpsIO::dealWithFileName (const char ∗ filename, const char ∗ extension,
CoinFileInput ∗& input) [protected]

Deal with a filename.

As the name says. Returns +1 if the file name is new, 0 if it’s the same as before (i.e.,
matches fileName_), and -1 if there’s an error and the file can’t be opened. Handles
automatic append of .gz suffix when compiled with libz.

8.50.3 Friends And Related Function Documentation

8.50.3.1 void CoinMpsIOUnitTest (const std::string & mpsDir) [friend]

A function that tests the methods in the CoinMpsIO class.

The only reason for it not to be a member method is that this way it doesn’t have to be
compiled into the library. And that’s a gain, because the library should be compiled with
optimization on, but this method should be compiled with debugging. Also, if this method
is compiled with optimization, the compilation takes 10-15 minutes and the machine

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.51 CoinOneMessage Class Reference 187

pages (has 256M core memory!)...

8.50.4 Member Data Documentation

8.50.4.1 bool CoinMpsIO::defaultHandler_ [protected]

Flag to say if the message handler is the default handler.

If true, the handler will be destroyed when the CoinMpsIO object is destroyed; if false, it
will not be destroyed.

Definition at line 1012 of file CoinMpsIO.hpp.

The documentation for this class was generated from the following file:

• CoinMpsIO.hpp

8.51 CoinOneMessage Class Reference

Class for one massaged message.

#include <CoinMessageHandler.hpp>

Collaboration diagram for CoinOneMessage:

CoinOneMessage

char

severity_
message_
detail_

int

externalNumber_

Public Member Functions

Constructors etc

• CoinOneMessage ()
Default constructor.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.51 CoinOneMessage Class Reference 188

• CoinOneMessage (int externalNumber, char detail, const char ∗message)
Normal constructor.

• ∼CoinOneMessage ()
Destructor.

• CoinOneMessage (const CoinOneMessage &)
The copy constructor.

• CoinOneMessage & operator= (const CoinOneMessage &)
assignment operator.

Useful stuff

• void replaceMessage (const char ∗message)
Replace message text (e.g., text in a different language)

Get and set methods

• int externalNumber () const
Get message ID number.

• void setExternalNumber (int number)
Set message ID number.

• char severity () const
Severity.

• void setDetail (int level)
Set detail level.

• int detail () const
Get detail level.

• char ∗ message () const
Return the message text.

Public Attributes

member data

• int externalNumber_
number to print out (also determines severity)

• char detail_
Will only print if detail matches.

• char severity_
Severity.

• char message_ [400]
Messages (in correct language) (not all 400 may exist)

8.51.1 Detailed Description

Class for one massaged message.

A message consists of a text string with formatting codes (message_), an integer iden-
tifier (externalNumber_) which also determines the severity level (severity_) of the mes-
sage, and a detail (logging) level (detail_).

CoinOneMessage is just a container to hold this information. The interpretation is set
by CoinMessageHandler, which see.

Definition at line 54 of file CoinMessageHandler.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.52 CoinOslFactorization Class Reference 189

8.51.2 Constructor & Destructor Documentation

8.51.2.1 CoinOneMessage::CoinOneMessage ()

Default constructor.

8.51.3 Member Function Documentation

8.51.3.1 CoinOneMessage& CoinOneMessage::operator= (const CoinOneMessage &)

assignment operator.

8.51.3.2 void CoinOneMessage::setExternalNumber (int number) [inline]

Set message ID number.

In the default CoinMessageHandler, this number is printed in the message prefix and is
used to determine the message severity level.

Definition at line 88 of file CoinMessageHandler.hpp.

The documentation for this class was generated from the following file:

• CoinMessageHandler.hpp

8.52 CoinOslFactorization Class Reference

Inheritance diagram for CoinOslFactorization:

CoinOslFactorization

CoinOtherFactorization

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.52 CoinOslFactorization Class Reference 190

Collaboration diagram for CoinOslFactorization:

CoinOslFactorization

CoinOtherFactorization

double

zeroTolerance_
workArea_

pivotTolerance_
slackValue_
elements_
relaxCheck_

_EKKfactinfo

kadrpm
areaFactor
kw3adr
kw2adr
trueStart
kw1adr
drtpiv
xe2adr
xeeadr

R_etas_element
...

int

pivotRow_
maximumRows_
maximumSpace_
maximumPivots_
numberGoodU_
numberPivots_
factorElements_

status_
solveMode_
numberRows_

...

last_eta_size
xnetalval
nnentl
nR_etas
lastSlack

numberSlacks
last_dense
nrowmx
hpivcoR
krpadr
...

EKKHlink

suc
pre

factInfo_

char

nonzero
kp2adr
kp1adr

bool

rows_ok

Public Member Functions

• void gutsOfDestructor (bool clearFact=true)

The real work of desstructor.

• void gutsOfInitialize (bool zapFact=true)

The real work of constructor.

• void gutsOfCopy (const CoinOslFactorization &other)

The real work of copy.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.52 CoinOslFactorization Class Reference 191

Constructors and destructor and copy

• CoinOslFactorization ()
Default constructor.

• CoinOslFactorization (const CoinOslFactorization &other)
Copy constructor.

• virtual ∼CoinOslFactorization ()
Destructor.

• CoinOslFactorization & operator= (const CoinOslFactorization &other)
= copy

• virtual CoinOtherFactorization ∗ clone () const
Clone.

Do factorization - public

• virtual void getAreas (int numberRows, int numberColumns, CoinBigIndex max-
imumL, CoinBigIndex maximumU)

Gets space for a factorization.
• virtual void preProcess ()

PreProcesses column ordered copy of basis.
• virtual int factor ()

Does most of factorization returning status 0 - OK.
• virtual void postProcess (const int ∗sequence, int ∗pivotVariable)

Does post processing on valid factorization - putting variables on correct rows.
• virtual void makeNonSingular (int ∗sequence, int numberColumns)

Makes a non-singular basis by replacing variables.
• int factorize (const CoinPackedMatrix &matrix, int rowIsBasic[], int columnIsBasic[],

double areaFactor=0.0)
When part of LP - given by basic variables.

general stuff such as number of elements

• virtual int numberElements () const
Total number of elements in factorization.

• virtual CoinFactorizationDouble ∗ elements () const
Returns array to put basis elements in.

• virtual int ∗ pivotRow () const
Returns pivot row.

• virtual CoinFactorizationDouble ∗ workArea () const
Returns work area.

• virtual int ∗ intWorkArea () const
Returns int work area.

• virtual int ∗ numberInRow () const
Number of entries in each row.

• virtual int ∗ numberInColumn () const
Number of entries in each column.

• virtual CoinBigIndex ∗ starts () const
Returns array to put basis starts in.

• virtual int ∗ permuteBack () const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.52 CoinOslFactorization Class Reference 192

Returns permute back.
• virtual bool wantsTableauColumn () const

Returns true if wants tableauColumn in replaceColumn.
• virtual void setUsefulInformation (const int ∗info, int whereFrom)

Useful information for factorization 0 - iteration number whereFrom is 0 for factorize
and 1 for replaceColumn.

• virtual void maximumPivots (int value)
Set maximum pivots.

• double maximumCoefficient () const
Returns maximum absolute value in factorization.

• double conditionNumber () const
Condition number - product of pivots after factorization.

• virtual void clearArrays ()
Get rid of all memory.

rank one updates which do exist

• virtual int replaceColumn (CoinIndexedVector ∗regionSparse, int pivotRow, dou-
ble pivotCheck, bool checkBeforeModifying=false, double acceptablePivot=1.0e-
8)

Replaces one Column to basis, returns 0=OK, 1=Probably OK, 2=singular, 3=no
room If checkBeforeModifying is true will do all accuracy checks before modifying
factorization.

various uses of factorization (return code number elements)

which user may want to know about

• virtual int updateColumnFT (CoinIndexedVector ∗regionSparse, CoinIndexed-
Vector ∗regionSparse2, bool noPermute=false)

Updates one column (FTRAN) from regionSparse2 Tries to do FT update number
returned is negative if no room regionSparse starts as zero and is zero at end.

• virtual int updateColumn (CoinIndexedVector ∗regionSparse, CoinIndexedVec-
tor ∗regionSparse2, bool noPermute=false) const

This version has same effect as above with FTUpdate==false so number returned
is always >=0.

• virtual int updateTwoColumnsFT (CoinIndexedVector ∗regionSparse1, CoinIn-
dexedVector ∗regionSparse2, CoinIndexedVector ∗regionSparse3, bool noP-
ermute=false)

does FTRAN on two columns
• virtual int updateColumnTranspose (CoinIndexedVector ∗regionSparse, CoinIn-

dexedVector ∗regionSparse2) const
Updates one column (BTRAN) from regionSparse2 regionSparse starts as zero
and is zero at end Note - if regionSparse2 packed on input - will be packed on
output.

various uses of factorization

∗∗∗ Below this user may not want to know about

which user may not want to know about (left over from my LP code)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.52 CoinOslFactorization Class Reference 193

• virtual int ∗ indices () const
Get rid of all memory.

• virtual int ∗ permute () const
Returns permute in.

Protected Member Functions

• int checkPivot (double saveFromU, double oldPivot) const

Returns accuracy status of replaceColumn returns 0=OK, 1=Probably OK, 2=singular.

Protected Attributes

data

• EKKfactinfo factInfo_
Osl factorization data.

8.52.1 Detailed Description

Definition at line 106 of file CoinOslFactorization.hpp.

8.52.2 Member Function Documentation

8.52.2.1 virtual int CoinOslFactorization::factor () [virtual]

Does most of factorization returning status 0 - OK.

-99 - needs more memory -1 - singular - use numberGoodColumns and redo

Implements CoinOtherFactorization.

8.52.2.2 int CoinOslFactorization::factorize (const CoinPackedMatrix & matrix, int
rowIsBasic[], int columnIsBasic[], double areaFactor = 0.0)

When part of LP - given by basic variables.

Actually does factorization. Arrays passed in have non negative value to say basic. If
status is okay, basic variables have pivot row - this is only needed If status is singular,
then basic variables have pivot row and ones thrown out have -1 returns 0 -okay, -1
singular, -2 too many in basis, -99 memory

8.52.2.3 virtual int CoinOslFactorization::replaceColumn (CoinIndexedVector ∗
regionSparse, int pivotRow, double pivotCheck, bool checkBeforeModifying =
false, double acceptablePivot = 1.0e-8) [virtual]

Replaces one Column to basis, returns 0=OK, 1=Probably OK, 2=singular, 3=no room If
checkBeforeModifying is true will do all accuracy checks before modifying factorization.

Whether to set this depends on speed considerations. You could just do this on first
iteration after factorization and thereafter re-factorize partial update already in U

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.53 CoinOtherFactorization Class Reference 194

Implements CoinOtherFactorization.

8.52.2.4 virtual int CoinOslFactorization::updateColumnFT (CoinIndexedVector ∗
regionSparse, CoinIndexedVector ∗ regionSparse2, bool noPermute = false)
[virtual]

Updates one column (FTRAN) from regionSparse2 Tries to do FT update number re-
turned is negative if no room regionSparse starts as zero and is zero at end.

Note - if regionSparse2 packed on input - will be packed on output

Implements CoinOtherFactorization.

8.52.2.5 virtual int∗ CoinOslFactorization::indices () const [virtual]

Get rid of all memory.

Returns array to put basis indices in

Implements CoinOtherFactorization.

The documentation for this class was generated from the following file:

• CoinOslFactorization.hpp

8.53 CoinOtherFactorization Class Reference

Abstract base class which also has some scalars so can be used from Dense or Simp.

#include <CoinDenseFactorization.hpp>

Inheritance diagram for CoinOtherFactorization:

CoinOtherFactorization

CoinDenseFactorization CoinOslFactorization CoinSimpFactorization

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.53 CoinOtherFactorization Class Reference 195

Collaboration diagram for CoinOtherFactorization:

CoinOtherFactorization

double

zeroTolerance_
workArea_

pivotTolerance_
slackValue_
elements_
relaxCheck_

int

pivotRow_
maximumRows_
maximumSpace_
maximumPivots_
numberGoodU_
numberPivots_
factorElements_

status_
solveMode_
numberRows_

...

Public Member Functions

Constructors and destructor and copy

• CoinOtherFactorization ()

Default constructor.
• CoinOtherFactorization (const CoinOtherFactorization &other)

Copy constructor.
• virtual ∼CoinOtherFactorization ()

Destructor.
• CoinOtherFactorization & operator= (const CoinOtherFactorization &other)

= copy
• virtual CoinOtherFactorization ∗ clone () const =0

Clone.

general stuff such as status

• int status () const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.53 CoinOtherFactorization Class Reference 196

Returns status.
• void setStatus (int value)

Sets status.
• int pivots () const

Returns number of pivots since factorization.
• void setPivots (int value)

Sets number of pivots since factorization.
• void setNumberRows (int value)

Set number of Rows after factorization.
• int numberRows () const

Number of Rows after factorization.
• int numberColumns () const

Total number of columns in factorization.
• int numberGoodColumns () const

Number of good columns in factorization.
• void relaxAccuracyCheck (double value)

Allows change of pivot accuracy check 1.0 == none >1.0 relaxed.
• double getAccuracyCheck () const
• int maximumPivots () const

Maximum number of pivots between factorizations.
• virtual void maximumPivots (int value)

Set maximum pivots.
• double pivotTolerance () const

Pivot tolerance.
• void pivotTolerance (double value)
• double zeroTolerance () const

Zero tolerance.
• void zeroTolerance (double value)
• double slackValue () const

Whether slack value is +1 or -1.
• void slackValue (double value)
• virtual CoinFactorizationDouble ∗ elements () const

Returns array to put basis elements in.
• virtual int ∗ pivotRow () const

Returns pivot row.
• virtual CoinFactorizationDouble ∗ workArea () const

Returns work area.
• virtual int ∗ intWorkArea () const

Returns int work area.
• virtual int ∗ numberInRow () const

Number of entries in each row.
• virtual int ∗ numberInColumn () const

Number of entries in each column.
• virtual CoinBigIndex ∗ starts () const

Returns array to put basis starts in.
• virtual int ∗ permuteBack () const

Returns permute back.
• int solveMode () const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.53 CoinOtherFactorization Class Reference 197

Get solve mode e.g.
• void setSolveMode (int value)

Set solve mode e.g.
• virtual bool wantsTableauColumn () const

Returns true if wants tableauColumn in replaceColumn.
• virtual void setUsefulInformation (const int ∗info, int whereFrom)

Useful information for factorization 0 - iteration number whereFrom is 0 for factorize
and 1 for replaceColumn.

• virtual void clearArrays ()

Get rid of all memory.

virtual general stuff such as permutation

• virtual int ∗ indices () const =0

Returns array to put basis indices in.
• virtual int ∗ permute () const =0

Returns permute in.
• virtual int numberElements () const =0

Total number of elements in factorization.

Do factorization - public

• virtual void getAreas (int numberRows, int numberColumns, CoinBigIndex max-
imumL, CoinBigIndex maximumU)=0

Gets space for a factorization.
• virtual void preProcess ()=0

PreProcesses column ordered copy of basis.
• virtual int factor ()=0

Does most of factorization returning status 0 - OK.
• virtual void postProcess (const int ∗sequence, int ∗pivotVariable)=0

Does post processing on valid factorization - putting variables on correct rows.
• virtual void makeNonSingular (int ∗sequence, int numberColumns)=0

Makes a non-singular basis by replacing variables.

rank one updates which do exist

• virtual int replaceColumn (CoinIndexedVector ∗regionSparse, int pivotRow, dou-
ble pivotCheck, bool checkBeforeModifying=false, double acceptablePivot=1.0e-
8)=0

Replaces one Column to basis, returns 0=OK, 1=Probably OK, 2=singular, 3=no
room If checkBeforeModifying is true will do all accuracy checks before modifying
factorization.

various uses of factorization (return code number elements)

which user may want to know about

• virtual int updateColumnFT (CoinIndexedVector ∗regionSparse, CoinIndexed-
Vector ∗regionSparse2, bool noPermute=false)=0

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.53 CoinOtherFactorization Class Reference 198

Updates one column (FTRAN) from regionSparse2 Tries to do FT update number
returned is negative if no room regionSparse starts as zero and is zero at end.

• virtual int updateColumn (CoinIndexedVector ∗regionSparse, CoinIndexedVec-
tor ∗regionSparse2, bool noPermute=false) const =0

This version has same effect as above with FTUpdate==false so number returned
is always >=0.

• virtual int updateTwoColumnsFT (CoinIndexedVector ∗regionSparse1, CoinIn-
dexedVector ∗regionSparse2, CoinIndexedVector ∗regionSparse3, bool noP-
ermute=false)=0

does FTRAN on two columns
• virtual int updateColumnTranspose (CoinIndexedVector ∗regionSparse, CoinIn-

dexedVector ∗regionSparse2) const =0
Updates one column (BTRAN) from regionSparse2 regionSparse starts as zero
and is zero at end Note - if regionSparse2 packed on input - will be packed on
output.

Protected Attributes

data

• double pivotTolerance_
Pivot tolerance.

• double zeroTolerance_
Zero tolerance.

• double slackValue_
Whether slack value is +1 or -1.

• double relaxCheck_
Relax check on accuracy in replaceColumn.

• CoinBigIndex factorElements_
Number of elements after factorization.

• int numberRows_
Number of Rows in factorization.

• int numberColumns_
Number of Columns in factorization.

• int numberGoodU_
Number factorized in U (not row singletons)

• int maximumPivots_
Maximum number of pivots before factorization.

• int numberPivots_
Number pivots since last factorization.

• int status_
Status of factorization.

• int maximumRows_
Maximum rows ever (i.e. use to copy arrays etc)

• CoinBigIndex maximumSpace_
Maximum length of iterating area.

• int ∗ pivotRow_
Pivot row.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.53 CoinOtherFactorization Class Reference 199

• CoinFactorizationDouble ∗ elements_

Elements of factorization and updates length is maxR∗maxR+maxSpace will al-
ways be long enough so can have nR∗nR ints in maxSpace.

• CoinFactorizationDouble ∗ workArea_

Work area of numberRows_.
• int solveMode_

Solve mode e.g.

8.53.1 Detailed Description

Abstract base class which also has some scalars so can be used from Dense or Simp.

Definition at line 24 of file CoinDenseFactorization.hpp.

8.53.2 Member Function Documentation

8.53.2.1 int CoinOtherFactorization::solveMode () const [inline]

Get solve mode e.g.

0 C++ code, 1 Lapack, 2 choose If 4 set then values pass if 8 set then has iterated

Definition at line 124 of file CoinDenseFactorization.hpp.

8.53.2.2 void CoinOtherFactorization::setSolveMode (int value) [inline]

Set solve mode e.g.

0 C++ code, 1 Lapack, 2 choose If 4 set then values pass if 8 set then has iterated

Definition at line 130 of file CoinDenseFactorization.hpp.

8.53.2.3 virtual int CoinOtherFactorization::factor () [pure virtual]

Does most of factorization returning status 0 - OK.

-99 - needs more memory -1 - singular - use numberGoodColumns and redo

Implemented in CoinDenseFactorization, CoinOslFactorization, and CoinSimpFactor-
ization.

8.53.2.4 virtual int CoinOtherFactorization::replaceColumn (CoinIndexedVector ∗
regionSparse, int pivotRow, double pivotCheck, bool checkBeforeModifying =
false, double acceptablePivot = 1.0e-8) [pure virtual]

Replaces one Column to basis, returns 0=OK, 1=Probably OK, 2=singular, 3=no room If
checkBeforeModifying is true will do all accuracy checks before modifying factorization.

Whether to set this depends on speed considerations. You could just do this on first
iteration after factorization and thereafter re-factorize partial update already in U

Implemented in CoinDenseFactorization, CoinOslFactorization, and CoinSimpFactor-
ization.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 200

8.53.2.5 virtual int CoinOtherFactorization::updateColumnFT (CoinIndexedVector ∗
regionSparse, CoinIndexedVector ∗ regionSparse2, bool noPermute = false)
[pure virtual]

Updates one column (FTRAN) from regionSparse2 Tries to do FT update number re-
turned is negative if no room regionSparse starts as zero and is zero at end.

Note - if regionSparse2 packed on input - will be packed on output

Implemented in CoinDenseFactorization, CoinOslFactorization, and CoinSimpFactor-
ization.

8.53.3 Member Data Documentation

8.53.3.1 int CoinOtherFactorization::solveMode_ [protected]

Solve mode e.g.

0 C++ code, 1 Lapack, 2 choose If 4 set then values pass if 8 set then has iterated

Definition at line 270 of file CoinDenseFactorization.hpp.

The documentation for this class was generated from the following file:

• CoinDenseFactorization.hpp

8.54 CoinPackedMatrix Class Reference

Sparse Matrix Base Class.

#include <CoinPackedMatrix.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 201

Collaboration diagram for CoinPackedMatrix:

CoinPackedMatrix

double

extraGap_
extraMajor_
element_

int

maxSize_
minorDim_
majorDim_
size_

maxMajorDim_
length_
start_
index_

bool

colOrdered_

Public Member Functions

Query members

• double getExtraGap () const
Return the current setting of the extra gap.

• double getExtraMajor () const
Return the current setting of the extra major.

• void reserve (const int newMaxMajorDim, const CoinBigIndex newMaxSize,
bool create=false)

Reserve sufficient space for appending major-ordered vectors.
• void clear ()

Clear the data, but do not free any arrays.
• bool isColOrdered () const

Whether the packed matrix is column major ordered or not.
• bool hasGaps () const

Whether the packed matrix has gaps or not.
• CoinBigIndex getNumElements () const

Number of entries in the packed matrix.
• int getNumCols () const

Number of columns.
• int getNumRows () const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 202

Number of rows.
• const double ∗ getElements () const

A vector containing the elements in the packed matrix.
• const int ∗ getIndices () const

A vector containing the minor indices of the elements in the packed matrix.
• int getSizeVectorStarts () const

The size of the vectorStarts array.
• int getSizeVectorLengths () const

The size of the vectorLengths array.
• const CoinBigIndex ∗ getVectorStarts () const

The positions where the major-dimension vectors start in elements and indices.
• const int ∗ getVectorLengths () const

The lengths of the major-dimension vectors.
• CoinBigIndex getVectorFirst (const int i) const

The position of the first element in the i’th major-dimension vector.
• CoinBigIndex getVectorLast (const int i) const

The position of the last element (well, one entry past the last) in the i’th major-
dimension vector.

• int getVectorSize (const int i) const
The length of i’th vector.

• const CoinShallowPackedVector getVector (int i) const
Return the i’th vector in matrix.

• int ∗ getMajorIndices () const
Returns an array containing major indices.

Modifying members

• void setDimensions (int numrows, int numcols)
Set the dimensions of the matrix.

• void setExtraGap (const double newGap)
Set the extra gap to be allocated to the specified value.

• void setExtraMajor (const double newMajor)
Set the extra major to be allocated to the specified value.

• void appendCol (const CoinPackedVectorBase &vec)
Append a column to the end of the matrix.

• void appendCol (const int vecsize, const int ∗vecind, const double ∗vecelem)
Append a column to the end of the matrix.

• void appendCols (const int numcols, const CoinPackedVectorBase ∗const ∗cols)

Append a set of columns to the end of the matrix.
• int appendCols (const int numcols, const CoinBigIndex ∗columnStarts, const

int ∗row, const double ∗element, int numberRows=-1)
Append a set of columns to the end of the matrix.

• void appendRow (const CoinPackedVectorBase &vec)
Append a row to the end of the matrix.

• void appendRow (const int vecsize, const int ∗vecind, const double ∗vecelem)

Append a row to the end of the matrix.
• void appendRows (const int numrows, const CoinPackedVectorBase ∗const
∗rows)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 203

Append a set of rows to the end of the matrix.
• int appendRows (const int numrows, const CoinBigIndex ∗rowStarts, const int
∗column, const double ∗element, int numberColumns=-1)

Append a set of rows to the end of the matrix.
• void rightAppendPackedMatrix (const CoinPackedMatrix &matrix)

Append the argument to the "right" of the current matrix.
• void bottomAppendPackedMatrix (const CoinPackedMatrix &matrix)

Append the argument to the "bottom" of the current matrix.
• void deleteCols (const int numDel, const int ∗indDel)

Delete the columns whose indices are listed in indDel.
• void deleteRows (const int numDel, const int ∗indDel)

Delete the rows whose indices are listed in indDel.
• void replaceVector (const int index, const int numReplace, const double ∗newElements)

Replace the elements of a vector.
• void modifyCoefficient (int row, int column, double newElement, bool keepZero=false)

Modify one element of packed matrix.
• double getCoefficient (int row, int column) const

Return one element of packed matrix.
• int compress (double threshold)

Eliminate all elements in matrix whose absolute value is less than threshold.
• int eliminateDuplicates (double threshold)

Eliminate all duplicate AND small elements in matrix The column starts are not
affected.

• void orderMatrix ()
Sort all columns so indices are increasing.in each column.

• int cleanMatrix (double threshold=1.0e-20)
Really clean up matrix.

Methods that reorganize the whole matrix

• void removeGaps (double removeValue=-1.0)
Remove the gaps from the matrix if there were any Can also remove small elements
fabs() <= removeValue.

• void submatrixOf (const CoinPackedMatrix &matrix, const int numMajor, const
int ∗indMajor)

Extract a submatrix from matrix.
• void submatrixOfWithDuplicates (const CoinPackedMatrix &matrix, const int

numMajor, const int ∗indMajor)
Extract a submatrix from matrix.

• void copyOf (const CoinPackedMatrix &rhs)
Copy method.

• void copyOf (const bool colordered, const int minor, const int major, const
CoinBigIndex numels, const double ∗elem, const int ∗ind, const CoinBigIn-
dex ∗start, const int ∗len, const double extraMajor=0.0, const double extra-
Gap=0.0)

Copy the arguments to the matrix.
• void copyReuseArrays (const CoinPackedMatrix &rhs)

Copy method.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 204

• void reverseOrderedCopyOf (const CoinPackedMatrix &rhs)
Make a reverse-ordered copy.

• void assignMatrix (const bool colordered, const int minor, const int major, const
CoinBigIndex numels, double ∗&elem, int ∗&ind, CoinBigIndex ∗&start, int
∗&len, const int maxmajor=-1, const CoinBigIndex maxsize=-1)

Assign the arguments to the matrix.
• CoinPackedMatrix & operator= (const CoinPackedMatrix &rhs)

Assignment operator.
• void reverseOrdering ()

Reverse the ordering of the packed matrix.
• void transpose ()

Transpose the matrix.
• void swap (CoinPackedMatrix &matrix)

Swap the content of two packed matrices.

Matrix times vector methods

• void times (const double ∗x, double ∗y) const
Return A ∗ x in y.

• void times (const CoinPackedVectorBase &x, double ∗y) const
Return A ∗ x in y.

• void transposeTimes (const double ∗x, double ∗y) const
Return x ∗ A in y.

• void transposeTimes (const CoinPackedVectorBase &x, double ∗y) const
Return x ∗ A in y.

Queries

• int ∗ countOrthoLength () const
Count the number of entries in every minor-dimension vector and return an array
containing these lengths.

• void countOrthoLength (int ∗counts) const
Count the number of entries in every minor-dimension vector and fill in an array
containing these lengths.

• int getMajorDim () const
Major dimension.

• int getMinorDim () const
Minor dimension.

• int getMaxMajorDim () const
Current maximum for major dimension.

• void dumpMatrix (const char ∗fname=NULL) const
Dump the matrix on stdout.

• void printMatrixElement (const int row_val, const int col_val) const

Print a single matrix element.

Append vectors

When compiled with COIN_DEBUG defined these methods throw an exception if the
major (minor) vector contains an index that’s invalid for the minor (major) dimension.
Otherwise the methods assume that every index fits into the matrix.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 205

• void appendMajorVector (const CoinPackedVectorBase &vec)
Append a major-dimension vector to the end of the matrix.

• void appendMajorVector (const int vecsize, const int ∗vecind, const double
∗vecelem)

Append a major-dimension vector to the end of the matrix.
• void appendMajorVectors (const int numvecs, const CoinPackedVectorBase
∗const ∗vecs)

Append several major-dimensonvectors to the end of the matrix.
• void appendMinorVector (const CoinPackedVectorBase &vec)

Append a minor-dimension vector to the end of the matrix.
• void appendMinorVector (const int vecsize, const int ∗vecind, const double
∗vecelem)

Append a minor-dimension vector to the end of the matrix.
• void appendMinorVectors (const int numvecs, const CoinPackedVectorBase
∗const ∗vecs)

Append several minor-dimension vectors to the end of the matrix.
• void appendMinorFast (const int number, const CoinBigIndex ∗starts, const int
∗index, const double ∗element)

Append a set of rows (columns) to the end of a column (row) ordered matrix.

Append matrices

We’ll document these methods assuming that the current matrix is column major
ordered (Hence in the ...SameOrdered() methods the argument is column
ordered, in the OrthoOrdered() methods the argument is row ordered.)

• void majorAppendSameOrdered (const CoinPackedMatrix &matrix)
Append the columns of the argument to the right end of this matrix.

• void minorAppendSameOrdered (const CoinPackedMatrix &matrix)
Append the columns of the argument to the bottom end of this matrix.

• void majorAppendOrthoOrdered (const CoinPackedMatrix &matrix)
Append the rows of the argument to the right end of this matrix.

• void minorAppendOrthoOrdered (const CoinPackedMatrix &matrix)
Append the rows of the argument to the bottom end of this matrix.

Delete vectors

• void deleteMajorVectors (const int numDel, const int ∗indDel)
Delete the major-dimension vectors whose indices are listed in indDel.

• void deleteMinorVectors (const int numDel, const int ∗indDel)
Delete the minor-dimension vectors whose indices are listed in indDel.

Various dot products.

• void timesMajor (const double ∗x, double ∗y) const
Return A ∗ x (multiplied from the "right" direction) in y.

• void timesMajor (const CoinPackedVectorBase &x, double ∗y) const
Return A ∗ x (multiplied from the "right" direction) in y.

• void timesMinor (const double ∗x, double ∗y) const
Return A ∗ x (multiplied from the "right" direction) in y.

• void timesMinor (const CoinPackedVectorBase &x, double ∗y) const
Return A ∗ x (multiplied from the "right" direction) in y.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 206

Logical Operations.

• template<class FloatEqual >

bool isEquivalent (const CoinPackedMatrix &rhs, const FloatEqual &eq) const

Test for equivalence.
• bool isEquivalent2 (const CoinPackedMatrix &rhs) const

Test for equivalence and report differences.
• bool isEquivalent (const CoinPackedMatrix &rhs) const

Test for equivalence.

Non-const methods

These are to be used with great care when doing column generation, etc.

• double ∗ getMutableElements () const
A vector containing the elements in the packed matrix.

• int ∗ getMutableIndices () const
A vector containing the minor indices of the elements in the packed matrix.

• CoinBigIndex ∗ getMutableVectorStarts () const
The positions where the major-dimension vectors start in element_ and index_.

• int ∗ getMutableVectorLengths () const
The lengths of the major-dimension vectors.

• void setNumElements (CoinBigIndex value)
Change the size of the bulk store after modifying - be careful.

• void nullElementArray ()
NULLify element array.

• void nullStartArray ()
NULLify start array.

• void nullLengthArray ()
NULLify length array.

• void nullIndexArray ()
NULLify index array.

Constructors and destructors

• CoinPackedMatrix ()
Default Constructor creates an empty column ordered packed matrix.

• CoinPackedMatrix (const bool colordered, const double extraMajor, const dou-
ble extraGap)

A constructor where the ordering and the gaps are specified.
• CoinPackedMatrix (const bool colordered, const int minor, const int major,

const CoinBigIndex numels, const double ∗elem, const int ∗ind, const Coin-
BigIndex ∗start, const int ∗len, const double extraMajor, const double extra-
Gap)

• CoinPackedMatrix (const bool colordered, const int minor, const int major,
const CoinBigIndex numels, const double ∗elem, const int ∗ind, const Coin-
BigIndex ∗start, const int ∗len)

• CoinPackedMatrix (const bool colordered, const int ∗rowIndices, const int ∗colIndices,
const double ∗elements, CoinBigIndex numels)

Create packed matrix from triples.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 207

• CoinPackedMatrix (const CoinPackedMatrix &m)

Copy constructor.
• CoinPackedMatrix (const CoinPackedMatrix &m, int extraForMajor, int extraEle-

ments, bool reverseOrdering=false)
Copy constructor - fine tuning - allowing extra space and/or reverse ordering.

• CoinPackedMatrix (const CoinPackedMatrix &wholeModel, int numberRows,
const int ∗whichRows, int numberColumns, const int ∗whichColumns)

Subset constructor (without gaps).
• virtual ∼CoinPackedMatrix ()

Destructor.

Debug Utilities

• int verifyMtx (int verbosity=1, bool zeroesAreError=false) const
Scan the matrix for anomalies.

Protected Member Functions

• void gutsOfCopyOfNoGaps (const bool colordered, const int minor, const int ma-
jor, const double ∗elem, const int ∗ind, const CoinBigIndex ∗start)

When no gaps we can do faster.

• int appendMajor (const int number, const CoinBigIndex ∗starts, const int ∗index,
const double ∗element, int numberOther=-1)

Append a set of rows (columns) to the end of a row (colum) ordered matrix.

• int appendMinor (const int number, const CoinBigIndex ∗starts, const int ∗index,
const double ∗element, int numberOther=-1)

Append a set of rows (columns) to the end of a column (row) ordered matrix.

Protected Attributes

Data members

The data members are protected to allow access for derived classes.

• bool colOrdered_
A flag indicating whether the matrix is column or row major ordered.

• double extraGap_
This much times more space should be allocated for each major-dimension vector
(with respect to the number of entries in the vector) when the matrix is resized.

• double extraMajor_
his much times more space should be allocated for major-dimension vectors when
the matrix is resized.

• double ∗ element_
List of nonzero element values.

• int ∗ index_
List of nonzero element minor-dimension indices.

• CoinBigIndex ∗ start_
Starting positions of major-dimension vectors.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 208

• int ∗ length_
Lengths of major-dimension vectors.

• int majorDim_
number of vectors in matrix

• int minorDim_
size of other dimension

• CoinBigIndex size_
the number of nonzero entries

• int maxMajorDim_
max space allocated for major-dimension

• CoinBigIndex maxSize_
max space allocated for entries

Friends

• void CoinPackedMatrixUnitTest ()

Test the methods in the CoinPackedMatrix class.

8.54.1 Detailed Description

Sparse Matrix Base Class.

This class is intended to represent sparse matrices using row-major or column-major
ordering. The representation is very efficient for adding, deleting, or retrieving major-
dimension vectors. Adding a minor-dimension vector is less efficient, but can be helped
by providing "extra" space as described in the next paragraph. Deleting a minor-dimension
vector requires inspecting all coefficients in the matrix. Retrieving a minor-dimension
vector would incur the same cost and is not supported (except in the sense that you can
write a loop to retrieve all coefficients one at a time). Consider physically transposing
the matrix, or keeping a second copy with the other major-vector ordering.

The sparse represention can be completely compact or it can have "extra" space avail-
able at the end of each major vector. Incorporating extra space into the sparse matrix
representation can improve performance in cases where new data needs to be inserted
into the packed matrix against the major-vector orientation (e.g, inserting a row into a
matrix stored in column-major order).

For example if the matrix:

3 1 0 -2 -1 0 0 -1
0 2 1.1 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 2.8 0 0 -1.2 0

5.6 0 0 0 1 0 0 1.9

was stored by rows (with no extra space) in
CoinPackedMatrix r then:
r.getElements() returns a vector containing:
3 1 -2 -1 -1 2 1.1 1 1 2.8 -1.2 5.6 1 1.9

r.getIndices() returns a vector containing:
0 1 3 4 7 1 2 2 5 3 6 0 4 7

r.getVectorStarts() returns a vector containing:

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 209

0 5 7 9 11 14
r.getNumElements() returns 14.
r.getMajorDim() returns 5.
r.getVectorSize(0) returns 5.
r.getVectorSize(1) returns 2.
r.getVectorSize(2) returns 2.
r.getVectorSize(3) returns 2.
r.getVectorSize(4) returns 3.

If stored by columns (with no extra space) then:
c.getElements() returns a vector containing:
3 5.6 1 2 1.1 1 -2 2.8 -1 1 1 -1.2 -1 1.9

c.getIndices() returns a vector containing:
0 4 0 1 1 2 0 3 0 4 2 3 0 4

c.getVectorStarts() returns a vector containing:
0 2 4 6 8 10 11 12 14

c.getNumElements() returns 14.
c.getMajorDim() returns 8.

Compiling this class with CLP_NO_VECTOR defined will excise all methods which use
CoinPackedVectorBase, CoinPackedVector, or CoinShallowPackedVector as parame-
ters or return types.

Compiling this class with COIN_FAST_CODE defined removes index range checks.

Definition at line 79 of file CoinPackedMatrix.hpp.

8.54.2 Constructor & Destructor Documentation

8.54.2.1 CoinPackedMatrix::CoinPackedMatrix (const bool colordered, const int ∗ rowIndices,
const int ∗ colIndices, const double ∗ elements, CoinBigIndex numels)

Create packed matrix from triples.

If colordered is true then the created matrix will be column ordered. Duplicate matrix
elements are allowed. The created matrix will have the sum of the duplicates.

For example if:

rowIndices[0]=2; colIndices[0]=5; elements[0]=2.0

rowIndices[1]=2; colIndices[1]=5; elements[1]=0.5

then the created matrix will contain a value of 2.5 in row 2 and column 5.

The matrix is created without gaps.

8.54.2.2 CoinPackedMatrix::CoinPackedMatrix (const CoinPackedMatrix & m, int
extraForMajor, int extraElements, bool reverseOrdering = false)

Copy constructor - fine tuning - allowing extra space and/or reverse ordering.

extraForMajor is exact extra after any possible reverse ordering. extraMajor_ and extraGap_-
set to zero.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 210

8.54.2.3 CoinPackedMatrix::CoinPackedMatrix (const CoinPackedMatrix & wholeModel, int
numberRows, const int ∗ whichRows, int numberColumns, const int ∗ whichColumns
)

Subset constructor (without gaps).

Duplicates are allowed and order is as given

8.54.3 Member Function Documentation

8.54.3.1 double CoinPackedMatrix::getExtraGap () const [inline]

Return the current setting of the extra gap.

Definition at line 89 of file CoinPackedMatrix.hpp.

8.54.3.2 double CoinPackedMatrix::getExtraMajor () const [inline]

Return the current setting of the extra major.

Definition at line 91 of file CoinPackedMatrix.hpp.

8.54.3.3 void CoinPackedMatrix::reserve (const int newMaxMajorDim, const CoinBigIndex
newMaxSize, bool create = false)

Reserve sufficient space for appending major-ordered vectors.

If create is true, empty columns are created (for column generation)

8.54.3.4 bool CoinPackedMatrix::isColOrdered () const [inline]

Whether the packed matrix is column major ordered or not.

Definition at line 101 of file CoinPackedMatrix.hpp.

8.54.3.5 bool CoinPackedMatrix::hasGaps () const [inline]

Whether the packed matrix has gaps or not.

Definition at line 104 of file CoinPackedMatrix.hpp.

8.54.3.6 CoinBigIndex CoinPackedMatrix::getNumElements () const [inline]

Number of entries in the packed matrix.

Definition at line 107 of file CoinPackedMatrix.hpp.

8.54.3.7 int CoinPackedMatrix::getNumCols () const [inline]

Number of columns.

Definition at line 110 of file CoinPackedMatrix.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 211

8.54.3.8 int CoinPackedMatrix::getNumRows () const [inline]

Number of rows.

Definition at line 114 of file CoinPackedMatrix.hpp.

