
sIPOPT Reference Manual

Hans Pirnay, Rodrigo López-Negrete, and Lorenz T. Biegler
Chemical Engineering Department

Carnegie Mellon University
Pittsburgh, PA 15213

April 11, 2011

Contents

1 Introduction 1
1.1 Barrier Sensitivity . 2
1.2 Multiple Sequential Parameter Perturbations . 4

2 Usage 4
2.1 AMPL Interface . 6

3 Reduced Hessian 11

4 Usage 12
4.1 AMPL Interface . 12

5 C++ Interface 13

6 Installation 13

7 Options 14

A Summary of Suffixes 17

1 Introduction

Sensitivity of nonlinear programming problems is a key step in any optimization study. Sensitivity pro-
vides information on regularity and curvature conditions at KKT points, assesses which variables play
dominant roles in the optimization, and provides first order estimates for parametric nonlinear programs.
Moreover, for NLP algorithms that use exact second derivatives, sensitivity can be implemented very ef-
ficiently within NLP solvers and provide valuable information with very little added computation. This
implementation provides IPOPT with the capabilities to calculate sensitivities, and approximate perturbed
solutions with them.

1

The basic sensitivity strategy implemented here is based on the application of the Implicit Function
Theorem (IFT) to the KKT conditions of the NLP. As shown in Fiacco [1], sensitivities can be obtained from
a solution with suitable regularity conditions merely by solving a linearization of the KKT conditions. In
Pirnay et al. [2] we have extended these results to the barrier penalty method implemented in IPOPT. In
the following subsections we have summarized the main concepts in the paper.

1.1 Barrier Sensitivity

Consider the parametric nonlinear program of the form:

minx f(x; p) (1a)

s.t. c(x; p) = 0, x ≥ 0 (1b)

with the vectors x ∈ Rnx , p ∈ Rnp , and c(x; p) : Rnx+np → Rm. Without loss of generality, only the variables
x have been assumed zero or positive. However, the following derivations can be extended to the case
where there are both upper and lower bounds.

The IPOPT NLP algorithm substitutes a barrier function for the inequality constraints and solves the
following sequence of problems with µ→ 0:

minx B(x; p, µ) = f(x; p)− µ`
nx∑
i=1

ln(xi) (2a)

s.t. c(x; p) = 0 (2b)

At a solution with p = p0 (the nominal value) we compute the sensitivities dx∗(p0)
dp and df(x∗;p0)

dp =
∂f(x∗;p0)

∂p + dx(p0)
dp

∂f(x∗;p0)
∂x . To calculate these sensitivities, we first consider properties of the solutions of (1)

obtained by IPOPT when p = p0 [1, 3].
For NLP (1), the Karush-Kuhn-Tucker (KKT) conditions are defined as:

∇xL(x∗, λ∗, ν∗; p0) = ∇xf(x∗; p0) +∇xc(x∗; p0)λ∗ − ν∗ = 0 (3a)

c(x∗; p0) = 0 (3b)

0 ≤ ν∗ ⊥ x∗ ≥ 0 (3c)

For the KKT conditions to serve as necessary conditions for a local minimum of (1), constraint qualifica-
tions are needed, such as Linear Independence Constraint Qualification (LICQ) or Mangasarian-Fromowitz
Constraint Qualification (MFCQ). Definitions of these regularity conditions may be found in Biegler [4],
Nocedal and Wright [5], or Fiacco [1].

2

Calculation of the sensitivity of the primal and dual variables with respect to p now proceeds from the
implicit function theorem (IFT) applied to the optimality conditions of (2) at p0. Defining the quantities:

M(s(µ; p0)) =

 W (s (µ; p0)) A (x (µ; p0)) −I
A (x (µ; p0))

T 0 0

V (µ; p0) 0 X(µ; p0)

 (4)

and

Np(s(µ; p0)) =

 ∇xpL(s(µ; p0))

∇pc(x(µ; p0))

0

, Nµ =

 0

0

−µe

 (5)

where W (s(µ; p0)) denotes the Hessian ∇xxL(x, λ, ν) of the Lagrangian function evaluated at s(µ; p0),
A(x(µ; p0)) = ∇xc(x) evaluated at x(µ; p0), X = diag{x} and V = diag{ν}, application of IFT leads to:

M(s(µ; p0))
ds(µ; p0)

dp

T

+Np(s(µ; p0)) = 0. (6)

