

c°2001 International Business Machines Corporation, Ted Ralphs and others. All right
reserved.

4 CONTENTS

1.6.1 The Tree Manager Module . 21

1.6.2 The LP Module . 23

1.6.3 The Cut Generator Module . 25

1.6.4 The Variable Generator Module . 25

1.7 Parallelizing COIN/BCP . 26

1.7.1 Parallel Execution and Inter-process Communication 26

1.7.2 Fault Tolerance . 27

2 Getting Started: Sample Compiling 28

2.1 System Requirements . 28

2.2 Obtaining the Source Code . 29

2.2.1 Using CVS . 29

2.2.2 Downloading a tar File . 30

2.3 Initial compilation and testing . 30

2.3.1 Compiling for serial execution . 31

2.3.2 Compiling for distributed networks 32

3 Developing Applications with COIN/BCP 34

3.1 Directory Layout (location of the source files) 34

3.2 Overview of the Class Hierarchy . 35

Chapter 1

Introduction

1.1 A Brief History

8 CHAPTER 1. INTRODUCTION

nothing short of amazing. This hardware improvement made it possible to tackle larger

12 CHAPTER 1. INTRODUCTION

Bounding Operation
Input: A subproblem S, described in terms of a “small” set of inequalities L0

such that S = fxs : s 2 F and axs • fl 8 (a; fl) 2 L0g and fi

14 CHAPTER 1. INTRODUCTION

1.4.4 Branch, Cut and Price

Finally, when both variables and cutting planes are generated dynamically during LP-based
branch and bound, the technique becomes known as branch, cut and price (BCP). In such a
scheme, there is a pleasing symmetry between the treatment of cuts and variables. However,

1.0. DESIGN OF COIN/BCP 15

number of global cuts and variables that need to be accounted for during the solution pro-

1.5. DESIGN OF COIN/BCP 17

to the variable. Using the schedule planning example, the compact representation may be
the information which flight legs a particular plane is going to fly. From this information
it’s easy to derive when the plane is on the ground and hence it is easy to compute the
coefficients of the column for constraints that, say, specify that at a given time at a given
airport only so many planes can be on the ground.

To summarize the advantages and disadvantages of the various variable types:

†

1.5. DESIGN OF COIN/BCP 19

† Compute an initial upper bound using heuristics.

† Perform problem preprocessing.

† Initialize the BCP algorithm by constructing the root node.

† Initialize output devices and act as a central repository for output.

†

20 CHAPTER 1. INTRODUCTION

The Cut Generator M41.dule

The cut generator

1.7. PARALLELIZING COIN/BCP 27

protocol supporting dynamic spawning of processes and basic message-passing functions.
All communication subroutines interface with COIN/BCP through a separate communi-
cations API. As mentioned above, currently PVM is the only message-passing protocol
supported, but interfacing with another protocol is a straightforward exercise.

30 CHAPTER 2. GETTING STARTED: SAMPLE COMPILING

– Osi: open solver interface,

– Dfo: derivative free optimization,

– COIN: to get all modules,

If you are just starting with Bcp, get the module Bcp-all. It will automatically get the
two sample applications (Mkc and MaxCut), as well as the other necessary modules (Osi and
Vol). Note that the directory

3.2. OVERVIEW OF THE CLASS HIERARCHY 35

3.2 Overview of the Class Hierarchy

We now briefly describe the class hierarchy from the user’s point of view. Our aim here
is not to describe the full class structure, but just those parts that the user needs to be
familiar with in order to derive new user classes and override the appropriate methods.

38 CHAPTER 3. DEVELOPING APPLICATIONS WITH COIN/BCP

create_root()

initialize_core()

xx_init()
BCP_user_init()

pack_module_data()

Create and initialize the

user’s data structures

Set the core and extra

variables and cuts

unpack_feasible_solution()

init_new_phase()

compare_tree_nodes()

unpack_module_data()

initialize_search_tree_node()

See the solver loop figure

3.3. THE FLOW OF THE ALGORITHM 39

44 CHAPTER 3. DEVELOPING APPLICATIONS WITH COIN/BCP

pair, unpack primal solution() in the cut generator. There is no reason to override
it if no cut generator processes are started.

† pack dual solution()

3.5. DERIVING PROBLEM-SPECIFIC CLASSES 49

3.5.2 Generating variables

Generally speaking, dynamic variable generation (often called column generation) is used
less frequently than dynamic cut generation. If it is possible to efficiently generate all
variables explicitly in the root node and there is enough memory to store them, this is
generally the best thing to do. This allows variables to be fixed by reduced cost and nodes

3.6. INTERNAL DATA STRUCTURES 53

Create the root node.

† Override create root() in BCP tm user.

Modify the LP solver parameters.

† Override modify lp parameters() in BCP lp

solution.
† Override (un)pack feasible solution() in the classes BCP lp

54 CHAPTER 3. DEVELOPING APPLICATIONS WITH COIN/BCP

appropriate module. This method will return a pointer to the data structure for the ap-
propriate module. Casual users are advised against modifying COIN/BCP’s internal data
structures directly.

3.7 Inter-process Communication

The implementation of COIN/BCP strives to shield the user from having to know anything

3.8. DEBUGGING YOUR APPLICATION 55

3.8.2 Debugging with PVM

If you wish to venture into debugging your distributed application, then you simply need
to set the parameter DebugXxProcesses, where Xx is the name of the module you wish to
debug, to the value “1” (representing true) in the parameter file. This will tell PVM to
spawn the particular process or processes in question under a debugger. What PVM actually
d actJ/F6n this caseactJ/F6s to launch the script$PVM ROOT/lib/debugger. You will undoubtedly
want to modify this script to launch your preferred debugger 6n the manner you deem fit.

4.3. A FORMULATION SUITABLE FOR COLUMN GENERATION 59

4.3 A formulation suitable for column generation

This new formulation has significantly more columns than the original formulation, on the
other hand it results in a well studied problem, the set packing problem ([?]).

There are two types of constraints in this formulation. The first type corresponds to the slabs
in the problem, the second type to the orders. The variables represent feasible production
patterns, that is, variable u has a 1 in the row corresponding to the slab the production
pattern is to be made of and 1’s in the rows corresponding to the orders in the production

66 CHAPTER 5. SAMPLE APPLICATION: THE MAXIMUM CUT PROBLEM

idea during initial development since it makes debugging much easier. Because we are not
using a separate cut generator, we do not need to consider the BCP cg user class either.

As with virtually any BCP implementation, we will need to consider the BCP tm user
and BCP lp user classes. Also, because we will be dynamically generating algorithmic
cuts, we will need to derive a new class to represent the cycle cuts (5.5) from the class
BCP cut algo

5.2. IMPLEMENTATION 67

† create root(): To initialize the root node, we use some heuristics to generate an
initial set of cycle cuts. However, as noted before, these are “extra” cuts and do not
get put into the core. They may be removed later in the calculation.

† display feasible solution()

Bibliography

[1]