8.54.3.9 const double∗ CoinPackedMatrix::getElements () const [inline]

A vector containing the elements in the packed matrix.

Returns #elements_. Note that there might be gaps in this vector, entries that do not
belong to any major-dimension vector. To get the actual elements one should look at
this vector together with vectorStarts (start_) and vectorLengths (length_).

Definition at line 124 of file CoinPackedMatrix.hpp.

8.54.3.10 const int∗ CoinPackedMatrix::getIndices () const [inline]

A vector containing the minor indices of the elements in the packed matrix.

Returns index_. Note that there might be gaps in this list, entries that do not belong to
any major-dimension vector. To get the actual elements one should look at this vector
together with vectorStarts (start_) and vectorLengths (length_).

Definition at line 134 of file CoinPackedMatrix.hpp.

8.54.3.11 int CoinPackedMatrix::getSizeVectorStarts () const [inline]

The size of the vectorStarts array.

See start_.

Definition at line 140 of file CoinPackedMatrix.hpp.

8.54.3.12 int CoinPackedMatrix::getSizeVectorLengths () const [inline]

The size of the vectorLengths array.

See length_.

Definition at line 147 of file CoinPackedMatrix.hpp.

8.54.3.13 const CoinBigIndex∗ CoinPackedMatrix::getVectorStarts () const [inline]

The positions where the major-dimension vectors start in elements and indices.

See start_.

Definition at line 154 of file CoinPackedMatrix.hpp.

8.54.3.14 const int∗ CoinPackedMatrix::getVectorLengths () const [inline]

The lengths of the major-dimension vectors.

See length_.

Definition at line 160 of file CoinPackedMatrix.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 212

8.54.3.15 CoinBigIndex CoinPackedMatrix::getVectorLast (const int i) const [inline]

The position of the last element (well, one entry past the last) in the i’th major-dimension
vector.

Definition at line 173 of file CoinPackedMatrix.hpp.

8.54.3.16 int CoinPackedMatrix::getVectorSize (const int i) const [inline]

The length of i’th vector.

Definition at line 181 of file CoinPackedMatrix.hpp.

8.54.3.17 const CoinShallowPackedVector CoinPackedMatrix::getVector (int i) const
[inline]

Return the i’th vector in matrix.

Definition at line 190 of file CoinPackedMatrix.hpp.

8.54.3.18 int∗ CoinPackedMatrix::getMajorIndices () const

Returns an array containing major indices.

The array is getNumElements long and if getVectorStarts() is 0,2,5 then the array would
start 0,0,1,1,1,2... This method is provided to go back from a packed format to a
triple format. It returns NULL if there are gaps in matrix so user should use remove-
Gaps() if there are any gaps. It does this as this array has to match getElements() and
getIndices() and because it makes no sense otherwise. The returned array is allocated
with new int[], free it with delete[].

8.54.3.19 void CoinPackedMatrix::setDimensions (int numrows, int numcols)

Set the dimensions of the matrix.

The method name is deceptive; the effect is to append empty columns and/or rows to
the matrix to reach the specified dimensions. A negative number for either dimension
means that that dimension doesn’t change. An exception will be thrown if the specified
dimensions are smaller than the current dimensions.

8.54.3.20 void CoinPackedMatrix::setExtraGap (const double newGap)

Set the extra gap to be allocated to the specified value.

8.54.3.21 void CoinPackedMatrix::setExtraMajor (const double newMajor)

Set the extra major to be allocated to the specified value.

8.54.3.22 void CoinPackedMatrix::appendCol (const CoinPackedVectorBase & vec)

Append a column to the end of the matrix.

When compiled with COIN_DEBUG defined this method throws an exception if the col-
umn vector specifies a nonexistent row index. Otherwise the method assumes that
every index fits into the matrix.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 213

8.54.3.23 void CoinPackedMatrix::appendCol (const int vecsize, const int ∗ vecind, const
double ∗ vecelem)

Append a column to the end of the matrix.

When compiled with COIN_DEBUG defined this method throws an exception if the col-
umn vector specifies a nonexistent row index. Otherwise the method assumes that
every index fits into the matrix.

8.54.3.24 void CoinPackedMatrix::appendCols (const int numcols, const
CoinPackedVectorBase ∗const ∗ cols)

Append a set of columns to the end of the matrix.

When compiled with COIN_DEBUG defined this method throws an exception if any of
the column vectors specify a nonexistent row index. Otherwise the method assumes
that every index fits into the matrix.

8.54.3.25 int CoinPackedMatrix::appendCols (const int numcols, const CoinBigIndex ∗
columnStarts, const int ∗ row, const double ∗ element, int numberRows = -1)

Append a set of columns to the end of the matrix.

Returns the number of errors (nonexistent or duplicate row index). No error checking is
performed if numberRows < 0.

8.54.3.26 void CoinPackedMatrix::appendRow (const CoinPackedVectorBase & vec)

Append a row to the end of the matrix.

When compiled with COIN_DEBUG defined this method throws an exception if the row
vector specifies a nonexistent column index. Otherwise the method assumes that every
index fits into the matrix.

8.54.3.27 void CoinPackedMatrix::appendRow (const int vecsize, const int ∗ vecind, const
double ∗ vecelem)

Append a row to the end of the matrix.

When compiled with COIN_DEBUG defined this method throws an exception if the row
vector specifies a nonexistent column index. Otherwise the method assumes that every
index fits into the matrix.

8.54.3.28 void CoinPackedMatrix::appendRows (const int numrows, const
CoinPackedVectorBase ∗const ∗ rows)

Append a set of rows to the end of the matrix.

When compiled with COIN_DEBUG defined this method throws an exception if any of
the row vectors specify a nonexistent column index. Otherwise the method assumes
that every index fits into the matrix.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 214

8.54.3.29 int CoinPackedMatrix::appendRows (const int numrows, const CoinBigIndex ∗
rowStarts, const int ∗ column, const double ∗ element, int numberColumns = -1)

Append a set of rows to the end of the matrix.

Returns the number of errors (nonexistent or duplicate column index). No error checking
is performed if numberColumns < 0.

8.54.3.30 void CoinPackedMatrix::rightAppendPackedMatrix (const CoinPackedMatrix &
matrix)

Append the argument to the "right" of the current matrix.

Imagine this as adding new columns (don’t worry about how the matrices are ordered,
that is taken care of). An exception is thrown if the number of rows is different in the
matrices.

8.54.3.31 void CoinPackedMatrix::bottomAppendPackedMatrix (const CoinPackedMatrix &
matrix)

Append the argument to the "bottom" of the current matrix.

Imagine this as adding new rows (don’t worry about how the matrices are ordered, that
is taken care of). An exception is thrown if the number of columns is different in the
matrices.

8.54.3.32 void CoinPackedMatrix::deleteCols (const int numDel, const int ∗ indDel)

Delete the columns whose indices are listed in indDel.

8.54.3.33 void CoinPackedMatrix::deleteRows (const int numDel, const int ∗ indDel)

Delete the rows whose indices are listed in indDel.

8.54.3.34 void CoinPackedMatrix::replaceVector (const int index, const int numReplace, const
double ∗ newElements)

Replace the elements of a vector.

The indices remain the same. At most the number specified will be replaced. The index
is between 0 and major dimension of matrix

8.54.3.35 void CoinPackedMatrix::modifyCoefficient (int row, int column, double newElement,
bool keepZero = false)

Modify one element of packed matrix.

An element may be added. This works for either ordering If the new element is zero it
will be deleted unless keepZero true

8.54.3.36 double CoinPackedMatrix::getCoefficient (int row, int column) const

Return one element of packed matrix.

This works for either ordering If it is not present will return 0.0

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 215

8.54.3.37 int CoinPackedMatrix::compress (double threshold)

Eliminate all elements in matrix whose absolute value is less than threshold.

The column starts are not affected. Returns number of elements eliminated. Elements
eliminated are at end of each vector

8.54.3.38 int CoinPackedMatrix::eliminateDuplicates (double threshold)

Eliminate all duplicate AND small elements in matrix The column starts are not affected.

Returns number of elements eliminated.

8.54.3.39 int CoinPackedMatrix::cleanMatrix (double threshold = 1.0e-20)

Really clean up matrix.

a) eliminate all duplicate AND small elements in matrix b) remove all gaps and set
extraGap_ and extraMajor_ to 0.0 c) reallocate arrays and make max lengths equal to
lengths d) orders elements returns number of elements eliminated

8.54.3.40 void CoinPackedMatrix::submatrixOf (const CoinPackedMatrix & matrix, const int
numMajor, const int ∗ indMajor)

Extract a submatrix from matrix.

Those major-dimension vectors of the matrix comprise the submatrix whose indices are
given in the arguments. Does not allow duplicates.

8.54.3.41 void CoinPackedMatrix::submatrixOfWithDuplicates (const CoinPackedMatrix &
matrix, const int numMajor, const int ∗ indMajor)

Extract a submatrix from matrix.

Those major-dimension vectors of the matrix comprise the submatrix whose indices are
given in the arguments. Allows duplicates and keeps order.

8.54.3.42 void CoinPackedMatrix::copyOf (const CoinPackedMatrix & rhs)

Copy method.

This method makes an exact replica of the argument, including the extra space param-
eters.

8.54.3.43 void CoinPackedMatrix::copyOf (const bool colordered, const int minor, const int
major, const CoinBigIndex numels, const double ∗ elem, const int ∗ ind, const
CoinBigIndex ∗ start, const int ∗ len, const double extraMajor = 0.0, const double
extraGap = 0.0)

Copy the arguments to the matrix.

If len is a NULL pointer then the matrix is assumed to have no gaps in it and len will
be created accordingly.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 216

8.54.3.44 void CoinPackedMatrix::copyReuseArrays (const CoinPackedMatrix & rhs)

Copy method.

This method makes an exact replica of the argument, including the extra space param-
eters. If there is room it will re-use arrays

8.54.3.45 void CoinPackedMatrix::reverseOrderedCopyOf (const CoinPackedMatrix & rhs)

Make a reverse-ordered copy.

This method makes an exact replica of the argument with the major vector orientation
changed from row (column) to column (row). The extra space parameters are also
copied and reversed. (Cf. reverseOrdering, which does the same thing in place.)

8.54.3.46 void CoinPackedMatrix::assignMatrix (const bool colordered, const int minor, const
int major, const CoinBigIndex numels, double ∗& elem, int ∗& ind, CoinBigIndex ∗&
start, int ∗& len, const int maxmajor = -1, const CoinBigIndex maxsize = -1)

Assign the arguments to the matrix.

If len is a NULL pointer then the matrix is assumed to have no gaps in it and len will
be created accordingly.

NOTE 1: After this method returns the pointers passed to the method will be NULL
pointers!

NOTE 2: When the matrix is eventually destructed the arrays will be deleted by delete[].
Hence one should use this method ONLY if all array swere allocated by new[]!

8.54.3.47 CoinPackedMatrix& CoinPackedMatrix::operator= (const CoinPackedMatrix &
rhs)

Assignment operator.

This copies out the data, but uses the current matrix’s extra space parameters.

8.54.3.48 void CoinPackedMatrix::reverseOrdering ()

Reverse the ordering of the packed matrix.

Change the major vector orientation of the matrix data structures from row (column) to
column (row). (Cf. reverseOrderedCopyOf, which does the same thing but produces a
new matrix.)

8.54.3.49 void CoinPackedMatrix::transpose ()

Transpose the matrix.

Note

If you start with a column-ordered matrix and invoke transpose, you will have a
row-ordered transposed matrix. To change the major vector orientation (e.g., to
transform a column-ordered matrix to a column-ordered transposed matrix), invoke
transpose() followed by reverseOrdering().

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 217

8.54.3.50 void CoinPackedMatrix::swap (CoinPackedMatrix & matrix)

Swap the content of two packed matrices.

8.54.3.51 void CoinPackedMatrix::times (const double ∗ x, double ∗ y) const

Return A ∗ x in y.

Precondition

x must be of size numColumns()
y must be of size numRows()

8.54.3.52 void CoinPackedMatrix::times (const CoinPackedVectorBase & x, double ∗ y)
const

Return A ∗ x in y.

Same as the previous method, just x is given in the form of a packed vector.

8.54.3.53 void CoinPackedMatrix::transposeTimes (const double ∗ x, double ∗ y) const

Return x ∗ A in y.

Precondition

x must be of size numRows()
y must be of size numColumns()

8.54.3.54 void CoinPackedMatrix::transposeTimes (const CoinPackedVectorBase & x,
double ∗ y) const

Return x ∗ A in y.

Same as the previous method, just x is given in the form of a packed vector.

8.54.3.55 int∗ CoinPackedMatrix::countOrthoLength () const

Count the number of entries in every minor-dimension vector and return an array con-
taining these lengths.

The returned array is allocated with new int[], free it with delete[].

8.54.3.56 void CoinPackedMatrix::countOrthoLength (int ∗ counts) const

Count the number of entries in every minor-dimension vector and fill in an array contain-
ing these lengths.

8.54.3.57 int CoinPackedMatrix::getMajorDim () const [inline]

Major dimension.

For row ordered matrix this would be the number of rows.

Definition at line 498 of file CoinPackedMatrix.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 218

8.54.3.58 int CoinPackedMatrix::getMinorDim () const [inline]

Minor dimension.

For row ordered matrix this would be the number of columns.

Definition at line 501 of file CoinPackedMatrix.hpp.

8.54.3.59 int CoinPackedMatrix::getMaxMajorDim () const [inline]

Current maximum for major dimension.

For row ordered matrix this many rows can be added without reallocating the vector
related to the major dimension (start_ and length_).

Definition at line 505 of file CoinPackedMatrix.hpp.

8.54.3.60 void CoinPackedMatrix::dumpMatrix (const char ∗ fname = NULL) const

Dump the matrix on stdout.

When in dire straits this method can help.

8.54.3.61 void CoinPackedMatrix::appendMajorVector (const CoinPackedVectorBase &
vec)

Append a major-dimension vector to the end of the matrix.

8.54.3.62 void CoinPackedMatrix::appendMajorVector (const int vecsize, const int ∗ vecind,
const double ∗ vecelem)

Append a major-dimension vector to the end of the matrix.

8.54.3.63 void CoinPackedMatrix::appendMinorVector (const CoinPackedVectorBase &
vec)

Append a minor-dimension vector to the end of the matrix.

8.54.3.64 void CoinPackedMatrix::appendMinorVector (const int vecsize, const int ∗ vecind,
const double ∗ vecelem)

Append a minor-dimension vector to the end of the matrix.

8.54.3.65 void CoinPackedMatrix::appendMinorFast (const int number, const CoinBigIndex ∗
starts, const int ∗ index, const double ∗ element)

Append a set of rows (columns) to the end of a column (row) ordered matrix.

This case is when we know there are no gaps and majorDim_ will not change.

8.54.3.66 void CoinPackedMatrix::majorAppendSameOrdered (const CoinPackedMatrix &
matrix)

Append the columns of the argument to the right end of this matrix.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 219

Precondition

minorDim_ == matrix.minorDim_
This method throws an exception if the minor dimensions are not the same.

8.54.3.67 void CoinPackedMatrix::minorAppendSameOrdered (const CoinPackedMatrix &
matrix)

Append the columns of the argument to the bottom end of this matrix.

Precondition

majorDim_ == matrix.majorDim_
This method throws an exception if the major dimensions are not the same.

8.54.3.68 void CoinPackedMatrix::majorAppendOrthoOrdered (const CoinPackedMatrix &
matrix)

Append the rows of the argument to the right end of this matrix.

Precondition

minorDim_ == matrix.majorDim_
This method throws an exception if the minor dimension of the current matrix is not
the same as the major dimension of the argument matrix.

8.54.3.69 void CoinPackedMatrix::minorAppendOrthoOrdered (const CoinPackedMatrix &
matrix)

Append the rows of the argument to the bottom end of this matrix.

Precondition

majorDim_ == matrix.minorDim_
This method throws an exception if the major dimension of the current matrix is not
the same as the minor dimension of the argument matrix.

8.54.3.70 void CoinPackedMatrix::deleteMajorVectors (const int numDel, const int ∗ indDel)

Delete the major-dimension vectors whose indices are listed in indDel.

8.54.3.71 void CoinPackedMatrix::deleteMinorVectors (const int numDel, const int ∗ indDel)

Delete the minor-dimension vectors whose indices are listed in indDel.

8.54.3.72 void CoinPackedMatrix::timesMajor (const double ∗ x, double ∗ y) const

Return A ∗ x (multiplied from the "right" direction) in y.

Precondition

x must be of size majorDim()
y must be of size minorDim()

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 220

8.54.3.73 void CoinPackedMatrix::timesMajor (const CoinPackedVectorBase & x, double ∗
y) const

Return A ∗ x (multiplied from the "right" direction) in y.

Same as the previous method, just x is given in the form of a packed vector.

8.54.3.74 void CoinPackedMatrix::timesMinor (const double ∗ x, double ∗ y) const

Return A ∗ x (multiplied from the "right" direction) in y.

Precondition

x must be of size minorDim()
y must be of size majorDim()

8.54.3.75 void CoinPackedMatrix::timesMinor (const CoinPackedVectorBase & x, double
∗ y) const

Return A ∗ x (multiplied from the "right" direction) in y.

Same as the previous method, just x is given in the form of a packed vector.

8.54.3.76 template<class FloatEqual > bool CoinPackedMatrix::isEquivalent (const
CoinPackedMatrix & rhs, const FloatEqual & eq) const [inline]

Test for equivalence.

Two matrices are equivalent if they are both row- or column-ordered, they have the
same dimensions, and each (major) vector is equivalent. The operator used to test for
equality can be specified using the FloatEqual template parameter.

Definition at line 650 of file CoinPackedMatrix.hpp.

8.54.3.77 bool CoinPackedMatrix::isEquivalent2 (const CoinPackedMatrix & rhs) const

Test for equivalence and report differences.

Equivalence is defined as for isEquivalent. In addition, this method will print differences
to std::cerr. Intended for use in unit tests and for debugging.

8.54.3.78 bool CoinPackedMatrix::isEquivalent (const CoinPackedMatrix & rhs) const

Test for equivalence.

The test for element equality is the default CoinRelFltEq operator.

8.54.3.79 double∗ CoinPackedMatrix::getMutableElements () const [inline]

A vector containing the elements in the packed matrix.

Note that there might be gaps in this list, entries that do not belong to any major-
dimension vector. To get the actual elements one should look at this vector together
with start_ and length_.

Definition at line 703 of file CoinPackedMatrix.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 221

8.54.3.80 int∗ CoinPackedMatrix::getMutableIndices () const [inline]

A vector containing the minor indices of the elements in the packed matrix.

Note that there might be gaps in this list, entries that do not belong to any major-
dimension vector. To get the actual elements one should look at this vector together
with start_ and length_.

Definition at line 709 of file CoinPackedMatrix.hpp.

8.54.3.81 CoinBigIndex∗ CoinPackedMatrix::getMutableVectorStarts () const [inline]

The positions where the major-dimension vectors start in element_ and index_.

Definition at line 713 of file CoinPackedMatrix.hpp.

8.54.3.82 int∗ CoinPackedMatrix::getMutableVectorLengths () const [inline]

The lengths of the major-dimension vectors.

Definition at line 715 of file CoinPackedMatrix.hpp.

8.54.3.83 void CoinPackedMatrix::nullElementArray () [inline]

NULLify element array.

Used when space is very tight. Does not free the space!

Definition at line 723 of file CoinPackedMatrix.hpp.

8.54.3.84 void CoinPackedMatrix::nullStartArray () [inline]

NULLify start array.

Used when space is very tight. Does not free the space!

Definition at line 729 of file CoinPackedMatrix.hpp.

8.54.3.85 void CoinPackedMatrix::nullLengthArray () [inline]

NULLify length array.

Used when space is very tight. Does not free the space!

Definition at line 735 of file CoinPackedMatrix.hpp.

8.54.3.86 void CoinPackedMatrix::nullIndexArray () [inline]

NULLify index array.

Used when space is very tight. Does not free the space!

Definition at line 741 of file CoinPackedMatrix.hpp.

8.54.3.87 int CoinPackedMatrix::verifyMtx (int verbosity = 1, bool zeroesAreError = false)
const

Scan the matrix for anomalies.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 222

Returns the number of anomalies. Scans the structure for gaps, obviously bogus indices
and coefficients, and inconsistencies. Gaps are not an error unless hasGaps() says the
matrix should be gap-free. Zeroes are not an error unless zeroesAreError is set
to true.

Values for verbosity are:

• 0: No messages, just the return value

• 1: Messages about errors

• 2: If there are no errors, a message indicating the matrix was checked is printed
(positive confirmation).

• 3: Adds a bit more information about the matrix.

• 4: Prints warnings about zeroes even if they’re not considered errors.

Obviously bogus coefficients are coefficients that are NaN or have absolute value greater
than 1e50. Zeros have absolute value less than 1e-50.

8.54.3.88 int CoinPackedMatrix::appendMajor (const int number, const CoinBigIndex ∗
starts, const int ∗ index, const double ∗ element, int numberOther = -1)
[protected]

Append a set of rows (columns) to the end of a row (colum) ordered matrix.

If numberOther > 0 the method will check if any of the new rows (columns) contain
duplicate indices or invalid indices and return the number of errors. A valid minor index
must satisfy

0 <= k < numberOther

If numberOther < 0 no checking is performed.

8.54.3.89 int CoinPackedMatrix::appendMinor (const int number, const CoinBigIndex ∗
starts, const int ∗ index, const double ∗ element, int numberOther = -1)
[protected]

Append a set of rows (columns) to the end of a column (row) ordered matrix.

If numberOther > 0 the method will check if any of the new rows (columns) contain
duplicate indices or indices outside the current range for the major dimension and return
the number of violations. If numberOther<= 0 the major dimension will be expanded
as necessary and there are no checks for duplicate indices.

8.54.4 Friends And Related Function Documentation

8.54.4.1 void CoinPackedMatrixUnitTest () [friend]

Test the methods in the CoinPackedMatrix class.

The only reason for it not to be a member method is that this way it doesn’t have to be
compiled into the library. And that’s a gain, because the library should be compiled with
optimization on, but this method should be compiled with debugging.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.54 CoinPackedMatrix Class Reference 223

8.54.5 Member Data Documentation

8.54.5.1 bool CoinPackedMatrix::colOrdered_ [protected]

A flag indicating whether the matrix is column or row major ordered.

Definition at line 882 of file CoinPackedMatrix.hpp.

8.54.5.2 double CoinPackedMatrix::extraGap_ [protected]

This much times more space should be allocated for each major-dimension vector (with
respect to the number of entries in the vector) when the matrix is resized.

The purpose of these gaps is to allow fast insertion of new minor-dimension vectors.

Definition at line 887 of file CoinPackedMatrix.hpp.

8.54.5.3 double CoinPackedMatrix::extraMajor_ [protected]

his much times more space should be allocated for major-dimension vectors when the
matrix is resized.

The purpose of these gaps is to allow fast addition of new major-dimension vectors.

Definition at line 891 of file CoinPackedMatrix.hpp.

8.54.5.4 double∗ CoinPackedMatrix::element_ [protected]

List of nonzero element values.

The entries in the gaps between major-dimension vectors are undefined.

Definition at line 895 of file CoinPackedMatrix.hpp.

8.54.5.5 int∗ CoinPackedMatrix::index_ [protected]

List of nonzero element minor-dimension indices.

The entries in the gaps between major-dimension vectors are undefined.

Definition at line 898 of file CoinPackedMatrix.hpp.

8.54.5.6 CoinBigIndex∗ CoinPackedMatrix::start_ [protected]

Starting positions of major-dimension vectors.

Definition at line 900 of file CoinPackedMatrix.hpp.

8.54.5.7 int∗ CoinPackedMatrix::length_ [protected]

Lengths of major-dimension vectors.

Definition at line 902 of file CoinPackedMatrix.hpp.

The documentation for this class was generated from the following file:

• CoinPackedMatrix.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.55 CoinPackedVector Class Reference 224

8.55 CoinPackedVector Class Reference

Sparse Vector.

#include <CoinPackedVector.hpp>

Inheritance diagram for CoinPackedVector:

CoinPackedVector

CoinPackedVectorBase

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.55 CoinPackedVector Class Reference 225

Collaboration diagram for CoinPackedVector:

CoinPackedVector

CoinPackedVectorBase

std::set< int >

indexSetPtr_

int

indices_
nElements_
capacity_

origIndices_

minIndex_
maxIndex_

keys

std::set< K >

< int >

K

keys

bool

testForDuplicateIndex_
testedDuplicateIndex_

double

elements_

Public Member Functions

Get methods.

• virtual int getNumElements () const

Get the size.
• virtual const int ∗ getIndices () const

Get indices of elements.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.55 CoinPackedVector Class Reference 226

• virtual const double ∗ getElements () const
Get element values.

• int ∗ getIndices ()
Get indices of elements.

• double ∗ getElements ()
Get element values.

• const int ∗ getOriginalPosition () const
Get pointer to int ∗ vector of original postions.

Set methods

• void clear ()
Reset the vector (as if were just created an empty vector)

• CoinPackedVector & operator= (const CoinPackedVector &)
Assignment operator.

• CoinPackedVector & operator= (const CoinPackedVectorBase &rhs)
Assignment operator from a CoinPackedVectorBase.

• void assignVector (int size, int ∗&inds, double ∗&elems, bool testForDuplicateIndex=COIN_-
DEFAULT_VALUE_FOR_DUPLICATE)

Assign the ownership of the arguments to this vector.
• void setVector (int size, const int ∗inds, const double ∗elems, bool testForDuplicateIndex=COIN_-

DEFAULT_VALUE_FOR_DUPLICATE)
Set vector size, indices, and elements.

• void setConstant (int size, const int ∗inds, double elems, bool testForDuplicateIndex=COIN_-
DEFAULT_VALUE_FOR_DUPLICATE)

Elements set to have the same scalar value.
• void setFull (int size, const double ∗elems, bool testForDuplicateIndex=COIN_-

DEFAULT_VALUE_FOR_DUPLICATE)
Indices are not specified and are taken to be 0,1,...,size-1.

• void setFullNonZero (int size, const double ∗elems, bool testForDuplicateIndex=COIN_-
DEFAULT_VALUE_FOR_DUPLICATE)

Indices are not specified and are taken to be 0,1,...,size-1, but only where non zero.
• void setElement (int index, double element)

Set an existing element in the packed vector The first argument is the "index" into
the elements() array.

• void insert (int index, double element)
Insert an element into the vector.

• void append (const CoinPackedVectorBase &caboose)
Append a CoinPackedVector to the end.

• void swap (int i, int j)
Swap values in positions i and j of indices and elements.

• void truncate (int newSize)
Resize the packed vector to be the first newSize elements.

Arithmetic operators.

• void operator+= (double value)
add value to every entry

• void operator-= (double value)
subtract value from every entry

• void operator∗= (double value)
multiply every entry by value

• void operator/= (double value)
divide every entry by value

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.55 CoinPackedVector Class Reference 227

Sorting

• template<class CoinCompare3 >

void sort (const CoinCompare3 &tc)
Sort the packed storage vector.

• void sortIncrIndex ()
• void sortDecrIndex ()
• void sortIncrElement ()
• void sortDecrElement ()
• void sortOriginalOrder ()

Sort in original order.

Memory usage

• void reserve (int n)
Reserve space.

• int capacity () const

capacity returns the size which could be accomodated without having to reallocate
storage.

Constructors and destructors

• CoinPackedVector (bool testForDuplicateIndex=COIN_DEFAULT_VALUE_FOR_-
DUPLICATE)

Default constructor.
• CoinPackedVector (int size, const int ∗inds, const double ∗elems, bool testForDuplicateIndex=COIN_-

DEFAULT_VALUE_FOR_DUPLICATE)
Alternate Constructors - set elements to vector of doubles.

• CoinPackedVector (int capacity, int size, int ∗&inds, double ∗&elems, bool
testForDuplicateIndex=COIN_DEFAULT_VALUE_FOR_DUPLICATE)

Alternate Constructors - set elements to vector of doubles.
• CoinPackedVector (int size, const int ∗inds, double element, bool testForDuplicateIndex=COIN_-

DEFAULT_VALUE_FOR_DUPLICATE)

Alternate Constructors - set elements to same scalar value.
• CoinPackedVector (int size, const double ∗elements, bool testForDuplicateIndex=COIN_-

DEFAULT_VALUE_FOR_DUPLICATE)
Alternate Constructors - construct full storage with indices 0 through size-1.

• CoinPackedVector (const CoinPackedVector &)
Copy constructor.

• CoinPackedVector (const CoinPackedVectorBase &rhs)
Copy constructor from a PackedVectorBase.

• virtual ∼CoinPackedVector ()

Destructor.

Friends

• void CoinPackedVectorUnitTest ()

A function that tests the methods in the CoinPackedVector class.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.55 CoinPackedVector Class Reference 228

8.55.1 Detailed Description

Sparse Vector.

Stores vector of indices and associated element values. Supports sorting of vector while
maintaining the original indices.

Here is a sample usage:

const int ne = 4;
int inx[ne] = { 1, 4, 0, 2 }
double el[ne] = { 10., 40., 1., 50. }

// Create vector and set its value
CoinPackedVector r(ne,inx,el);

// access each index and element
assert(r.indices ()[0]== 1);
assert(r.elements()[0]==10.);
assert(r.indices ()[1]== 4);
assert(r.elements()[1]==40.);
assert(r.indices ()[2]== 0);
assert(r.elements()[2]== 1.);
assert(r.indices ()[3]== 2);
assert(r.elements()[3]==50.);

// access original position of index
assert(r.originalPosition()[0]==0);
assert(r.originalPosition()[1]==1);
assert(r.originalPosition()[2]==2);
assert(r.originalPosition()[3]==3);

// access as a full storage vector
assert(r[0]==1.);
assert(r[1]==10.);
assert(r[2]==50.);
assert(r[3]==0.);
assert(r[4]==40.);

// sort Elements in increasing order
r.sortIncrElement();

// access each index and element
assert(r.indices ()[0]== 0);
assert(r.elements()[0]== 1.);
assert(r.indices ()[1]== 1);
assert(r.elements()[1]==10.);
assert(r.indices ()[2]== 4);
assert(r.elements()[2]==40.);
assert(r.indices ()[3]== 2);
assert(r.elements()[3]==50.);

// access original position of index
assert(r.originalPosition()[0]==2);
assert(r.originalPosition()[1]==0);
assert(r.originalPosition()[2]==1);
assert(r.originalPosition()[3]==3);

// access as a full storage vector
assert(r[0]==1.);
assert(r[1]==10.);
assert(r[2]==50.);

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.55 CoinPackedVector Class Reference 229

assert(r[3]==0.);
assert(r[4]==40.);

// Restore orignal sort order
r.sortOriginalOrder();

assert(r.indices ()[0]== 1);
assert(r.elements()[0]==10.);
assert(r.indices ()[1]== 4);
assert(r.elements()[1]==40.);
assert(r.indices ()[2]== 0);
assert(r.elements()[2]== 1.);
assert(r.indices ()[3]== 2);
assert(r.elements()[3]==50.);

// Tests for equality and equivalence
CoinPackedVector r1;
r1=r;
assert(r==r1);
assert(r.equivalent(r1));
r.sortIncrElement();
assert(r!=r1);
assert(r.equivalent(r1));

// Add packed vectors.
// Similarly for subtraction, multiplication,
// and division.
CoinPackedVector add = r + r1;
assert(add[0] == 1.+ 1.);
assert(add[1] == 10.+10.);
assert(add[2] == 50.+50.);
assert(add[3] == 0.+ 0.);
assert(add[4] == 40.+40.);

assert(r.sum() == 10.+40.+1.+50.);

Definition at line 123 of file CoinPackedVector.hpp.

8.55.2 Constructor & Destructor Documentation

8.55.2.1 CoinPackedVector::CoinPackedVector (int size, const int ∗ inds, const double ∗ elems,
bool testForDuplicateIndex = COIN DEFAULT VALUE FOR DUPLICATE)

Alternate Constructors - set elements to vector of doubles.

This constructor copies the vectors provided as parameters.

8.55.2.2 CoinPackedVector::CoinPackedVector (int capacity, int size,
int ∗& inds, double ∗& elems, bool testForDuplicateIndex =
COIN DEFAULT VALUE FOR DUPLICATE)

Alternate Constructors - set elements to vector of doubles.

This constructor takes ownership of the vectors passed as parameters. inds and
elems will be NULL on return.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.55 CoinPackedVector Class Reference 230

8.55.2.3 CoinPackedVector::CoinPackedVector (int size, const double ∗ elements, bool
testForDuplicateIndex = COIN DEFAULT VALUE FOR DUPLICATE)

Alternate Constructors - construct full storage with indices 0 through size-1.

8.55.2.4 CoinPackedVector::CoinPackedVector (const CoinPackedVector &)

Copy constructor.

8.55.2.5 CoinPackedVector::CoinPackedVector (const CoinPackedVectorBase & rhs)

Copy constructor from a PackedVectorBase.

8.55.3 Member Function Documentation

8.55.3.1 const int∗ CoinPackedVector::getOriginalPosition () const [inline]

Get pointer to int ∗ vector of original postions.

If the packed vector has not been sorted then this function returns the vector: 0, 1, 2,
..., size()-1.

Definition at line 142 of file CoinPackedVector.hpp.

8.55.3.2 CoinPackedVector& CoinPackedVector::operator= (const CoinPackedVector &
)

Assignment operator.

NOTE: This operator keeps the current testForDuplicateIndex setting, and
affter copying the data it acts accordingly.

8.55.3.3 CoinPackedVector& CoinPackedVector::operator= (const
CoinPackedVectorBase & rhs)

Assignment operator from a CoinPackedVectorBase.

NOTE: This operator keeps the current testForDuplicateIndex setting, and
affter copying the data it acts accordingly.

Reimplemented from CoinPackedVectorBase.

8.55.3.4 void CoinPackedVector::assignVector (int size, int ∗& inds, double ∗& elems, bool
testForDuplicateIndex = COIN DEFAULT VALUE FOR DUPLICATE)

Assign the ownership of the arguments to this vector.

Size is the length of both the indices and elements vectors. The indices and elements
vectors are copied into this class instance’s member data. The last argument indicates
whether this vector will have to be tested for duplicate indices.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.55 CoinPackedVector Class Reference 231

8.55.3.5 void CoinPackedVector::setVector (int size, const int ∗ inds, const double ∗ elems,
bool testForDuplicateIndex = COIN DEFAULT VALUE FOR DUPLICATE)

Set vector size, indices, and elements.

Size is the length of both the indices and elements vectors. The indices and elements
vectors are copied into this class instance’s member data. The last argument specifies
whether this vector will have to be checked for duplicate indices whenever that can
happen.

8.55.3.6 void CoinPackedVector::truncate (int newSize)

Resize the packed vector to be the first newSize elements.

Problem with truncate: what happens with origIndices_ ???

8.55.3.7 template<class CoinCompare3 > void CoinPackedVector::sort (const CoinCompare3
& tc) [inline]

Sort the packed storage vector.

Typcical usages:

packedVector.sort(CoinIncrIndexOrdered()); //increasing indices
packedVector.sort(CoinIncrElementOrdered()); // increasing elements

Definition at line 233 of file CoinPackedVector.hpp.

8.55.3.8 void CoinPackedVector::sortOriginalOrder ()

Sort in original order.

If the vector has been sorted, then this method restores to its orignal sort order.

8.55.3.9 void CoinPackedVector::reserve (int n)

Reserve space.

If one knows the eventual size of the packed vector, then it may be more efficient to
reserve the space.

8.55.4 Friends And Related Function Documentation

8.55.4.1 void CoinPackedVectorUnitTest () [friend]

A function that tests the methods in the CoinPackedVector class.

The only reason for it not to be a member method is that this way it doesn’t have to be
compiled into the library. And that’s a gain, because the library should be compiled with
optimization on, but this method should be compiled with debugging.

The documentation for this class was generated from the following file:

• CoinPackedVector.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.56 CoinPackedVectorBase Class Reference 232

8.56 CoinPackedVectorBase Class Reference

Abstract base class for various sparse vectors.

#include <CoinPackedVectorBase.hpp>

Inheritance diagram for CoinPackedVectorBase:

CoinPackedVectorBase

CoinPackedVector CoinShallowPackedVector

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.56 CoinPackedVectorBase Class Reference 233

Collaboration diagram for CoinPackedVectorBase:

CoinPackedVectorBase

std::set< int >

indexSetPtr_

int

minIndex_
maxIndex_

keys

std::set< K >

< int >

K

keys

bool

testForDuplicateIndex_
testedDuplicateIndex_

Public Member Functions

Virtual methods that the derived classes must provide

• virtual int getNumElements () const =0
Get length of indices and elements vectors.

• virtual const int ∗ getIndices () const =0
Get indices of elements.

• virtual const double ∗ getElements () const =0
Get element values.

Methods related to whether duplicate-index checking is performed.

If the checking for duplicate indices is turned off, then some CoinPackedVector meth-
ods may not work correctly if there are duplicate indices.

Turning off the checking for duplicate indices may result in better run time perfor-
mance.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.56 CoinPackedVectorBase Class Reference 234

• void setTestForDuplicateIndex (bool test) const
Set to the argument value whether to test for duplicate indices in the vector when-
ever they can occur.

• void setTestForDuplicateIndexWhenTrue (bool test) const
Set to the argument value whether to test for duplicate indices in the vector when-
ever they can occur BUT we know that right now the vector has no duplicate indices.

• bool testForDuplicateIndex () const
Returns true if the vector should be tested for duplicate indices when they can
occur.

• void setTestsOff () const

Just sets test stuff false without a try etc.

Methods for getting info on the packed vector as a full vector

• double ∗ denseVector (int denseSize) const
Get the vector as a dense vector.

• double operator[] (int i) const
Access the i’th element of the full storage vector.

Index methods

• int getMaxIndex () const

Get value of maximum index.
• int getMinIndex () const

Get value of minimum index.
• void duplicateIndex (const char ∗methodName=NULL, const char ∗className=NULL)

const

Throw an exception if there are duplicate indices.
• bool isExistingIndex (int i) const

Return true if the i’th element of the full storage vector exists in the packed storage
vector.

• int findIndex (int i) const
Return the position of the i’th element of the full storage vector.

Comparison operators on two packed vectors

• bool operator== (const CoinPackedVectorBase &rhs) const
Equal.

• bool operator!= (const CoinPackedVectorBase &rhs) const

Not equal.
• int compare (const CoinPackedVectorBase &rhs) const

This method establishes an ordering on packed vectors.
• template<class FloatEqual >

bool isEquivalent (const CoinPackedVectorBase &rhs, const FloatEqual &eq)
const

equivalent - If shallow packed vector A & B are equivalent, then they are still equiv-
alent no matter how they are sorted.

• bool isEquivalent (const CoinPackedVectorBase &rhs) const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.56 CoinPackedVectorBase Class Reference 235

Arithmetic operators.

• double dotProduct (const double ∗dense) const
Create the dot product with a full vector.

• double oneNorm () const
Return the 1-norm of the vector.

• double normSquare () const
Return the square of the 2-norm of the vector.

• double twoNorm () const
Return the 2-norm of the vector.

• double infNorm () const
Return the infinity-norm of the vector.

• double sum () const
Sum elements of vector.

Protected Member Functions

Protected methods

• void findMaxMinIndices () const
Find Maximum and Minimum Indices.

• std::set< int > ∗ indexSet (const char ∗methodName=NULL, const char ∗className=NULL)
const

Return indexSetPtr_ (create it if necessary).
• void clearIndexSet () const

Delete the indexSet.
• void clearBase () const
• void copyMaxMinIndex (const CoinPackedVectorBase &x) const

Constructors, destructor

NOTE: All constructors are protected.

There’s no need to expose them, after all, this is an abstract class.

• virtual ∼CoinPackedVectorBase ()

Destructor.