When LICQ, Strict Complementarity (SC), and SSOSC hold, M(s(µ; p0)) is nonsingular and the sensi-
tivities can be calculated from:

ds(µ; p0)

dp

T

= −M (s (µ; p0))
−1Np (s (µ; p0)) . (7)

We note that at the solution of (2) these assumptions can be checked by the inertia of M as well as other
information in IPOPT (see [6]). Moreover, in IPOPT, M(s(µ; p0)) is directly available in factored form from
the solution of (2), so the sensitivity can be calculated through a simple backsolve. For small values of µ
and ‖p− p0‖ it can be shown from the above properties [1] that

s(µ; p) = s(µ; p0)−M(s(µ; p0))
−1Np(s(µ; p0))(p− p0) + o‖p− p0‖. (8)

Finally, in the way IPOPT is implemented, it cannot distinguish between variables and parameters.
Thus we can make this distinction apparent by adding some artificial variables and constraints. In this
way we write:

minx,w f(x,w) (9a)

s.t. c(x,w) = 0, x ≥ 0 (9b)

w − p0 = 0 (9c)

Note that the NLP solution is equivalent to (1), and it is easy to see that the NLP sensitivity is equivalent
as well. Writing the KKT conditions for (9) leads to:

3

∇xf(x,w) +∇xcT (x,w)λ− ν = 0 (10a)

∇wf(x,w) +∇wcT (x,w)λ+ λ̄ = 0 (10b)

c(x) = 0 (10c)

XV e = 0 (10d)

w − p = 0 (10e)

In this definition λ̄ represents the Lagrange multiplier corresponding to the equation w− p = 0. For the
Newton step we write:

W ∇xwL(x,w, λ, ν) A −I 0

∇wxL(x,w, λ, ν) ∇wwL(x,w, λ, ν) ∇wc(x,w) 0 I

AT ∇wc(x,w)T 0 0 0

V 0 0 X 0

0 I 0 0 0

∆z

∆w

∆λ

∆ν

∆λ̄

 =

0

0

0

0

∆p

 . (11)

Since ∆w = ∆p, the step computed by this matrix (without the second row) is the same as the optimal
step stated in (6).

1.2 Multiple Sequential Parameter Perturbations

In the derivations in the previous sections we considered changes to the parameter vector. However, in
some cases we may be interested in making multiple parameter perturbations in a sequential manner. For
example we may want to perturb the current solution s (µ; p0) using the parameter vectors p1, . . . , pnpert .
This amounts to solving system (6) with different right hand sidesNp (s (µ; p0)) (Eq. (5)). Note that, because
we already have (4) factorized at the solution, it is very cheap to obtain the npert sensitivities. With them
and using Equation (8) we can determine the approximated solutions s (µ; p1), . . . , s

(
µ; pnpert

)
.

2 Usage

In the following sections we describe how the sIPOPT library can be used through the AMPL interface.
However, we also provide examples for the C++ interface in the examples folder of the distribution. To
help illustrate the use of sIPOPT the following NLP, taken from [7], will be used:

4

min x21 + x22 + x23 (12)

s.t. 6x1 + 3x2 + 2x3 − p1 = 0

p2x1 + x2 − x3 − 1 = 0

x1, x2, x3 ≥ 0,

with variables x1, x2, and x3 and parameters p1, and p2. Since IPOPT does not distinguish variables from
parameters, we reformulate the NLP as (9) by introducing equations that fix the parameters p1 and p2 to
their nominal values p1,a and p2,a.

min x21 + x22 + x23 (13a)

s.t. 6x1 + 3x2 + 2x3 − p1 = 0 (13b)

p2x1 + x2 − x3 − 1 = 0 (13c)

p1 = p1,a (13d)

p2 = p2,a (13e)

x1, x2, x3 ≥ 0. (13f)

For (13), the KKT conditions are:

2x1 + 6λ1 + p2λ2 − ν1 = 0 (14)

2x2 + 3λ1 + λ2 − ν2 = 0 (15)

2x3 + 2λ1 − λ2 − ν3 = 0 (16)

−λ1 + λ3 = 0 (17)

λ2x1 + λ4 = 0 (18)

6x1 + 3x2 + 2x3 − p1 = 0 (19)

p2x1 + x2 − x3 − 1 = 0 (20)

p1 − p1,a = 0 (21)

p2 − p2,a = 0 (22)

ν1x1 − µ = 0 (23)