• CoinPackedVectorBase ()

Default constructor.

8.56.1 Detailed Description

Abstract base class for various sparse vectors.

Since this class is abstract, no object of this type can be created. The sole purpose of
this class is to provide access to a constant packed vector. All members of this class
are const methods, they can’t change the object.

Definition at line 23 of file CoinPackedVectorBase.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.56 CoinPackedVectorBase Class Reference 236

8.56.2 Constructor & Destructor Documentation

8.56.2.1 CoinPackedVectorBase::CoinPackedVectorBase () [protected]

Default constructor.

8.56.3 Member Function Documentation

8.56.3.1 void CoinPackedVectorBase::setTestForDuplicateIndex (bool test) const

Set to the argument value whether to test for duplicate indices in the vector whenever
they can occur.

Calling this method with test set to true will trigger an immediate check for duplicate
indices.

8.56.3.2 void CoinPackedVectorBase::setTestForDuplicateIndexWhenTrue (bool test) const

Set to the argument value whether to test for duplicate indices in the vector whenever
they can occur BUT we know that right now the vector has no duplicate indices.

Calling this method with test set to true will not trigger an immediate check for dupli-
cate indices; instead, it’s assumed that the result of the test will be true.

8.56.3.3 bool CoinPackedVectorBase::testForDuplicateIndex () const [inline]

Returns true if the vector should be tested for duplicate indices when they can occur.

Definition at line 63 of file CoinPackedVectorBase.hpp.

8.56.3.4 double∗ CoinPackedVectorBase::denseVector (int denseSize) const

Get the vector as a dense vector.

The argument specifies how long this dense vector is.

NOTE: The user needs to delete[] this pointer after it’s not needed anymore.

8.56.3.5 double CoinPackedVectorBase::operator[] (int i) const

Access the i’th element of the full storage vector.

If the i’th is not stored, then zero is returned. The initial use of this method has some
computational and storage overhead associated with it.

NOTE: This is very expensive. It is probably much better to use denseVector().

8.56.3.6 bool CoinPackedVectorBase::isExistingIndex (int i) const

Return true if the i’th element of the full storage vector exists in the packed storage
vector.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.57 CoinPair< S, T > Struct Template Reference 237

8.56.3.7 int CoinPackedVectorBase::findIndex (int i) const

Return the position of the i’th element of the full storage vector.

If index does not exist then -1 is returned

8.56.3.8 bool CoinPackedVectorBase::operator== (const CoinPackedVectorBase & rhs)
const

Equal.

Returns true if vectors have same length and corresponding element of each vector is
equal.

8.56.3.9 int CoinPackedVectorBase::compare (const CoinPackedVectorBase & rhs) const

This method establishes an ordering on packed vectors.

It is complete ordering, but not the same as lexicographic ordering. However, it is quick
and dirty to compute and thus it is useful to keep packed vectors in a heap when all
we care is to quickly check whether a particular vector is already in the heap or not.
Returns negative/0/positive depending on whether this is smaller/equal.greater than
rhs.

8.56.3.10 template<class FloatEqual > bool CoinPackedVectorBase::isEquivalent (const
CoinPackedVectorBase & rhs, const FloatEqual & eq) const [inline]

equivalent - If shallow packed vector A & B are equivalent, then they are still equivalent
no matter how they are sorted.

In this method the FloatEqual function operator can be specified. The default equiva-
lence test is that the entries are relatively equal.

NOTE: This is a relatively expensive method as it sorts the two shallow packed vectors.

Definition at line 140 of file CoinPackedVectorBase.hpp.

The documentation for this class was generated from the following file:

• CoinPackedVectorBase.hpp

8.57 CoinPair< S, T > Struct Template Reference

An ordered pair.

#include <CoinSort.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.58 CoinParam Class Reference 238

Collaboration diagram for CoinPair< S, T >:

CoinPair< S, T >

S

first

T

second

Public Member Functions

• CoinPair (const S &s, const T &t)

Construct from ordered pair.

Public Attributes

• S first

First member of pair.

• T second

Second member of pair.

8.57.1 Detailed Description

template<class S, class T>struct CoinPair< S, T >

An ordered pair.

It’s the same as std::pair, just this way it’ll have the same look as the triple sorting.

Definition at line 30 of file CoinSort.hpp.

The documentation for this struct was generated from the following file:

• CoinSort.hpp

8.58 CoinParam Class Reference

A base class for ‘keyword value’ command line parameters.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.58 CoinParam Class Reference 239

#include <CoinParam.hpp>

Collaboration diagram for CoinParam:

CoinParam

double

dblValue_
upperDblValue_
lowerDblValue_

size_t

lengthName_
lengthMatch_

int

pullFunc_
upperIntValue_
lowerIntValue_

pushFunc_
intValue_

currentKwd_

bool

display_

std::string

longHelp_
shortHelp_
strValue_
name_

std::vector< std::string >

elements

std::basic_string< char >

CoinParamType

type_definedKwds_

std::vector< T >

< std::string >

T

elements

Public Types

Subtypes

• enum CoinParamType
Enumeration for the types of parameters supported by CoinParam.

• typedef int(∗ CoinParamFunc)(CoinParam ∗param)
Type declaration for push and pull functions.

Public Member Functions

Constructors and Destructors

Be careful how you specify parameters for the constructors! Some compilers
are entirely too willing to convert almost anything to bool.

• CoinParam ()
Default constructor.

• CoinParam (std::string name, std::string help, double lower, double upper, dou-
ble dflt=0.0, bool display=true)

Constructor for a parameter with a double value.
• CoinParam (std::string name, std::string help, int lower, int upper, int dflt=0,

bool display=true)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.58 CoinParam Class Reference 240

Constructor for a parameter with an integer value.
• CoinParam (std::string name, std::string help, std::string firstValue, int dflt, bool

display=true)
Constructor for a parameter with keyword values.

• CoinParam (std::string name, std::string help, std::string dflt, bool display=true)

Constructor for a string parameter.
• CoinParam (std::string name, std::string help, bool display=true)

Constructor for an action parameter.
• CoinParam (const CoinParam &orig)

Copy constructor.
• virtual CoinParam ∗ clone ()

Clone.
• CoinParam & operator= (const CoinParam &rhs)

Assignment.
• virtual ∼CoinParam ()

Destructor.

Methods to query and manipulate the value(s) of a parameter

• void appendKwd (std::string kwd)

Add an additional value-keyword to a keyword parameter.
• int kwdIndex (std::string kwd) const

Return the integer associated with the specified value-keyword.
• std::string kwdVal () const

Return the value-keyword that is the current value of the keyword parameter.
• void setKwdVal (int value, bool printIt=false)

Set the value of the keyword parameter using the integer associated with a value-
keyword.

• void setKwdVal (const std::string value)
Set the value of the keyword parameter using a value-keyword string.

• void printKwds () const

Prints the set of value-keywords defined for this keyword parameter.
• void setStrVal (std::string value)

Set the value of a string parameter.
• std::string strVal () const

Get the value of a string parameter.
• void setDblVal (double value)

Set the value of a double parameter.
• double dblVal () const

Get the value of a double parameter.
• void setIntVal (int value)

Set the value of a integer parameter.
• int intVal () const

Get the value of a integer parameter.
• void setShortHelp (const std::string help)

Add a short help string to a parameter.
• std::string shortHelp () const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.58 CoinParam Class Reference 241

Retrieve the short help string.
• void setLongHelp (const std::string help)

Add a long help message to a parameter.
• std::string longHelp () const

Retrieve the long help message.
• void printLongHelp () const

Print long help.

Methods to query and manipulate a parameter object

• CoinParamType type () const
Return the type of the parameter.

• void setType (CoinParamType type)
Set the type of the parameter.

• std::string name () const
Return the parameter keyword (name) string.

• void setName (std::string name)
Set the parameter keyword (name) string.

• int matches (std::string input) const
Check if the specified string matches the parameter keyword (name) string.

• std::string matchName () const
Return the parameter keyword (name) string formatted to show the minimum match
length.

• void setDisplay (bool display)
Set visibility of parameter.

• bool display () const
Get visibility of parameter.

• CoinParamFunc pushFunc ()
Get push function.

• void setPushFunc (CoinParamFunc func)
Set push function.

• CoinParamFunc pullFunc ()
Get pull function.

• void setPullFunc (CoinParamFunc func)
Set pull function.

Related Functions

(Note that these are not member functions.)

• typedef std::vector< CoinParam ∗ > CoinParamVec

A type for a parameter vector.

• std::ostream & operator<< (std::ostream &s, const CoinParam ¶m)

A stream output function for a CoinParam object.

• void setInputSrc (FILE ∗src)

Take command input from the file specified by src.

• bool isCommandLine ()

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.58 CoinParam Class Reference 242

Returns true if command line parameters are being processed.

• bool isInteractive ()

Returns true if parameters are being obtained from stdin.

• std::string getStringField (int argc, const char ∗argv[], int ∗valid)

Attempt to read a string from the input.

• int getIntField (int argc, const char ∗argv[], int ∗valid)

Attempt to read an integer from the input.

• double getDoubleField (int argc, const char ∗argv[], int ∗valid)

Attempt to read a real (double) from the input.

• int matchParam (const CoinParamVec ¶mVec, std::string name, int &match-
Ndx, int &shortCnt)

Scan a parameter vector for parameters whose keyword (name) string matches name
using minimal match rules.

• std::string getCommand (int argc, const char ∗argv[], const std::string prompt,
std::string ∗pfx=0)

Get the next command keyword (name)

• int lookupParam (std::string name, CoinParamVec ¶mVec, int ∗matchCnt=0,
int ∗shortCnt=0, int ∗queryCnt=0)

Look up the command keyword (name) in the parameter vector. Print help if requested.

• void printIt (const char ∗msg)

Utility to print a long message as filled lines of text.

• void shortOrHelpOne (CoinParamVec ¶mVec, int matchNdx, std::string name,
int numQuery)

Utility routine to print help given a short match or explicit request for help.

• void shortOrHelpMany (CoinParamVec ¶mVec, std::string name, int num-
Query)

Utility routine to print help given multiple matches.

• void printGenericHelp ()

Print a generic ‘how to use the command interface’ help message.

• void printHelp (CoinParamVec ¶mVec, int firstParam, int lastParam, std::string
prefix, bool shortHelp, bool longHelp, bool hidden)

Utility routine to print help messages for one or more parameters.

8.58.1 Detailed Description

A base class for ‘keyword value’ command line parameters.

The underlying paradigm is that a parameter specifies an action to be performed on a
target object. The base class provides two function pointers, a ‘push’ function and a
‘pull’ function. By convention, a push function will set some value in the target object
or perform some action using the target object. A ‘pull’ function will retrieve some value
from the target object. This is only a convention, however; CoinParam and associated
utilities make no use of these functions and have no hardcoded notion of how they
should be used.

The action to be performed, and the target object, will be specific to a particular applica-
tion. It is expected that users will derive application-specific parameter classes from this

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.58 CoinParam Class Reference 243

base class. A derived class will typically add fields and methods to set/get a code for
the action to be performed (often, an enum class) and the target object (often, a pointer
or reference).

Facilities provided by the base class and associated utility routines include:

• Support for common parameter types with numeric, string, or keyword values.

• Support for short and long help messages.

• Pointers to ‘push’ and ‘pull’ functions as described above.

• Command line parsing and keyword matching.

All utility routines are declared in the CoinParamUtils namespace.

The base class recognises five types of parameters: actions (which require no value);
numeric parameters with integer or real (double) values; keyword parameters, where
the value is one of a defined set of value-keywords; and string parameters (where the
value is a string). The base class supports the definition of a valid range, a default value,
and short and long help messages for a parameter.

As defined by the CoinParamFunc typedef, push and pull functions should take a single
parameter, a pointer to a CoinParam. Typically this object will actually be a derived class
as described above, and the implementation function will have access to all capabilities
of CoinParam and of the derived class.

When specified as command line parameters, the expected syntax is ‘-keyword value’
or ‘-keyword=value’. You can also use the Gnu double-dash style, ‘--keyword’. Spaces
around the ‘=’ will not work.

The keyword (name) for a parameter can be defined with an ‘!’ to mark the minimal
match point. For example, allow!ableGap will be considered matched by the strings
‘allow’, ‘allowa’, ‘allowab’, etc. Similarly, the value-keyword strings for keyword parame-
ters can be defined with ‘!’ to mark the minimal match point. Matching of keywords and
value-keywords is not case sensitive.

Definition at line 75 of file CoinParam.hpp.

8.58.2 Member Typedef Documentation

8.58.2.1 typedef int(∗ CoinParam::CoinParamFunc)(CoinParam ∗param)

Type declaration for push and pull functions.

By convention, a return code of 0 indicates execution without error, >0 indicates nonfa-
tal error, and <0 indicates fatal error. This is only convention, however; the base class
makes no use of the push and pull functions and has no hardcoded interpretation of the
return code.

Definition at line 106 of file CoinParam.hpp.

8.58.3 Member Enumeration Documentation

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.58 CoinParam Class Reference 244

8.58.3.1 enum CoinParam::CoinParamType

Enumeration for the types of parameters supported by CoinParam.

CoinParam provides support for several types of parameters:

• Action parameters, which require no value.

• Integer and double numeric parameters, with upper and lower bounds.

• String parameters that take an arbitrary string value.

• Keyword parameters that take a defined set of string (value-keyword) values.
Value-keywords are associated with integers in the order in which they are added,
starting from zero.

Definition at line 95 of file CoinParam.hpp.

8.58.4 Constructor & Destructor Documentation

8.58.4.1 CoinParam::CoinParam (std::string name, std::string help, double lower, double
upper, double dflt = 0.0, bool display = true)

Constructor for a parameter with a double value.

The default value is 0.0. Be careful to clearly indicate that lower and upper are
real (double) values to distinguish this constructor from the constructor for an integer
parameter.

8.58.4.2 CoinParam::CoinParam (std::string name, std::string help, int lower, int upper, int dflt
= 0, bool display = true)

Constructor for a parameter with an integer value.

The default value is 0.

8.58.4.3 CoinParam::CoinParam (std::string name, std::string help, std::string firstValue, int
dflt, bool display = true)

Constructor for a parameter with keyword values.

The string supplied as firstValue becomes the first value-keyword. Additional
value-keywords can be added using appendKwd(). It’s necessary to specify both the
first value-keyword (firstValue) and the default value-keyword index (dflt) in or-
der to distinguish this constructor from the constructors for string and action parameters.

Value-keywords are associated with an integer, starting with zero and increasing as
each keyword is added. The value-keyword given as firstValue will be associated
with the integer zero. The integer supplied for dflt can be any value, as long as it will
be valid once all value-keywords have been added.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.58 CoinParam Class Reference 245

8.58.4.4 CoinParam::CoinParam (std::string name, std::string help, std::string dflt, bool
display = true)

Constructor for a string parameter.

For some compilers, the default value (dflt) must be specified explicitly with type
std::string to distinguish the constructor for a string parameter from the constructor for
an action parameter. For example, use std::string("default") instead of simply "default",
or use a variable of type std::string.

8.58.5 Member Function Documentation

8.58.5.1 int CoinParam::kwdIndex (std::string kwd) const

Return the integer associated with the specified value-keyword.

Returns -1 if no value-keywords match the specified string.

8.58.5.2 void CoinParam::setKwdVal (int value, bool printIt = false)

Set the value of the keyword parameter using the integer associated with a value-
keyword.

If printIt is true, the corresponding value-keyword string will be echoed to std::cout.

8.58.5.3 void CoinParam::setKwdVal (const std::string value)

Set the value of the keyword parameter using a value-keyword string.

The given string will be tested against the set of value-keywords for the parameter using
the shortest match rules.

8.58.5.4 void CoinParam::setLongHelp (const std::string help) [inline]

Add a long help message to a parameter.

See printLongHelp() for a description of how messages are broken into lines.

Definition at line 270 of file CoinParam.hpp.

8.58.5.5 void CoinParam::printLongHelp () const

Print long help.

Prints the long help string, plus the valid range and/or keywords if appropriate. The rou-
tine makes a best effort to break the message into lines appropriate for an 80-character
line. Explicit line breaks in the message will be observed. The short help string will be
used if long help is not available.

8.58.5.6 int CoinParam::matches (std::string input) const

Check if the specified string matches the parameter keyword (name) string.

Returns 1 if the string matches and meets the minimum match length, 2 if the string

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.58 CoinParam Class Reference 246

matches but doesn’t meet the minimum match length, and 0 if the string doesn’t match.
Matches are not case-sensitive.

8.58.5.7 std::string CoinParam::matchName () const

Return the parameter keyword (name) string formatted to show the minimum match
length.

For example, if the parameter name was defined as allow!ableGap, the string returned
by matchName would be allow(ableGap).

8.58.5.8 void CoinParam::setDisplay (bool display) [inline]

Set visibility of parameter.

Intended to control whether the parameter is shown when a list of parameters is pro-
cessed. Used by CoinParamUtils::printHelp when printing help messages for a list of
parameters.

Definition at line 330 of file CoinParam.hpp.

8.58.6 Friends And Related Function Documentation

8.58.6.1 void setInputSrc (FILE ∗ src) [related]

Take command input from the file specified by src.

Use stdin for src to specify interactive prompting for commands.

8.58.6.2 std::string getStringField (int argc, const char ∗ argv[], int ∗ valid) [related]

Attempt to read a string from the input.

argc and argv are used only if isCommandLine() would return true. If valid is
supplied, it will be set to 0 if a string is parsed without error, 2 if no field is present.

8.58.6.3 int getIntField (int argc, const char ∗ argv[], int ∗ valid) [related]

Attempt to read an integer from the input.

argc and argv are used only if isCommandLine() would return true. If valid is
supplied, it will be set to 0 if an integer is parsed without error, 1 if there’s a parse error,
and 2 if no field is present.

8.58.6.4 double getDoubleField (int argc, const char ∗ argv[], int ∗ valid) [related]

Attempt to read a real (double) from the input.

argc and argv are used only if isCommandLine() would return true. If valid is
supplied, it will be set to 0 if a real number is parsed without error, 1 if there’s a parse
error, and 2 if no field is present.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.58 CoinParam Class Reference 247

8.58.6.5 int matchParam (const CoinParamVec & paramVec, std::string name, int &
matchNdx, int & shortCnt) [related]

Scan a parameter vector for parameters whose keyword (name) string matches name
using minimal match rules.

matchNdx is set to the index of the last parameter that meets the minimal match cri-
teria (but note there should be at most one matching parameter if the parameter vector
is properly configured). shortCnt is set to the number of short matches (should be
zero for a properly configured parameter vector if a minimal match is found). The return
value is the number of matches satisfying the minimal match requirement (should be 0
or 1 in a properly configured vector).

8.58.6.6 std::string getCommand (int argc, const char ∗ argv[], const std::string prompt,
std::string ∗ pfx = 0) [related]

Get the next command keyword (name)

To be precise, return the next field from the current command input source, after a bit
of processing. In command line mode (isCommandLine() returns true) the next field will
normally be of the form ‘-keyword’ or ‘--keyword’ (i.e., a parameter keyword), and the
string returned would be ‘keyword’. In interactive mode (isInteractive() returns true), the
user will be prompted if necessary. It is assumed that the user knows not to use the ‘-’
or ‘--’ prefixes unless specifying parameters on the command line.

There are a number of special cases if we’re in command line mode. The order of
processing of the raw string goes like this:

• A stand-alone ‘-’ is forced to ‘stdin’.

• A stand-alone ’--’ is returned as a word; interpretation is up to the client.

• A prefix of ’-’ or ’--’ is stripped from the string.

If the result is the string ‘stdin’, command processing shifts to interactive mode and the
user is immediately prompted for a new command.

Whatever results from the above sequence is returned to the user as the return value of
the function. An empty string indicates end of input.

prompt will be used only if it’s necessary to prompt the user in interactive mode.

8.58.6.7 int lookupParam (std::string name, CoinParamVec & paramVec, int ∗ matchCnt =
0, int ∗ shortCnt = 0, int ∗ queryCnt = 0) [related]

Look up the command keyword (name) in the parameter vector. Print help if requested.

In the most straightforward use, name is a string without ‘?’, and the value returned is
the index in paramVec of the single parameter that matched name. One or more ’?’
characters at the end of name is a query for information. The routine prints short (one
’?’) or long (more than one ’?’) help messages for a query. Help is also printed in the
case where the name is ambiguous (some of the matches did not meet the minimal
match length requirement).

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.58 CoinParam Class Reference 248

Note that multiple matches meeting the minimal match requirement is a configuration
error. The mimimal match length for the parameters involved is too short.

If provided as parameters, on return

• matchCnt will be set to the number of matches meeting the minimal match
requirement

• shortCnt will be set to the number of matches that did not meet the miminal
match requirement

• queryCnt will be set to the number of ’?’ characters at the end of the name

The return values are:

• >0: index in paramVec of the single unique match for name

• -1: a query was detected (one or more ’?’ characters at the end of name

• -2: one or more short matches, not a query

• -3: no matches, not a query

• -4: multiple matches meeting the minimal match requirement (configuration error)

8.58.6.8 void printIt (const char ∗ msg) [related]

Utility to print a long message as filled lines of text.

The routine makes a best effort to break lines without exceeding the standard 80 char-
acter line length. Explicit newlines in msg will be obeyed.

8.58.6.9 void shortOrHelpOne (CoinParamVec & paramVec, int matchNdx, std::string name,
int numQuery) [related]

Utility routine to print help given a short match or explicit request for help.

The two really are related, in that a query (a string that ends with one or more ‘?’
characters) will often result in a short match. The routine expects that name matches a
single parameter, and does not look for multiple matches.

If called with matchNdx < 0, the routine will look up name in paramVec and print
the full name from the parameter. If called with matchNdx > 0, it just prints the name
from the specified parameter. If the name is a query, short (one ’?’) or long (more than
one ’?’) help is printed.

8.58.6.10 void shortOrHelpMany (CoinParamVec & paramVec, std::string name, int
numQuery) [related]

Utility routine to print help given multiple matches.

If the name is not a query, or asks for short help (i.e., contains zero or one ’?’ charac-
ters), the list of matching names is printed. If the name asks for long help (contains two
or more ’?’ characters), short help is printed for each matching name.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.59 CoinPostsolveMatrix Class Reference 249

8.58.6.11 void printGenericHelp () [related]

Print a generic ‘how to use the command interface’ help message.

The message is hard coded to match the behaviour of the parsing utilities.

8.58.6.12 void printHelp (CoinParamVec & paramVec, int firstParam, int lastParam,
std::string prefix, bool shortHelp, bool longHelp, bool hidden) [related]

Utility routine to print help messages for one or more parameters.

Intended as a utility to implement explicit ‘help’ commands. Help will be printed for all pa-
rameters in paramVec from firstParam to lastParam, inclusive. If shortHelp
is true, short help messages will be printed. If longHelp is true, long help messages
are printed. shortHelp overrules longHelp. If neither is true, only command key-
words are printed. prefix is printed before each line; it’s an imperfect attempt at
indentation.

The documentation for this class was generated from the following file:

• CoinParam.hpp

8.59 CoinPostsolveMatrix Class Reference

Augments CoinPrePostsolveMatrix with information about the problem that is only needed
during postsolve.

#include <CoinPresolveMatrix.hpp>

Inheritance diagram for CoinPostsolveMatrix:

CoinPostsolveMatrix

CoinPrePostsolveMatrix

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.59 CoinPostsolveMatrix Class Reference 250

Collaboration diagram for CoinPostsolveMatrix:

CoinPostsolveMatrix

CoinPrePostsolveMatrix

double

sol_
maxmin_

cup_
rup_

rcosts_
rowduals_

originalOffset_
acts_

ztolzb_
clo_
...

std::vector< double >

elements CoinMessageHandler

handler_

std::vector< char >

charValue_

char

cdone_
rdone_

rowstat_
colstat_

g_format_
messageOut_

format_
messageBuffer_

elements

CoinOneMessage

severity_
message_

detail_

CoinMessages

source_

std::vector< T >

< char >

std::vector< int >
< int >

std::vector< std::string >

< std::string >

< double >

T
elements

FILE *
fp_

currentMessage_

message_

int

maxlink_
free_list_

link_

ncols_
mcstrt_
nelems_
hincol_

nrows0_
hrow_
nrows_

originalColumn_
originalRow_

bulk0_
...

prefix_
g_precision_

internalNumber_
logLevels_

highestNumber_
printStatus_
logLevel_

externalNumber_

elements

numberMessages_
lengthMessages_

class_

std::string

source_

elements

std::basic_string< char >

longValue_

stringValue_

doubleValue_

bool defaultHandler_

CoinMessage
messages_

Language

language_

Public Member Functions

• CoinPostsolveMatrix (int ncols_alloc, int nrows_alloc, CoinBigIndex nelems_alloc)

‘Native’ constructor

• CoinPostsolveMatrix (ClpSimplex ∗si, int ncols0, int nrows0, CoinBigIndex nelems0,
double maxmin_, double ∗sol, double ∗acts, unsigned char ∗colstat, unsigned
char ∗rowstat)

Clp OSI constructor.

• CoinPostsolveMatrix (OsiSolverInterface ∗si, int ncols0, int nrows0, CoinBigIndex
nelems0, double maxmin_, double ∗sol, double ∗acts, unsigned char ∗colstat,
unsigned char ∗rowstat)

Generic OSI constructor.

• void assignPresolveToPostsolve (CoinPresolveMatrix ∗&preObj)

Load an empty CoinPostsolveMatrix from a CoinPresolveMatrix.

• ∼CoinPostsolveMatrix ()

Destructor.

• void check_nbasic ()

debug

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.59 CoinPostsolveMatrix Class Reference 251

Public Attributes

Column thread structures

As mentioned in the class documentation, the entries for a given column do
not necessarily occupy a contiguous block of space. The link_ array is used
to maintain the threading. There is one thread for each column, and a single
thread for all free entries in hrow_ and colels_. The allocated size of link_ must
be at least as large as the allocated size of hrow_ and colels_.

• CoinBigIndex free_list_
First entry in free entries thread.

• int maxlink_
Allocated size of link_.

• CoinBigIndex ∗ link_
Thread array.

Debugging aids

These arrays are allocated only when CoinPresolve is compiled with PRESOLVE_-
DEBUG defined.

They hold codes which track the reason that a column or row is added to the problem
during postsolve.

• char ∗ cdone_
• char ∗ rdone_

Related Functions

(Note that these are not member functions.)

• CoinBigIndex presolve_find_col (int col, CoinBigIndex krs, CoinBigIndex kre, const
int ∗hcol)

Find position of a column in a row in a row-major matrix.

• CoinBigIndex presolve_find_minor2 (int tgt, CoinBigIndex ks, int majlen, const int
∗minndxs, const CoinBigIndex ∗majlinks)

Find position of a minor index in a major vector in a threaded matrix.

• CoinBigIndex presolve_find_row2 (int row, CoinBigIndex kcs, int collen, const int
∗hrow, const CoinBigIndex ∗clinks)

Find position of a row in a column in a column-major threaded matrix.

• CoinBigIndex presolve_find_minor3 (int tgt, CoinBigIndex ks, int majlen, const int
∗minndxs, const CoinBigIndex ∗majlinks)

Find position of a minor index in a major vector in a threaded matrix.

• CoinBigIndex presolve_find_row3 (int row, CoinBigIndex kcs, int collen, const int
∗hrow, const CoinBigIndex ∗clinks)

Find position of a row in a column in a column-major threaded matrix.

• void presolve_delete_from_major2 (int majndx, int minndx, CoinBigIndex ∗majstrts,
int ∗majlens, int ∗minndxs, int ∗majlinks, CoinBigIndex ∗free_listp)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.59 CoinPostsolveMatrix Class Reference 252

Delete the entry for a minor index from a major vector in a threaded matrix.

• void presolve_delete_from_col2 (int row, int col, CoinBigIndex ∗mcstrt, int ∗hincol,
int ∗hrow, int ∗clinks, CoinBigIndex ∗free_listp)

Delete the entry for row row from column col in a column-major threaded matrix.

• void presolve_check_threads (const CoinPostsolveMatrix ∗obj)

Checks that column threads agree with column lengths.

• void presolve_check_free_list (const CoinPostsolveMatrix ∗obj, bool chkElem-
Cnt=false)

Checks the free list.

• void presolve_check_reduced_costs (const CoinPostsolveMatrix ∗obj)

Check stored reduced costs for accuracy and consistency with variable status.

• void presolve_check_duals (const CoinPostsolveMatrix ∗postObj)

Check the dual variables for consistency with row activity.

• void presolve_check_sol (const CoinPostsolveMatrix ∗postObj, int chkColSol=2,
int chkRowAct=2, int chkStatus=1)

Check primal solution and architectural variable status.

• void presolve_check_nbasic (const CoinPostsolveMatrix ∗postObj)

Check for the proper number of basic variables.

8.59.1 Detailed Description

Augments CoinPrePostsolveMatrix with information about the problem that is only needed
during postsolve.

The notable point is that the matrix representation is threaded. The representation is
column-major and starts with the standard two pairs of arrays: one pair to hold the
row indices and coefficients, the second pair to hold the column starting positions and
lengths. But the row indices and coefficients for a column do not necessarily occupy
a contiguous block in their respective arrays. Instead, a link array gives the position of
the next (row index,coefficient) pair. If the row index and value of a coefficient a<p,j>
occupy position kp in their arrays, then the position of the next coefficient a<q,j> is
found as kq = link[kp].

This threaded representation allows for efficient expansion of columns as rows are rein-
troduced during postsolve transformations. The basic packed structures are allocated
to the expected size of the postsolved matrix, and as new coefficients are added, their
location is simply added to the thread for the column.

There is no provision to convert the threaded representation to a packed representation.
In the context of postsolve, it’s not required. (You did keep a copy of the original matrix,
eh?)

Definition at line 1334 of file CoinPresolveMatrix.hpp.

8.59.2 Constructor & Destructor Documentation

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.59 CoinPostsolveMatrix Class Reference 253

8.59.2.1 CoinPostsolveMatrix::CoinPostsolveMatrix (int ncols alloc, int nrows alloc,
CoinBigIndex nelems alloc)

‘Native’ constructor

This constructor creates an empty object which must then be loaded. On the other
hand, it doesn’t assume that the client is an OsiSolverInterface.

8.59.2.2 CoinPostsolveMatrix::CoinPostsolveMatrix (ClpSimplex ∗ si, int ncols0, int nrows0,
CoinBigIndex nelems0, double maxmin , double ∗ sol, double ∗ acts, unsigned char ∗
colstat, unsigned char ∗ rowstat)

Clp OSI constructor.

See Clp code for the definition.

8.59.2.3 CoinPostsolveMatrix::CoinPostsolveMatrix (OsiSolverInterface ∗ si, int ncols0, int
nrows0, CoinBigIndex nelems0, double maxmin , double ∗ sol, double ∗ acts,
unsigned char ∗ colstat, unsigned char ∗ rowstat)

Generic OSI constructor.

See OSI code for the definition.

8.59.3 Member Function Documentation

8.59.3.1 void CoinPostsolveMatrix::assignPresolveToPostsolve (CoinPresolveMatrix ∗&
preObj)

Load an empty CoinPostsolveMatrix from a CoinPresolveMatrix.

This routine transfers the contents of the CoinPrePostsolveMatrix object from the Coin-
PresolveMatrix object to the CoinPostsolveMatrix object and completes initialisation of
the CoinPostsolveMatrix object. The empty shell of the CoinPresolveMatrix object is
destroyed.

The routine expects an empty CoinPostsolveMatrix object. If handed a loaded object, a
lot of memory will leak.

8.59.4 Member Data Documentation

8.59.4.1 CoinBigIndex∗ CoinPostsolveMatrix::link_

Thread array.

Within a thread, link_[k] points to the next entry in the thread.

Definition at line 1421 of file CoinPresolveMatrix.hpp.

The documentation for this class was generated from the following files:

• CoinPresolveMatrix.hpp
• CoinPresolvePsdebug.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.60 CoinPrePostsolveMatrix Class Reference 254

8.60 CoinPrePostsolveMatrix Class Reference

Collects all the information about the problem that is needed in both presolve and post-
solve.

#include <CoinPresolveMatrix.hpp>

Inheritance diagram for CoinPrePostsolveMatrix:

CoinPrePostsolveMatrix

CoinPostsolveMatrix CoinPresolveMatrix

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.60 CoinPrePostsolveMatrix Class Reference 255

Collaboration diagram for CoinPrePostsolveMatrix:

CoinPrePostsolveMatrix

double

sol_
maxmin_

cup_
rup_

rcosts_
rowduals_

originalOffset_
acts_

ztolzb_
clo_
...

std::vector< double >

elements

CoinMessageHandler

handler_

std::vector< char > charValue_

char
rowstat_
colstat_

g_format_
messageOut_

format_
messageBuffer_

elements

CoinOneMessage

severity_
message_

detail_

CoinMessages
source_

std::vector< T >

< char >

std::vector< int >

< int >

std::vector< std::string >

< std::string >

< double >

T
elements FILE * fp_

currentMessage_

message_
int

ncols_
mcstrt_
nelems_
hincol_

nrows0_
hrow_
nrows_

originalColumn_
originalRow_

bulk0_
...

prefix_
g_precision_

internalNumber_
logLevels_

highestNumber_
printStatus_
logLevel_

externalNumber_

elements

numberMessages_
lengthMessages_

class_

std::string

source_

elements

std::basic_string< char >

longValue_

stringValue_

doubleValue_

bool

defaultHandler_CoinMessage

messages_

Language

language_

Public Types

• enum Status

Enum for status of various sorts.

Public Member Functions

Constructors & Destructors

• CoinPrePostsolveMatrix (int ncols_alloc, int nrows_alloc, CoinBigIndex nelems_-
alloc)

‘Native’ constructor
• CoinPrePostsolveMatrix (const OsiSolverInterface ∗si, int ncols_, int nrows_,

CoinBigIndex nelems_)
Generic OSI constructor.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.60 CoinPrePostsolveMatrix Class Reference 256

• CoinPrePostsolveMatrix (const ClpSimplex ∗si, int ncols_, int nrows_, Coin-
BigIndex nelems_, double bulkRatio)

ClpOsi constructor.
• ∼CoinPrePostsolveMatrix ()

Destructor.

Functions to work with variable status

Functions to work with the CoinPrePostsolveMatrix::Status enum and related vec-
tors.

• void setRowStatus (int sequence, Status status)

Set row status (i.e., status of artificial for this row)
• Status getRowStatus (int sequence) const

Get row status.
• bool rowIsBasic (int sequence) const

Check if artificial for this row is basic.
• void setColumnStatus (int sequence, Status status)

Set column status (i.e., status of primal variable)
• Status getColumnStatus (int sequence) const

Get column (structural variable) status.
• bool columnIsBasic (int sequence) const

Check if column (structural variable) is basic.
• void setRowStatusUsingValue (int iRow)

Set status of row (artificial variable) to the correct nonbasic status given bounds
and current value.

• void setColumnStatusUsingValue (int iColumn)

Set status of column (structural variable) to the correct nonbasic status given bounds
and current value.

• void setStructuralStatus (const char ∗strucStatus, int lenParam)

Set column (structural variable) status vector.
• void setArtificialStatus (const char ∗artifStatus, int lenParam)

Set row (artificial variable) status vector.
• void setStatus (const CoinWarmStartBasis ∗basis)

Set the status of all variables from a basis.
• CoinWarmStartBasis ∗ getStatus ()

Get status in the form of a CoinWarmStartBasis.
• const char ∗ columnStatusString (int j) const

Return a print string for status of a column (structural variable)
• const char ∗ rowStatusString (int i) const

Return a print string for status of a row (artificial variable)

Functions to load problem and solution information

These functions can be used to load portions of the problem definition and solution.

See also the CoinPresolveMatrix and CoinPostsolveMatrix classes.

• void setObjOffset (double offset)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.60 CoinPrePostsolveMatrix Class Reference 257

Set the objective function offset for the original system.
• void setObjSense (double objSense)

Set the objective sense (max/min)
• void setPrimalTolerance (double primTol)

Set the primal feasibility tolerance.
• void setDualTolerance (double dualTol)

Set the dual feasibility tolerance.
• void setColLower (const double ∗colLower, int lenParam)

Set column lower bounds.
• void setColUpper (const double ∗colUpper, int lenParam)

Set column upper bounds.
• void setColSolution (const double ∗colSol, int lenParam)

Set column solution.
• void setCost (const double ∗cost, int lenParam)

Set objective coefficients.
• void setReducedCost (const double ∗redCost, int lenParam)

Set reduced costs.
• void setRowLower (const double ∗rowLower, int lenParam)

Set row lower bounds.
• void setRowUpper (const double ∗rowUpper, int lenParam)

Set row upper bounds.
• void setRowPrice (const double ∗rowSol, int lenParam)

Set row solution.
• void setRowActivity (const double ∗rowAct, int lenParam)

Set row activity.

Functions to retrieve problem and solution information

• int getNumCols ()
Get current number of columns.

• int getNumRows ()
Get current number of rows.

• int getNumElems ()
Get current number of non-zero coefficients.

• const CoinBigIndex ∗ getColStarts () const
Get column start vector for column-major packed matrix.

• const int ∗ getColLengths () const
Get column length vector for column-major packed matrix.

• const int ∗ getRowIndicesByCol () const
Get vector of row indices for column-major packed matrix.

• const double ∗ getElementsByCol () const
Get vector of elements for column-major packed matrix.

• const double ∗ getColLower () const
Get column lower bounds.

• const double ∗ getColUpper () const
Get column upper bounds.

• const double ∗ getCost () const
Get objective coefficients.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.60 CoinPrePostsolveMatrix Class Reference 258

• const double ∗ getRowLower () const

Get row lower bounds.
• const double ∗ getRowUpper () const

Get row upper bounds.
• const double ∗ getColSolution () const

Get column solution (primal variable values)
• const double ∗ getRowActivity () const

Get row activity (constraint lhs values)
• const double ∗ getRowPrice () const

Get row solution (dual variables)
• const double ∗ getReducedCost () const

Get reduced costs.
• int countEmptyCols ()

Count empty columns.

Public Attributes

Current and Allocated Size

During pre- and postsolve, the matrix will change in size. During presolve it
will shrink; during postsolve it will grow. Hence there are two sets of size vari-
ables, one for the current size and one for the allocated size. (See the general
comments for the CoinPrePostsolveMatrix class for more information.)

• int ncols_

current number of columns
• int nrows_

current number of rows
• CoinBigIndex nelems_

current number of coefficients
• int ncols0_

Allocated number of columns.
• int nrows0_

Allocated number of rows.
• CoinBigIndex nelems0_

Allocated number of coefficients.
• CoinBigIndex bulk0_

Allocated size of bulk storage for row indices and coefficients.
• double bulkRatio_

Ratio of bulk0_ to nelems0_; default is 2.

Problem representation

The matrix is the common column-major format: A pair of vectors with positional
correspondence to hold coefficients and row indices, and a second pair of vectors
giving the starting position and length of each column in the first pair.

• CoinBigIndex ∗ mcstrt_

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.60 CoinPrePostsolveMatrix Class Reference 259

Vector of column start positions in hrow_, colels_.
• int ∗ hincol_

Vector of column lengths.
• int ∗ hrow_

Row indices (positional correspondence with colels_)
• double ∗ colels_

Coefficients (positional correspondence with hrow_)
• double ∗ cost_

Objective coefficients.
• double originalOffset_

Original objective offset.
• double ∗ clo_

Column (primal variable) lower bounds.
• double ∗ cup_

Column (primal variable) upper bounds.
• double ∗ rlo_

Row (constraint) lower bounds.
• double ∗ rup_

Row (constraint) upper bounds.
• int ∗ originalColumn_

Original column numbers.
• int ∗ originalRow_

Original row numbers.
• double ztolzb_

Primal feasibility tolerance.
• double ztoldj_

Dual feasibility tolerance.
• double maxmin_

Maximization/minimization.

Problem solution information

The presolve phase will work without any solution information (appropriate for initial
optimisation) or with solution information (appropriate for reoptimisation).

When solution information is supplied, presolve will maintain it to the best of its abil-
ity. colstat_ is checked to determine the presence/absence of status information.
sol_ is checked for primal solution information, and rowduals_ for dual solution infor-
mation.

The postsolve phase requires the complete solution information from the presolved
problem (status, primal and dual solutions). It will be transformed into a correct
solution for the original problem.

• double ∗ sol_
Vector of primal variable values.

• double ∗ rowduals_
Vector of dual variable values.

• double ∗ acts_
Vector of constraint left-hand-side values (row activity)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.60 CoinPrePostsolveMatrix Class Reference 260

• double ∗ rcosts_
Vector of reduced costs.

• unsigned char ∗ colstat_
Status of primal variables.

• unsigned char ∗ rowstat_
Status of constraints.

Related Functions

(Note that these are not member functions.)

• void presolve_make_memlists (int ∗lengths, presolvehlink ∗link, int n)

Initialise linked list for major vector order in bulk storage.

• bool presolve_expand_major (CoinBigIndex ∗majstrts, double ∗majels, int ∗minndxs,
int ∗majlens, presolvehlink ∗majlinks, int nmaj, int k)

Make sure a major-dimension vector k has room for one more coefficient.

• bool presolve_expand_col (CoinBigIndex ∗mcstrt, double ∗colels, int ∗hrow, int
∗hincol, presolvehlink ∗clink, int ncols, int colx)

Make sure a column (colx) in a column-major matrix has room for one more coefficient.

• bool presolve_expand_row (CoinBigIndex ∗mrstrt, double ∗rowels, int ∗hcol, int
∗hinrow, presolvehlink ∗rlink, int nrows, int rowx)

Make sure a row (rowx) in a row-major matrix has room for one more coefficient.

• CoinBigIndex presolve_find_minor (int tgt, CoinBigIndex ks, CoinBigIndex ke,
const int ∗minndxs)

Find position of a minor index in a major vector.

• CoinBigIndex presolve_find_row (int row, CoinBigIndex kcs, CoinBigIndex kce,
const int ∗hrow)

Find position of a row in a column in a column-major matrix.

• CoinBigIndex presolve_find_minor1 (int tgt, CoinBigIndex ks, CoinBigIndex ke,
const int ∗minndxs)

Find position of a minor index in a major vector.

• CoinBigIndex presolve_find_row1 (int row, CoinBigIndex kcs, CoinBigIndex kce,
const int ∗hrow)

Find position of a row in a column in a column-major matrix.

• CoinBigIndex presolve_find_col1 (int col, CoinBigIndex krs, CoinBigIndex kre,
const int ∗hcol)

Find position of a column in a row in a row-major matrix.

• void presolve_delete_from_major (int majndx, int minndx, const CoinBigIndex
∗majstrts, int ∗majlens, int ∗minndxs, double ∗els)

Delete the entry for a minor index from a major vector.

• void presolve_delete_from_col (int row, int col, const CoinBigIndex ∗mcstrt, int
∗hincol, int ∗hrow, double ∗colels)

Delete the entry for row row from column col in a column-major matrix.

• void presolve_delete_from_row (int row, int col, const CoinBigIndex ∗mrstrt, int
∗hinrow, int ∗hcol, double ∗rowels)

Delete the entry for column col from row row in a row-major matrix.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.60 CoinPrePostsolveMatrix Class Reference 261

Message handling

Uses the standard COIN approach: a default handler is installed, and the CoinPrePost-
solveMatrix object takes responsibility for it.

If the client replaces the handler with one of their own, it becomes their responsibility.

• CoinMessageHandler ∗ handler_

Message handler.

• bool defaultHandler_

Indicates if the current handler_ is default (true) or not (false).

• CoinMessage messages_

Standard COIN messages.

• CoinMessageHandler ∗ messageHandler () const

Return message handler.

• void setMessageHandler (CoinMessageHandler ∗handler)

Set message handler.

• CoinMessages messages () const

Return messages.

8.60.1 Detailed Description

Collects all the information about the problem that is needed in both presolve and post-
solve.

In a bit more detail, a column-major representation of the constraint matrix and upper
and lower bounds on variables and constraints, plus row and column solutions, reduced
costs, and status. There’s also a set of arrays holding the original row and column
numbers.

As presolve and postsolve transform the matrix, it will occasionally be necessary to
expand the number of entries in a column. There are two aspects:

• During postsolve, the constraint system is expected to grow as the smaller pre-
solved system is transformed back to the original system.

• During both pre- and postsolve, transforms can increase the number of coeffi-
cients in a row or column. (See the variable substitution, doubleton, and tripleton
transforms.)

The first is addressed by the members ncols0_, nrows0_, and nelems0_. These should
be set (via constructor parameters) to values large enough for the largest size taken on
by the constraint system. Typically, this will be the size of the original constraint system.

The second is addressed by a generous allocation of extra (empty) space for the arrays
used to hold coefficients and row indices. When columns must be expanded, they are
moved into the empty space. When it is used up, the arrays are compacted. When
compaction fails to produce sufficient space, presolve/postsolve will fail.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.60 CoinPrePostsolveMatrix Class Reference 262

CoinPrePostsolveMatrix isn’t really intended to be used ‘bare’ --- the expectation is that
it’ll be used through CoinPresolveMatrix or CoinPostsolveMatrix. Some of the functions
needed to load a problem are defined in the derived classes.

When CoinPresolve is applied when reoptimising, we need to be prepared to accept a
basis and modify it in step with the presolve actions (otherwise we throw away all the
advantages of warm start for reoptimization). But other solution components (acts_-
, rowduals_, sol_, and rcosts_) are needed only for postsolve, where they’re used in
places to determine the proper action(s) when restoring rows or columns. If presolve is
provided with a solution, it will modify it in step with the presolve actions. Moving the
solution components from CoinPrePostsolveMatrix to CoinPostsolveMatrix would break
a lot of code. It’s not clear that it’s worth it, and it would preclude upgrades to the
presolve side that might make use of any of these. -- lh, 080501 --

Definition at line 244 of file CoinPresolveMatrix.hpp.

8.60.2 Member Enumeration Documentation

8.60.2.1 enum CoinPrePostsolveMatrix::Status

Enum for status of various sorts.

Matches CoinWarmStartBasis::Status and adds superBasic. Most code that converts
between CoinPrePostsolveMatrix::Status and CoinWarmStartBasis::Status will break if
this correspondence is broken.

superBasic is an unresolved problem: there’s no analogue in CoinWarmStartBasis::Status.

Definition at line 292 of file CoinPresolveMatrix.hpp.

8.60.3 Constructor & Destructor Documentation

8.60.3.1 CoinPrePostsolveMatrix::CoinPrePostsolveMatrix (int ncols alloc, int nrows alloc,
CoinBigIndex nelems alloc)

‘Native’ constructor

This constructor creates an empty object which must then be loaded. On the other
hand, it doesn’t assume that the client is an OsiSolverInterface.

8.60.3.2 CoinPrePostsolveMatrix::CoinPrePostsolveMatrix (const OsiSolverInterface ∗ si, int
ncols , int nrows , CoinBigIndex nelems)

Generic OSI constructor.

See OSI code for the definition.

8.60.3.3 CoinPrePostsolveMatrix::CoinPrePostsolveMatrix (const ClpSimplex ∗ si, int ncols ,
int nrows , CoinBigIndex nelems , double bulkRatio)

ClpOsi constructor.

See Clp code for the definition.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.60 CoinPrePostsolveMatrix Class Reference 263

8.60.4 Member Function Documentation

8.60.4.1 void CoinPrePostsolveMatrix::setObjSense (double objSense)

Set the objective sense (max/min)

Coded as 1.0 for min, -1.0 for max.

8.60.4.2 void CoinPrePostsolveMatrix::setMessageHandler (CoinMessageHandler ∗
handler) [inline]

Set message handler.

The client retains responsibility for the handler --- it will not be destroyed with the
CoinPrePostsolveMatrix object.

Definition at line 498 of file CoinPresolveMatrix.hpp.

8.60.5 Member Data Documentation

8.60.5.1 CoinBigIndex CoinPrePostsolveMatrix::bulk0_

Allocated size of bulk storage for row indices and coefficients.

This is the space allocated for hrow_ and colels_. This must be large enough to allow
columns to be copied into empty space when they need to be expanded. For efficiency
(to minimize the number of times the representation must be compressed) it’s recom-
mended that this be at least 2∗nelems0_.

Definition at line 539 of file CoinPresolveMatrix.hpp.

8.60.5.2 int∗ CoinPrePostsolveMatrix::originalColumn_

Original column numbers.

Over the current range of column numbers in the presolved problem, the entry for col-
umn j will contain the index of the corresponding column in the original problem.

Definition at line 582 of file CoinPresolveMatrix.hpp.

8.60.5.3 int∗ CoinPrePostsolveMatrix::originalRow_

Original row numbers.

Over the current range of row numbers in the presolved problem, the entry for row i will
contain the index of the corresponding row in the original problem.

Definition at line 589 of file CoinPresolveMatrix.hpp.

8.60.5.4 double∗ CoinPrePostsolveMatrix::sol_

Vector of primal variable values.

If sol_ exists, it is assumed that primal solution information should be updated and that
acts_ also exists.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.61 CoinPresolveAction Class Reference 264

Definition at line 620 of file CoinPresolveMatrix.hpp.

8.60.5.5 double∗ CoinPrePostsolveMatrix::rowduals_

Vector of dual variable values.

If rowduals_ exists, it is assumed that dual solution information should be updated and
that rcosts_ also exists.

Definition at line 626 of file CoinPresolveMatrix.hpp.

8.60.5.6 double∗ CoinPrePostsolveMatrix::acts_

Vector of constraint left-hand-side values (row activity)

Produced by evaluating constraints according to sol_. Updated iff sol_ exists.

Definition at line 632 of file CoinPresolveMatrix.hpp.

8.60.5.7 double∗ CoinPrePostsolveMatrix::rcosts_

Vector of reduced costs.

Produced by evaluating dual constraints according to rowduals_. Updated iff rowduals_
exists.

Definition at line 638 of file CoinPresolveMatrix.hpp.

8.60.5.8 unsigned char∗ CoinPrePostsolveMatrix::colstat_

Status of primal variables.

Coded with CoinPrePostSolveMatrix::Status, one code per char. colstat_ and rowstat_
MUST be allocated as a single vector. This is to maintain compatibility with ClpPresolve
and OsiPresolve, which do it this way.

Definition at line 646 of file CoinPresolveMatrix.hpp.

8.60.5.9 unsigned char∗ CoinPrePostsolveMatrix::rowstat_

Status of constraints.

More accurately, the status of the logical variable associated with the constraint. Coded
with CoinPrePostSolveMatrix::Status, one code per char. Note that this must be allo-
cated as a single vector with colstat_.

Definition at line 654 of file CoinPresolveMatrix.hpp.

The documentation for this class was generated from the following file:

• CoinPresolveMatrix.hpp

8.61 CoinPresolveAction Class Reference

Abstract base class of all presolve routines.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.61 CoinPresolveAction Class Reference 265

#include <CoinPresolveMatrix.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.61 CoinPresolveAction Class Reference 266

Inheritance diagram for CoinPresolveAction:

CoinPresolveAction

do_tighten_action

doubleton_action

drop_empty_cols_action

drop_empty_rows_action

drop_zero_coefficients_action

dupcol_action

duprow_action

forcing_constraint_action

gubrow_action

implied_free_action

isolated_constraint_action

make_fixed_action

remove_dual_action

remove_fixed_action

slack_doubleton_action

slack_singleton_action

subst_constraint_action

tripleton_action

useless_constraint_action

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.61 CoinPresolveAction Class Reference 267

Collaboration diagram for CoinPresolveAction:

CoinPresolveAction next

Public Member Functions

• CoinPresolveAction (const CoinPresolveAction ∗next)

Construct a postsolve object and add it to the transformation list.

• void setNext (const CoinPresolveAction ∗nextAction)

modify next (when building rather than passing)

• virtual const char ∗ name () const =0

A name for debug printing.

• virtual void postsolve (CoinPostsolveMatrix ∗prob) const =0

Apply the postsolve transformation for this particular presolve action.

• virtual ∼CoinPresolveAction ()

Virtual destructor.

Static Public Member Functions

• static void throwCoinError (const char ∗error, const char ∗ps_routine)

Stub routine to throw exceptions.

Public Attributes

• const CoinPresolveAction ∗ next

The next presolve transformation.

8.61.1 Detailed Description

Abstract base class of all presolve routines.

The details will make more sense after a quick overview of the grand plan: A presolve
object is handed a problem object, which it is expected to modify in some useful way.
Assuming that it succeeds, the presolve object should create a postsolve object, i.e.,
an object that contains instructions for backing out the presolve transform to recover
the original problem. These postsolve objects are accumulated in a linked list, with
each successive presolve action adding its postsolve action to the head of the list. The

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.61 CoinPresolveAction Class Reference 268

end result of all this is a presolved problem object, and a list of postsolve objects. The
presolved problem object is then handed to a solver for optimization, and the problem
object augmented with the results. The list of postsolve objects is then traversed. Each
of them (un)modifies the problem object, with the end result being the original problem,
augmented with solution information.

The problem object representation is CoinPrePostsolveMatrix and subclasses. Check
there for details. The CoinPresolveAction class and subclasses represent the
presolve and postsolve objects.

In spite of the name, the only information held in a CoinPresolveAction object
is the information needed to postsolve (i.e., the information needed to back out the
presolve transformation). This information is not expected to change, so the fields are
all const.

A subclass of CoinPresolveAction, implementing a specific pre/postsolve action,
is expected to declare a static function that attempts to perform a presolve transforma-
tion. This function will be handed a CoinPresolveMatrix to transform, and a pointer to
the head of the list of postsolve objects. If the transform is successful, the function will
create a new CoinPresolveAction object, link it at the head of the list of post-
solve objects, and return a pointer to the postsolve object it has just created. Otherwise,
it should return 0. It is expected that these static functions will be the only things that
can create new CoinPresolveAction objects; this is expressed by making each
subclass’ constructor(s) private.

Every subclass must also define a postsolve method. This function will be handed
a CoinPostsolveMatrix to transform.

It is the client’s responsibility to implement presolve and postsolve driver routines. See
OsiPresolve for examples.

Note

Since the only fields in a CoinPresolveAction are const, anything one can
do with a variable declared CoinPresolveAction∗ can also be done with a
variable declared const CoinPresolveAction∗ It is expected that all derived
subclasses of CoinPresolveAction also have this property.

Definition at line 137 of file CoinPresolveMatrix.hpp.

8.61.2 Constructor & Destructor Documentation

8.61.2.1 CoinPresolveAction::CoinPresolveAction (const CoinPresolveAction ∗ next)
[inline]

Construct a postsolve object and add it to the transformation list.

This is an ‘add to head’ operation. This object will point to the one passed as the
parameter.

Definition at line 161 of file CoinPresolveMatrix.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.62 CoinPresolveMatrix Class Reference 269

8.61.2.2 virtual CoinPresolveAction::∼CoinPresolveAction () [inline, virtual]

Virtual destructor.

Definition at line 178 of file CoinPresolveMatrix.hpp.

8.61.3 Member Function Documentation

8.61.3.1 static void CoinPresolveAction::throwCoinError (const char ∗ error, const char ∗
ps routine) [inline, static]

Stub routine to throw exceptions.

Exceptions are inefficient, particularly with g++. Even with xlC, the use of exceptions
adds a long prologue to a routine. Therefore, rather than use throw directly in the
routine, I use it in a stub routine.

Definition at line 146 of file CoinPresolveMatrix.hpp.

8.61.3.2 virtual const char∗ CoinPresolveAction::name () const [pure virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implemented in doubleton_action, dupcol_action, duprow_action, gubrow_action, drop_-
empty_cols_action, drop_empty_rows_action, remove_fixed_action, make_fixed_action,
forcing_constraint_action, implied_free_action, isolated_constraint_action, slack_doubleton_-
action, slack_singleton_action, subst_constraint_action, do_tighten_action, tripleton_-
action, useless_constraint_action, and drop_zero_coefficients_action.

8.61.4 Member Data Documentation

8.61.4.1 const CoinPresolveAction∗ CoinPresolveAction::next

The next presolve transformation.

Set at object construction.

Definition at line 154 of file CoinPresolveMatrix.hpp.

The documentation for this class was generated from the following file:

• CoinPresolveMatrix.hpp

8.62 CoinPresolveMatrix Class Reference

Augments CoinPrePostsolveMatrix with information about the problem that is only needed
during presolve.

#include <CoinPresolveMatrix.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.62 CoinPresolveMatrix Class Reference 270

Inheritance diagram for CoinPresolveMatrix:

CoinPresolveMatrix

CoinPrePostsolveMatrix

Collaboration diagram for CoinPresolveMatrix:

CoinPresolveMatrix

CoinPrePostsolveMatrix

double

randomNumber_
usefulColumnDouble_
feasibilityTolerance_

rowels_
dobias_
sumUp_

startTime_
usefulRowDouble_

sumDown_

sol_
maxmin_

cup_
rup_

rcosts_
rowduals_

originalOffset_
acts_

ztolzb_
clo_
...

std::vector< double >

elements

CoinMessageHandler

handler_
std::vector< char >

charValue_

char

colChanged_
rowChanged_
integerType_

rowstat_
colstat_

g_format_
messageOut_

format_
messageBuffer_

elements

CoinOneMessage

severity_
message_

detail_

CoinMessages

source_
std::vector< T >

< char >

std::vector< int >

< int >

std::vector< std::string >

< std::string >

< double >

T
elements

FILE *
fp_

currentMessage_

message_

int
presolveOptions_

hcol_
infiniteDown_

mrstrt_
infiniteUp_

hinrow_
numberRowsToDo_

nextColsToDo_
usefulColumnInt_

pass_
...

ncols_
mcstrt_
nelems_
hincol_

nrows0_
hrow_
nrows_

originalColumn_
originalRow_

bulk0_
...

prefix_
g_precision_

internalNumber_
logLevels_

highestNumber_
printStatus_
logLevel_

externalNumber_

elements

numberMessages_
lengthMessages_

class_

presolvehlink

suc
pre

std::string

source_

elements

std::basic_string< char >

longValue_

stringValue_

doubleValue_

bool

tuning_
anyProhibited_

anyInteger_
defaultHandler_

CoinMessage

messages_

Language

language_

clink_
rlink_

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.62 CoinPresolveMatrix Class Reference 271

Public Member Functions

• CoinPresolveMatrix (int ncols_alloc, int nrows_alloc, CoinBigIndex nelems_alloc)

‘Native’ constructor

• CoinPresolveMatrix (int ncols0, double maxmin, ClpSimplex ∗si, int nrows, Coin-
BigIndex nelems, bool doStatus, double nonLinearVariable, double bulkRatio)

Clp OSI constructor.

• void update_model (ClpSimplex ∗si, int nrows0, int ncols0, CoinBigIndex nelems0)

Update the model held by a Clp OSI.

• CoinPresolveMatrix (int ncols0, double maxmin, OsiSolverInterface ∗si, int nrows,
CoinBigIndex nelems, bool doStatus, double nonLinearVariable, const char ∗prohibited,
const char ∗rowProhibited=NULL)

Generic OSI constructor.

• void update_model (OsiSolverInterface ∗si, int nrows0, int ncols0, CoinBigIndex
nelems0)

Update the model held by a generic OSI.

• ∼CoinPresolveMatrix ()

Destructor.

• void change_bias (double change_amount)

Adjust objective function constant offset.

• void statistics ()

Say we want statistics - also set time.

• double feasibilityTolerance ()

Return feasibility tolerance.

• void setFeasibilityTolerance (double val)

Set feasibility tolerance.

• int status ()

Returns problem status (0 = feasible, 1 = infeasible, 2 = unbounded)

• void setStatus (int status)

Set problem status.

• void setPass (int pass=0)

Set pass number.

• void setMaximumSubstitutionLevel (int level)

Set Maximum substitution level (normally 3)

Functions to load the problem representation

• void setMatrix (const CoinPackedMatrix ∗mtx)
Load the cofficient matrix.

• int countEmptyRows ()
Count number of empty rows.

• void setVariableType (int i, int variableType)
Set variable type information for a single variable.

• void setVariableType (const unsigned char ∗variableType, int lenParam)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.62 CoinPresolveMatrix Class Reference 272

Set variable type information for all variables.
• void setVariableType (bool allIntegers, int lenParam)

Set the type of all variables.
• void setAnyInteger (bool anyInteger=true)

Set a flag for presence (true) or absence (false) of integer variables.

Functions to retrieve problem information

• const CoinBigIndex ∗ getRowStarts () const
Get row start vector for row-major packed matrix.

• const int ∗ getColIndicesByRow () const
Get vector of column indices for row-major packed matrix.

• const double ∗ getElementsByRow () const
Get vector of elements for row-major packed matrix.

• bool isInteger (int i) const
Check for integrality of the specified variable.

• bool anyInteger () const
Check if there are any integer variables.

• int presolveOptions () const
Picks up any special options.

• void setPresolveOptions (int value)
Sets any special options (see presolveOptions_)

Functions to manipulate row and column processing status

• void initColsToDo ()
Initialise the column ToDo lists.

• int stepColsToDo ()
Step column ToDo lists.

• int numberColsToDo ()
Return the number of columns on the colsToDo_ list.

• bool colChanged (int i) const
Has column been changed?

• void unsetColChanged (int i)
Mark column as not changed.

• void setColChanged (int i)
Mark column as changed.

• void addCol (int i)
Mark column as changed and add to list of columns to process next.

• bool colProhibited (int i) const
Test if column is eligible for preprocessing.

• bool colProhibited2 (int i) const
Test if column is eligible for preprocessing.

• void setColProhibited (int i)
Mark column as ineligible for preprocessing.

• bool colUsed (int i) const
Test if column is marked as used.

• void setColUsed (int i)
Mark column as used.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.62 CoinPresolveMatrix Class Reference 273

• void unsetColUsed (int i)

Mark column as unused.
• bool colInfinite (int i) const

Has column infinite ub (originally)
• void unsetColInfinite (int i)

Mark column as not infinite ub (originally)
• void setColInfinite (int i)

Mark column as infinite ub (originally)
• void initRowsToDo ()

Initialise the row ToDo lists.
• int stepRowsToDo ()

Step row ToDo lists.
• int numberRowsToDo ()

Return the number of rows on the rowsToDo_ list.
• bool rowChanged (int i) const

Has row been changed?
• void unsetRowChanged (int i)

Mark row as not changed.
• void setRowChanged (int i)

Mark row as changed.
• void addRow (int i)

Mark row as changed and add to list of rows to process next.
• bool rowProhibited (int i) const

Test if row is eligible for preprocessing.
• bool rowProhibited2 (int i) const

Test if row is eligible for preprocessing.
• void setRowProhibited (int i)

Mark row as ineligible for preprocessing.
• bool rowUsed (int i) const

Test if row is marked as used.
• void setRowUsed (int i)

Mark row as used.
• void unsetRowUsed (int i)

Mark row as unused.
• bool anyProhibited () const

Check if there are any prohibited rows or columns.
• void setAnyProhibited (bool val=true)

Set a flag for presence of prohibited rows or columns.
• int recomputeSums (int iRow)

Recompute ups and downs for a row (nonzero if infeasible).
• int initializeStuff ()

Initialize random numbers etc (nonzero if infeasible)
• void deleteStuff ()

Delete useful arrays.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.62 CoinPresolveMatrix Class Reference 274

Public Attributes

• double dobias_

Objective function offset introduced during presolve.

• unsigned char ∗ integerType_

Tracks integrality of columns (1 for integer, 0 for continuous)

• bool anyInteger_

Flag to say if any variables are integer.

• bool tuning_

Print statistics for tuning.

• double startTime_

Start time of presolve.

• double feasibilityTolerance_

Bounds can be moved by this to retain feasibility.

• int status_

Output status: 0 = feasible, 1 = infeasible, 2 = unbounded.

• int pass_

Pass number.

• int maxSubstLevel_

Maximum substitution level.

Matrix storage management links

Linked lists, modelled after the linked lists used in OSL factorization.

They are used for management of the bulk coefficient and minor index storage areas.

• presolvehlink ∗ clink_

Linked list for the column-major representation.
• presolvehlink ∗ rlink_

Linked list for the row-major representation.

Row-major representation

Common row-major format: A pair of vectors with positional correspondence to hold
coefficients and column indices, and a second pair of vectors giving the starting
position and length of each row in the first pair.

• CoinBigIndex ∗ mrstrt_

Vector of row start positions in #hcol, rowels_.
• int ∗ hinrow_

Vector of row lengths.
• double ∗ rowels_

Coefficients (positional correspondence with hcol_)
• int ∗ hcol_

Column indices (positional correspondence with rowels_)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.62 CoinPresolveMatrix Class Reference 275

Row and column processing status

Information used to determine if rows or columns can be changed and if they require
further processing due to changes.

There are four major lists: the [row,col]ToDo list, and the [row,col]NextToDo list. In
general, a transform processes entries from the ToDo list and adds entries to the
NextToDo list.

There are two vectors, [row,col]Changed, which track the status of individual rows
and columns.

• unsigned char ∗ colChanged_
Column change status information.

• int ∗ colsToDo_
Input list of columns to process.

• int numberColsToDo_
Length of colsToDo_.

• int ∗ nextColsToDo_
Output list of columns to process next.

• int numberNextColsToDo_
Length of nextColsToDo_.

• unsigned char ∗ rowChanged_
Row change status information.

• int ∗ rowsToDo_
Input list of rows to process.

• int numberRowsToDo_
Length of rowsToDo_.

• int ∗ nextRowsToDo_
Output list of rows to process next.

• int numberNextRowsToDo_
Length of nextRowsToDo_.

• int presolveOptions_
Presolve options.

• bool anyProhibited_
Flag to say if any rows or columns are marked as prohibited.

• int ∗ usefulRowInt_
Useful int array 3∗ number rows.

• double ∗ usefulRowDouble_
Useful double array number rows.

• int ∗ usefulColumnInt_
Useful int array 2∗ number columns.

• double ∗ usefulColumnDouble_
Useful double array number columns.

• double ∗ randomNumber_
Array of random numbers (max row,column)

• int ∗ infiniteUp_
Array giving number of infinite ups on a row.

• double ∗ sumUp_
Array giving sum of non-infinite ups on a row.

• int ∗ infiniteDown_
Array giving number of infinite downs on a row.

• double ∗ sumDown_
Array giving sum of non-infinite downs on a row.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.62 CoinPresolveMatrix Class Reference 276

Friends

• void assignPresolveToPostsolve (CoinPresolveMatrix ∗&preObj)

Initialize a CoinPostsolveMatrix object, destroying the CoinPresolveMatrix object.

Related Functions

(Note that these are not member functions.)

• void presolve_no_dups (const CoinPresolveMatrix ∗preObj, bool doCol=true, bool
doRow=true)

Check column-major and/or row-major matrices for duplicate entries in the major vec-
tors.

• void presolve_links_ok (const CoinPresolveMatrix ∗preObj, bool doCol=true, bool
doRow=false)

Check the links which track storage order for major vectors in the bulk storage area.
• void presolve_no_zeros (const CoinPresolveMatrix ∗preObj, bool doCol=true, bool

doRow=true)

Check for explicit zeros in the column- and/or row-major matrices.
• void presolve_consistent (const CoinPresolveMatrix ∗preObj, bool chkvals=true)

Checks for equivalence of the column- and row-major matrices.
• void presolve_check_sol (const CoinPresolveMatrix ∗preObj, int chkColSol=2, int

chkRowAct=1, int chkStatus=1)

Check primal solution and architectural variable status.
• void presolve_check_nbasic (const CoinPresolveMatrix ∗preObj)

Check for the proper number of basic variables.

8.62.1 Detailed Description

Augments CoinPrePostsolveMatrix with information about the problem that is only needed
during presolve.

For problem manipulation, this class adds a row-major matrix representation, linked lists
that allow for easy manipulation of the matrix when applying presolve transforms, and
vectors to track row and column processing status (changed, needs further processing,
change prohibited)

For problem representation, this class adds information about variable type (integer or
continuous), an objective offset, and a feasibility tolerance.

NOTE that the anyInteger_ and anyProhibited_ flags are independent of the vectors
used to track this information for individual variables (integerType_ and rowChanged_
and colChanged_, respectively).

NOTE also that at the end of presolve the column-major and row-major matrix represen-
tations are loosely packed (i.e., there may be gaps between columns in the bulk storage
arrays).

Definition at line 787 of file CoinPresolveMatrix.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.62 CoinPresolveMatrix Class Reference 277

8.62.2 Constructor & Destructor Documentation

8.62.2.1 CoinPresolveMatrix::CoinPresolveMatrix (int ncols alloc, int nrows alloc,
CoinBigIndex nelems alloc)

‘Native’ constructor

This constructor creates an empty object which must then be loaded. On the other
hand, it doesn’t assume that the client is an OsiSolverInterface.

8.62.2.2 CoinPresolveMatrix::CoinPresolveMatrix (int ncols0, double maxmin, ClpSimplex ∗ si,
int nrows, CoinBigIndex nelems, bool doStatus, double nonLinearVariable, double
bulkRatio)

Clp OSI constructor.

See Clp code for the definition.

8.62.2.3 CoinPresolveMatrix::CoinPresolveMatrix (int ncols0, double maxmin,
OsiSolverInterface ∗ si, int nrows, CoinBigIndex nelems, bool doStatus, double
nonLinearVariable, const char ∗ prohibited, const char ∗ rowProhibited = NULL)

Generic OSI constructor.

See OSI code for the definition.

8.62.3 Member Function Documentation

8.62.3.1 void CoinPresolveMatrix::setMatrix (const CoinPackedMatrix ∗ mtx)

Load the cofficient matrix.

Load the coefficient matrix before loading the other vectors (bounds, objective, variable
type) required to define the problem.

8.62.3.2 void CoinPresolveMatrix::setVariableType (int i, int variableType) [inline]

Set variable type information for a single variable.

Set variableType to 0 for continous, 1 for integer. Does not manipulate the anyInteger_-
flag.

Definition at line 875 of file CoinPresolveMatrix.hpp.

8.62.3.3 void CoinPresolveMatrix::setVariableType (const unsigned char ∗ variableType, int
lenParam)

Set variable type information for all variables.

Set variableType[i] to 0 for continuous, 1 for integer. Does not manipulate the
anyInteger_ flag.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.62 CoinPresolveMatrix Class Reference 278

8.62.3.4 void CoinPresolveMatrix::setVariableType (bool allIntegers, int lenParam)

Set the type of all variables.

allIntegers should be true to set the type to integer, false to set the type to continuous.

8.62.3.5 bool CoinPresolveMatrix::isInteger (int i) const [inline]

Check for integrality of the specified variable.

Consults the integerType_ vector if present; fallback is the anyInteger_ flag.

Definition at line 917 of file CoinPresolveMatrix.hpp.

8.62.3.6 bool CoinPresolveMatrix::anyInteger () const [inline]

Check if there are any integer variables.

Consults the anyInteger_ flag

Definition at line 930 of file CoinPresolveMatrix.hpp.

8.62.3.7 void CoinPresolveMatrix::initColsToDo ()

Initialise the column ToDo lists.

Places all columns in the colsToDo_ list except for columns marked as prohibited (viz.
colChanged_).

8.62.3.8 int CoinPresolveMatrix::stepColsToDo ()

Step column ToDo lists.

Moves columns on the nextColsToDo_ list to the colsToDo_ list, emptying nextColsToDo_-
. Returns the number of columns transferred.

8.62.3.9 bool CoinPresolveMatrix::colProhibited2 (int i) const [inline]

Test if column is eligible for preprocessing.

The difference between this method and colProhibited() is that this method first tests
anyProhibited_ before examining the specific entry for the specified column.

Definition at line 1179 of file CoinPresolveMatrix.hpp.

8.62.3.10 bool CoinPresolveMatrix::colUsed (int i) const [inline]

Test if column is marked as used.

This is for doing faster lookups to see where two columns have entries in common.

Definition at line 1194 of file CoinPresolveMatrix.hpp.

8.62.3.11 void CoinPresolveMatrix::initRowsToDo ()

Initialise the row ToDo lists.

Places all rows in the rowsToDo_ list except for rows marked as prohibited (viz. rowChanged_-

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.62 CoinPresolveMatrix Class Reference 279

).

8.62.3.12 int CoinPresolveMatrix::stepRowsToDo ()

Step row ToDo lists.

Moves rows on the nextRowsToDo_ list to the rowsToDo_ list, emptying nextRowsToDo_-
. Returns the number of rows transferred.

8.62.3.13 bool CoinPresolveMatrix::rowProhibited2 (int i) const [inline]

Test if row is eligible for preprocessing.

The difference between this method and rowProhibited() is that this method first tests
anyProhibited_ before examining the specific entry for the specified row.

Definition at line 1265 of file CoinPresolveMatrix.hpp.

8.62.3.14 bool CoinPresolveMatrix::rowUsed (int i) const [inline]

Test if row is marked as used.

This is for doing faster lookups to see where two rows have entries in common. It can
be used anywhere as long as it ends up zeroed out.

Definition at line 1280 of file CoinPresolveMatrix.hpp.

8.62.3.15 int CoinPresolveMatrix::recomputeSums (int iRow)

Recompute ups and downs for a row (nonzero if infeasible).

If iRow -1 then recompute all

8.62.4 Friends And Related Function Documentation

8.62.4.1 void assignPresolveToPostsolve (CoinPresolveMatrix ∗& preObj) [friend]

Initialize a CoinPostsolveMatrix object, destroying the CoinPresolveMatrix object.

See CoinPostsolveMatrix::assignPresolveToPostsolve.

8.62.5 Member Data Documentation

8.62.5.1 bool CoinPresolveMatrix::anyInteger_

Flag to say if any variables are integer.

Note that this flag is not manipulated by the various setVariableType routines.

Definition at line 993 of file CoinPresolveMatrix.hpp.

8.62.5.2 int CoinPresolveMatrix::status_

Output status: 0 = feasible, 1 = infeasible, 2 = unbounded.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.62 CoinPresolveMatrix Class Reference 280

Actually implemented as single bit flags: 1∧0 = infeasible, 1∧1 = unbounded.

Definition at line 1015 of file CoinPresolveMatrix.hpp.

8.62.5.3 int CoinPresolveMatrix::pass_

Pass number.

Used to control the execution of testRedundant (evoked by the implied_free transform).

Definition at line 1028 of file CoinPresolveMatrix.hpp.

8.62.5.4 int CoinPresolveMatrix::maxSubstLevel_

Maximum substitution level.

Used to control the execution of subst from implied_free

Definition at line 1037 of file CoinPresolveMatrix.hpp.

8.62.5.5 unsigned char∗ CoinPresolveMatrix::colChanged_

Column change status information.

Coded using the following bits:

• 0x01: Column has changed

• 0x02: preprocessing prohibited

• 0x04: Column has been used

• 0x08: Column originally had infinite ub

Definition at line 1066 of file CoinPresolveMatrix.hpp.

8.62.5.6 unsigned char∗ CoinPresolveMatrix::rowChanged_

Row change status information.

Coded using the following bits:

• 0x01: Row has changed

• 0x02: preprocessing prohibited

• 0x04: Row has been used

Definition at line 1085 of file CoinPresolveMatrix.hpp.

8.62.5.7 int CoinPresolveMatrix::presolveOptions_

Presolve options.

• 1 set if allow duplicate column tests for integer variables

• 2 set to allow code to try and fix infeasibilities

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.63 CoinRelFltEq Class Reference 281

• 4 set to inhibit x+y+z=1 mods

• 8 not used

• 16 set to allow stuff which won’t unroll easily

• 0x80000000 set by presolve to say dupcol_action compressed columns

Definition at line 1102 of file CoinPresolveMatrix.hpp.

8.62.5.8 bool CoinPresolveMatrix::anyProhibited_

Flag to say if any rows or columns are marked as prohibited.

Note that this flag is not manipulated by any of the various set∗Prohibited rou-
tines.

Definition at line 1108 of file CoinPresolveMatrix.hpp.

The documentation for this class was generated from the following files:

• CoinPresolveMatrix.hpp
• CoinPresolvePsdebug.hpp

8.63 CoinRelFltEq Class Reference

Equality to a scaled tolerance.

#include <CoinFloatEqual.hpp>

Collaboration diagram for CoinRelFltEq:

CoinRelFltEq

double

epsilon_

Public Member Functions

• bool operator() (const double f1, const double f2) const

Compare function.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.63 CoinRelFltEq Class Reference 282

Constructors and destructors

• CoinRelFltEq ()
Default constructor.

• CoinRelFltEq (const double epsilon)

Alternate constructor with epsilon as a parameter.
• virtual ∼CoinRelFltEq ()

Destructor.
• CoinRelFltEq (const CoinRelFltEq &src)

Copy constructor.
• CoinRelFltEq & operator= (const CoinRelFltEq &rhs)

Assignment.

8.63.1 Detailed Description

Equality to a scaled tolerance.

Operands are considered equal if their difference is within a scaled epsilon calculated
as epsilon_∗(1+CoinMax(|f1|,|f2|)).

Definition at line 110 of file CoinFloatEqual.hpp.

8.63.2 Constructor & Destructor Documentation

8.63.2.1 CoinRelFltEq::CoinRelFltEq () [inline]

Default constructor.

Default tolerance is 1.0e-10.

Definition at line 134 of file CoinFloatEqual.hpp.

The documentation for this class was generated from the following file:

• CoinFloatEqual.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.64 CoinSearchTree< Comp > Class Template Reference 283

8.64 CoinSearchTree< Comp > Class Template Reference

Inheritance diagram for CoinSearchTree< Comp >:

CoinSearchTree< Comp >

CoinSearchTreeBase

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.64 CoinSearchTree< Comp > Class Template Reference 284

Collaboration diagram for CoinSearchTree< Comp >:

CoinSearchTree< Comp >

CoinSearchTreeBase

std::vector< CoinTreeSiblings * >

candidateList_

CoinTreeSiblings

elements

int

size_
numInserted_

numSiblings_
current_

CoinTreeNode

fractionality_
depth_

BitVector128

bits_

siblings_

double

quality_
true_lower_bound_

preferred_

std::vector< T >

< CoinTreeSiblings * >

T

elements

Comp

comp_

Protected Member Functions

• virtual void fixTop ()

After changing data in the top node, fix the heap.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.65 CoinSearchTreeBase Class Reference 285

8.64.1 Detailed Description

template<class Comp>class CoinSearchTree< Comp >

Definition at line 329 of file CoinSearchTree.hpp.

The documentation for this class was generated from the following file:

• CoinSearchTree.hpp

8.65 CoinSearchTreeBase Class Reference

Inheritance diagram for CoinSearchTreeBase:

CoinSearchTreeBase

CoinSearchTree< Comp >

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.65 CoinSearchTreeBase Class Reference 286

Collaboration diagram for CoinSearchTreeBase:

CoinSearchTreeBase

std::vector< CoinTreeSiblings * >

candidateList_

CoinTreeSiblings

elements

int

size_
numInserted_

numSiblings_
current_

CoinTreeNode

fractionality_
depth_

BitVector128

bits_

siblings_

double

quality_
true_lower_bound_

preferred_

std::vector< T >

< CoinTreeSiblings * >

T

elements

Public Member Functions

• void pop ()

pop will advance the next pointer among the siblings on the top and then moves the
top to its correct position.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.66 CoinSearchTreeCompareBest Struct Reference 287

8.65.1 Detailed Description

Definition at line 215 of file CoinSearchTree.hpp.