ν2x2 − µ = 0 (24)

ν3x3 − µ = 0 (25)

x1, x2, x3, ν1, ν2, ν3 ≥ 0, (26)

5

and the corresponding Newton step is

2 λ2 6 p2 −1

2 3 1 −1

2 2 −1 −1

−1 1

λ2 x1 1

6 3 2 −1

p2 1 −1 x1

1

1

ν1 x1

ν2 x2

ν3 x3

∆x1

∆x2

∆x3

∆p1

∆p2

∆λ1

∆λ2

∆λ3

∆λ4

∆ν1

∆ν2

∆ν3

= −

2x∗1 + 6λ∗1 + p2λ
∗
2 − ν∗1

2x∗2 + 3λ∗1 + λ∗2 − ν∗2
2x∗3 + 2λ∗1 − λ∗2 − ν∗3

−λ∗1 + λ∗3
λ∗2x

∗
1 + λ∗4

6x∗1 + 3x∗2 + 2x∗3 − p∗1
p∗2x

∗
1 + x∗2 − x∗3 − 1

p∗1 − p1,a
p∗2 − p2,a
ν∗1x

∗
1 − µ

ν∗2x
∗
2 − µ

ν∗3x
∗
3 − µ

(27)

where the right hand side is zero at the solution.

2.1 AMPL Interface

In this section we will show how to use sIPOPT through the AMPL interface [8]. This is the preferred
method for using IPOPT, because this allows us to take advantage of the exact first and second order
derivatives provided by the modeling language. The first thing to do is to write the problem in the AMPL
language as shown in code listing 1.

r e s e t ;

D e f i n e p a r a m e t e r s
param et1p ;
param et2p ;

O r i g i n a l p a r a m e t e r v a l u e s
l e t et1p := 5 ;
l e t et2p := 1 ;

D e f i n e v a r i a b l e s , wi th bounds and i n i t i a l g u e s s
var x1 >= 0 , := 0 . 1 5 ;
var x2 >= 0 , := 0 . 1 5 ;
var x3 >= 0 , := 0 . 0 0 ;

6

o b j e c t i v e f u n c t i o n
minimize o b j f : x1 ˆ2 + x2 ˆ2 + x3 ˆ2 ;

c o n s t r a i n t s
subject to

r 1 : 6∗x1 + 3∗x2 + 2∗x3 − et1p = 0 ;
r 2 : et2p∗x1 + x2 − x3 − 1 = 0 ;

D e f i n e s o l v e r and Ampl o p t i o n s in t h i s c a s e we don ’ t want Ampl ’ s
p r e s o l v e t o a c c i d e n t a l l y remove a r t i f i c i a l v a r i a b l e s .
options s o l v e r ipopt sens ;
option presolve 0 ;

S o l v e prob l em
solve ;

Code Listing 1: AMPL code for Problem 13.

We can now proceed to modify the above code to add the information needed to use sIPOPT. For this
we need to create the following suffixes. These will be used to communicate the nominal and perturbed
values of the parameters, and also some will serve as flags to indicate to IPOPT which are the artificial
constraints that were added.

sens state 0 This is used to enumerate the parameters that will be perturbed. It takes values from 1 to
length(p), and the values may not be repeated. Note that the order of the values is crucial.

sens state 1 This is similar to sens state 0, but it now indicates the order for the parameters at the per-
turbed value. This suffix should have the same values as sens state 0. It takes values from 1 to
length(p), and the values may not be repeated.

sens state value 1 This is used to communicate the values of the perturbed parameters. It has to be set for
the same variables as sens state 1.

sens init constr This is a flag that indicates the constraint is artificial, e.g., w − p0 = 0 in Problem (10). If
the constraint is artificial, set this suffix to 1 (no indexing is necessary).