8.65.2 Member Function Documentation

8.65.2.1 void CoinSearchTreeBase::pop () [inline]

pop will advance the next pointer among the siblings on the top and then moves the
top to its correct position.

#realpop is the method that actually removes the element from the heap

Definition at line 257 of file CoinSearchTree.hpp.

The documentation for this class was generated from the following file:

• CoinSearchTree.hpp

8.66 CoinSearchTreeCompareBest Struct Reference

Best first search.

#include <CoinSearchTree.hpp>

8.66.1 Detailed Description

Best first search.

Definition at line 205 of file CoinSearchTree.hpp.

The documentation for this struct was generated from the following file:

• CoinSearchTree.hpp

8.67 CoinSearchTreeCompareBreadth Struct Reference

8.67.1 Detailed Description

Definition at line 195 of file CoinSearchTree.hpp.

The documentation for this struct was generated from the following file:

• CoinSearchTree.hpp

8.68 CoinSearchTreeCompareDepth Struct Reference

Depth First Search.

#include <CoinSearchTree.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.69 CoinSearchTreeComparePreferred Struct Reference 288

8.68.1 Detailed Description

Depth First Search.

Definition at line 176 of file CoinSearchTree.hpp.

The documentation for this struct was generated from the following file:

• CoinSearchTree.hpp

8.69 CoinSearchTreeComparePreferred Struct Reference

Function objects to compare search tree nodes.

#include <CoinSearchTree.hpp>

8.69.1 Detailed Description

Function objects to compare search tree nodes.

The comparison function must return true if the first argument is "better" than the second
one, i.e., it should be processed first. Depth First Search.

Definition at line 150 of file CoinSearchTree.hpp.

The documentation for this struct was generated from the following file:

• CoinSearchTree.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.70 CoinSearchTreeManager Class Reference 289

8.70 CoinSearchTreeManager Class Reference

Collaboration diagram for CoinSearchTreeManager:

CoinSearchTreeManager

CoinSearchTreeBase

candidates_

std::vector< CoinTreeSiblings * >

candidateList_

CoinTreeSiblings

elements

int

numSolution

size_
numInserted_

numSiblings_
current_

CoinTreeNode

fractionality_
depth_

BitVector128

bits_

siblings_

double

quality_
true_lower_bound_

preferred_

std::vector< T >

< CoinTreeSiblings * >

T

elements

bool

recentlyReevaluatedSearchStrategy_
hasUB_

8.70.1 Detailed Description

Definition at line 402 of file CoinSearchTree.hpp.

The documentation for this class was generated from the following file:

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.71 CoinSet Class Reference 290

• CoinSearchTree.hpp

8.71 CoinSet Class Reference

Very simple class for containing data on set.

#include <CoinMpsIO.hpp>

Inheritance diagram for CoinSet:

CoinSet

CoinSosSet

Collaboration diagram for CoinSet:

CoinSet

double

weights_

int

numberEntries_
which_
setType_

Public Member Functions

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.71 CoinSet Class Reference 291

Constructor and destructor

• CoinSet ()

Default constructor.
• CoinSet (int numberEntries, const int ∗which)

Constructor.
• CoinSet (const CoinSet &)

Copy constructor.
• CoinSet & operator= (const CoinSet &rhs)

Assignment operator.
• virtual ∼CoinSet ()

Destructor.

gets

• int numberEntries () const

Returns number of entries.
• int setType () const

Returns type of set - 1 =SOS1, 2 =SOS2.
• const int ∗ which () const

Returns list of variables.
• const double ∗ weights () const

Returns weights.

Protected Attributes

data

• int numberEntries_

Number of entries.
• int setType_

type of set
• int ∗ which_

Which variables are in set.
• double ∗ weights_

Weights.

8.71.1 Detailed Description

Very simple class for containing data on set.

Definition at line 220 of file CoinMpsIO.hpp.

The documentation for this class was generated from the following file:

• CoinMpsIO.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.72 CoinShallowPackedVector Class Reference 292

8.72 CoinShallowPackedVector Class Reference

Shallow Sparse Vector.

#include <CoinShallowPackedVector.hpp>

Inheritance diagram for CoinShallowPackedVector:

CoinShallowPackedVector

CoinPackedVectorBase

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.72 CoinShallowPackedVector Class Reference 293

Collaboration diagram for CoinShallowPackedVector:

CoinShallowPackedVector

CoinPackedVectorBase

std::set< int >

indexSetPtr_

int

indices_
nElements_

minIndex_
maxIndex_

keys

std::set< K >

< int >

K

keys

bool

testForDuplicateIndex_
testedDuplicateIndex_

double

elements_

Public Member Functions

Get methods

• virtual int getNumElements () const

Get length of indices and elements vectors.
• virtual const int ∗ getIndices () const

Get indices of elements.
• virtual const double ∗ getElements () const

Get element values.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.72 CoinShallowPackedVector Class Reference 294

Set methods

• void clear ()

Reset the vector (as if were just created an empty vector)
• CoinShallowPackedVector & operator= (const CoinShallowPackedVector &x)

Assignment operator.
• CoinShallowPackedVector & operator= (const CoinPackedVectorBase &x)

Assignment operator from a CoinPackedVectorBase.
• void setVector (int size, const int ∗indices, const double ∗elements, bool test-

ForDuplicateIndex=true)

just like the explicit constructor

Methods to create, set and destroy

• CoinShallowPackedVector (bool testForDuplicateIndex=true)
Default constructor.

• CoinShallowPackedVector (int size, const int ∗indices, const double ∗elements,
bool testForDuplicateIndex=true)

Explicit Constructor.
• CoinShallowPackedVector (const CoinPackedVectorBase &)

Copy constructor from the base class.
• CoinShallowPackedVector (const CoinShallowPackedVector &)

Copy constructor.
• ∼CoinShallowPackedVector ()

Destructor.
• void print ()

Print vector information.

Friends

• void CoinShallowPackedVectorUnitTest ()

A function that tests the methods in the CoinShallowPackedVector class.

8.72.1 Detailed Description

Shallow Sparse Vector.

This class is for sparse vectors where the indices and elements are stored elsewhere.
This class only maintains pointers to the indices and elements. Since this class does
not own the index and element data it provides read only access to to the data. An
CoinSparsePackedVector must be used when the sparse vector’s data will be altered.

This class stores pointers to the vectors. It does not actually contain the vectors.

Here is a sample usage:

const int ne = 4;
int inx[ne] = { 1, 4, 0, 2 };
double el[ne] = { 10., 40., 1., 50. };

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.72 CoinShallowPackedVector Class Reference 295

// Create vector and set its value
CoinShallowPackedVector r(ne,inx,el);

// access each index and element
assert(r.indices ()[0]== 1);
assert(r.elements()[0]==10.);
assert(r.indices ()[1]== 4);
assert(r.elements()[1]==40.);
assert(r.indices ()[2]== 0);
assert(r.elements()[2]== 1.);
assert(r.indices ()[3]== 2);
assert(r.elements()[3]==50.);

// access as a full storage vector
assert(r[0]==1.);
assert(r[1]==10.);
assert(r[2]==50.);
assert(r[3]==0.);
assert(r[4]==40.);

// Tests for equality and equivalence
CoinShallowPackedVector r1;
r1=r;
assert(r==r1);
r.sort(CoinIncrElementOrdered());
assert(r!=r1);

// Add packed vectors.
// Similarly for subtraction, multiplication,
// and division.
CoinPackedVector add = r + r1;
assert(add[0] == 1.+ 1.);
assert(add[1] == 10.+10.);
assert(add[2] == 50.+50.);
assert(add[3] == 0.+ 0.);
assert(add[4] == 40.+40.);
assert(r.sum() == 10.+40.+1.+50.);

Definition at line 74 of file CoinShallowPackedVector.hpp.

8.72.2 Constructor & Destructor Documentation

8.72.2.1 CoinShallowPackedVector::CoinShallowPackedVector (bool testForDuplicateIndex =
true)

Default constructor.

8.72.2.2 CoinShallowPackedVector::CoinShallowPackedVector (int size, const int ∗ indices,
const double ∗ elements, bool testForDuplicateIndex = true)

Explicit Constructor.

Set vector size, indices, and elements. Size is the length of both the indices and ele-
ments vectors. The indices and elements vectors are not copied into this class instance.
The ShallowPackedVector only maintains the pointers to the indices and elements vec-
tors.

The last argument specifies whether the creator of the object knows in advance that

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.72 CoinShallowPackedVector Class Reference 296

there are no duplicate indices.

8.72.2.3 CoinShallowPackedVector::CoinShallowPackedVector (const
CoinPackedVectorBase &)

Copy constructor from the base class.

8.72.2.4 CoinShallowPackedVector::CoinShallowPackedVector (const
CoinShallowPackedVector &)

Copy constructor.

8.72.2.5 CoinShallowPackedVector::∼CoinShallowPackedVector () [inline]

Destructor.

Definition at line 122 of file CoinShallowPackedVector.hpp.

8.72.3 Member Function Documentation

8.72.3.1 CoinShallowPackedVector& CoinShallowPackedVector::operator= (const
CoinShallowPackedVector & x)

Assignment operator.

8.72.3.2 CoinShallowPackedVector& CoinShallowPackedVector::operator= (const
CoinPackedVectorBase & x)

Assignment operator from a CoinPackedVectorBase.

Reimplemented from CoinPackedVectorBase.

8.72.4 Friends And Related Function Documentation

8.72.4.1 void CoinShallowPackedVectorUnitTest () [friend]

A function that tests the methods in the CoinShallowPackedVector class.

The only reason for it not to be a member method is that this way it doesn’t have to be
compiled into the library. And that’s a gain, because the library should be compiled with
optimization on, but this method should be compiled with debugging.

The documentation for this class was generated from the following file:

• CoinShallowPackedVector.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.73 CoinSimpFactorization Class Reference 297

8.73 CoinSimpFactorization Class Reference

Inheritance diagram for CoinSimpFactorization:

CoinSimpFactorization

CoinOtherFactorization

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.73 CoinSimpFactorization Class Reference 298

Collaboration diagram for CoinSimpFactorization:

CoinSimpFactorization

CoinOtherFactorization

double

Urows_
workArea3_
Ucolumns_
workArea2_
maxU_

invOfPivots_
auxVector_
maxA_

maxGrowth_
Lrows_
...

zeroTolerance_
workArea_

pivotTolerance_
slackValue_
elements_
relaxCheck_

int

secRowOfU_
colPosition_
UcolMaxCap_
prevColInU_
UcolInd_

maxEtaRows_
LcolLengths_
LcolStarts_
LrowInd_

numberSlacks_
...

pivotRow_
maximumRows_
maximumSpace_
maximumPivots_
numberGoodU_
numberPivots_
factorElements_

status_
solveMode_
numberRows_

...

bool

doSuhlHeuristic_

Public Member Functions

• void gutsOfDestructor ()

The real work of destructor.

• void gutsOfInitialize ()

The real work of constructor.

• void gutsOfCopy (const CoinSimpFactorization &other)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.73 CoinSimpFactorization Class Reference 299

The real work of copy.

• void factorize (int numberOfRows, int numberOfColumns, const int colStarts[],
const int indicesRow[], const double elements[])

calls factorization

• int mainLoopFactor (FactorPointers &pointers)

main loop of factorization

• void copyLbyRows ()

copies L by rows

• void copyUbyColumns ()

copies U by columns

• int findPivot (FactorPointers &pointers, int &r, int &s, bool &ifSlack)

finds a pivot element using Markowitz count

• int findPivotShCol (FactorPointers &pointers, int &r, int &s)

finds a pivot in a shortest column

• int findPivotSimp (FactorPointers &pointers, int &r, int &s)

finds a pivot in the first column available

• void GaussEliminate (FactorPointers &pointers, int &r, int &s)

does Gauss elimination

• int findShortRow (const int column, const int length, int &minRow, int &minRowLength,
FactorPointers &pointers)

finds short row that intersects a given column

• int findShortColumn (const int row, const int length, int &minCol, int &minCol-
Length, FactorPointers &pointers)

finds short column that intersects a given row

• double findMaxInRrow (const int row, FactorPointers &pointers)

finds maximum absolute value in a row

• void pivoting (const int pivotRow, const int pivotColumn, const double invPivot,
FactorPointers &pointers)

does pivoting

• void updateCurrentRow (const int pivotRow, const int row, const double multiplier,
FactorPointers &pointers, int &newNonZeros)

part of pivoting

• void increaseLsize ()

allocates more space for L

• void increaseRowSize (const int row, const int newSize)

allocates more space for a row of U

• void increaseColSize (const int column, const int newSize, const bool b)

allocates more space for a column of U

• void enlargeUrow (const int numNewElements)

allocates more space for rows of U

• void enlargeUcol (const int numNewElements, const bool b)

allocates more space for columns of U

• int findInRow (const int row, const int column)

finds a given row in a column

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.73 CoinSimpFactorization Class Reference 300

• int findInColumn (const int column, const int row)

finds a given column in a row

• void removeRowFromActSet (const int row, FactorPointers &pointers)

declares a row inactive

• void removeColumnFromActSet (const int column, FactorPointers &pointers)

declares a column inactive

• void allocateSpaceForU ()

allocates space for U

• void allocateSomeArrays ()

allocates several working arrays

• void initialSomeNumbers ()

initializes some numbers

• void Lxeqb (double ∗b) const

solves L x = b

• void Lxeqb2 (double ∗b1, double ∗b2) const

same as above but with two rhs

• void Uxeqb (double ∗b, double ∗sol) const

solves U x = b

• void Uxeqb2 (double ∗b1, double ∗sol1, double ∗sol2, double ∗b2) const

same as above but with two rhs

• void xLeqb (double ∗b) const

solves x L = b

• void xUeqb (double ∗b, double ∗sol) const

solves x U = b

• int LUupdate (int newBasicCol)

updates factorization after a Simplex iteration

• void newEta (int row, int numNewElements)

creates a new eta vector

• void copyRowPermutations ()

makes a copy of row permutations

• void Hxeqb (double ∗b) const

solves H x = b, where H is a product of eta matrices

• void Hxeqb2 (double ∗b1, double ∗b2) const

same as above but with two rhs

• void xHeqb (double ∗b) const

solves x H = b

• void ftran (double ∗b, double ∗sol, bool save) const

does FTRAN

• void ftran2 (double ∗b1, double ∗sol1, double ∗b2, double ∗sol2) const

same as above but with two columns

• void btran (double ∗b, double ∗sol) const

does BTRAN

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.73 CoinSimpFactorization Class Reference 301

Constructors and destructor and copy

• CoinSimpFactorization ()
Default constructor.

• CoinSimpFactorization (const CoinSimpFactorization &other)
Copy constructor.

• virtual ∼CoinSimpFactorization ()
Destructor.

• CoinSimpFactorization & operator= (const CoinSimpFactorization &other)
= copy

• virtual CoinOtherFactorization ∗ clone () const
Clone.

Do factorization - public

• virtual void getAreas (int numberRows, int numberColumns, CoinBigIndex max-
imumL, CoinBigIndex maximumU)

Gets space for a factorization.
• virtual void preProcess ()

PreProcesses column ordered copy of basis.
• virtual int factor ()

Does most of factorization returning status 0 - OK.
• virtual void postProcess (const int ∗sequence, int ∗pivotVariable)

Does post processing on valid factorization - putting variables on correct rows.
• virtual void makeNonSingular (int ∗sequence, int numberColumns)

Makes a non-singular basis by replacing variables.

general stuff such as status

• virtual int numberElements () const
Total number of elements in factorization.

• double maximumCoefficient () const
Returns maximum absolute value in factorization.

rank one updates which do exist

• virtual int replaceColumn (CoinIndexedVector ∗regionSparse, int pivotRow, dou-
ble pivotCheck, bool checkBeforeModifying=false, double acceptablePivot=1.0e-
8)

Replaces one Column to basis, returns 0=OK, 1=Probably OK, 2=singular, 3=no
room If checkBeforeModifying is true will do all accuracy checks before modifying
factorization.

various uses of factorization (return code number elements)

which user may want to know about

• virtual int updateColumnFT (CoinIndexedVector ∗regionSparse, CoinIndexed-
Vector ∗regionSparse2, bool noPermute=false)

Updates one column (FTRAN) from regionSparse2 Tries to do FT update number
returned is negative if no room regionSparse starts as zero and is zero at end.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.73 CoinSimpFactorization Class Reference 302

• virtual int updateColumn (CoinIndexedVector ∗regionSparse, CoinIndexedVec-
tor ∗regionSparse2, bool noPermute=false) const

This version has same effect as above with FTUpdate==false so number returned
is always >=0.

• virtual int updateTwoColumnsFT (CoinIndexedVector ∗regionSparse1, CoinIn-
dexedVector ∗regionSparse2, CoinIndexedVector ∗regionSparse3, bool noP-
ermute=false)

does FTRAN on two columns
• int upColumn (CoinIndexedVector ∗regionSparse, CoinIndexedVector ∗regionSparse2,

bool noPermute=false, bool save=false) const
does updatecolumn if save==true keeps column for replace column

• virtual int updateColumnTranspose (CoinIndexedVector ∗regionSparse, CoinIn-
dexedVector ∗regionSparse2) const

Updates one column (BTRAN) from regionSparse2 regionSparse starts as zero
and is zero at end Note - if regionSparse2 packed on input - will be packed on
output.

• int upColumnTranspose (CoinIndexedVector ∗regionSparse, CoinIndexedVec-
tor ∗regionSparse2) const

does updateColumnTranspose, the other is a wrapper

various uses of factorization

∗∗∗ Below this user may not want to know about

which user may not want to know about (left over from my LP code)

• void clearArrays ()
Get rid of all memory.

• int ∗ indices () const
Returns array to put basis indices in.

• virtual int ∗ permute () const
Returns permute in.

Protected Member Functions

• int checkPivot (double saveFromU, double oldPivot) const

Returns accuracy status of replaceColumn returns 0=OK, 1=Probably OK, 2=singular.

Protected Attributes

data

• double ∗ denseVector_
work array (should be initialized to zero)

• double ∗ workArea2_
work array

• double ∗ workArea3_
work array

• int ∗ vecLabels_

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.73 CoinSimpFactorization Class Reference 303

array of labels (should be initialized to zero)
• int ∗ indVector_

array of indices
• double ∗ auxVector_

auxiliary vector
• int ∗ auxInd_

auxiliary vector
• double ∗ vecKeep_

vector to keep for LUupdate
• int ∗ indKeep_

indices of this vector
• int keepSize_

number of nonzeros
• int ∗ LrowStarts_

Starts of the rows of L.
• int ∗ LrowLengths_

Lengths of the rows of L.
• double ∗ Lrows_

L by rows.
• int ∗ LrowInd_

indices in the rows of L
• int LrowSize_

Size of Lrows_;.
• int LrowCap_

Capacity of Lrows_.
• int ∗ LcolStarts_

Starts of the columns of L.
• int ∗ LcolLengths_

Lengths of the columns of L.
• double ∗ Lcolumns_

L by columns.
• int ∗ LcolInd_

indices in the columns of L
• int LcolSize_

numbers of elements in L
• int LcolCap_

maximum capacity of L
• int ∗ UrowStarts_

Starts of the rows of U.
• int ∗ UrowLengths_

Lengths of the rows of U.
• double ∗ Urows_

U by rows.
• int ∗ UrowInd_

Indices in the rows of U.
• int UrowMaxCap_

maximum capacity of Urows

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.73 CoinSimpFactorization Class Reference 304

• int UrowEnd_
number of used places in Urows

• int firstRowInU_
first row in U

• int lastRowInU_
last row in U

• int ∗ prevRowInU_
previous row in U

• int ∗ nextRowInU_
next row in U

• int ∗ UcolStarts_
Starts of the columns of U.

• int ∗ UcolLengths_
Lengths of the columns of U.

• double ∗ Ucolumns_
U by columns.

• int ∗ UcolInd_
Indices in the columns of U.

• int ∗ prevColInU_
previous column in U

• int ∗ nextColInU_
next column in U

• int firstColInU_
first column in U

• int lastColInU_
last column in U

• int UcolMaxCap_
maximum capacity of Ucolumns_

• int UcolEnd_
last used position in Ucolumns_

• int ∗ colSlack_
indicator of slack variables

• double ∗ invOfPivots_
inverse values of the elements of diagonal of U

• int ∗ colOfU_
permutation of columns

• int ∗ colPosition_
position of column after permutation

• int ∗ rowOfU_
permutations of rows

• int ∗ rowPosition_
position of row after permutation

• int ∗ secRowOfU_
permutations of rows during LUupdate

• int ∗ secRowPosition_
position of row after permutation during LUupdate

• int ∗ EtaPosition_

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.73 CoinSimpFactorization Class Reference 305

position of Eta vector
• int ∗ EtaStarts_

Starts of eta vectors.
• int ∗ EtaLengths_

Lengths of eta vectors.
• int ∗ EtaInd_

columns of eta vectors
• double ∗ Eta_

elements of eta vectors
• int EtaSize_

number of elements in Eta_
• int lastEtaRow_

last eta row
• int maxEtaRows_

maximum number of eta vectors
• int EtaMaxCap_

Capacity of Eta_.
• int minIncrease_

minimum storage increase
• double updateTol_

maximum size for the diagonal of U after update
• bool doSuhlHeuristic_

do Shul heuristic
• double maxU_

maximum of U
• double maxGrowth_

bound on the growth rate
• double maxA_

maximum of A
• int pivotCandLimit_

maximum number of candidates for pivot
• int numberSlacks_

number of slacks in basis
• int firstNumberSlacks_

number of slacks in irst basis

8.73.1 Detailed Description

Definition at line 38 of file CoinSimpFactorization.hpp.

8.73.2 Member Function Documentation

8.73.2.1 virtual int CoinSimpFactorization::factor () [virtual]

Does most of factorization returning status 0 - OK.

-99 - needs more memory -1 - singular - use numberGoodColumns and redo

Implements CoinOtherFactorization.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.74 CoinSnapshot Class Reference 306

8.73.2.2 virtual int CoinSimpFactorization::replaceColumn (CoinIndexedVector ∗
regionSparse, int pivotRow, double pivotCheck, bool checkBeforeModifying =
false, double acceptablePivot = 1.0e-8) [virtual]

Replaces one Column to basis, returns 0=OK, 1=Probably OK, 2=singular, 3=no room If
checkBeforeModifying is true will do all accuracy checks before modifying factorization.

Whether to set this depends on speed considerations. You could just do this on first
iteration after factorization and thereafter re-factorize partial update already in U

Implements CoinOtherFactorization.

8.73.2.3 virtual int CoinSimpFactorization::updateColumnFT (CoinIndexedVector ∗
regionSparse, CoinIndexedVector ∗ regionSparse2, bool noPermute = false)
[virtual]

Updates one column (FTRAN) from regionSparse2 Tries to do FT update number re-
turned is negative if no room regionSparse starts as zero and is zero at end.

Note - if regionSparse2 packed on input - will be packed on output

Implements CoinOtherFactorization.

8.73.2.4 int CoinSimpFactorization::checkPivot (double saveFromU, double oldPivot) const
[protected]

Returns accuracy status of replaceColumn returns 0=OK, 1=Probably OK, 2=singular.

The documentation for this class was generated from the following file:

• CoinSimpFactorization.hpp

8.74 CoinSnapshot Class Reference

NON Abstract Base Class for interfacing with cut generators or branching code or .

#include <CoinSnapshot.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.74 CoinSnapshot Class Reference 307

Collaboration diagram for CoinSnapshot:

CoinSnapshot

double

objValue_
reducedCost_

primalTolerance_
integerUpperBound_

objOffset_
colSolution_
rowLower_

dualTolerance_
objSense_
rowPrice_

...

CoinPackedMatrix

extraGap_
extraMajor_
element_

char

colType_

int

numCols_
numElements_
numRows_

numIntegers_

CoinSnapshot::coinOwned

objCoefficients
rowActivity
rowPrice

matrixByRow
colUpper

colSolution
colLower

reducedCost
doNotSeparateThis
originalMatrixByRow

...

maxSize_
minorDim_
majorDim_

size_
maxMajorDim_

length_
start_
index_

owned_

matrixByRow_
originalMatrixByCol_

matrixByCol_
originalMatrixByRow_

bool

colOrdered_

Classes

• struct coinOwned

To say whether arrays etc are owned by CoinSnapshot.

Public Member Functions

Problem query methods

The Matrix pointers may be NULL

• int getNumCols () const

Get number of columns.
• int getNumRows () const

Get number of rows.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.74 CoinSnapshot Class Reference 308

• int getNumElements () const
Get number of nonzero elements.

• int getNumIntegers () const
Get number of integer variables.

• const double ∗ getColLower () const
Get pointer to array[getNumCols()] of column lower bounds.

• const double ∗ getColUpper () const
Get pointer to array[getNumCols()] of column upper bounds.

• const double ∗ getRowLower () const
Get pointer to array[getNumRows()] of row lower bounds.

• const double ∗ getRowUpper () const
Get pointer to array[getNumRows()] of row upper bounds.

• const double ∗ getRightHandSide () const
Get pointer to array[getNumRows()] of row right-hand sides This gives same results
as OsiSolverInterface for useful cases If getRowUpper()[i] != infinity then getRightHand-
Side()[i] == getRowUpper()[i] else getRightHandSide()[i] == getRowLower()[i].

• const double ∗ getObjCoefficients () const
Get pointer to array[getNumCols()] of objective function coefficients.

• double getObjSense () const
Get objective function sense (1 for min (default), -1 for max)

• bool isContinuous (int colIndex) const
Return true if variable is continuous.

• bool isBinary (int colIndex) const
Return true if variable is binary.

• bool isInteger (int colIndex) const
Return true if column is integer.

• bool isIntegerNonBinary (int colIndex) const
Return true if variable is general integer.

• bool isFreeBinary (int colIndex) const
Return true if variable is binary and not fixed at either bound.

• const char ∗ getColType () const
Get colType array (’B’, ’I’, or ’C’ for Binary, Integer and Continuous)

• const CoinPackedMatrix ∗ getMatrixByRow () const
Get pointer to row-wise copy of current matrix.

• const CoinPackedMatrix ∗ getMatrixByCol () const
Get pointer to column-wise copy of current matrix.

• const CoinPackedMatrix ∗ getOriginalMatrixByRow () const
Get pointer to row-wise copy of "original" matrix.

• const CoinPackedMatrix ∗ getOriginalMatrixByCol () const
Get pointer to column-wise copy of "original" matrix.

Solution query methods

• const double ∗ getColSolution () const
Get pointer to array[getNumCols()] of primal variable values.

• const double ∗ getRowPrice () const
Get pointer to array[getNumRows()] of dual variable values.

• const double ∗ getReducedCost () const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.74 CoinSnapshot Class Reference 309

Get a pointer to array[getNumCols()] of reduced costs.
• const double ∗ getRowActivity () const

Get pointer to array[getNumRows()] of row activity levels (constraint matrix times
the solution vector).

• const double ∗ getDoNotSeparateThis () const
Get pointer to array[getNumCols()] of primal variable values which should not be
separated (for debug)

Other scalar get methods

• double getInfinity () const
Get solver’s value for infinity.

• double getObjValue () const
Get objective function value - includinbg any offset i.e.

• double getObjOffset () const
Get objective offset i.e. sum c sub j ∗ x subj -objValue = objOffset.

• double getDualTolerance () const
Get dual tolerance.

• double getPrimalTolerance () const
Get primal tolerance.

• double getIntegerTolerance () const
Get integer tolerance.

• double getIntegerUpperBound () const
Get integer upper bound i.e. best solution ∗ getObjSense.

• double getIntegerLowerBound () const
Get integer lower bound i.e. best possible solution ∗ getObjSense.

Method to input a problem

• void loadProblem (const CoinPackedMatrix &matrix, const double ∗collb, const
double ∗colub, const double ∗obj, const double ∗rowlb, const double ∗rowub,
bool makeRowCopy=false)

Load in an problem by copying the arguments (the constraints on the rows are given
by lower and upper bounds).

Methods to set data

• void setNumCols (int value)
Set number of columns.

• void setNumRows (int value)
Set number of rows.

• void setNumElements (int value)
Set number of nonzero elements.

• void setNumIntegers (int value)
Set number of integer variables.

• void setColLower (const double ∗array, bool copyIn=true)
Set pointer to array[getNumCols()] of column lower bounds.

• void setColUpper (const double ∗array, bool copyIn=true)
Set pointer to array[getNumCols()] of column upper bounds.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.74 CoinSnapshot Class Reference 310

• void setRowLower (const double ∗array, bool copyIn=true)
Set pointer to array[getNumRows()] of row lower bounds.

• void setRowUpper (const double ∗array, bool copyIn=true)
Set pointer to array[getNumRows()] of row upper bounds.

• void setRightHandSide (const double ∗array, bool copyIn=true)
Set pointer to array[getNumRows()] of row right-hand sides This gives same results
as OsiSolverInterface for useful cases If getRowUpper()[i] != infinity then getRightHand-
Side()[i] == getRowUpper()[i] else getRightHandSide()[i] == getRowLower()[i].

• void createRightHandSide ()
Create array[getNumRows()] of row right-hand sides using existing information This
gives same results as OsiSolverInterface for useful cases If getRowUpper()[i] !=
infinity then getRightHandSide()[i] == getRowUpper()[i] else getRightHandSide()[i]
== getRowLower()[i].

• void setObjCoefficients (const double ∗array, bool copyIn=true)
Set pointer to array[getNumCols()] of objective function coefficients.

• void setObjSense (double value)
Set objective function sense (1 for min (default), -1 for max)

• void setColType (const char ∗array, bool copyIn=true)
Set colType array (’B’, ’I’, or ’C’ for Binary, Integer and Continuous)

• void setMatrixByRow (const CoinPackedMatrix ∗matrix, bool copyIn=true)
Set pointer to row-wise copy of current matrix.

• void createMatrixByRow ()
Create row-wise copy from MatrixByCol.

• void setMatrixByCol (const CoinPackedMatrix ∗matrix, bool copyIn=true)
Set pointer to column-wise copy of current matrix.

• void setOriginalMatrixByRow (const CoinPackedMatrix ∗matrix, bool copyIn=true)

Set pointer to row-wise copy of "original" matrix.
• void setOriginalMatrixByCol (const CoinPackedMatrix ∗matrix, bool copyIn=true)

Set pointer to column-wise copy of "original" matrix.
• void setColSolution (const double ∗array, bool copyIn=true)

Set pointer to array[getNumCols()] of primal variable values.
• void setRowPrice (const double ∗array, bool copyIn=true)

Set pointer to array[getNumRows()] of dual variable values.
• void setReducedCost (const double ∗array, bool copyIn=true)

Set a pointer to array[getNumCols()] of reduced costs.
• void setRowActivity (const double ∗array, bool copyIn=true)

Set pointer to array[getNumRows()] of row activity levels (constraint matrix times
the solution vector).

• void setDoNotSeparateThis (const double ∗array, bool copyIn=true)
Set pointer to array[getNumCols()] of primal variable values which should not be
separated (for debug)

• void setInfinity (double value)
Set solver’s value for infinity.

• void setObjValue (double value)
Set objective function value (including any rhs offset)

• void setObjOffset (double value)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.74 CoinSnapshot Class Reference 311

Set objective offset i.e. sum c sub j ∗ x subj -objValue = objOffset.
• void setDualTolerance (double value)

Set dual tolerance.
• void setPrimalTolerance (double value)

Set primal tolerance.
• void setIntegerTolerance (double value)

Set integer tolerance.
• void setIntegerUpperBound (double value)

Set integer upper bound i.e. best solution ∗ getObjSense.
• void setIntegerLowerBound (double value)

Set integer lower bound i.e. best possible solution ∗ getObjSense.

Constructors and destructors

• CoinSnapshot ()
Default Constructor.

• CoinSnapshot (const CoinSnapshot &)
Copy constructor.

• CoinSnapshot & operator= (const CoinSnapshot &rhs)
Assignment operator.

• virtual ∼CoinSnapshot ()
Destructor.

8.74.1 Detailed Description

NON Abstract Base Class for interfacing with cut generators or branching code or .

It is designed to be snapshot of a problem at a node in tree

The class may or may not own the arrays - see owned_

Querying a problem that has no data associated with it will result in zeros for the number
of rows and columns, and NULL pointers from the methods that return arrays.

Definition at line 25 of file CoinSnapshot.hpp.

8.74.2 Member Function Documentation

8.74.2.1 double CoinSnapshot::getObjValue () const [inline]

Get objective function value - includinbg any offset i.e.

sum c sub j ∗ x subj - objValue = objOffset

Definition at line 157 of file CoinSnapshot.hpp.

8.74.2.2 void CoinSnapshot::loadProblem (const CoinPackedMatrix & matrix, const double
∗ collb, const double ∗ colub, const double ∗ obj, const double ∗ rowlb, const double
∗ rowub, bool makeRowCopy = false)

Load in an problem by copying the arguments (the constraints on the rows are given by
lower and upper bounds).

If a pointer is NULL then the following values are the default:

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.75 CoinSosSet Class Reference 312

• colub: all columns have upper bound infinity

• collb: all columns have lower bound 0

• rowub: all rows have upper bound infinity

• rowlb: all rows have lower bound -infinity

• obj: all variables have 0 objective coefficient

All solution type arrays will be deleted

The documentation for this class was generated from the following file:

• CoinSnapshot.hpp

8.75 CoinSosSet Class Reference

Very simple class for containing SOS set.

#include <CoinMpsIO.hpp>

Inheritance diagram for CoinSosSet:

CoinSosSet

CoinSet

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.75 CoinSosSet Class Reference 313

Collaboration diagram for CoinSosSet:

CoinSosSet

CoinSet

double

weights_

int

numberEntries_
which_
setType_

Public Member Functions

Constructor and destructor

• CoinSosSet (int numberEntries, const int ∗which, const double ∗weights, int
type)

Constructor.
• virtual ∼CoinSosSet ()

Destructor.

8.75.1 Detailed Description

Very simple class for containing SOS set.

Definition at line 285 of file CoinMpsIO.hpp.

The documentation for this class was generated from the following file:

• CoinMpsIO.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.76 CoinStructuredModel Class Reference 314

8.76 CoinStructuredModel Class Reference

Inheritance diagram for CoinStructuredModel:

CoinStructuredModel

CoinBaseModel

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.76 CoinStructuredModel Class Reference 315

Collaboration diagram for CoinStructuredModel:

CoinStructuredModel

CoinBaseModel blocks_

CoinModel

double

optimizationDirection_
objectiveOffset_

objective_
associated_

columnUpper_
rowLower_
rowUpper_

referenceSOS_
columnLower_
sortElements_

CoinModelTriple

value

CoinPackedMatrix

extraGap_
extraMajor_

element_

int

numberRowBlocks_
maximumElementBlocks_

numberColumnBlocks_
numberElementBlocks_

numberRows_
numberColumns_

logLevel_

CoinModelInfo2

columnBlock
rowBlock

startSOS_
numberQuadraticElements_

rowType_
memberSOS_

maximumQuadraticElements_
maximumColumns_

maximumRows_
numberSOS_
sortIndices_

links_
...

CoinModelHash

numberItems_
lastSlot_

maximumItems_

CoinModelHashLink
next
index

row
column

CoinModelLinkedList

first_
last_

numberMajor_
next_

maximumMajor_
previous_

maximumElements_
numberElements_

type_

CoinModelHash2

numberItems_
lastSlot_

maximumItems_

maxSize_
minorDim_
majorDim_

size_
maxMajorDim_

length_
start_
index_

std::string

columnBlockName_
rowBlockName_
problemName_

std::vector< std::string >

elementsstd::basic_string< char >

blockType_

char

matrix
rowName
bounds

columnName
rhs

integer

names_

columnBlockNames_
rowBlockNames_

std::vector< T >
< std::string >

T
elements

coinModelBlocks_

columnName_
rowName_

string_

hash_

hash_

quadraticElements_
elements_

columnList_
rowList_

quadraticColumnList_
quadraticRowList_

hashQuadraticElements_
hashElements_

void *
moreInfo_

packedMatrix_
bool

colOrdered_

Public Member Functions

Useful methods for building model

• int addBlock (const std::string &rowBlock, const std::string &columnBlock, const
CoinBaseModel &block)

add a block from a CoinModel using names given as parameters returns number of
errors (e.g.

• int addBlock (const CoinBaseModel &block)
add a block from a CoinModel with names in model returns number of errors (e.g.

• int addBlock (const std::string &rowBlock, const std::string &columnBlock, Coin-
BaseModel ∗block)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.76 CoinStructuredModel Class Reference 316

add a block from a CoinModel using names given as parameters returns number of
errors (e.g.

• int addBlock (const std::string &rowBlock, const std::string &columnBlock, const
CoinPackedMatrix &matrix, const double ∗rowLower, const double ∗rowUpper,
const double ∗columnLower, const double ∗columnUpper, const double ∗objective)

add a block using names
• int writeMps (const char ∗filename, int compression=0, int formatType=0, int

numberAcross=2, bool keepStrings=false)
Write the problem in MPS format to a file with the given filename.

• int decompose (const CoinModel &model, int type, int maxBlocks=50)
Decompose a CoinModel 1 - try D-W 2 - try Benders 3 - try Staircase Returns
number of blocks or zero if no structure.

• int decompose (const CoinPackedMatrix &matrix, const double ∗rowLower,
const double ∗rowUpper, const double ∗columnLower, const double ∗columnUpper,
const double ∗objective, int type, int maxBlocks=50, double objectiveOffset=0.0)

Decompose a model specified as arrays + CoinPackedMatrix 1 - try D-W 2 - try
Benders 3 - try Staircase Returns number of blocks or zero if no structure.

For getting information

• int numberRowBlocks () const
Return number of row blocks.

• int numberColumnBlocks () const
Return number of column blocks.

• CoinBigIndex numberElementBlocks () const
Return number of elementBlocks.

• CoinBigIndex numberElements () const
Return number of elements.

• const std::string & getRowBlock (int i) const
Return the i’th row block name.

• void setRowBlock (int i, const std::string &name)
Set i’th row block name.

• int addRowBlock (int numberRows, const std::string &name)
Add or check a row block name and number of rows.

• int rowBlock (const std::string &name) const
Return a row block index given a row block name.

• const std::string & getColumnBlock (int i) const
Return i’th the column block name.

• void setColumnBlock (int i, const std::string &name)
Set i’th column block name.

• int addColumnBlock (int numberColumns, const std::string &name)
Add or check a column block name and number of columns.

• int columnBlock (const std::string &name) const
Return a column block index given a column block name.

• const CoinModelBlockInfo & blockType (int i) const
Return i’th block type.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.76 CoinStructuredModel Class Reference 317

• CoinBaseModel ∗ block (int i) const

Return i’th block.
• const CoinBaseModel ∗ block (int row, int column) const

Return block corresponding to row and column.
• CoinModel ∗ coinBlock (int i) const

Return i’th block as CoinModel (or NULL)
• const CoinBaseModel ∗ coinBlock (int row, int column) const

Return block corresponding to row and column as CoinModel.
• int blockIndex (int row, int column) const

Return block number corresponding to row and column.
• CoinModel ∗ coinModelBlock (CoinModelBlockInfo &info)

Return model as a CoinModel block and fill in info structure and update counts.
• void setCoinModel (CoinModel ∗block, int iBlock)

Sets given block into coinModelBlocks_.
• void refresh (int iBlock)

Refresh info in blockType_.
• CoinModelBlockInfo block (int row, int column, const double ∗&rowLower, const

double ∗&rowUpper, const double ∗&columnLower, const double ∗&columnUpper,
const double ∗&objective) const

Fill pointers corresponding to row and column.
• double optimizationDirection () const

Direction of optimization (1 - minimize, -1 - maximize, 0 - ignore.
• void setOptimizationDirection (double value)

Set direction of optimization (1 - minimize, -1 - maximize, 0 - ignore.

Constructors, destructor

• CoinStructuredModel ()
Default constructor.

• CoinStructuredModel (const char ∗fileName, int decompose=0, int maxBlocks=50)

Read a problem in MPS format from the given filename.
• virtual ∼CoinStructuredModel ()

Destructor.

Copy method

• CoinStructuredModel (const CoinStructuredModel &)
The copy constructor.

• CoinStructuredModel & operator= (const CoinStructuredModel &)

=
• virtual CoinBaseModel ∗ clone () const

Clone.

8.76.1 Detailed Description

Definition at line 36 of file CoinStructuredModel.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.76 CoinStructuredModel Class Reference 318

8.76.2 Constructor & Destructor Documentation

8.76.2.1 CoinStructuredModel::CoinStructuredModel ()

Default constructor.

8.76.2.2 CoinStructuredModel::CoinStructuredModel (const char ∗ fileName, int decompose =
0, int maxBlocks = 50)

Read a problem in MPS format from the given filename.

May try and decompose

8.76.2.3 CoinStructuredModel::CoinStructuredModel (const CoinStructuredModel &)

The copy constructor.

8.76.3 Member Function Documentation

8.76.3.1 int CoinStructuredModel::addBlock (const std::string & rowBlock, const std::string &
columnBlock, const CoinBaseModel & block)

add a block from a CoinModel using names given as parameters returns number of
errors (e.g.

both have objectives but not same)

8.76.3.2 int CoinStructuredModel::addBlock (const CoinBaseModel & block)

add a block from a CoinModel with names in model returns number of errors (e.g.

both have objectives but not same)

8.76.3.3 int CoinStructuredModel::addBlock (const std::string & rowBlock, const std::string &
columnBlock, CoinBaseModel ∗ block)

add a block from a CoinModel using names given as parameters returns number of
errors (e.g.

both have objectives but not same) This passes in block - structured model takes own-
ership

8.76.3.4 int CoinStructuredModel::writeMps (const char ∗ filename, int compression = 0, int
formatType = 0, int numberAcross = 2, bool keepStrings = false)

Write the problem in MPS format to a file with the given filename.

Parameters

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.77 CoinThreadRandom Class Reference 319

compression can be set to three values to indicate what kind of file should be written

• 0: plain text (default)

• 1: gzip compressed (.gz is appended to filename)

• 2: bzip2 compressed (.bz2 is appended to filename) (TODO)

If the library was not compiled with the requested compression then
writeMps falls back to writing a plain text file.

formatType specifies the precision to used for values in the MPS file

• 0: normal precision (default)

• 1: extra accuracy

• 2: IEEE hex

number-
Across

specifies whether 1 or 2 (default) values should be specified on every data
line in the MPS file.

not const as may change model e.g. fill in default bounds

The documentation for this class was generated from the following file:

• CoinStructuredModel.hpp

8.77 CoinThreadRandom Class Reference

Class for thread specific random numbers.

#include <CoinHelperFunctions.hpp>

Collaboration diagram for CoinThreadRandom:

CoinThreadRandom

int

seed_

Public Member Functions

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.77 CoinThreadRandom Class Reference 320

Constructors, destructor

• CoinThreadRandom ()
Default constructor.

• CoinThreadRandom (int seed)
Constructor wih seed.

• ∼CoinThreadRandom ()

Destructor.
• CoinThreadRandom (const CoinThreadRandom &rhs)
• CoinThreadRandom & operator= (const CoinThreadRandom &rhs)

Sets/gets

• void setSeed (int seed)
Set seed.

• unsigned int getSeed () const
Get seed.

• double randomDouble () const

return a random number

Protected Attributes

Data members

The data members are protected to allow access for derived classes.

• unsigned int seed_

Current seed.

8.77.1 Detailed Description

Class for thread specific random numbers.

Definition at line 951 of file CoinHelperFunctions.hpp.

8.77.2 Constructor & Destructor Documentation

8.77.2.1 CoinThreadRandom::CoinThreadRandom () [inline]

Default constructor.

Definition at line 957 of file CoinHelperFunctions.hpp.

8.77.2.2 CoinThreadRandom::CoinThreadRandom (int seed) [inline]

Constructor wih seed.

Definition at line 960 of file CoinHelperFunctions.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.78 CoinTimer Class Reference 321

8.77.3 Member Function Documentation

8.77.3.1 void CoinThreadRandom::setSeed (int seed) [inline]

Set seed.

Definition at line 984 of file CoinHelperFunctions.hpp.

8.77.3.2 unsigned int CoinThreadRandom::getSeed () const [inline]

Get seed.

Definition at line 989 of file CoinHelperFunctions.hpp.

The documentation for this class was generated from the following file:

• CoinHelperFunctions.hpp

8.78 CoinTimer Class Reference

This class implements a timer that also implements a tracing functionality.

#include <CoinTime.hpp>

Collaboration diagram for CoinTimer:

CoinTimer

double

limit
end
start

Public Member Functions

• CoinTimer ()

Default constructor creates a timer with no time limit and no tracing.

• CoinTimer (double lim)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.79 CoinTreeNode Class Reference 322

Create a timer with the given time limit and with no tracing.

• void restart ()

Restart the timer (keeping the same time limit)

• void reset ()

An alternate name for restart()

• void reset (double lim)

Reset (and restart) the timer and change its time limit.

• bool isPastPercent (double pct) const

Return whether the given percentage of the time limit has elapsed since the timer was
started.

• bool isPast (double lim) const

Return whether the given amount of time has elapsed since the timer was started.

• bool isExpired () const

Return whether the originally specified time limit has passed since the timer was
started.

• double timeLeft () const

Return how much time is left on the timer.

• double timeElapsed () const

Return how much time has elapsed.

8.78.1 Detailed Description

This class implements a timer that also implements a tracing functionality.

The timer stores the start time of the timer, for how much time it was set to and when
does it expire (start + limit = end). Queries can be made that tell whether the timer is
expired, is past an absolute time, is past a percentage of the length of the timer. All
times are given in seconds, but as double numbers, so there can be fractional values.

The timer can also be initialized with a stream and a specification whether to write to
or read from the stream. In the former case the result of every query is written into the
stream, in the latter case timing is not tested at all, rather the supposed result is read
out from the stream. This makes it possible to exactly retrace time sensitive program
execution.

Definition at line 197 of file CoinTime.hpp.

The documentation for this class was generated from the following file:

• CoinTime.hpp

8.79 CoinTreeNode Class Reference

A class from which the real tree nodes should be derived from.

#include <CoinSearchTree.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.79 CoinTreeNode Class Reference 323

Collaboration diagram for CoinTreeNode:

CoinTreeNode

double

quality_
true_lower_bound_

BitVector128

preferred_

int

fractionality_
depth_

bits_

8.79.1 Detailed Description

A class from which the real tree nodes should be derived from.

Some of the data that undoubtedly exist in the real tree node is replicated here for fast
access. This class is used in the various comparison functions.

Definition at line 40 of file CoinSearchTree.hpp.

The documentation for this class was generated from the following file:

• CoinSearchTree.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.80 CoinTreeSiblings Class Reference 324

8.80 CoinTreeSiblings Class Reference

Collaboration diagram for CoinTreeSiblings:

CoinTreeSiblings

int

numSiblings_
current_

CoinTreeNode

fractionality_
depth_

BitVector128

bits_

siblings_

double

quality_
true_lower_bound_

preferred_

Public Member Functions

• bool advanceNode ()

returns false if cannot be advanced

8.80.1 Detailed Description

Definition at line 108 of file CoinSearchTree.hpp.

The documentation for this class was generated from the following file:

• CoinSearchTree.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.81 CoinTriple< S, T, U > Class Template Reference 325

8.81 CoinTriple< S, T, U > Class Template Reference

Collaboration diagram for CoinTriple< S, T, U >:

CoinTriple< S, T, U >

U

third

S

first

T

second

Public Member Functions

• CoinTriple (const S &s, const T &t, const U &u)

Construct from ordered triple.

Public Attributes

• S first

First member of triple.

• T second

Second member of triple.

• U third

Third member of triple.

8.81.1 Detailed Description

template<class S, class T, class U>class CoinTriple< S, T, U >

Definition at line 360 of file CoinSort.hpp.

The documentation for this class was generated from the following file:

• CoinSort.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.82 CoinUnsignedIntArrayWithLength Class Reference 326

8.82 CoinUnsignedIntArrayWithLength Class Reference

unsigned int ∗ version

#include <CoinIndexedVector.hpp>

Inheritance diagram for CoinUnsignedIntArrayWithLength:

CoinUnsignedIntArrayWithLength

CoinArrayWithLength

Collaboration diagram for CoinUnsignedIntArrayWithLength:

CoinUnsignedIntArrayWithLength

CoinArrayWithLength

char

array_

int

size_

Public Member Functions

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.82 CoinUnsignedIntArrayWithLength Class Reference 327

Get methods.

• int getSize () const
Get the size.

• unsigned int ∗ array () const
Get Array.

Set methods

• void setSize (int value)
Set the size.

Condition methods

• unsigned int ∗ conditionalNew (int sizeWanted)
Conditionally gets new array.

Constructors and destructors

• CoinUnsignedIntArrayWithLength ()
Default constructor - NULL.

• CoinUnsignedIntArrayWithLength (int size)
Alternate Constructor - length in bytes - size_ -1.

• CoinUnsignedIntArrayWithLength (int size, int mode)
Alternate Constructor - length in bytes mode - 0 size_ set to size 1 size_ set to size
and zeroed.

• CoinUnsignedIntArrayWithLength (const CoinUnsignedIntArrayWithLength &rhs)

Copy constructor.
• CoinUnsignedIntArrayWithLength (const CoinUnsignedIntArrayWithLength ∗rhs)

Copy constructor.2.
• CoinUnsignedIntArrayWithLength & operator= (const CoinUnsignedIntArray-

WithLength &rhs)
Assignment operator.

8.82.1 Detailed Description

unsigned int ∗ version

Definition at line 804 of file CoinIndexedVector.hpp.

8.82.2 Constructor & Destructor Documentation

8.82.2.1 CoinUnsignedIntArrayWithLength::CoinUnsignedIntArrayWithLength (const
CoinUnsignedIntArrayWithLength & rhs) [inline]

Copy constructor.

Definition at line 846 of file CoinIndexedVector.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.83 CoinWarmStart Class Reference 328

8.82.3 Member Function Documentation

8.82.3.1 CoinUnsignedIntArrayWithLength& CoinUnsignedIntArrayWith-
Length::operator= (const CoinUnsignedIntArrayWithLength & rhs)
[inline]

Assignment operator.

Definition at line 852 of file CoinIndexedVector.hpp.

The documentation for this class was generated from the following file:

• CoinIndexedVector.hpp

8.83 CoinWarmStart Class Reference

Abstract base class for warm start information.

#include <CoinWarmStart.hpp>

Inheritance diagram for CoinWarmStart:

CoinWarmStart

CoinWarmStartBasis

CoinWarmStartDual

CoinWarmStartPrimalDual

CoinWarmStartVector< T >

CoinWarmStartVector< double >

CoinWarmStartVector< U >

CoinWarmStartVectorPair< T, U >

< double >

< U >

Public Member Functions

• virtual ∼CoinWarmStart ()

Abstract destructor.

• virtual CoinWarmStart ∗ clone () const =0

‘Virtual constructor’

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.84 CoinWarmStartBasis Class Reference 329

8.83.1 Detailed Description

Abstract base class for warm start information.

Really nothing can be generalized for warm start information --- all we know is that it ex-
ists. Hence the abstract base class contains only a virtual destructor and a virtual clone
function (a virtual constructor), so that derived classes can provide these functions.

Definition at line 21 of file CoinWarmStart.hpp.

The documentation for this class was generated from the following file:

• CoinWarmStart.hpp

8.84 CoinWarmStartBasis Class Reference

The default COIN simplex (basis-oriented) warm start class.

#include <CoinWarmStartBasis.hpp>

Inheritance diagram for CoinWarmStartBasis:

CoinWarmStartBasis

CoinWarmStart

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.84 CoinWarmStartBasis Class Reference 330

Collaboration diagram for CoinWarmStartBasis:

CoinWarmStartBasis

CoinWarmStart char

artificialStatus_
structuralStatus_

int

maxSize_
numStructural_
numArtificial_

Public Types

• enum Status { isFree = 0x00, basic = 0x01, atUpperBound = 0x02, atLowerBound
= 0x03 }

Enum for status of variables.

• typedef CoinTriple< int, int, int > XferEntry

Transfer vector entry for mergeBasis(const CoinWarmStartBasis∗,const XferVec∗,const
XferVec∗)

• typedef std::vector< XferEntry > XferVec

Transfer vector for mergeBasis(const CoinWarmStartBasis∗,const XferVec∗,const XferVec∗)

Public Member Functions

Methods to get and set basis information.

The status of variables is kept in a pair of arrays, one for structural variables,
and one for artificials (aka logicals and slacks). The status is coded using the
values of the Status enum.

See also

CoinWarmStartBasis::Status for a description of the packing used in the status
arrays.

• int getNumStructural () const

Return the number of structural variables.
• int getNumArtificial () const

Return the number of artificial variables.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.84 CoinWarmStartBasis Class Reference 331

• int numberBasicStructurals () const
Return the number of basic structurals.

• Status getStructStatus (int i) const
Return the status of the specified structural variable.

• void setStructStatus (int i, Status st)
Set the status of the specified structural variable.

• char ∗ getStructuralStatus ()
Return the status array for the structural variables.

• const char ∗ getStructuralStatus () const
const overload for getStructuralStatus()

• char ∗ getArtificialStatus ()
As for getStructuralStatus , but returns the status array for the artificial variables.

• Status getArtifStatus (int i) const
Return the status of the specified artificial variable.

• void setArtifStatus (int i, Status st)
Set the status of the specified artificial variable.

• const char ∗ getArtificialStatus () const
const overload for getArtificialStatus()

Basis ‘diff’ methods

• virtual CoinWarmStartDiff ∗ generateDiff (const CoinWarmStart ∗const old-
CWS) const

Generate a ‘diff’ that can convert the warm start basis passed as a parameter to
the warm start basis specified by this.

• virtual void applyDiff (const CoinWarmStartDiff ∗const cwsdDiff)
Apply diff to this basis.

Methods to modify the warm start object

• virtual void setSize (int ns, int na)
Set basis capacity; existing basis is discarded.

• virtual void resize (int newNumberRows, int newNumberColumns)
Set basis capacity; existing basis is maintained.

• virtual void compressRows (int tgtCnt, const int ∗tgts)
Delete a set of rows from the basis.

• virtual void deleteRows (int rawTgtCnt, const int ∗rawTgts)
Delete a set of rows from the basis.

• virtual void deleteColumns (int number, const int ∗which)
Delete a set of columns from the basis.

• virtual void mergeBasis (const CoinWarmStartBasis ∗src, const XferVec ∗xferRows,
const XferVec ∗xferCols)

Merge entries from a source basis into this basis.

Constructors, destructors, and related functions

• CoinWarmStartBasis ()
Default constructor.

• CoinWarmStartBasis (int ns, int na, const char ∗sStat, const char ∗aStat)
Constructs a warm start object with the specified status vectors.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.84 CoinWarmStartBasis Class Reference 332

• CoinWarmStartBasis (const CoinWarmStartBasis &ws)
Copy constructor.

• virtual CoinWarmStart ∗ clone () const
‘Virtual constructor’

• virtual ∼CoinWarmStartBasis ()
Destructor.

• virtual CoinWarmStartBasis & operator= (const CoinWarmStartBasis &rhs)
Assignment.

• virtual void assignBasisStatus (int ns, int na, char ∗&sStat, char ∗&aStat)
Assign the status vectors to be the warm start information.

Miscellaneous methods

• virtual void print () const
Prints in readable format (for debug)

• bool fullBasis () const
Returns true if full basis (for debug)

• bool fixFullBasis ()
Returns true if full basis and fixes up (for debug)

Protected Attributes

Protected data members

See also

CoinWarmStartBasis::Status for a description of the packing used in the status
arrays.

• int numStructural_
The number of structural variables.

• int numArtificial_
The number of artificial variables.

• int maxSize_
The maximum sise (in ints - actually 4∗char) (so resize does not need to do new)

• char ∗ structuralStatus_
The status of the structural variables.

• char ∗ artificialStatus_
The status of the artificial variables.

Related Functions

(Note that these are not member functions.)

• CoinWarmStartBasis::Status getStatus (const char ∗array, int i)

Get the status of the specified variable in the given status array.

• void setStatus (char ∗array, int i, CoinWarmStartBasis::Status st)

Set the status of the specified variable in the given status array.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.84 CoinWarmStartBasis Class Reference 333

8.84.1 Detailed Description

The default COIN simplex (basis-oriented) warm start class.

CoinWarmStartBasis provides for a warm start object which contains the status of each
variable (structural and artificial).

Definition at line 40 of file CoinWarmStartBasis.hpp.

8.84.2 Member Enumeration Documentation

8.84.2.1 enum CoinWarmStartBasis::Status

Enum for status of variables.

Matches CoinPrePostsolveMatrix::Status, without superBasic. Most code that converts
between CoinPrePostsolveMatrix::Status and CoinWarmStartBasis::Status will break if
this correspondence is broken.

The status vectors are currently packed using two bits per status code, four codes per
byte. The location of the status information for variable i is in byte i>>2 and occupies
bits 0:1 if i%4 == 0, bits 2:3 if i%4 == 1, etc. The non-member functions getSta-
tus(const char∗,int) and setStatus(char∗,int,CoinWarmStartBasis::Status) are provided
to hide details of the packing.

Enumerator:

isFree Nonbasic free variable.

basic Basic variable.

atUpperBound Nonbasic at upper bound.

atLowerBound Nonbasic at lower bound.

Definition at line 57 of file CoinWarmStartBasis.hpp.

8.84.3 Constructor & Destructor Documentation

8.84.3.1 CoinWarmStartBasis::CoinWarmStartBasis ()

Default constructor.

Creates a warm start object representing an empty basis (0 rows, 0 columns).

8.84.3.2 CoinWarmStartBasis::CoinWarmStartBasis (int ns, int na, const char ∗ sStat, const
char ∗ aStat)

Constructs a warm start object with the specified status vectors.

The parameters are copied. Consider assignBasisStatus(int,int,char∗&,char∗&) if the
object should assume ownership.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.84 CoinWarmStartBasis Class Reference 334

See also

CoinWarmStartBasis::Status for a description of the packing used in the status ar-
rays.

8.84.4 Member Function Documentation

8.84.4.1 int CoinWarmStartBasis::numberBasicStructurals () const

Return the number of basic structurals.

A fast test for an all-slack basis.

8.84.4.2 char∗ CoinWarmStartBasis::getStructuralStatus () [inline]

Return the status array for the structural variables.

The status information is stored using the codes defined in the Status enum, 2 bits per
variable, packed 4 variables per byte.

Definition at line 116 of file CoinWarmStartBasis.hpp.

8.84.4.3 virtual CoinWarmStartDiff∗ CoinWarmStartBasis::generateDiff (const
CoinWarmStart ∗const oldCWS) const [virtual]

Generate a ‘diff’ that can convert the warm start basis passed as a parameter to the
warm start basis specified by this.

The capabilities are limited: the basis passed as a parameter can be no larger than the
basis pointed to by this.

Reimplemented from CoinWarmStart.

8.84.4.4 virtual void CoinWarmStartBasis::applyDiff (const CoinWarmStartDiff ∗const
cwsdDiff) [virtual]

Apply diff to this basis.

Update this basis by applying diff. It’s assumed that the allocated capacity of the
basis is sufficiently large.

Reimplemented from CoinWarmStart.

8.84.4.5 virtual void CoinWarmStartBasis::setSize (int ns, int na) [virtual]

Set basis capacity; existing basis is discarded.

After execution of this routine, the warm start object does not describe a valid basis: all
structural and artificial variables have status isFree.

8.84.4.6 virtual void CoinWarmStartBasis::resize (int newNumberRows, int
newNumberColumns) [virtual]

Set basis capacity; existing basis is maintained.

After execution of this routine, the warm start object describes a valid basis: the status

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.84 CoinWarmStartBasis Class Reference 335

of new structural variables (added columns) is set to nonbasic at lower bound, and the
status of new artificial variables (added rows) is set to basic. (The basis can be invalid
if new structural variables do not have a finite lower bound.)

8.84.4.7 virtual void CoinWarmStartBasis::compressRows (int tgtCnt, const int ∗ tgts)
[virtual]

Delete a set of rows from the basis.

Warning

This routine assumes that the set of indices to be deleted is sorted in ascending
order and contains no duplicates. Use deleteRows() if this is not the case.
The resulting basis is guaranteed valid only if all deleted constraints are slack
(hence the associated logicals are basic).

Removal of a tight constraint with a nonbasic logical implies that some basic variable
must be made nonbasic. This correction is left to the client.

8.84.4.8 virtual void CoinWarmStartBasis::deleteRows (int rawTgtCnt, const int ∗ rawTgts)
[virtual]

Delete a set of rows from the basis.

Warning

The resulting basis is guaranteed valid only if all deleted constraints are slack
(hence the associated logicals are basic).

Removal of a tight constraint with a nonbasic logical implies that some basic variable
must be made nonbasic. This correction is left to the client.

8.84.4.9 virtual void CoinWarmStartBasis::deleteColumns (int number, const int ∗ which)
[virtual]

Delete a set of columns from the basis.

Warning

The resulting basis is guaranteed valid only if all deleted variables are nonbasic.

Removal of a basic variable implies that some nonbasic variable must be made basic.
This correction is left to the client.

8.84.4.10 virtual void CoinWarmStartBasis::mergeBasis (const CoinWarmStartBasis ∗ src,
const XferVec ∗ xferRows, const XferVec ∗ xferCols) [virtual]

Merge entries from a source basis into this basis.

Warning

It’s the client’s responsibility to ensure validity of the merged basis, if that’s important
to the application.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.85 CoinWarmStartBasisDiff Class Reference 336

The vector xferCols (xferRows) specifies runs of entries to be taken from the source
basis and placed in this basis. Each entry is a CoinTriple, with first specifying the start-
ing source index of a run, second specifying the starting destination index, and third
specifying the run length.

8.84.4.11 virtual void CoinWarmStartBasis::assignBasisStatus (int ns, int na, char ∗& sStat,
char ∗& aStat) [virtual]

Assign the status vectors to be the warm start information.

In this method the CoinWarmStartBasis object assumes ownership of the pointers and
upon return the argument pointers will be NULL. If copying is desirable, use the array
constructor or the assignment operator .

Note

The pointers passed to this method will be freed using delete[], so they must be
created using new[].

8.84.5 Member Data Documentation

8.84.5.1 char∗ CoinWarmStartBasis::structuralStatus_ [protected]

The status of the structural variables.

Definition at line 340 of file CoinWarmStartBasis.hpp.

8.84.5.2 char∗ CoinWarmStartBasis::artificialStatus_ [protected]

The status of the artificial variables.

Definition at line 342 of file CoinWarmStartBasis.hpp.

The documentation for this class was generated from the following file:

• CoinWarmStartBasis.hpp

8.85 CoinWarmStartBasisDiff Class Reference

A ‘diff’ between two CoinWarmStartBasis objects.

#include <CoinWarmStartBasis.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.85 CoinWarmStartBasisDiff Class Reference 337

Inheritance diagram for CoinWarmStartBasisDiff:

CoinWarmStartBasisDiff

CoinWarmStartDiff

Collaboration diagram for CoinWarmStartBasisDiff:

CoinWarmStartBasisDiff

CoinWarmStartDiff int

sze_
difference_

Public Member Functions

• virtual CoinWarmStartDiff ∗ clone () const

‘Virtual constructor’

• virtual CoinWarmStartBasisDiff & operator= (const CoinWarmStartBasisDiff &rhs)

Assignment.

• virtual ∼CoinWarmStartBasisDiff ()

Destructor.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.85 CoinWarmStartBasisDiff Class Reference 338

Protected Member Functions

• CoinWarmStartBasisDiff ()

Default constructor.

• CoinWarmStartBasisDiff (const CoinWarmStartBasisDiff &cwsbd)

Copy constructor.

• CoinWarmStartBasisDiff (int sze, const unsigned int ∗const diffNdxs, const un-
signed int ∗const diffVals)

Standard constructor.

• CoinWarmStartBasisDiff (const CoinWarmStartBasis ∗rhs)

Constructor when full is smaller than diff!

8.85.1 Detailed Description

A ‘diff’ between two CoinWarmStartBasis objects.

This class exists in order to hide from the world the details of calculating and repre-
senting a ‘diff’ between two CoinWarmStartBasis objects. For convenience, assign-
ment, cloning, and deletion are visible to the world, and default and copy constructors
are made available to derived classes. Knowledge of the rest of this structure, and of
generating and applying diffs, is restricted to the friend functions CoinWarmStartBa-
sis::generateDiff() and CoinWarmStartBasis::applyDiff().

The actual data structure is an unsigned int vector, #difference_ which starts with indices
of changed and then has values starting after #sze_

Definition at line 391 of file CoinWarmStartBasis.hpp.

8.85.2 Constructor & Destructor Documentation

8.85.2.1 CoinWarmStartBasisDiff::CoinWarmStartBasisDiff () [inline,
protected]

Default constructor.

This is protected (rather than private) so that derived classes can see it when they make
their default constructor protected or private.

Definition at line 414 of file CoinWarmStartBasis.hpp.

8.85.2.2 CoinWarmStartBasisDiff::CoinWarmStartBasisDiff (const CoinWarmStartBasisDiff
& cwsbd) [protected]

Copy constructor.

For convenience when copying objects containing CoinWarmStartBasisDiff objects. But
consider whether you should be using clone() to retain polymorphism.

This is protected (rather than private) so that derived classes can see it when they make
their copy constructor protected or private.

The documentation for this class was generated from the following file:

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.86 CoinWarmStartDiff Class Reference 339

• CoinWarmStartBasis.hpp

8.86 CoinWarmStartDiff Class Reference

Abstract base class for warm start ‘diff’ objects.

#include <CoinWarmStart.hpp>

Inheritance diagram for CoinWarmStartDiff:

CoinWarmStartDiff

CoinWarmStartBasisDiff

CoinWarmStartDualDiff

CoinWarmStartPrimalDualDiff

CoinWarmStartVectorDiff< T >

CoinWarmStartVectorDiff< double >

CoinWarmStartVectorDiff< U >

CoinWarmStartVectorPairDiff< T, U >

< double >

< U >

Public Member Functions

• virtual ∼CoinWarmStartDiff ()

Abstract destructor.

• virtual CoinWarmStartDiff ∗ clone () const =0

‘Virtual constructor’

8.86.1 Detailed Description

Abstract base class for warm start ‘diff’ objects.

For those types of warm start objects where the notion of a ‘diff’ makes sense, this
virtual base class is provided. As with CoinWarmStart, its sole reason for existence is
to make it possible to write solver-independent code.

Definition at line 48 of file CoinWarmStart.hpp.

The documentation for this class was generated from the following file:

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.87 CoinWarmStartDual Class Reference 340

• CoinWarmStart.hpp

8.87 CoinWarmStartDual Class Reference

WarmStart information that is only a dual vector.

#include <CoinWarmStartDual.hpp>

Inheritance diagram for CoinWarmStartDual:

CoinWarmStartDual

CoinWarmStart

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.87 CoinWarmStartDual Class Reference 341

Collaboration diagram for CoinWarmStartDual:

CoinWarmStartDual

CoinWarmStart

CoinWarmStartVector< double >

CoinWarmStartVector< T >

dual_

double

values_

int

size_

size_

< double >

T

values_

Public Member Functions

• int size () const

return the size of the dual vector

• const double ∗ dual () const

return a pointer to the array of duals

• void assignDual (int size, double ∗&dual)

Assign the dual vector to be the warmstart information.

• virtual CoinWarmStart ∗ clone () const

‘Virtual constructor’

Dual warm start ‘diff’ methods

• virtual CoinWarmStartDiff ∗ generateDiff (const CoinWarmStart ∗const old-
CWS) const

Generate a ‘diff’ that can convert the warm start passed as a parameter to the warm
start specified by this.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.88 CoinWarmStartDualDiff Class Reference 342

• virtual void applyDiff (const CoinWarmStartDiff ∗const cwsdDiff)
Apply diff to this warm start.

8.87.1 Detailed Description

WarmStart information that is only a dual vector.

Definition at line 18 of file CoinWarmStartDual.hpp.

8.87.2 Member Function Documentation

8.87.2.1 void CoinWarmStartDual::assignDual (int size, double ∗& dual) [inline]

Assign the dual vector to be the warmstart information.

In this method the object assumes ownership of the pointer and upon return "dual" will
be a NULL pointer. If copying is desirable use the constructor.

Definition at line 28 of file CoinWarmStartDual.hpp.

8.87.2.2 virtual CoinWarmStartDiff∗ CoinWarmStartDual::generateDiff (const
CoinWarmStart ∗const oldCWS) const [virtual]

Generate a ‘diff’ that can convert the warm start passed as a parameter to the warm
start specified by this.

The capabilities are limited: the basis passed as a parameter can be no larger than the
basis pointed to by this.

Reimplemented from CoinWarmStart.

8.87.2.3 virtual void CoinWarmStartDual::applyDiff (const CoinWarmStartDiff ∗const
cwsdDiff) [virtual]

Apply diff to this warm start.

Update this warm start by applying diff. It’s assumed that the allocated capacity of
the warm start is sufficiently large.

Reimplemented from CoinWarmStart.

The documentation for this class was generated from the following file:

• CoinWarmStartDual.hpp

8.88 CoinWarmStartDualDiff Class Reference

A ‘diff’ between two CoinWarmStartDual objects.

#include <CoinWarmStartDual.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.88 CoinWarmStartDualDiff Class Reference 343

Inheritance diagram for CoinWarmStartDualDiff:

CoinWarmStartDualDiff

CoinWarmStartDiff

Collaboration diagram for CoinWarmStartDualDiff:

CoinWarmStartDualDiff

CoinWarmStartDiff

CoinWarmStartVectorDiff< double >

CoinWarmStartVectorDiff< T >

diff_

double

diffVals_

int

sze_
diffNdxs_

sze_
diffNdxs_

< double >

T

diffVals_

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.88 CoinWarmStartDualDiff Class Reference 344

Public Member Functions

• virtual CoinWarmStartDiff ∗ clone () const

‘Virtual constructor’

• virtual CoinWarmStartDualDiff & operator= (const CoinWarmStartDualDiff &rhs)

Assignment.

• virtual ∼CoinWarmStartDualDiff ()

Destructor.

Protected Member Functions

• CoinWarmStartDualDiff ()

Default constructor.

• CoinWarmStartDualDiff (const CoinWarmStartDualDiff &rhs)

Copy constructor.

8.88.1 Detailed Description

A ‘diff’ between two CoinWarmStartDual objects.

This class exists in order to hide from the world the details of calculating and rep-
resenting a ‘diff’ between two CoinWarmStartDual objects. For convenience, assign-
ment, cloning, and deletion are visible to the world, and default and copy constructors
are made available to derived classes. Knowledge of the rest of this structure, and
of generating and applying diffs, is restricted to the friend functions CoinWarmStartD-
ual::generateDiff() and CoinWarmStartDual::applyDiff().

The actual data structure is a pair of vectors, #diffNdxs_ and #diffVals_.

Definition at line 101 of file CoinWarmStartDual.hpp.

8.88.2 Constructor & Destructor Documentation

8.88.2.1 CoinWarmStartDualDiff::CoinWarmStartDualDiff () [inline, protected]

Default constructor.

This is protected (rather than private) so that derived classes can see it when they make
their default constructor protected or private.

Definition at line 130 of file CoinWarmStartDual.hpp.

8.88.2.2 CoinWarmStartDualDiff::CoinWarmStartDualDiff (const CoinWarmStartDualDiff &
rhs) [inline, protected]

Copy constructor.

For convenience when copying objects containing CoinWarmStartDualDiff objects. But
consider whether you should be using clone() to retain polymorphism.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.89 CoinWarmStartPrimalDual Class Reference 345

This is protected (rather than private) so that derived classes can see it when the make
their copy constructor protected or private.

Definition at line 142 of file CoinWarmStartDual.hpp.

The documentation for this class was generated from the following file:

• CoinWarmStartDual.hpp

8.89 CoinWarmStartPrimalDual Class Reference

WarmStart information that is only a dual vector.

#include <CoinWarmStartPrimalDual.hpp>

Inheritance diagram for CoinWarmStartPrimalDual:

CoinWarmStartPrimalDual

CoinWarmStart

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.89 CoinWarmStartPrimalDual Class Reference 346

Collaboration diagram for CoinWarmStartPrimalDual:

CoinWarmStartPrimalDual

CoinWarmStart

CoinWarmStartVector< double >

CoinWarmStartVector< T >

primal_
dual_

double

values_

int

size_

size_

< double >

T

values_

Public Member Functions

• int dualSize () const

return the size of the dual vector

• const double ∗ dual () const

return a pointer to the array of duals

• int primalSize () const

return the size of the primal vector

• const double ∗ primal () const

return a pointer to the array of primals

• void assign (int primalSize, int dualSize, double ∗&primal, double ∗&dual)

Assign the primal/dual vectors to be the warmstart information.

• void clear ()

Clear the data.

• virtual CoinWarmStart ∗ clone () const

‘Virtual constructor’

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.89 CoinWarmStartPrimalDual Class Reference 347

PrimalDual warm start ‘diff’ methods

• virtual CoinWarmStartDiff ∗ generateDiff (const CoinWarmStart ∗const old-
CWS) const

Generate a ‘diff’ that can convert the warm start passed as a parameter to the warm
start specified by this.

• virtual void applyDiff (const CoinWarmStartDiff ∗const cwsdDiff)
Apply diff to this warm start.

8.89.1 Detailed Description

WarmStart information that is only a dual vector.

Definition at line 18 of file CoinWarmStartPrimalDual.hpp.

8.89.2 Member Function Documentation

8.89.2.1 void CoinWarmStartPrimalDual::assign (int primalSize, int dualSize, double ∗&
primal, double ∗& dual) [inline]

Assign the primal/dual vectors to be the warmstart information.

In this method the object assumes ownership of the pointers and upon return primal
and dual will be a NULL pointers. If copying is desirable use the constructor.

NOTE: primal and dual must have been allocated by new double[], because they
will be freed by delete[] upon the desructtion of this object...

Definition at line 39 of file CoinWarmStartPrimalDual.hpp.

8.89.2.2 void CoinWarmStartPrimalDual::clear () [inline]

Clear the data.

Make it appear as if the warmstart was just created using the default constructor.

Definition at line 66 of file CoinWarmStartPrimalDual.hpp.

8.89.2.3 virtual CoinWarmStartDiff∗ CoinWarmStartPrimalDual::generateDiff (const
CoinWarmStart ∗const oldCWS) const [virtual]

Generate a ‘diff’ that can convert the warm start passed as a parameter to the warm
start specified by this.

The capabilities are limited: the basis passed as a parameter can be no larger than the
basis pointed to by this.

Reimplemented from CoinWarmStart.

8.89.2.4 virtual void CoinWarmStartPrimalDual::applyDiff (const CoinWarmStartDiff ∗const
cwsdDiff) [virtual]

Apply diff to this warm start.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.90 CoinWarmStartPrimalDualDiff Class Reference 348

Update this warm start by applying diff. It’s assumed that the allocated capacity of
the warm start is sufficiently large.

Reimplemented from CoinWarmStart.

The documentation for this class was generated from the following file:

• CoinWarmStartPrimalDual.hpp

8.90 CoinWarmStartPrimalDualDiff Class Reference

A ‘diff’ between two CoinWarmStartPrimalDual objects.

#include <CoinWarmStartPrimalDual.hpp>

Inheritance diagram for CoinWarmStartPrimalDualDiff:

CoinWarmStartPrimalDualDiff

CoinWarmStartDiff

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.90 CoinWarmStartPrimalDualDiff Class Reference 349

Collaboration diagram for CoinWarmStartPrimalDualDiff:

CoinWarmStartPrimalDualDiff

CoinWarmStartDiff

CoinWarmStartVectorDiff< double >

CoinWarmStartVectorDiff< T >

primalDiff_
dualDiff_

double

diffVals_

int

sze_
diffNdxs_

sze_
diffNdxs_

< double >

T

diffVals_

Public Member Functions

• virtual CoinWarmStartDiff ∗ clone () const

‘Virtual constructor’.

• virtual ∼CoinWarmStartPrimalDualDiff ()

Destructor.

Protected Member Functions

• CoinWarmStartPrimalDualDiff ()

Default constructor.

• CoinWarmStartPrimalDualDiff (const CoinWarmStartPrimalDualDiff &rhs)

Copy constructor.

• void clear ()

Clear the data.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.90 CoinWarmStartPrimalDualDiff Class Reference 350

8.90.1 Detailed Description

A ‘diff’ between two CoinWarmStartPrimalDual objects.

This class exists in order to hide from the world the details of calculating and represent-
ing a ‘diff’ between two CoinWarmStartPrimalDual objects. For convenience, assign-
ment, cloning, and deletion are visible to the world, and default and copy constructors
are made available to derived classes. Knowledge of the rest of this structure, and of
generating and applying diffs, is restricted to the friend functions CoinWarmStartPrimal-
Dual::generateDiff() and CoinWarmStartPrimalDual::applyDiff().

The actual data structure is a pair of vectors, #diffNdxs_ and #diffVals_.

Definition at line 142 of file CoinWarmStartPrimalDual.hpp.

8.90.2 Constructor & Destructor Documentation

8.90.2.1 CoinWarmStartPrimalDualDiff::CoinWarmStartPrimalDualDiff () [inline,
protected]

Default constructor.

This is protected (rather than private) so that derived classes can see it when they make
their default constructor protected or private.

Definition at line 169 of file CoinWarmStartPrimalDual.hpp.

8.90.2.2 CoinWarmStartPrimalDualDiff::CoinWarmStartPrimalDualDiff (const
CoinWarmStartPrimalDualDiff & rhs) [inline, protected]

Copy constructor.

For convenience when copying objects containing CoinWarmStartPrimalDualDiff ob-
jects. But consider whether you should be using clone() to retain polymorphism.

This is protected (rather than private) so that derived classes can see it when the make
their copy constructor protected or private.

Definition at line 181 of file CoinWarmStartPrimalDual.hpp.

8.90.3 Member Function Documentation

8.90.3.1 virtual CoinWarmStartDiff∗ CoinWarmStartPrimalDualDiff::clone () const
[inline, virtual]

‘Virtual constructor’.

To be used when retaining polymorphism is important

Implements CoinWarmStartDiff.

Definition at line 153 of file CoinWarmStartPrimalDual.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.91 CoinWarmStartVector< T > Class Template Reference 351

8.90.3.2 void CoinWarmStartPrimalDualDiff::clear () [inline, protected]

Clear the data.

Make it appear as if the diff was just created using the default constructor.

Definition at line 189 of file CoinWarmStartPrimalDual.hpp.

The documentation for this class was generated from the following file:

• CoinWarmStartPrimalDual.hpp

8.91 CoinWarmStartVector< T > Class Template Reference

WarmStart information that is only a vector.

#include <CoinWarmStartVector.hpp>

Inheritance diagram for CoinWarmStartVector< T >:

CoinWarmStartVector< T >

CoinWarmStartVector< double >

< double >

CoinWarmStartVector< U >

< U >

CoinWarmStart

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.91 CoinWarmStartVector< T > Class Template Reference 352

Collaboration diagram for CoinWarmStartVector< T >:

CoinWarmStartVector< T >

CoinWarmStart int

size_

T

values_

Public Member Functions

• int size () const

return the size of the vector

• const T ∗ values () const

return a pointer to the array of vectors

• void assignVector (int size, T ∗&vec)

Assign the vector to be the warmstart information.