Once these suffixes have been set, we must enable sIPOPT by setting the run sens to ‘yes’. Note that
this option can alternatively be set in the ipopt.opt file. In addition, to ensure that AMPL’s presolve feature
does not eliminate the initial value constraints, we disable it. Thus, the modified code is

7

r e s e t ;

S u f f i x e s f o r s e n s i t i v i t y upd a t e
s u f f i x s e n s s t a t e 0 , IN ;
s u f f i x s e n s s t a t e 1 , IN ;
s u f f i x s e n s s t a t e v a l u e 1 , IN ;
s u f f i x s e n s s o l s t a t e 1 , OUT;
s u f f i x s e n s i n i t c o n s t r , IN ;

O r i g i n a l v a l u e o f p a r a m e t e r s
param et1p ;
param et2p ;

O r i g i n a l p a r a m e t e r v a l u e s
l e t et1p := 5 ;
l e t et2p := 1 ;

D e f i n e v a r i a b l e s , wi th bounds and i n i t i a l g u e s s
var x1 >= 0 , := 0 . 1 5 ;
var x2 >= 0 , := 0 . 1 5 ;
var x3 >= 0 , := 0 . 0 0 ;

A r t i f i c i a l v a r i a b l e s so IPOPT s e e s t h e p a r a m e t e r s
var e t1 ;
var e t2 ;

o b j e c t i v e f u n c t i o n
minimize o b j f : x1 ˆ2 + x2 ˆ2 + x3 ˆ2 ;

c o n s t r a i n t s
subject to

r 1 : 6∗x1 + 3∗x2 + 2∗x3 − e t1 = 0 ;
r 2 : e t2 ∗x1 + x2 − x3 − 1 = 0 ;

A r t i f i c i a l c o n s t r a i n t s t o p a s s p a r a m e t e r s t o IPOPT
r 3 : e t1 = et1p ;

8

r 4 : e t2 = et2p ;

D e f i n e s o l v e r and Ampl o p t i o n s in t h i s c a s e we don ’ t want Ampl ’ s
p r e s o l v e t o a c c i d e n t a l l y remove a r t i f i c i a l v a r i a b l e s .
options s o l v e r ipopt sens ;
option presolve 0 ;

d e f i n e an o r d e r t o t h e p a r a m e t e r s t h a t w i l l c h a n g e .
In s t e p 0 , on ly e t 1 c h a n g e s , and has p o s i t i o n 1
l e t e t 1 . s e n s s t a t e 0 := 1 ;

in t h e f i r s t s t e p / change e t 1 has p o s i t i o n 1
l e t e t 1 . s e n s s t a t e 1 := 1 ;

P e r t u r b e d v a l u e o f p a r a m e t e r e t 1 (in s t e p 1)
l e t e t 1 . s e n s s t a t e v a l u e 1 := 4 . 5 ;

In s t e p 0 , e t 2 has p o s i t i o n 1
l e t e t 2 . s e n s s t a t e 0 := 2 ;

in t h e f i r s t s t e p / change e t 1 has p o s i t i o n 2
l e t e t 2 . s e n s s t a t e 1 := 2 ;

P e r t u r b e d v a l u e o f p a r a m e t e r e t 2 (in s t e p 1)
l e t e t 2 . s e n s s t a t e v a l u e 1 := 1 ;

A r t i f i c i a l c o n s t r a i n t s
l e t r 3 . s e n s i n i t c o n s t r := 1 ;
l e t r 4 . s e n s i n i t c o n s t r := 1 ;

s o l v e prob l em
solve ;

Code Listing 2: AMPL code for sensitivity update of Problem 13.

After the algorithm has completed successfully, the perturbed solution is stored in the following AMPL
suffixes:

9

sens sol state 1 This holds the updated variables as well as the updated constraint multiplier values com-
puted in the sensitivity update.

sens sol state 1 z L This suffix holds updated lower bound multipliers.

sens sol state 1 z U This suffix holds updated upper bound multipliers.

For example we could append the following code to Listing 2 in order to print both the nominal solu-
tion, as well as the updated values.

#∗∗
P r i n t nominal s o l u t i o n and bound m u l t i p l i e r s
#∗∗
display x 1 , x 2 , x 3 , e t 1 , e t2 ;
display x 1 . i p o p t z U o u t , x 2 . i p o p t z U o u t , x 3 . i p o p t z U o u t ,

e t 1 . i p o p t z U o u t , e t 2 . i p o p t z U o u t ;

display x 1 . i p o p t z L o u t , x 2 . i p o p t z L o u t , x 3 . i p o p t z L o u t ,
e t 1 . i p o p t z L o u t , e t 2 . i p o p t z L o u t ;

C o n s t r a i n t m u l t i p l i e r s
display r 1 , r 2 , r 3 , r4 ;