• virtual CoinWarmStart ∗ clone () const

‘Virtual constructor’

• void clear ()

Clear the data.

Vector warm start ‘diff’ methods

• virtual CoinWarmStartDiff ∗ generateDiff (const CoinWarmStart ∗const old-
CWS) const

Generate a ‘diff’ that can convert the warm start passed as a parameter to the warm
start specified by this.

• virtual void applyDiff (const CoinWarmStartDiff ∗const cwsdDiff)
Apply diff to this warm start.

8.91.1 Detailed Description

template<typename T>class CoinWarmStartVector< T >

WarmStart information that is only a vector.

Definition at line 26 of file CoinWarmStartVector.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.92 CoinWarmStartVectorDiff< T > Class Template Reference 353

8.91.2 Member Function Documentation

8.91.2.1 template<typename T> void CoinWarmStartVector< T >::assignVector (int size,
T ∗& vec) [inline]

Assign the vector to be the warmstart information.

In this method the object assumes ownership of the pointer and upon return #vector will
be a NULL pointer. If copying is desirable use the constructor.

Definition at line 47 of file CoinWarmStartVector.hpp.

8.91.2.2 template<typename T> void CoinWarmStartVector< T >::clear ()
[inline]

Clear the data.

Make it appear as if the warmstart was just created using the default constructor.

Definition at line 94 of file CoinWarmStartVector.hpp.

8.91.2.3 template<typename T > CoinWarmStartDiff ∗ CoinWarmStartVector< T
>::generateDiff (const CoinWarmStart ∗const oldCWS) const [virtual]

Generate a ‘diff’ that can convert the warm start passed as a parameter to the warm
start specified by this.

The capabilities are limited: the basis passed as a parameter can be no larger than the
basis pointed to by this.

Reimplemented from CoinWarmStart.

Definition at line 332 of file CoinWarmStartVector.hpp.

8.91.2.4 template<typename T > void CoinWarmStartVector< T >::applyDiff (const
CoinWarmStartDiff ∗const cwsdDiff) [virtual]

Apply diff to this warm start.

Update this warm start by applying diff. It’s assumed that the allocated capacity of
the warm start is sufficiently large.

Reimplemented from CoinWarmStart.

Definition at line 396 of file CoinWarmStartVector.hpp.

The documentation for this class was generated from the following file:

• CoinWarmStartVector.hpp

8.92 CoinWarmStartVectorDiff< T > Class Template Reference

A ‘diff’ between two CoinWarmStartVector objects.

#include <CoinWarmStartVector.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.92 CoinWarmStartVectorDiff< T > Class Template Reference 354

Inheritance diagram for CoinWarmStartVectorDiff< T >:

CoinWarmStartVectorDiff< T >

CoinWarmStartVectorDiff< double >

< double >

CoinWarmStartVectorDiff< U >

< U >

CoinWarmStartDiff

Collaboration diagram for CoinWarmStartVectorDiff< T >:

CoinWarmStartVectorDiff< T >

CoinWarmStartDiff int

sze_
diffNdxs_

T

diffVals_

Public Member Functions

• virtual CoinWarmStartDiff ∗ clone () const

‘Virtual constructor’

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.92 CoinWarmStartVectorDiff< T > Class Template Reference 355

• virtual CoinWarmStartVectorDiff & operator= (const CoinWarmStartVectorDiff<
T > &rhs)

Assignment.

• virtual ∼CoinWarmStartVectorDiff ()

Destructor.

• CoinWarmStartVectorDiff ()

Default constructor.

• CoinWarmStartVectorDiff (const CoinWarmStartVectorDiff< T > &rhs)

Copy constructor.

• CoinWarmStartVectorDiff (int sze, const unsigned int ∗const diffNdxs, const T
∗const diffVals)

Standard constructor.

• void clear ()

Clear the data.

8.92.1 Detailed Description

template<typename T>class CoinWarmStartVectorDiff< T >

A ‘diff’ between two CoinWarmStartVector objects.

This class exists in order to hide from the world the details of calculating and repre-
senting a ‘diff’ between two CoinWarmStartVector objects. For convenience, assign-
ment, cloning, and deletion are visible to the world, and default and copy constructors
are made available to derived classes. Knowledge of the rest of this structure, and of
generating and applying diffs, is restricted to the friend functions CoinWarmStartVec-
tor::generateDiff() and CoinWarmStartVector::applyDiff().

The actual data structure is a pair of vectors, #diffNdxs_ and #diffVals_.

Definition at line 151 of file CoinWarmStartVector.hpp.

8.92.2 Constructor & Destructor Documentation

8.92.2.1 template<typename T> CoinWarmStartVectorDiff< T
>::CoinWarmStartVectorDiff (const CoinWarmStartVectorDiff< T > & rhs)

Copy constructor.

For convenience when copying objects containing CoinWarmStartVectorDiff objects.
But consider whether you should be using clone() to retain polymorphism.

Definition at line 454 of file CoinWarmStartVector.hpp.

8.92.3 Member Function Documentation

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.93 CoinWarmStartVectorPair< T, U > Class Template Reference 356

8.92.3.1 template<typename T> void CoinWarmStartVectorDiff< T >::clear ()
[inline]

Clear the data.

Make it appear as if the diff was just created using the default constructor.

Definition at line 204 of file CoinWarmStartVector.hpp.

The documentation for this class was generated from the following file:

• CoinWarmStartVector.hpp

8.93 CoinWarmStartVectorPair< T, U > Class Template Reference

Inheritance diagram for CoinWarmStartVectorPair< T, U >:

CoinWarmStartVectorPair< T, U >

CoinWarmStart

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.93 CoinWarmStartVectorPair< T, U > Class Template Reference 357

Collaboration diagram for CoinWarmStartVectorPair< T, U >:

CoinWarmStartVectorPair< T, U >

CoinWarmStart

CoinWarmStartVector< U >

CoinWarmStartVector< T >

t_

< U >

u_

U

values_

int

size_

Public Member Functions

• virtual CoinWarmStart ∗ clone () const

‘Virtual constructor’

8.93.1 Detailed Description

template<typename T, typename U>class CoinWarmStartVectorPair< T, U >

Definition at line 229 of file CoinWarmStartVector.hpp.

The documentation for this class was generated from the following file:

• CoinWarmStartVector.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.94 CoinWarmStartVectorPairDiff< T, U > Class Template Reference 358

8.94 CoinWarmStartVectorPairDiff< T, U > Class Template Reference

Inheritance diagram for CoinWarmStartVectorPairDiff< T, U >:

CoinWarmStartVectorPairDiff< T, U >

CoinWarmStartDiff

Collaboration diagram for CoinWarmStartVectorPairDiff< T, U >:

CoinWarmStartVectorPairDiff< T, U >

CoinWarmStartDiff

CoinWarmStartVectorDiff< U >

CoinWarmStartVectorDiff< T >

tdiff_

< U >

udiff_

U

diffVals_

int

sze_
diffNdxs_

Public Member Functions

• virtual CoinWarmStartDiff ∗ clone () const

‘Virtual constructor’

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.95 CoinYacc Class Reference 359

8.94.1 Detailed Description

template<typename T, typename U>class CoinWarmStartVectorPairDiff< T, U >

Definition at line 282 of file CoinWarmStartVector.hpp.

The documentation for this class was generated from the following file:

• CoinWarmStartVector.hpp

8.95 CoinYacc Class Reference

Collaboration diagram for CoinYacc:

CoinYacc

double

unsetValue symrec

fnctptr
var

char

symbuf

name

int

length

type

symtable

next

@0

value

8.95.1 Detailed Description

Definition at line 151 of file CoinModelUseful.hpp.

The documentation for this class was generated from the following file:

• CoinModelUseful.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.96 do_tighten_action Class Reference 360

8.96 do tighten action Class Reference

Inheritance diagram for do_tighten_action:

do_tighten_action

CoinPresolveAction

Collaboration diagram for do_tighten_action:

do_tighten_action

CoinPresolveAction next do_tighten_action::action

actions_

double

lbound
ubound

int

nactions_

nrows
direction
rows
col

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.97 doubleton_action Class Reference 361

Classes

• struct action

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.96.1 Detailed Description

Definition at line 19 of file CoinPresolveTighten.hpp.

8.96.2 Member Function Documentation

8.96.2.1 const char∗ do tighten action::name () const [virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

The documentation for this class was generated from the following file:

• CoinPresolveTighten.hpp

8.97 doubleton action Class Reference

Solve ax+by=c for y and substitute y out of the problem.

#include <CoinPresolveDoubleton.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.97 doubleton_action Class Reference 362

Inheritance diagram for doubleton_action:

doubleton_action

CoinPresolveAction

Collaboration diagram for doubleton_action:

doubleton_action

CoinPresolveAction next doubleton_action::action

actions_

double

colel
clox
costx
costy
cupx
coeffx
coeffy
rlo

int

nactions_

row
icolx
icoly
ncolx
ncoly

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.98 drop_empty_cols_action Class Reference 363

Classes

• struct action

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.97.1 Detailed Description

Solve ax+by=c for y and substitute y out of the problem.

This moves the bounds information for y onto x, making y free and allowing us to sub-
stitute it away.

a x + b y = c
l1 <= x <= u1
l2 <= y <= u2 ==>

l2 <= (c - a x) / b <= u2
b/-a > 0 ==> (b l2 - c) / -a <= x <= (b u2 - c) / -a
b/-a < 0 ==> (b u2 - c) / -a <= x <= (b l2 - c) / -a

Definition at line 26 of file CoinPresolveDoubleton.hpp.

8.97.2 Member Function Documentation

8.97.2.1 const char∗ doubleton action::name () const [inline, virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

Definition at line 62 of file CoinPresolveDoubleton.hpp.

The documentation for this class was generated from the following file:

• CoinPresolveDoubleton.hpp

8.98 drop empty cols action Class Reference

Physically removes empty columns in presolve, and reinserts empty columns in post-
solve.

#include <CoinPresolveEmpty.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.98 drop_empty_cols_action Class Reference 364

Inheritance diagram for drop_empty_cols_action:

drop_empty_cols_action

CoinPresolveAction

Collaboration diagram for drop_empty_cols_action:

drop_empty_cols_action

CoinPresolveAction next

int

nactions_ drop_empty_cols_action::action

jcol

actions_

double

clo
cup
sol
cost

Classes

• struct action

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.99 drop_empty_rows_action Class Reference 365

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.98.1 Detailed Description

Physically removes empty columns in presolve, and reinserts empty columns in post-
solve.

Physical removal of rows and columns should be the last activities performed during
presolve. Do them exactly once. The row-major matrix is not maintained by this trans-
form.

To physically drop the columns, CoinPrePostsolveMatrix::mcstrt_ and CoinPrePostsolveMatrix::hincol_-
are compressed, along with column bounds, objective, and (if present) the column por-
tions of the solution. This renumbers the columns. drop_empty_cols_action::presolve
will reconstruct CoinPresolveMatrix::clink_.

Definition at line 34 of file CoinPresolveEmpty.hpp.

8.98.2 Member Function Documentation

8.98.2.1 const char∗ drop empty cols action::name () const [inline, virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

Definition at line 56 of file CoinPresolveEmpty.hpp.

The documentation for this class was generated from the following file:

• CoinPresolveEmpty.hpp

8.99 drop empty rows action Class Reference

Physically removes empty rows in presolve, and reinserts empty rows in postsolve.

#include <CoinPresolveEmpty.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.99 drop_empty_rows_action Class Reference 366

Inheritance diagram for drop_empty_rows_action:

drop_empty_rows_action

CoinPresolveAction

Collaboration diagram for drop_empty_rows_action:

drop_empty_rows_action

CoinPresolveAction next drop_empty_rows_action::action

actions_

double

rup
rlo

int

nactions_

row
fill_row

Classes

• struct action

Public Member Functions

• const char ∗ name () const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.100 drop_zero_coefficients_action Class Reference 367

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.99.1 Detailed Description

Physically removes empty rows in presolve, and reinserts empty rows in postsolve.

Physical removal of rows and columns should be the last activities performed during
presolve. Do them exactly once. The row-major matrix is not maintained by this trans-
form.

To physically drop the rows, the rows are renumbered, excluding empty rows. This
involves rewriting CoinPrePostsolveMatrix::hrow_ and compressing the row bounds and
(if present) the row portions of the solution.

Definition at line 86 of file CoinPresolveEmpty.hpp.

8.99.2 Member Function Documentation

8.99.2.1 const char∗ drop empty rows action::name () const [inline, virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

Definition at line 106 of file CoinPresolveEmpty.hpp.

The documentation for this class was generated from the following file:

• CoinPresolveEmpty.hpp

8.100 drop zero coefficients action Class Reference

Removal of explicit zeros.

#include <CoinPresolveZeros.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.100 drop_zero_coefficients_action Class Reference 368

Inheritance diagram for drop_zero_coefficients_action:

drop_zero_coefficients_action

CoinPresolveAction

Collaboration diagram for drop_zero_coefficients_action:

drop_zero_coefficients_action

CoinPresolveAction next

int

nzeros_ dropped_zero

row
col

zeros_

Public Member Functions

• const char ∗ name () const

A name for debug printing.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.101 dropped_zero Struct Reference 369

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.100.1 Detailed Description

Removal of explicit zeros.

The presolve action for this class removes explicit zeros from the constraint matrix. The
postsolve action puts them back.

Definition at line 32 of file CoinPresolveZeros.hpp.

8.100.2 Member Function Documentation

8.100.2.1 const char∗ drop zero coefficients action::name () const [inline,
virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

Definition at line 45 of file CoinPresolveZeros.hpp.

The documentation for this class was generated from the following file:

• CoinPresolveZeros.hpp

8.101 dropped zero Struct Reference

Tracking information for an explicit zero coefficient.

#include <CoinPresolveZeros.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.102 dupcol_action Class Reference 370

Collaboration diagram for dropped_zero:

dropped_zero

int

row
col

8.101.1 Detailed Description

Tracking information for an explicit zero coefficient.

Definition at line 22 of file CoinPresolveZeros.hpp.

The documentation for this struct was generated from the following file:

• CoinPresolveZeros.hpp

8.102 dupcol action Class Reference

Detect and remove duplicate columns.

#include <CoinPresolveDupcol.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.102 dupcol_action Class Reference 371

Inheritance diagram for dupcol_action:

dupcol_action

CoinPresolveAction

Collaboration diagram for dupcol_action:

dupcol_action

CoinPresolveAction next

int

nactions_ dupcol_action::action

ithis
ilast
nincol

actions_

double

thislo
lastup
lastlo
thisup
colels

Classes

• struct action

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.103 duprow_action Class Reference 372

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.102.1 Detailed Description

Detect and remove duplicate columns.

The general technique is to sum the coefficients a_(∗,j) of each column. Columns with
identical sums are duplicates. The obvious problem is that, e.g., [1 0 1 0] and [0 1 0 1]
both add to 2. To minimize the chances of false positives, the coefficients of each row
are multipled by a random number r_i, so that we sum r_i∗a_ij.

Candidate columns are checked to confirm they are identical. Where the columns have
the same objective coefficient, the two are combined. If the columns have different
objective coefficients, complications ensue. In order to remove the duplicate, it must be
possible to fix the variable at a bound.

Definition at line 32 of file CoinPresolveDupcol.hpp.

8.102.2 Member Function Documentation

8.102.2.1 const char∗ dupcol action::name () const [virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

The documentation for this class was generated from the following file:

• CoinPresolveDupcol.hpp

8.103 duprow action Class Reference

Detect and remove duplicate rows.

#include <CoinPresolveDupcol.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.103 duprow_action Class Reference 373

Inheritance diagram for duprow_action:

duprow_action

CoinPresolveAction

Collaboration diagram for duprow_action:

duprow_action

CoinPresolveAction next duprow_action::action

actions_

double

lbound
ubound

int

nactions_

row

Classes

• struct action

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.104 EKKHlink Struct Reference 374

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.103.1 Detailed Description

Detect and remove duplicate rows.

The algorithm to detect duplicate rows is as outlined for dupcol_action.

If the feasible interval for one constraint is strictly contained in the other, the tighter (con-
tained) constraint is kept. If the feasible intervals are disjoint, the problem is infeasible.
If the feasible intervals overlap, both constraints are kept.

duprow_action is definitely a work in progress; postsolve is unimplemented. This doesn’t
matter as it uses useless_constraint.

Definition at line 87 of file CoinPresolveDupcol.hpp.

8.103.2 Member Function Documentation

8.103.2.1 const char∗ duprow action::name () const [virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

The documentation for this class was generated from the following file:

• CoinPresolveDupcol.hpp

8.104 EKKHlink Struct Reference

This deals with Factorization and Updates This is ripped off from OSL!!!!!!!!!

#include <CoinOslFactorization.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.105 FactorPointers Class Reference 375

Collaboration diagram for EKKHlink:

EKKHlink

int

suc
pre

8.104.1 Detailed Description

This deals with Factorization and Updates This is ripped off from OSL!!!!!!!!!

I am assuming that 32 bits is enough for number of rows or columns, but CoinBigIndex
may be redefined to get 64 bits.

Definition at line 28 of file CoinOslFactorization.hpp.

The documentation for this struct was generated from the following file:

• CoinOslFactorization.hpp

8.105 FactorPointers Class Reference

pointers used during factorization

#include <CoinSimpFactorization.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.106 forcing_constraint_action Class Reference 376

Collaboration diagram for FactorPointers:

FactorPointers

double

rowMax

int

prevColumn
nextColumn

firstRowKnonzeros
nextRow
newCols
prevRow

firstColKnonzeros

8.105.1 Detailed Description

pointers used during factorization

Definition at line 22 of file CoinSimpFactorization.hpp.

The documentation for this class was generated from the following file:

• CoinSimpFactorization.hpp

8.106 forcing constraint action Class Reference

Detect and process forcing constraints and useless constraints.

#include <CoinPresolveForcing.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.106 forcing_constraint_action Class Reference 377

Inheritance diagram for forcing_constraint_action:

forcing_constraint_action

CoinPresolveAction

Collaboration diagram for forcing_constraint_action:

forcing_constraint_action

CoinPresolveAction next forcing_constraint_action::action

actions_

double

bounds

int

nactions_

nup
row
nlo

rowcols

Classes

• struct action

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.107 gubrow_action Class Reference 378

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.106.1 Detailed Description

Detect and process forcing constraints and useless constraints.

A constraint is useless if the bounds on the variables prevent the constraint from ever
being violated.

A constraint is a forcing constraint if the bounds on the constraint force the value of an
involved variable to one of its bounds. A constraint can force more than one variable.

Definition at line 27 of file CoinPresolveForcing.hpp.

8.106.2 Member Function Documentation

8.106.2.1 const char∗ forcing constraint action::name () const [virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

The documentation for this class was generated from the following file:

• CoinPresolveForcing.hpp

8.107 gubrow action Class Reference

Detect and remove entries whose sum is known.

#include <CoinPresolveDupcol.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.107 gubrow_action Class Reference 379

Inheritance diagram for gubrow_action:

gubrow_action

CoinPresolveAction

Collaboration diagram for gubrow_action:

gubrow_action

CoinPresolveAction next gubrow_action::action

actions_

double

lbound
ubound

int

nactions_

row

Classes

• struct action

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.108 implied_free_action Class Reference 380

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.107.1 Detailed Description

Detect and remove entries whose sum is known.

If we have an equality row where all entries same then For other rows where all entries
for that equality row are same then we can delete entries and modify rhs gubrow_action
is definitely a work in progress; postsolve is unimplemented.

Definition at line 125 of file CoinPresolveDupcol.hpp.

8.107.2 Member Function Documentation

8.107.2.1 const char∗ gubrow action::name () const [virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

The documentation for this class was generated from the following file:

• CoinPresolveDupcol.hpp

8.108 implied free action Class Reference

Detect and process implied free variables.

#include <CoinPresolveImpliedFree.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.108 implied_free_action Class Reference 381

Inheritance diagram for implied_free_action:

implied_free_action

CoinPresolveAction

Collaboration diagram for implied_free_action:

implied_free_action

CoinPresolveAction next

int

nactions_ implied_free_action::action

row
ninrow
col

actions_

double

costs
clo

rowels
rup
cup
rlo

Classes

• struct action

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.108 implied_free_action Class Reference 382

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.108.1 Detailed Description

Detect and process implied free variables.

Consider a singleton variable x (i.e., a variable involved in only one constraint). Suppose
that the bounds on that constraint, combined with the bounds on the other variables
involved in the constraint, are such that even the worst case values of the other variables
still imply bounds for x which are tighter than the variable’s original bounds. Since x can
never reach its upper or lower bounds, it is an implied free variable. Both x and the
constraint can be deleted from the problem.

The transform also handles more complicated variations, where x is not a singleton.

Definition at line 29 of file CoinPresolveImpliedFree.hpp.

8.108.2 Member Function Documentation

8.108.2.1 const char∗ implied free action::name () const [virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

The documentation for this class was generated from the following file:

• CoinPresolveImpliedFree.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.109 isolated_constraint_action Class Reference 383

8.109 isolated constraint action Class Reference

Inheritance diagram for isolated_constraint_action:

isolated_constraint_action

CoinPresolveAction

Collaboration diagram for isolated_constraint_action:

isolated_constraint_action

CoinPresolveAction next double

rup_
rowels_
costs_
rlo_

int

row_
ninrow_
rowcols_

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.110 make_fixed_action Class Reference 384

8.109.1 Detailed Description

Definition at line 11 of file CoinPresolveIsolated.hpp.

8.109.2 Member Function Documentation

8.109.2.1 const char∗ isolated constraint action::name () const [virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

The documentation for this class was generated from the following file:

• CoinPresolveIsolated.hpp

8.110 make fixed action Class Reference

Fix a variable at a specified bound.

#include <CoinPresolveFixed.hpp>

Inheritance diagram for make_fixed_action:

make_fixed_action

CoinPresolveAction

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.110 make_fixed_action Class Reference 385

Collaboration diagram for make_fixed_action:

make_fixed_action

CoinPresolveAction next

remove_fixed_action

faction_

double

colels_remove_fixed_action::action

sol

make_fixed_action::action

bound

actions_

int

nactions_

colrows_
nactions_

col
start

col

actions_ bool

fix_to_lower_

Classes

• struct action

Structure to preserve the bound overwritten when fixing a variable.

Public Member Functions

• const char ∗ name () const

Returns string "make_fixed_action".

• void postsolve (CoinPostsolveMatrix ∗prob) const

Postsolve (unfix variables)

• ∼make_fixed_action ()

Destructor.

Static Public Member Functions

• static const CoinPresolveAction ∗ presolve (CoinPresolveMatrix ∗prob, int ∗fcols,
int nfcols, bool fix_to_lower, const CoinPresolveAction ∗next)

Perform actions to fix variables and return postsolve object.

Related Functions

(Note that these are not member functions.)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.110 make_fixed_action Class Reference 386

• const CoinPresolveAction ∗ make_fixed (CoinPresolveMatrix ∗prob, const Coin-
PresolveAction ∗next)

Scan variables and fix any with equal bounds.

8.110.1 Detailed Description

Fix a variable at a specified bound.

Implements the action of fixing a variable by forcing both bounds to the same value and
forcing the value of the variable to match.

If the bounds are already equal, and the value of the variable is already correct, consider
remove_fixed_action.

Definition at line 95 of file CoinPresolveFixed.hpp.

8.110.2 Member Function Documentation

8.110.2.1 static const CoinPresolveAction∗ make fixed action::presolve (
CoinPresolveMatrix ∗ prob, int ∗ fcols, int nfcols, bool fix to lower, const
CoinPresolveAction ∗ next) [static]

Perform actions to fix variables and return postsolve object.

For each specified variable (nfcols, fcols), fix the variable to the specified bound
(fix_to_lower) by setting the variable’s bounds to be equal in prob. Create a
postsolve object, link it at the head of the list of postsolve objects (next), and return
the object.

8.110.2.2 void make fixed action::postsolve (CoinPostsolveMatrix ∗ prob) const
[virtual]

Postsolve (unfix variables)

Back out the variables fixed by the presolve side of this object.

Implements CoinPresolveAction.

8.110.3 Friends And Related Function Documentation

8.110.3.1 const CoinPresolveAction ∗ make fixed (CoinPresolveMatrix ∗ prob, const
CoinPresolveAction ∗ next) [related]

Scan variables and fix any with equal bounds.

A front end to collect a list of columns with equal bounds and hand them to make_-
fixed_action::presolve() for processing.

The documentation for this class was generated from the following file:

• CoinPresolveFixed.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.111 presolvehlink Class Reference 387

8.111 presolvehlink Class Reference

Links to aid in packed matrix modification.

#include <CoinPresolveMatrix.hpp>

Collaboration diagram for presolvehlink:

presolvehlink

int

suc
pre

Related Functions

(Note that these are not member functions.)

• void PRESOLVE_REMOVE_LINK (presolvehlink ∗link, int i)

unlink vector i

• void PRESOLVE_INSERT_LINK (presolvehlink ∗link, int i, int j)

insert vector i after vector j

• void PRESOLVE_MOVE_LINK (presolvehlink ∗link, int i, int j)

relink vector j in place of vector i

8.111.1 Detailed Description

Links to aid in packed matrix modification.

Currently, the matrices held by the CoinPrePostsolveMatrix and CoinPresolveMatrix ob-
jects are represented in the same way as a CoinPackedMatrix. In the course of presolve
and postsolve transforms, it will happen that a major-dimension vector needs to increase
in size. In order to check whether there is enough room to add another coefficient in
place, it helps to know the next vector (in memory order) in the bulk storage area. To
do that, a linked list of major-dimension vectors is maintained; the "pre" and "suc" fields
give the previous and next vector, in memory order (that is, the vector whose mcstrt_ or
mrstrt_ entry is next smaller or larger).

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.112 Coin::ReferencedObject Class Reference 388

Consider a column-major matrix with ncols columns. By definition, presolvehlink[ncols].pre
points to the column in the last occupied position of the bulk storage arrays. There is no
easy way to find the column which occupies the first position (there is no presolvehlink[-
1] to consult). If the column that initially occupies the first position is moved for expan-
sion, there is no way to reclaim the space until the bulk storage is compacted. The same
holds for the last and first rows of a row-major matrix, of course.

Definition at line 700 of file CoinPresolveMatrix.hpp.

8.111.2 Friends And Related Function Documentation

8.111.2.1 void PRESOLVE REMOVE LINK (presolvehlink ∗ link, int i) [related]

unlink vector i

Remove vector i from the ordering.

Definition at line 712 of file CoinPresolveMatrix.hpp.

8.111.2.2 void PRESOLVE INSERT LINK (presolvehlink ∗ link, int i, int j) [related]

insert vector i after vector j

Insert vector i between j and j.suc.

Definition at line 730 of file CoinPresolveMatrix.hpp.

8.111.2.3 void PRESOLVE MOVE LINK (presolvehlink ∗ link, int i, int j) [related]

relink vector j in place of vector i

Replace vector i in the ordering with vector j. This is equivalent to

int pre = link[i].pre;
PRESOLVE_REMOVE_LINK(link,i);
PRESOLVE_INSERT_LINK(link,j,pre);

But, this routine will work even if i happens to be first in the order.

Definition at line 752 of file CoinPresolveMatrix.hpp.

The documentation for this class was generated from the following file:

• CoinPresolveMatrix.hpp

8.112 Coin::ReferencedObject Class Reference

ReferencedObject class.

#include <CoinSmartPtr.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.112 Coin::ReferencedObject Class Reference 389

Collaboration diagram for Coin::ReferencedObject:

Coin::ReferencedObject

int

reference_count_

8.112.1 Detailed Description

ReferencedObject class.

This is part of the implementation of an intrusive smart pointer design. This class stores
the reference count of all the smart pointers that currently reference it. See the docu-
mentation for the SmartPtr class for more details.

A SmartPtr behaves much like a raw pointer, but manages the lifetime of an object,
deleting the object automatically. This class implements a reference-counting, intrusive
smart pointer design, where all objects pointed to must inherit off of ReferencedObject,
which stores the reference count. Although this is intrusive (native types and externally
authored classes require wrappers to be referenced by smart pointers), it is a safer
design. A more detailed discussion of these issues follows after the usage information.

Usage Example: Note: to use the SmartPtr, all objects to which you point MUST inherit
off of ReferencedObject.

*
* In MyClass.hpp...

*
* #include "CoinSmartPtr.hpp"

*
* class MyClass : public Coin::ReferencedObject // must derive from ReferencedObject

* {

* ...

* }

*
* In my_usage.cpp...

*
* #include "CoinSmartPtr.hpp"

* #include "MyClass.hpp"

*
* void func(AnyObject& obj)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.112 Coin::ReferencedObject Class Reference 390

* {

* Coin::SmartPtr<MyClass> ptr_to_myclass = new MyClass(...);

* // ptr_to_myclass now points to a new MyClass,

* // and the reference count is 1

*
* ...

*
* obj.SetMyClass(ptr_to_myclass);

* // Here, let’s assume that AnyObject uses a

* // SmartPtr<MyClass> internally here.

* // Now, both ptr_to_myclass and the internal

* // SmartPtr in obj point to the same MyClass object

* // and its reference count is 2.

*
* ...

*
* // No need to delete ptr_to_myclass, this

* // will be done automatically when the

* // reference count drops to zero.

*
* }

*
*

Other Notes: The SmartPtr implements both dereference operators -> & ∗. The SmartPtr
does NOT implement a conversion operator to the raw pointer. Use the GetRawPtr()
method when this is necessary. Make sure that the raw pointer is NOT deleted. The
SmartPtr implements the comparison operators == & != for a variety of types. Use these
instead of

* if (GetRawPtr(smrt_ptr) == ptr) // Don’t use this

*

SmartPtr’s, as currently implemented, do NOT handle circular references. For example:
consider a higher level object using SmartPtrs to point to A and B, but A and B also point
to each other (i.e. A has a SmartPtr to B and B has a SmartPtr to A). In this scenario,
when the higher level object is finished with A and B, their reference counts will never
drop to zero (since they reference each other) and they will not be deleted. This can be
detected by memory leak tools like valgrind. If the circular reference is necessary, the
problem can be overcome by a number of techniques:

1) A and B can have a method that "releases" each other, that is they set their internal
SmartPtrs to NULL.

* void AClass::ReleaseCircularReferences()

* {

* smart_ptr_to_B = NULL;

* }

*

Then, the higher level class can call these methods before it is done using A & B.

2) Raw pointers can be used in A and B to reference each other. Here, an implicit
assumption is made that the lifetime is controlled by the higher level object and that A
and B will both exist in a controlled manner. Although this seems dangerous, in many
situations, this type of referencing is very controlled and this is reasonably safe.

3) This SmartPtr class could be redesigned with the Weak/Strong design concept.
Here, the SmartPtr is identified as being Strong (controls lifetime of the object) or Weak

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.113 remove_dual_action Class Reference 391

(merely referencing the object). The Strong SmartPtr increments (and decrements) the
reference count in ReferencedObject but the Weak SmartPtr does not. In the example
above, the higher level object would have Strong SmartPtrs to A and B, but A and B
would have Weak SmartPtrs to each other. Then, when the higher level object was
done with A and B, they would be deleted. The Weak SmartPtrs in A and B would not
decrement the reference count and would, of course, not delete the object. This idea
is very similar to item (2), where it is implied that the sequence of events is controlled
such that A and B will not call anything using their pointers following the higher level
delete (i.e. in their destructors!). This is somehow safer, however, because code can be
written (however expensive) to perform run-time detection of this situation. For example,
the ReferencedObject could store pointers to all Weak SmartPtrs that are referencing it
and, in its destructor, tell these pointers that it is dying. They could then set themselves
to NULL, or set an internal flag to detect usage past this point.

Comments on Non-Intrusive Design: In a non-intrusive design, the reference count is
stored somewhere other than the object being referenced. This means, unless the
reference counting pointer is the first referencer, it must get a pointer to the referenced
object from another smart pointer (so it has access to the reference count location).
In this non-intrusive design, if we are pointing to an object with a smart pointer (or a
number of smart pointers), and we then give another smart pointer the address through
a RAW pointer, we will have two independent, AND INCORRECT, reference counts. To
avoid this pitfall, we use an intrusive reference counting technique where the reference
count is stored in the object being referenced.

Definition at line 156 of file CoinSmartPtr.hpp.

The documentation for this class was generated from the following file:

• CoinSmartPtr.hpp

8.113 remove dual action Class Reference

Attempt to fix variables by bounding reduced costs.

#include <CoinPresolveDual.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.113 remove_dual_action Class Reference 392

Inheritance diagram for remove_dual_action:

remove_dual_action

CoinPresolveAction

Collaboration diagram for remove_dual_action:

remove_dual_action

CoinPresolveAction next

Static Public Member Functions

• static const CoinPresolveAction ∗ presolve (CoinPresolveMatrix ∗prob, const Coin-
PresolveAction ∗next)

Attempt to fix variables by bounding reduced costs.

8.113.1 Detailed Description

Attempt to fix variables by bounding reduced costs.

The reduced cost of x_j is d_j = c_j - y∗a_j (1). Assume minimization, so that at opti-
mality d_j >= 0 for x_j nonbasic at lower bound, and d_j <= 0 for x_j nonbasic at upper
bound.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.114 remove_fixed_action Class Reference 393

For a slack variable s_i, c_(n+i) = 0 and a_(n+i) is a unit vector, hence d_(n+i) = -y_i. If
s_i has a finite lower bound and no upper bound, we must have y_i <= 0 at optimality.
Similarly, if s_i has no lower bound and a finite upper bound, we must have y_i >= 0.

For a singleton variable x_j, d_j = c_j - y_i∗a_ij. Given x_j with a single finite bound,
we can bound d_j greater or less than 0 at optimality, and that allows us to calculate an
upper or lower bound on y_i (depending on the bound on d_j and the sign of a_ij).

Now we have bounds on some subset of the y_i, and we can use these to calculate
upper and lower bounds on the d_j, using bound propagation on (1). If we can manage
to bound some d_j as strictly positive or strictly negative, then at optimality the corre-
sponding variable must be nonbasic at its lower or upper bound, respectively. If the
required bound is lacking, the problem is unbounded.

There is no postsolve object specific to remove_dual_action, but execution will queue
postsolve actions for any variables that are fixed.

Definition at line 38 of file CoinPresolveDual.hpp.

8.113.2 Member Function Documentation

8.113.2.1 static const CoinPresolveAction∗ remove dual action::presolve (
CoinPresolveMatrix ∗ prob, const CoinPresolveAction ∗ next)
[static]

Attempt to fix variables by bounding reduced costs.

Always scans all variables. Propagates bounds on reduced costs until there’s no change
or until some set of variables can be fixed.

The documentation for this class was generated from the following file:

• CoinPresolveDual.hpp

8.114 remove fixed action Class Reference

Excise fixed variables from the model.

#include <CoinPresolveFixed.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.114 remove_fixed_action Class Reference 394

Inheritance diagram for remove_fixed_action:

remove_fixed_action

CoinPresolveAction

Collaboration diagram for remove_fixed_action:

remove_fixed_action

CoinPresolveAction next

double

colels_ remove_fixed_action::action

sol

actions_

int

colrows_
nactions_

col
start

Classes

• struct action

Structure to hold information necessary to reintroduce a column into the problem rep-
resentation.

Public Member Functions

• const char ∗ name () const

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.114 remove_fixed_action Class Reference 395

Returns string "remove_fixed_action".

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

• ∼remove_fixed_action ()

Destructor.

Static Public Member Functions

• static const remove_fixed_action ∗ presolve (CoinPresolveMatrix ∗prob, int ∗fcols,
int nfcols, const CoinPresolveAction ∗next)

Excise the specified columns.

Public Attributes

• int ∗ colrows_

Array of row indices for coefficients of excised columns.

• double ∗ colels_

Array of coefficients of excised columns.

• int nactions_

Number of entries in actions_.

• action ∗ actions_

Vector specifying variable(s) affected by this object.

Related Functions

(Note that these are not member functions.)

• const CoinPresolveAction ∗ remove_fixed (CoinPresolveMatrix ∗prob, const Coin-
PresolveAction ∗next)

Scan the problem for fixed columns and remove them.

8.114.1 Detailed Description

Excise fixed variables from the model.

Implements the action of removing one or more fixed variables x_j from the model by
substituting the value sol_j in each constraint. Specifically, for each constraint i where
a_ij != 0, rlo_i and rup_i are adjusted by -a_ij∗sol_j and a_ij is set to 0.

There is an implicit assumption that the variable already has the correct value. If this
isn’t true, corrections to row activity may be incorrect. If you want to guard against this
possibility, consider make_fixed_action.

Actual removal of the column from the matrix is handled by drop_empty_cols_action.
Correction of the objective function is done there.

Definition at line 25 of file CoinPresolveFixed.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.115 slack_doubleton_action Class Reference 396

8.114.2 Member Function Documentation

8.114.2.1 static const remove_fixed_action∗ remove fixed action::presolve (
CoinPresolveMatrix ∗ prob, int ∗ fcols, int nfcols, const CoinPresolveAction
∗ next) [static]

Excise the specified columns.

Remove the specified columns (nfcols, fcols) from the problem representation
(prob), leaving the appropriate postsolve object linked as the head of the list of post-
solve objects (currently headed by next).

8.114.3 Friends And Related Function Documentation

8.114.3.1 const CoinPresolveAction ∗ remove fixed (CoinPresolveMatrix ∗ prob,
const CoinPresolveAction ∗ next) [related]

Scan the problem for fixed columns and remove them.

A front end to collect a list of columns with equal bounds and hand them to remove_-
fixed_action::presolve() for processing.

The documentation for this class was generated from the following file:

• CoinPresolveFixed.hpp

8.115 slack doubleton action Class Reference

Convert an explicit bound constraint to a column bound.

#include <CoinPresolveSingleton.hpp>

Inheritance diagram for slack_doubleton_action:

slack_doubleton_action

CoinPresolveAction

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.115 slack_doubleton_action Class Reference 397

Collaboration diagram for slack_doubleton_action:

slack_doubleton_action

CoinPresolveAction next slack_doubleton_action::action

actions_

double

clo
coeff
rup
cup
rlo

int

nactions_

row
col

Classes

• struct action

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

Static Public Member Functions

• static const CoinPresolveAction ∗ presolve (CoinPresolveMatrix ∗prob, const Coin-
PresolveAction ∗next, bool ¬Finished)

Convert explicit bound constraints to column bounds.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.116 slack_singleton_action Class Reference 398

8.115.1 Detailed Description

Convert an explicit bound constraint to a column bound.

This transform looks for explicit bound constraints for a variable and transfers the bound
to the appropriate column bound array. The constraint is removed from the constraint
system.

Definition at line 24 of file CoinPresolveSingleton.hpp.

8.115.2 Member Function Documentation

8.115.2.1 const char∗ slack doubleton action::name () const [inline, virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

Definition at line 50 of file CoinPresolveSingleton.hpp.

8.115.2.2 static const CoinPresolveAction∗ slack doubleton action::presolve (
CoinPresolveMatrix ∗ prob, const CoinPresolveAction ∗ next, bool &
notFinished) [static]

Convert explicit bound constraints to column bounds.

Not now There is a hard limit (#MAX_SLACK_DOUBLETONS) on the number of con-
straints processed in a given call. notFinished is set to true if candidates remain.

The documentation for this class was generated from the following file:

• CoinPresolveSingleton.hpp

8.116 slack singleton action Class Reference

For variables with one entry.

#include <CoinPresolveSingleton.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.116 slack_singleton_action Class Reference 399

Inheritance diagram for slack_singleton_action:

slack_singleton_action

CoinPresolveAction

Collaboration diagram for slack_singleton_action:

slack_singleton_action

CoinPresolveAction next slack_singleton_action::action

actions_

double

clo
coeff
rup
cup
rlo

int

nactions_

row
col

Classes

• struct action

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.117 Coin::SmartPtr< T > Class Template Reference 400

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.116.1 Detailed Description

For variables with one entry.

If we have a variable with one entry and no cost then we can transform the row from E
to G etc. If there is a row objective region then we may be able to do this even with a
cost.

Definition at line 75 of file CoinPresolveSingleton.hpp.

8.116.2 Member Function Documentation

8.116.2.1 const char∗ slack singleton action::name () const [inline, virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

Definition at line 101 of file CoinPresolveSingleton.hpp.

The documentation for this class was generated from the following file:

• CoinPresolveSingleton.hpp

8.117 Coin::SmartPtr< T > Class Template Reference

Template class for Smart Pointers.

#include <CoinSmartPtr.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.117 Coin::SmartPtr< T > Class Template Reference 401

Collaboration diagram for Coin::SmartPtr< T >:

Coin::SmartPtr< T >

T *

ptr_

Public Member Functions

• T ∗ GetRawPtr () const

Returns the raw pointer contained.

• bool IsValid () const

Returns true if the SmartPtr is NOT NULL.

• bool IsNull () const

Returns true if the SmartPtr is NULL.

Constructors/Destructors

• SmartPtr ()
Default constructor, initialized to NULL.

• SmartPtr (const SmartPtr< T > ©)
Copy constructor, initialized from copy.

• SmartPtr (T ∗ptr)
Constructor, initialized from T∗ ptr.

• ∼SmartPtr ()
Destructor, automatically decrements the reference count, deletes the object if nec-
essary.

Overloaded operators.

• T ∗ operator-> () const

Overloaded arrow operator, allows the user to call methods using the contained pointer.

• T & operator∗ () const

Overloaded dereference operator, allows the user to dereference the contained pointer.

• SmartPtr< T > & operator= (T ∗rhs)

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.117 Coin::SmartPtr< T > Class Template Reference 402

Overloaded equals operator, allows the user to set the value of the SmartPtr from a
raw pointer.

• SmartPtr< T > & operator= (const SmartPtr< T > &rhs)

Overloaded equals operator, allows the user to set the value of the SmartPtr from
another SmartPtr.

• template<class U1 , class U2 >

bool operator== (const SmartPtr< U1 > &lhs, const SmartPtr< U2 > &rhs)

Overloaded equality comparison operator, allows the user to compare the value of two
SmartPtrs.

• template<class U1 , class U2 >

bool operator== (const SmartPtr< U1 > &lhs, U2 ∗raw_rhs)

Overloaded equality comparison operator, allows the user to compare the value of a
SmartPtr with a raw pointer.

• template<class U1 , class U2 >

bool operator== (U1 ∗lhs, const SmartPtr< U2 > &raw_rhs)

Overloaded equality comparison operator, allows the user to compare the value of a
raw pointer with a SmartPtr.

• template<class U1 , class U2 >

bool operator!= (const SmartPtr< U1 > &lhs, const SmartPtr< U2 > &rhs)

Overloaded in-equality comparison operator, allows the user to compare the value of
two SmartPtrs.

• template<class U1 , class U2 >

bool operator!= (const SmartPtr< U1 > &lhs, U2 ∗raw_rhs)

Overloaded in-equality comparison operator, allows the user to compare the value of
a SmartPtr with a raw pointer.

• template<class U1 , class U2 >

bool operator!= (U1 ∗lhs, const SmartPtr< U2 > &raw_rhs)

Overloaded in-equality comparison operator, allows the user to compare the value of
a SmartPtr with a raw pointer.

8.117.1 Detailed Description

template<class T>class Coin::SmartPtr< T >

Template class for Smart Pointers.

A SmartPtr behaves much like a raw pointer, but manages the lifetime of an object,
deleting the object automatically. This class implements a reference-counting, intrusive
smart pointer design, where all objects pointed to must inherit off of ReferencedObject,
which stores the reference count. Although this is intrusive (native types and externally
authored classes require wrappers to be referenced by smart pointers), it is a safer
design. A more detailed discussion of these issues follows after the usage information.

Usage Example: Note: to use the SmartPtr, all objects to which you point MUST inherit
off of ReferencedObject.

*
* In MyClass.hpp...

*

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.117 Coin::SmartPtr< T > Class Template Reference 403

* #include "CoinSmartPtr.hpp"

*
* class MyClass : public Coin::ReferencedObject // must derive from ReferencedObject

* {

* ...

* }

*
* In my_usage.cpp...

*
* #include "CoinSmartPtr.hpp"

* #include "MyClass.hpp"

*
* void func(AnyObject& obj)

* {

* SmartPtr<MyClass> ptr_to_myclass = new MyClass(...);

* // ptr_to_myclass now points to a new MyClass,

* // and the reference count is 1

*
* ...

*
* obj.SetMyClass(ptr_to_myclass);

* // Here, let’s assume that AnyObject uses a

* // SmartPtr<MyClass> internally here.

* // Now, both ptr_to_myclass and the internal

* // SmartPtr in obj point to the same MyClass object

* // and its reference count is 2.

*
* ...

*
* // No need to delete ptr_to_myclass, this

* // will be done automatically when the

* // reference count drops to zero.

*
* }

*
*

It is not necessary to use SmartPtr’s in all cases where an object is used that has been
allocated "into" a SmartPtr. It is possible to just pass objects by reference or regular
pointers, even if lower down in the stack a SmartPtr is to be held on to. Everything
should work fine as long as a pointer created by "new" is immediately passed into a
SmartPtr, and if SmartPtr’s are used to hold on to objects.

Other Notes: The SmartPtr implements both dereference operators -> & ∗. The SmartPtr
does NOT implement a conversion operator to the raw pointer. Use the GetRawPtr()
method when this is necessary. Make sure that the raw pointer is NOT deleted. The
SmartPtr implements the comparison operators == & != for a variety of types. Use these
instead of

* if (GetRawPtr(smrt_ptr) == ptr) // Don’t use this

*

SmartPtr’s, as currently implemented, do NOT handle circular references. For example:
consider a higher level object using SmartPtrs to point to A and B, but A and B also point
to each other (i.e. A has a SmartPtr to B and B has a SmartPtr to A). In this scenario,
when the higher level object is finished with A and B, their reference counts will never
drop to zero (since they reference each other) and they will not be deleted. This can be
detected by memory leak tools like valgrind. If the circular reference is necessary, the
problem can be overcome by a number of techniques:

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.117 Coin::SmartPtr< T > Class Template Reference 404

1) A and B can have a method that "releases" each other, that is they set their internal
SmartPtrs to NULL.

* void AClass::ReleaseCircularReferences()

* {

* smart_ptr_to_B = NULL;

* }

*

Then, the higher level class can call these methods before it is done using A & B.

2) Raw pointers can be used in A and B to reference each other. Here, an implicit
assumption is made that the lifetime is controlled by the higher level object and that A
and B will both exist in a controlled manner. Although this seems dangerous, in many
situations, this type of referencing is very controlled and this is reasonably safe.

3) This SmartPtr class could be redesigned with the Weak/Strong design concept.
Here, the SmartPtr is identified as being Strong (controls lifetime of the object) or Weak
(merely referencing the object). The Strong SmartPtr increments (and decrements) the
reference count in ReferencedObject but the Weak SmartPtr does not. In the example
above, the higher level object would have Strong SmartPtrs to A and B, but A and B
would have Weak SmartPtrs to each other. Then, when the higher level object was
done with A and B, they would be deleted. The Weak SmartPtrs in A and B would not
decrement the reference count and would, of course, not delete the object. This idea
is very similar to item (2), where it is implied that the sequence of events is controlled
such that A and B will not call anything using their pointers following the higher level
delete (i.e. in their destructors!). This is somehow safer, however, because code can be
written (however expensive) to perform run-time detection of this situation. For example,
the ReferencedObject could store pointers to all Weak SmartPtrs that are referencing it
and, in its destructor, tell these pointers that it is dying. They could then set themselves
to NULL, or set an internal flag to detect usage past this point.

Comments on Non-Intrusive Design: In a non-intrusive design, the reference count is
stored somewhere other than the object being referenced. This means, unless the
reference counting pointer is the first referencer, it must get a pointer to the referenced
object from another smart pointer (so it has access to the reference count location).
In this non-intrusive design, if we are pointing to an object with a smart pointer (or a
number of smart pointers), and we then give another smart pointer the address through
a RAW pointer, we will have two independent, AND INCORRECT, reference counts. To
avoid this pitfall, we use an intrusive reference counting technique where the reference
count is stored in the object being referenced.

Definition at line 318 of file CoinSmartPtr.hpp.

8.117.2 Constructor & Destructor Documentation

8.117.2.1 template<class T> Coin::SmartPtr< T >::∼SmartPtr () [inline]

Destructor, automatically decrements the reference count, deletes the object if neces-
sary.

Definition at line 397 of file CoinSmartPtr.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.117 Coin::SmartPtr< T > Class Template Reference 405

8.117.3 Member Function Documentation

8.117.3.1 template<class T> T∗ Coin::SmartPtr< T >::GetRawPtr () const
[inline]

Returns the raw pointer contained.

Use to get the value of the raw ptr (i.e. to pass to other methods/functions, etc.) Note:
This method does NOT copy, therefore, modifications using this value modify the under-
lying object contained by the SmartPtr, NEVER delete this returned value.

Definition at line 326 of file CoinSmartPtr.hpp.

8.117.3.2 template<class T> bool Coin::SmartPtr< T >::IsValid () const [inline]

Returns true if the SmartPtr is NOT NULL.

Use this to check if the SmartPtr is not null This is preferred to if(GetRawPtr(sp) !=
NULL)

Definition at line 332 of file CoinSmartPtr.hpp.

8.117.3.3 template<class T> bool Coin::SmartPtr< T >::IsNull () const [inline]

Returns true if the SmartPtr is NULL.

Use this to check if the SmartPtr IsNull. This is preferred to if(GetRawPtr(sp) == NULL)

Definition at line 338 of file CoinSmartPtr.hpp.

8.117.3.4 template<class T> T∗ Coin::SmartPtr< T >::operator-> () const
[inline]

Overloaded arrow operator, allows the user to call methods using the contained pointer.

Definition at line 406 of file CoinSmartPtr.hpp.

8.117.3.5 template<class T> T& Coin::SmartPtr< T >::operator∗ () const [inline]

Overloaded dereference operator, allows the user to dereference the contained pointer.

Definition at line 415 of file CoinSmartPtr.hpp.

8.117.4 Friends And Related Function Documentation

8.117.4.1 template<class T> template<class U1 , class U2 > bool operator== (const
SmartPtr< U1 > & lhs, U2 ∗ raw rhs) [friend]

Overloaded equality comparison operator, allows the user to compare the value of a
SmartPtr with a raw pointer.

Definition at line 498 of file CoinSmartPtr.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.118 subst_constraint_action Class Reference 406

8.117.4.2 template<class T> template<class U1 , class U2 > bool operator== (U1 ∗ lhs,
const SmartPtr< U2 > & raw rhs) [friend]

Overloaded equality comparison operator, allows the user to compare the value of a
raw pointer with a SmartPtr.

Definition at line 503 of file CoinSmartPtr.hpp.

8.117.4.3 template<class T> template<class U1 , class U2 > bool operator!= (const
SmartPtr< U1 > & lhs, U2 ∗ raw rhs) [friend]

Overloaded in-equality comparison operator, allows the user to compare the value of a
SmartPtr with a raw pointer.

Definition at line 513 of file CoinSmartPtr.hpp.

8.117.4.4 template<class T> template<class U1 , class U2 > bool operator!= (U1 ∗ lhs,
const SmartPtr< U2 > & raw rhs) [friend]

Overloaded in-equality comparison operator, allows the user to compare the value of a
SmartPtr with a raw pointer.

Definition at line 518 of file CoinSmartPtr.hpp.

The documentation for this class was generated from the following file:

• CoinSmartPtr.hpp

8.118 subst constraint action Class Reference

Inheritance diagram for subst_constraint_action:

subst_constraint_action

CoinPresolveAction

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.118 subst_constraint_action Class Reference 407

Collaboration diagram for subst_constraint_action:

subst_constraint_action

CoinPresolveAction next

int

nactions_ subst_constraint_action::action

ninrowxs
rowcolsxs
rows
col
nincol
rowy

actions_

double

costsx
rups
coeffxs
rowelsxs
rlos

Classes

• struct action

Public Member Functions

• const char ∗ name () const

A name for debug printing.
• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.118.1 Detailed Description

Definition at line 12 of file CoinPresolveSubst.hpp.

8.118.2 Member Function Documentation

8.118.2.1 const char∗ subst constraint action::name () const [virtual]

A name for debug printing.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.119 symrec Struct Reference 408

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

The documentation for this class was generated from the following file:

• CoinPresolveSubst.hpp

8.119 symrec Struct Reference

For string evaluation.

#include <CoinModelUseful.hpp>

Collaboration diagram for symrec:

symrec next

double

fnctptr
var

char

name

int

type

@0

value

8.119.1 Detailed Description

For string evaluation.

Definition at line 137 of file CoinModelUseful.hpp.

The documentation for this struct was generated from the following file:

• CoinModelUseful.hpp

8.120 tripleton action Class Reference

We are only going to do this if it does not increase number of elements?.

#include <CoinPresolveTripleton.hpp>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.120 tripleton_action Class Reference 409

Inheritance diagram for tripleton_action:

tripleton_action

CoinPresolveAction

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.120 tripleton_action Class Reference 410

Collaboration diagram for tripleton_action:

tripleton_action

CoinPresolveAction next tripleton_action::action

actions_

double

colel
clox
cloy
costx
costy
rup
cupx
cupy
coeffx
coeffy
...

int

nactions_

row
icolx
icoly
icolz
ncolx
ncoly

Classes

• struct action

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.121 useless_constraint_action Class Reference 411

8.120.1 Detailed Description

We are only going to do this if it does not increase number of elements?.

It could be generalized to more than three but it seems unlikely it would help.

As it is adapted from doubleton icoly is one dropped.

Definition at line 15 of file CoinPresolveTripleton.hpp.

8.120.2 Member Function Documentation

8.120.2.1 const char∗ tripleton action::name () const [inline, virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

Definition at line 55 of file CoinPresolveTripleton.hpp.

The documentation for this class was generated from the following file:

• CoinPresolveTripleton.hpp

8.121 useless constraint action Class Reference

Inheritance diagram for useless_constraint_action:

useless_constraint_action

CoinPresolveAction

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

8.121 useless_constraint_action Class Reference 412

Collaboration diagram for useless_constraint_action:

useless_constraint_action

CoinPresolveAction next

int

nactions_ useless_constraint_action::action

row
ninrow
rowcols

actions_

double

rowels
rup
rlo

Classes

• struct action

Public Member Functions

• const char ∗ name () const

A name for debug printing.

• void postsolve (CoinPostsolveMatrix ∗prob) const

Apply the postsolve transformation for this particular presolve action.

8.121.1 Detailed Description

Definition at line 10 of file CoinPresolveUseless.hpp.

8.121.2 Member Function Documentation

8.121.2.1 const char∗ useless constraint action::name () const [virtual]

A name for debug printing.

It is expected that the name is not stored in the transform itself.

Implements CoinPresolveAction.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9 File Documentation 413

The documentation for this class was generated from the following file:

• CoinPresolveUseless.hpp

9 File Documentation

9.1 CoinFloatEqual.hpp File Reference

Function objects for testing equality of real numbers.

#include <algorithm>

#include <cmath>

#include "CoinFinite.hpp"

Include dependency graph for CoinFloatEqual.hpp:

CoinFloatEqual.hpp

algorithm cmath CoinFinite.hpp

limits

Classes

• class CoinAbsFltEq

Equality to an absolute tolerance.

• class CoinRelFltEq

Equality to a scaled tolerance.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.2 CoinMessage.hpp File Reference 414

9.1.1 Detailed Description

Function objects for testing equality of real numbers. Two objects are provided; one
tests for equality to an absolute tolerance, one to a scaled tolerance. The tests will
handle IEEE floating point, but note that infinity == infinity. Mathematicians are rolling in
their graves, but this matches the behaviour for the common practice of using DBL_MAX
(numeric_limits<double>::max(), or similar large finite number) as infinity.

Example usage:

double d1 = 3.14159 ;
double d2 = d1 ;
double d3 = d1+.0001 ;

CoinAbsFltEq eq1 ;
CoinAbsFltEq eq2(.001) ;

assert(eq1(d1,d2)) ;
assert(!eq1(d1,d3)) ;
assert(eq2(d1,d3)) ;

CoinRelFltEq follows the same pattern.

Definition in file CoinFloatEqual.hpp.

9.2 CoinMessage.hpp File Reference

This file contains the enum for the standard set of Coin messages and a class definition
whose sole purpose is to supply a constructor.

#include "CoinMessageHandler.hpp"

Include dependency graph for CoinMessage.hpp:

CoinMessage.hpp

CoinMessageHandler.hpp

CoinUtilsConfig.h CoinPragma.hpp iostream cstdio string vector

config_coinutils_default.h

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.3 CoinMessageHandler.hpp File Reference 415

This graph shows which files directly or indirectly include this file:

CoinMessage.hpp

CoinLpIO.hpp CoinPresolveMatrix.hpp

CoinPresolveDupcol.hpp CoinPresolveForcing.hpp CoinPresolveIsolated.hpp CoinPresolveSubst.hpp CoinPresolveTighten.hpp

Classes

• class CoinMessage

The standard set of Coin messages.

Enumerations

• enum COIN_Message

Symbolic names for the standard set of COIN messages.

9.2.1 Detailed Description

This file contains the enum for the standard set of Coin messages and a class definition
whose sole purpose is to supply a constructor. The text ot the messages is defined in
CoinMessage.cpp,

CoinMessageHandler.hpp contains the generic facilities for message handling.

Definition in file CoinMessage.hpp.

9.3 CoinMessageHandler.hpp File Reference

This is a first attempt at a message handler.

#include "CoinUtilsConfig.h"

#include "CoinPragma.hpp"

#include <iostream>

#include <cstdio>

#include <string>

#include <vector>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.3 CoinMessageHandler.hpp File Reference 416

Include dependency graph for CoinMessageHandler.hpp:

CoinMessageHandler.hpp

CoinUtilsConfig.h CoinPragma.hpp iostream cstdio string vector

config_coinutils_default.h

This graph shows which files directly or indirectly include this file:

CoinMessageHandler.hpp

CoinMessage.hpp CoinMpsIO.hpp

CoinLpIO.hpp CoinPresolveMatrix.hpp

CoinPresolveDupcol.hpp CoinPresolveForcing.hpp CoinPresolveIsolated.hpp CoinPresolveSubst.hpp CoinPresolveTighten.hpp

Classes

• class CoinOneMessage

Class for one massaged message.

• class CoinMessages

Class to hold and manipulate an array of massaged messages.

• class CoinMessageHandler

Base class for message handling.

Defines

• #define COIN_NUM_LOG 4

Log levels will be by type and will then use type given in CoinMessage::class_.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.3 CoinMessageHandler.hpp File Reference 417

• #define COIN_MESSAGE_HANDLER_MAX_BUFFER_SIZE 1000

Maximum length of constructed message (characters)

Functions

• bool CoinMessageHandlerUnitTest ()

A function that tests the methods in the CoinMessageHandler class.

9.3.1 Detailed Description

This is a first attempt at a message handler. The COIN Project is in favo(u)r of multi-
language support. This implementation of a message handler tries to make it as lightweight
as possible in the sense that only a subset of messages need to be defined --- the rest
default to US English.

The default handler at present just prints to stdout or to a FILE pointer

Definition in file CoinMessageHandler.hpp.

9.3.2 Define Documentation

9.3.2.1 #define COIN NUM LOG 4

Log levels will be by type and will then use type given in CoinMessage::class_.

• 0 - Branch and bound code or similar

• 1 - Solver

• 2 - Stuff in Coin directory

• 3 - Cut generators

Definition at line 570 of file CoinMessageHandler.hpp.

9.3.3 Function Documentation

9.3.3.1 bool CoinMessageHandlerUnitTest ()

A function that tests the methods in the CoinMessageHandler class.

The only reason for it not to be a member method is that this way it doesn’t have to be
compiled into the library. And that’s a gain, because the library should be compiled with
optimization on, but this method should be compiled with debugging.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.4 CoinParam.hpp File Reference 418

9.4 CoinParam.hpp File Reference

Declaration of a class for command line parameters.

#include <vector>

#include <string>

#include <cstdio>

Include dependency graph for CoinParam.hpp:

CoinParam.hpp

vector string cstdio

Classes

• class CoinParam

A base class for ‘keyword value’ command line parameters.

Namespaces

• namespace CoinParamUtils

Utility functions for processing CoinParam parameters.

Functions

• std::ostream & operator<< (std::ostream &s, const CoinParam ¶m)

A stream output function for a CoinParam object.

• void CoinParamUtils::setInputSrc (FILE ∗src)

Take command input from the file specified by src.

• bool CoinParamUtils::isCommandLine ()

Returns true if command line parameters are being processed.

• bool CoinParamUtils::isInteractive ()

Returns true if parameters are being obtained from stdin.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.5 CoinPresolveDupcol.hpp File Reference 419

• std::string CoinParamUtils::getStringField (int argc, const char ∗argv[], int ∗valid)

Attempt to read a string from the input.

• int CoinParamUtils::getIntField (int argc, const char ∗argv[], int ∗valid)

Attempt to read an integer from the input.

• double CoinParamUtils::getDoubleField (int argc, const char ∗argv[], int ∗valid)

Attempt to read a real (double) from the input.

• int CoinParamUtils::matchParam (const CoinParamVec ¶mVec, std::string
name, int &matchNdx, int &shortCnt)

Scan a parameter vector for parameters whose keyword (name) string matches name
using minimal match rules.

• std::string CoinParamUtils::getCommand (int argc, const char ∗argv[], const std::string
prompt, std::string ∗pfx=0)

Get the next command keyword (name)

• int CoinParamUtils::lookupParam (std::string name, CoinParamVec ¶mVec,
int ∗matchCnt=0, int ∗shortCnt=0, int ∗queryCnt=0)

Look up the command keyword (name) in the parameter vector. Print help if requested.

• void CoinParamUtils::printIt (const char ∗msg)

Utility to print a long message as filled lines of text.

• void CoinParamUtils::shortOrHelpOne (CoinParamVec ¶mVec, int matchNdx,
std::string name, int numQuery)

Utility routine to print help given a short match or explicit request for help.

• void CoinParamUtils::shortOrHelpMany (CoinParamVec ¶mVec, std::string
name, int numQuery)

Utility routine to print help given multiple matches.

• void CoinParamUtils::printGenericHelp ()

Print a generic ‘how to use the command interface’ help message.

• void CoinParamUtils::printHelp (CoinParamVec ¶mVec, int firstParam, int last-
Param, std::string prefix, bool shortHelp, bool longHelp, bool hidden)

Utility routine to print help messages for one or more parameters.

9.4.1 Detailed Description

Declaration of a class for command line parameters.

Definition in file CoinParam.hpp.

9.5 CoinPresolveDupcol.hpp File Reference

#include "CoinPresolveMatrix.hpp"

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.6 CoinPresolveEmpty.hpp File Reference 420

Include dependency graph for CoinPresolveDupcol.hpp:

CoinPresolveDupcol.hpp

CoinPresolveMatrix.hpp

CoinPragma.hpp

CoinPackedMatrix.hpp

cassert

CoinMessage.hpp

CoinTime.hpp cmath cfloat cstdlib

CoinError.hpp

CoinTypes.hppCoinPackedVectorBase.hpp

CoinShallowPackedVector.hpp

string iostreamcstring CoinUtilsConfig.h

config_coinutils_default.h

set map CoinMessageHandler.hpp

cstdio vector

ctime sys/resource.hsys/time.h fstream

Classes

• class dupcol_action

Detect and remove duplicate columns.

• struct dupcol_action::action
• class duprow_action

Detect and remove duplicate rows.

• struct duprow_action::action
• class gubrow_action

Detect and remove entries whose sum is known.

• struct gubrow_action::action

9.5.1 Detailed Description

Definition in file CoinPresolveDupcol.hpp.

9.6 CoinPresolveEmpty.hpp File Reference

Drop/reinsert empty rows/columns.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.7 CoinPresolveForcing.hpp File Reference 421

Classes

• class drop_empty_cols_action

Physically removes empty columns in presolve, and reinserts empty columns in post-
solve.

• struct drop_empty_cols_action::action
• class drop_empty_rows_action

Physically removes empty rows in presolve, and reinserts empty rows in postsolve.

• struct drop_empty_rows_action::action

9.6.1 Detailed Description

Drop/reinsert empty rows/columns.

Definition in file CoinPresolveEmpty.hpp.

9.7 CoinPresolveForcing.hpp File Reference

#include "CoinPresolveMatrix.hpp"

Include dependency graph for CoinPresolveForcing.hpp:

CoinPresolveForcing.hpp

CoinPresolveMatrix.hpp

CoinPragma.hpp

CoinPackedMatrix.hpp

cassert

CoinMessage.hpp

CoinTime.hpp cmath cfloat cstdlib

CoinError.hpp

CoinTypes.hppCoinPackedVectorBase.hpp

CoinShallowPackedVector.hpp

string iostreamcstring CoinUtilsConfig.h

config_coinutils_default.h

set map CoinMessageHandler.hpp

cstdio vector

ctime sys/resource.hsys/time.h fstream

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.8 CoinPresolveImpliedFree.hpp File Reference 422

Classes

• class forcing_constraint_action

Detect and process forcing constraints and useless constraints.

• struct forcing_constraint_action::action

9.7.1 Detailed Description

Definition in file CoinPresolveForcing.hpp.

9.8 CoinPresolveImpliedFree.hpp File Reference

Classes

• class implied_free_action

Detect and process implied free variables.

• struct implied_free_action::action

9.8.1 Detailed Description

Definition in file CoinPresolveImpliedFree.hpp.

9.9 CoinPresolveMatrix.hpp File Reference

Declarations for CoinPresolveMatrix and CoinPostsolveMatrix and their common base
class CoinPrePostsolveMatrix.

#include "CoinPragma.hpp"

#include "CoinPackedMatrix.hpp"

#include "CoinMessage.hpp"

#include "CoinTime.hpp"

#include <cmath>

#include <cassert>

#include <cfloat>

#include <cstdlib>

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.9 CoinPresolveMatrix.hpp File Reference 423

Include dependency graph for CoinPresolveMatrix.hpp:

CoinPresolveMatrix.hpp

CoinPragma.hpp

CoinPackedMatrix.hpp

cassert

CoinMessage.hpp

CoinTime.hpp cmath cfloat cstdlib

CoinError.hpp

CoinTypes.hppCoinPackedVectorBase.hpp

CoinShallowPackedVector.hpp

string iostreamcstring CoinUtilsConfig.h

config_coinutils_default.h

set map CoinMessageHandler.hpp

cstdio vector

ctime sys/resource.hsys/time.h fstream

This graph shows which files directly or indirectly include this file:

CoinPresolveMatrix.hpp

CoinPresolveDupcol.hpp CoinPresolveForcing.hpp CoinPresolveIsolated.hpp CoinPresolveSubst.hpp CoinPresolveTighten.hpp

Classes

• class CoinPresolveAction

Abstract base class of all presolve routines.

• class CoinPrePostsolveMatrix

Collects all the information about the problem that is needed in both presolve and
postsolve.

• class presolvehlink

Links to aid in packed matrix modification.

• class CoinPresolveMatrix

Augments CoinPrePostsolveMatrix with information about the problem that is only
needed during presolve.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.10 CoinPresolveSingleton.hpp File Reference 424

• class CoinPostsolveMatrix

Augments CoinPrePostsolveMatrix with information about the problem that is only
needed during postsolve.

Functions

• double ∗ presolve_dupmajor (const double ∗elems, const int ∗indices, int length,
CoinBigIndex offset, int tgt=-1)

Duplicate a major-dimension vector; optionally omit the entry with minor index tgt.

• void coin_init_random_vec (double ∗work, int n)

Initialize an array with random numbers.

Variables

• const double ZTOLDP = 1e-12

Zero tolerance.

9.9.1 Detailed Description

Declarations for CoinPresolveMatrix and CoinPostsolveMatrix and their common base
class CoinPrePostsolveMatrix. Also declarations for CoinPresolveAction and a number
of non-member utility functions.

Definition in file CoinPresolveMatrix.hpp.

9.9.2 Variable Documentation

9.9.2.1 const double ZTOLDP = 1e-12

Zero tolerance.

OSL had a fixed zero tolerance; we still use that here.

Definition at line 40 of file CoinPresolveMatrix.hpp.

9.10 CoinPresolveSingleton.hpp File Reference

Classes

• class slack_doubleton_action

Convert an explicit bound constraint to a column bound.

• struct slack_doubleton_action::action
• class slack_singleton_action

For variables with one entry.

• struct slack_singleton_action::action

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.11 CoinPresolveZeros.hpp File Reference 425

9.10.1 Detailed Description

Definition in file CoinPresolveSingleton.hpp.

9.11 CoinPresolveZeros.hpp File Reference

Drop/reintroduce explicit zeros.

Classes

• struct dropped_zero

Tracking information for an explicit zero coefficient.

• class drop_zero_coefficients_action

Removal of explicit zeros.

9.11.1 Detailed Description

Drop/reintroduce explicit zeros.

Definition in file CoinPresolveZeros.hpp.

9.12 CoinWarmStart.hpp File Reference

Copyright (C) 2000 -- 2003, International Business Machines Corporation and others.

This graph shows which files directly or indirectly include this file:

CoinWarmStart.hpp

CoinWarmStartBasis.hpp

CoinWarmStartDual.hpp

CoinWarmStartVector.hpp

CoinWarmStartPrimalDual.hpp

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

9.12 CoinWarmStart.hpp File Reference 426

Classes

• class CoinWarmStart

Abstract base class for warm start information.

• class CoinWarmStartDiff

Abstract base class for warm start ‘diff’ objects.

9.12.1 Detailed Description

Copyright (C) 2000 -- 2003, International Business Machines Corporation and others.
All Rights Reserved. This code is licensed under the terms of the Eclipse Public License
(EPL).

Declaration of the generic simplex (basis-oriented) warm start class. Also contains a
basis diff class.

Definition in file CoinWarmStart.hpp.

Generated on Wed Nov 9 2011 10:00:46 for CoinUtils by Doxygen

	Module Index
	Modules

	Namespace Index
	Namespace List

	Class Index
	Class Hierarchy

	Class Index
	Class List

	File Index
	File List

	Module Documentation
	Presolve Matrix Manipulation Functions
	Detailed Description
	Function Documentation

	Presolve Utility Functions
	Detailed Description
	Function Documentation

	Presolve Debug Functions
	Detailed Description
	Function Documentation

	Namespace Documentation
	CoinParamUtils Namespace Reference
	Detailed Description
	Function Documentation

	Class Documentation
	_EKKfactinfo Struct Reference
	Detailed Description

	forcing_constraint_action::action Struct Reference
	Detailed Description

	tripleton_action::action Struct Reference
	Detailed Description

	doubleton_action::action Struct Reference
	Detailed Description

	remove_fixed_action::action Struct Reference
	Detailed Description

	BitVector128 Class Reference
	Detailed Description

	CoinAbsFltEq Class Reference
	Detailed Description
	Constructor & Destructor Documentation

	CoinArrayWithLength Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinBaseModel Class Reference
	Detailed Description
	Member Data Documentation

	CoinBigIndexArrayWithLength Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinBuild Class Reference
	Detailed Description
	Constructor & Destructor Documentation

	CoinDenseFactorization Class Reference
	Detailed Description
	Member Function Documentation

	CoinDenseVector< T > Class Template Reference
	Detailed Description
	Member Function Documentation

	CoinDoubleArrayWithLength Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinError Class Reference
	Detailed Description
	Friends And Related Function Documentation

	CoinExternalVectorFirstGreater_2< S, T, V > Class Template Reference
	Detailed Description

	CoinExternalVectorFirstGreater_3< S, T, U, V > Class Template Reference
	Detailed Description

	CoinExternalVectorFirstLess_2< S, T, V > Class Template Reference
	Detailed Description

	CoinExternalVectorFirstLess_3< S, T, U, V > Class Template Reference
	Detailed Description

	CoinFactorization Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	CoinFactorizationDoubleArrayWithLength Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinFileInput Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation

	CoinFileIOBase Class Reference
	Detailed Description
	Constructor & Destructor Documentation

	CoinFileOutput Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinFirstAbsGreater_2< S, T > Class Template Reference
	Detailed Description

	CoinFirstAbsGreater_3< S, T, U > Class Template Reference
	Detailed Description

	CoinFirstAbsLess_2< S, T > Class Template Reference
	Detailed Description

	CoinFirstAbsLess_3< S, T, U > Class Template Reference
	Detailed Description

	CoinFirstGreater_2< S, T > Class Template Reference
	Detailed Description

	CoinFirstGreater_3< S, T, U > Class Template Reference
	Detailed Description

	CoinFirstLess_2< S, T > Class Template Reference
	Detailed Description

	CoinFirstLess_3< S, T, U > Class Template Reference
	Detailed Description

	CoinMpsIO::CoinHashLink Struct Reference
	Detailed Description

	CoinLpIO::CoinHashLink Struct Reference
	Detailed Description

	CoinIndexedVector Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation

	CoinIntArrayWithLength Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinLpIO Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	CoinMessage Class Reference
	Detailed Description
	Constructor & Destructor Documentation

	CoinMessageHandler Class Reference
	Detailed Description
	Member Function Documentation
	Friends And Related Function Documentation

	CoinMessages Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	CoinModel Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinModelHash Class Reference
	Detailed Description
	Constructor & Destructor Documentation

	CoinModelHash2 Class Reference
	Detailed Description
	Constructor & Destructor Documentation

	CoinModelHashLink Struct Reference
	Detailed Description

	CoinModelInfo2 Struct Reference
	Detailed Description

	CoinModelLink Class Reference
	Detailed Description
	Constructor & Destructor Documentation

	CoinModelLinkedList Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinModelTriple Struct Reference
	Detailed Description

	CoinMpsCardReader Class Reference
	Detailed Description
	Member Function Documentation

	CoinMpsIO Class Reference
	Detailed Description
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	CoinOneMessage Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinOslFactorization Class Reference
	Detailed Description
	Member Function Documentation

	CoinOtherFactorization Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	CoinPackedMatrix Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	CoinPackedVector Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation

	CoinPackedVectorBase Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinPair< S, T > Struct Template Reference
	Detailed Description

	CoinParam Class Reference
	Detailed Description
	Member Typedef Documentation
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation

	CoinPostsolveMatrix Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	CoinPrePostsolveMatrix Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	CoinPresolveAction Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	CoinPresolveMatrix Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation
	Member Data Documentation

	CoinRelFltEq Class Reference
	Detailed Description
	Constructor & Destructor Documentation

	CoinSearchTree< Comp > Class Template Reference
	Detailed Description

	CoinSearchTreeBase Class Reference
	Detailed Description
	Member Function Documentation

	CoinSearchTreeCompareBest Struct Reference
	Detailed Description

	CoinSearchTreeCompareBreadth Struct Reference
	Detailed Description

	CoinSearchTreeCompareDepth Struct Reference
	Detailed Description

	CoinSearchTreeComparePreferred Struct Reference
	Detailed Description

	CoinSearchTreeManager Class Reference
	Detailed Description

	CoinSet Class Reference
	Detailed Description

	CoinShallowPackedVector Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation

	CoinSimpFactorization Class Reference
	Detailed Description
	Member Function Documentation

	CoinSnapshot Class Reference
	Detailed Description
	Member Function Documentation

	CoinSosSet Class Reference
	Detailed Description

	CoinStructuredModel Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinThreadRandom Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinTimer Class Reference
	Detailed Description

	CoinTreeNode Class Reference
	Detailed Description

	CoinTreeSiblings Class Reference
	Detailed Description

	CoinTriple< S, T, U > Class Template Reference
	Detailed Description

	CoinUnsignedIntArrayWithLength Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinWarmStart Class Reference
	Detailed Description

	CoinWarmStartBasis Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	CoinWarmStartBasisDiff Class Reference
	Detailed Description
	Constructor & Destructor Documentation

	CoinWarmStartDiff Class Reference
	Detailed Description

	CoinWarmStartDual Class Reference
	Detailed Description
	Member Function Documentation

	CoinWarmStartDualDiff Class Reference
	Detailed Description
	Constructor & Destructor Documentation

	CoinWarmStartPrimalDual Class Reference
	Detailed Description
	Member Function Documentation

	CoinWarmStartPrimalDualDiff Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinWarmStartVector< T > Class Template Reference
	Detailed Description
	Member Function Documentation

	CoinWarmStartVectorDiff< T > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CoinWarmStartVectorPair< T, U > Class Template Reference
	Detailed Description

	CoinWarmStartVectorPairDiff< T, U > Class Template Reference
	Detailed Description

	CoinYacc Class Reference
	Detailed Description

	do_tighten_action Class Reference
	Detailed Description
	Member Function Documentation

	doubleton_action Class Reference
	Detailed Description
	Member Function Documentation

	drop_empty_cols_action Class Reference
	Detailed Description
	Member Function Documentation

	drop_empty_rows_action Class Reference
	Detailed Description
	Member Function Documentation

	drop_zero_coefficients_action Class Reference
	Detailed Description
	Member Function Documentation

	dropped_zero Struct Reference
	Detailed Description

	dupcol_action Class Reference
	Detailed Description
	Member Function Documentation

	duprow_action Class Reference
	Detailed Description
	Member Function Documentation

	EKKHlink Struct Reference
	Detailed Description

	FactorPointers Class Reference
	Detailed Description

	forcing_constraint_action Class Reference
	Detailed Description
	Member Function Documentation

	gubrow_action Class Reference
	Detailed Description
	Member Function Documentation

	implied_free_action Class Reference
	Detailed Description
	Member Function Documentation

	isolated_constraint_action Class Reference
	Detailed Description
	Member Function Documentation

	make_fixed_action Class Reference
	Detailed Description
	Member Function Documentation
	Friends And Related Function Documentation

	presolvehlink Class Reference
	Detailed Description
	Friends And Related Function Documentation

	Coin::ReferencedObject Class Reference
	Detailed Description

	remove_dual_action Class Reference
	Detailed Description
	Member Function Documentation

	remove_fixed_action Class Reference
	Detailed Description
	Member Function Documentation
	Friends And Related Function Documentation

	slack_doubleton_action Class Reference
	Detailed Description
	Member Function Documentation

	slack_singleton_action Class Reference
	Detailed Description
	Member Function Documentation

	Coin::SmartPtr< T > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Friends And Related Function Documentation

	subst_constraint_action Class Reference
	Detailed Description
	Member Function Documentation

	symrec Struct Reference
	Detailed Description

	tripleton_action Class Reference
	Detailed Description
	Member Function Documentation

	useless_constraint_action Class Reference
	Detailed Description
	Member Function Documentation

	File Documentation
	CoinFloatEqual.hpp File Reference
	Detailed Description

	CoinMessage.hpp File Reference
	Detailed Description

	CoinMessageHandler.hpp File Reference
	Detailed Description
	Define Documentation
	Function Documentation

	CoinParam.hpp File Reference
	Detailed Description

	CoinPresolveDupcol.hpp File Reference
	Detailed Description

	CoinPresolveEmpty.hpp File Reference
	Detailed Description

	CoinPresolveForcing.hpp File Reference
	Detailed Description

	CoinPresolveImpliedFree.hpp File Reference
	Detailed Description

	CoinPresolveMatrix.hpp File Reference
	Detailed Description
	Variable Documentation

	CoinPresolveSingleton.hpp File Reference
	Detailed Description

	CoinPresolveZeros.hpp File Reference
	Detailed Description

	CoinWarmStart.hpp File Reference
	Detailed Description