#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
P r i n t upda t ed s o l u t i o n
#∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
display x 1 . s e n s s o l s t a t e 1 , x 2 . s e n s s o l s t a t e 1 ,

x 3 . s e n s s o l s t a t e 1 , e t 1 . s e n s s o l s t a t e 1 ,
e t 2 . s e n s s o l s t a t e 1 ;

display x 1 . s e n s s o l s t a t e 1 z U , x 2 . s e n s s o l s t a t e 1 z U ,
x 3 . s e n s s o l s t a t e 1 z U ,
e t 1 . s e n s s o l s t a t e 1 z U , e t 2 . s e n s s o l s t a t e 1 z U ;

display x 1 . s e n s s o l s t a t e 1 z L , x 2 . s e n s s o l s t a t e 1 z L ,
x 3 . s e n s s o l s t a t e 1 z L ,
e t 1 . s e n s s o l s t a t e 1 z L , e t 2 . s e n s s o l s t a t e 1 z L ;

and upda t ed c o n s t r a i n t m u l t i p l i e r s

10

display r 1 . s e n s s o l s t a t e 1 , r 2 . s e n s s o l s t a t e 1 ,
r 3 . s e n s s o l s t a t e 1 , r 4 . s e n s s o l s t a t e 1 ;

Code Listing 3: AMPL code to print updated solution.

An example implementation of the above is provided in the directory:

$IPOPT/Ipopt/contrib/sIPOPT/examples/parametric ampl.

3 Reduced Hessian

An important byproduct of the sensitivity calculation is information related to the Hessian of the Lagrange
function pertinent to the second order conditions. At the solution of (1) we again consider the sensitiv-
ity system, MS = Nrh, and partition the variables into free and bounded variables, i.e., x∗ = [xTf xTb]

where x∗f > 0, x∗b = 0. Assuming strict complementarity (SC), the IFT sensitivity system using (4) can be
partitioned with:

M =

Wff (x∗, λ∗) Wfb(x

∗, λ∗) Af (x∗) −If 0

Wbf (x∗, λ∗) Wbb(x
∗, λ∗) Ab(x

∗) 0 −Ib
Af (x∗)T Ab(x

∗))T 0 0 0

0 0 0 X∗
f 0

0 V ∗
b 0 0 0

, S =

Sxf
Sxb
Sλ

Sνf
Sνb

, and Nrh =

E

0

0

0

0

 (28)

From (28) it is easy to see that Sxb = 0, Sνf = 0. These variables and the last two rows can therefore be
removed, leading to: Wff (x∗, λ∗) Af (x∗) 0

Af (x∗))T 0 0

Wbf (x∗, λ∗) Ab(x
∗) −Ib

 Sxf

Sλ

Sνb

 =

 E

0

0

For a chosen set of nI ≤ nx − m independent variables with elements reordered at the end of the x

vector, AD nonsingular, ET = [0 | InI] and the matrices defined in (28), the reduced Hessian can be found
directly by solving MS = Nrh. As described in [2], the reduced Hessian can be extracted easily from the
rows of S. Thus taking advantage of the implementation described in Section 1.1 for sensitivity based
updates, we can obtain an approximation of the reduced Hessian via backsolves involving the factorized
KKT matrix.

11

4 Usage

In the following sections we describe the usage of the reduced Hessian calculator using the AMPL. We also
provide examples of the C++ interface in the examples folder.

4.1 AMPL Interface

The usage of the reduced Hessian calculation is similar to the sensitivity updates described above. The
critical step here is deciding which variables will be independent variables at the optimal solution. Theses
independent variables are then identified with the suffix red hessian.

This suffix provides an enumeration of the independent variables, thus it needs to take ordered values
from 1..nI , where nI is the number of independent variables. The columns of the inverse reduced Hessian
will be printed to the screen, and their order is determined by the ordering of these indices.

To enable reduced Hessian calculations we need to set the option The algorithm is enabled by setting
the solver option compute red hessian to ‘yes’. Using Example 1 defined by Problem (12), we illustrate the
use of the reduced Hessian calculator. The code for this is shown in Listing 4. In addition, the calculated
reduced Hessian is displayed on the screen automatically at the end of IPOPT’s normal output.

r e s e t ;

D e f i n e r e d u c e d Hess i an s u f f i x e s
s u f f i x r e d h e s s i a n , IN ;

D e f i n e p a r a m e t e r s
param e t1 ;
param e t2 ;

Paramet e r v a l u e s
l e t et1p := 5 ;
l e t et2p := 1 ;

D e f i n e v a r i a b l e s , wi th bounds and i n i t i a l g u e s s
var x1 >= 0 , := 0 . 1 5 ;
var x2 >= 0 , := 0 . 1 5 ;
var x3 >= 0 , := 0 . 0 0 ;

o b j e c t i v e f u n c t i o n
minimize o b j f : x1 ˆ2 + x2 ˆ2 + x3 ˆ2 ;

12

c o n s t r a i n t s
subject to

r 1 : 6∗x1 + 3∗x2 + 2∗x3 − et1p = 0 ;
r 2 : et2p∗x1 + x2 − x3 − 1 = 0 ;

D e f i n e s o l v e r and Ampl o p t i o n s in t h i s c a s e we don ’ t want Ampl ’ s
p r e s o l v e t o a c c i d e n t a l l y remove a r t i f i c i a l v a r i a b l e s .
options s o l v e r ipopt sens ;
option presolve 0 ;

D e f i n e f r e e v a r i a b l e s
l e t x 3 . r e d h e s s := 1 ;

S o l v e prob l em
solve ;

Code Listing 4: AMPL code for Problem 13.

5 C++ Interface

The C++ interface is very simple to apply to an existing Ipopt::TNLP implementation. The member
function TNLP::::get var con metadata in Ipopt provides a feature very similar to that of AMPL
suffixes.

The steps taken to make a TNLP class ready for using the sIPOPT code are similar to those used in
AMPL. First, the parameter values are defined with artificial variables and constraints. Note that because
of this the Jacobian and Hessian computations have to be adjusted accordingly. Finally, the suffixes need
to be set the same way they would in AMPL as described above. This is done using member function
TNLP::::get var con metadata. This is illustrated in examples examples/redhess cpp and
examples/parametric cpp.

6 Installation

The first step to install the software is to install the trunk version of IPOPT, once this is done installing
sIPOPT is very simple. IPOPT’s installation instructions can be found in the following website.

13

http://www.coin-or.org/Ipopt/documentation/

Also note that in the following we refer to $IPOPT as the main folder, where the Ipopt, ThirdParty,
BuildTools, . . . , folders are located. If you wish to use the AMPL interface, make sure that your IPOPT
installation also includes it. To do this you need to download the ASL library, with the get.ASL script
located in $IPOPT/ThirdParty/ASL. Finally, we assume that you created a build folder to install IPOPT
in $IPOPT/build/. In this case, to download the trunk version of IPOPT you would type:

$ svn co https://projects.coin-or.org/svn/Ipopt/trunk $IPOPT

Once IPOPT has been compiled and installed, we can proceed to build sIPOPT. To do this go to the
$IPOPT/build/Ipopt/contrib/sIPOPT/ folder, and type make there.

$ cd $IPOPT/build/Ipopt/contrib/sIPOPT

$ make

If no errors are shown after compilation you can proceed to install the libraries and to generate the
AMPL executable. To do this type

$ make install

This should copy the generated libraries (libsipopt.*) to $IPOPT/build/lib, and the AMPL exe-
cutable (ipopt sens) to $IPOPT/build/bin/.

7 Options

There are several new options that can be set in the ipopt.opt file, that determine the behavior of
the sIPOPT code. The more important options are the ones enable the execution of the post-optimal
sIPOPTcode. These are

run_sens yes

to enable sensitivity computations, and

compute_red_hessian yes

to enable the computation of the reduced Hessian.

14

Other options are:

n sens steps In general, the update can be done sequentially for any number of parameters. However,
for now, the valid range for this integer option is 1 ≤ n sens steps ≤ ∞, and the default value is 1.
Please see Section 1.2 for more details on this.

sens boundcheck If set to yes, this option turns on the bound correction algorithm (see Section 2.4 in
the implementation paper). The default value of this string option is no.

sens bound eps This option makes sure that only variables that violate the bound by more than
sens bound eps are considered as real violations. Otherwise, bound checking might continue until
the full active set has been covered. This is only used if the sens boundcheck is set to yes. The
valid range of this real valued option is: 0 ≤ sens bound eps ≤ ∞, and the default value is 10−3.

sens max pdpert For certain problems, IPOPT uses inertia correction of the primal dual matrix to achieve
better convergence properties. This inertia correction changes the matrix and renders it useless for
the use with sIPOPT. This option sets an upper bound, which the inertia correction may have. If any
of the inertia correction values is above this bound, the sIPOPT algorithm is aborted. The valid range
of this real valued option is: 0 ≤ sens max pdpert ≤ ∞, and the default is 10−3. Please see Section
2.2 of the IPOPT implementation paper [6] for more details.

rh eigendecomp If this option is set to yes, the reduced Hessian code will compute the eigenvalue
decomposition of the reduced Hessian matrix. The default value of this string option is no.

sens allow inexact backsolve This option is used to enable or disable IPOPT’s Iterative Refinement.
See Section 3.10 of the IPOPT implementation paper [6]. By default this string option is set to yes

(do not do iterative refinement), and it can take values of yes or no.

sens kkt residuals The residuals of the KKT conditions should be zero at the optimal solution. How-
ever, in practice, especially for large problems and depending on the termination criteria, they may
deviate from this theoretical state. If this option is set to the default yes, the residuals will be taken
into account when computing the right hand side for the sensitivity step. If set to no, the residuals
will not be computed and assumed to be zero.

References

[1] Fiacco, A.V., Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, volume 165 of
Mathematics in Science and Engineering. Academic Press, 1983.

[2] Pirnay, H.; López-Negrete, R.; and Biegler, L.T., Optimal Sensitivity Based on IPOPT, 2011.

[3] Forsgren, A.; Gill, P.E.; and Wright, M.H., Interior Point Methods for Nonlinear Optimization. SIAM
Review 44(4), 2002, pp. 525–597.

15

[4] Biegler, L.T., Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. SIAM,
2010.

[5] Nocedal, J. and Wright, S., Numerical Optimization. Operations Research and Financial Engineering, 2nd
edition, Springer, New York, 2006.

[6] Wächter, A. and Biegler, L.T., On the Implementation of a Primal-Dual Interior Point Filter Line Search
Algorithm for Large-Scale Nonlinear Programming. Mathematical Programming 106(1), 2006, pp. 25–57.

[7] Ganesh, N. and Biegler, L.T., A reduced hessian strategy for sensitivity analysis of optimal flowsheets.
AIChE 33, 1987, pp. 282–296.

[8] Fourer, R.; Gay, D.M.; and Kernighan, B.W., AMPL: A Modeling Language for Mathematical Programming.
Duxbury Press, Pacific Grove, 2002.

16

A Summary of Suffixes

In this section we summarize the suffixes that need to be set for sensitivity updates, or reduced Hessian
calculations.

Sensitivity Calculations: Set the option run sens to yes.

Some suffixes will need to be defined by the user, while others are automatically generated by sIPOPT.
Moreover, some of the suffixes need to be indexed by {i : 1 ≤ i ≤ n sens steps}. Also note that the di-
rection column below is used to indicate to AMPL if the suffix will be sent to the solver, or passed by the
solver to AMPL. More information on this can be found in [8].

Defined by User

Suffix Direction Description

sens state 0 IN
This is used to enumerate the parameters that will be perturbed.
It takes values from 1 to length(p), and the values may not be
repeated. Note that the order of the values is crucial.

sens state i IN

This is similar to sens state 0, but it now indicates the order for
the parameters at the perturbed value. You must define one for
each {i : 1 ≤ i ≤ n sens steps}.
This suffix should have the same values as sens state 0. It takes
values from 1 to length(p), and the values may no be repeated.

sens state value i IN
This is used to communicate the values of the perturbed param-
eters. You must define one for each {i : 1 ≤ i ≤ n sens steps}.
It has to be set for the same variables as sens state 1.

sens init constr IN
This is a flag that indicates the constraint is artificial, e.g., w −
p0 = 0 in Problem (10). If the constraint is artificial, set this suffix
to 1 (no indexing is necessary).

Defined by sIPOPT

sens sol state i OUT
This holds the updated variables, as well as, the updated con-
straint multiplier values computed in the sensitivity update.

One for each {i : 1 ≤ i ≤ n sens steps}will be defined.

sens sol state i z L OUT
This suffix holds updated lower bound multipliers.

One for each {i : 1 ≤ i ≤ n sens steps}will be defined.

sens sol state i z U OUT
This suffix holds updated upper bound multipliers.

One for each {i : 1 ≤ i ≤ n sens steps}will be defined.

17

Reduced Hessian Calculations: Set the option compute red hessian to yes.

Suffix Direction Description

red hessian IN
This is used to enumerate the independent variables, thus it
needs to take ordered values from 1..nI , and nI is the number of
independent variables.

18

