
Optimization Services 1.1 User’s Manual

Robert Fourer, Horand Gassmann, Jun Ma, Kipp Martin, Wayne Sheng

January 13, 2009

Abstract

This is the User’s Manual for the Optimization Services (OS) project. The objective of OS
is to provide a general framework consisting of a set of standards for representing optimization
instances, results, solver options, and communication between clients and solvers in a distributed
environment using Web Services. This COIN-OR project provides C++ and Java source code
for libraries and executable programs that implement OS standards. The OS library includes
a robust solver and modeling language interface (API) for linear, nonlinear and other types of
optimization problems. Also included is the C++ source code for a command line executable
OSSolverService for reading problem instances (OSiL format, nl format, MPS format) and
calling a solver either locally or on a remote server. Finally, both Java source code and a Java
war file are provided for users who wish to set up a solver service on a server running Apache
Tomcat. See the Optimization Services home page http://www.optimizationservices.org
and the COIN-OR Trac page http://projects.coin-or.org/OS for more information.

1

Contents

1 The Optimization Services (OS) Project 6

2 Quick Roadmap 7

3 Downloading the OS Project 7
3.1 Obtaining the Binaries . 7
3.2 Auxiliary Software for Working with the OS Project 8

3.2.1 Subversion (SVN) . 9
3.2.2 wget . 9
3.2.3 Windows development platform . 9
3.2.4 C++ compiler . 9
3.2.5 Fortran Compiler . 9
3.2.6 flex and bison . 10
3.2.7 doxygen . 10

3.3 Obtaining OS Source Code Using Subversion (SVN) 10
3.4 Obtaining the OS Source Code From a Tarball or Zip File 12
3.5 Obtaining source for the OS Project API . 12

4 Building and Testing the OS Project 13
4.1 Building the OS Project on Unix/Linux Systems . 13

4.1.1 Building the OS Project on Mac OS X . 15
4.2 Building the OS Project on Windows . 16

4.2.1 Microsoft Visual Studio (MSVS) . 16
4.2.2 Visual Studio Examples Distribution . 17
4.2.3 Cygwin . 18
4.2.4 MinGW . 20
4.2.5 MSYS . 20

4.3 VPATH Installations . 21
4.4 Using Ipopt and Bonmin . 22

4.4.1 Building Ipopt and Bonmin in Unix or a Unix-like environment 22
4.4.2 Ipopt and Microsoft Visual Studio . 24

4.5 Other Third-Party Software . 25
4.5.1 AMPL Solver Library (ASL) . 26
4.5.2 GLPK . 27
4.5.3 Cplex . 28
4.5.4 LINDO . 28
4.5.5 MATLAB . 28
4.5.6 Library Paths . 28

4.6 Bug Reporting . 29
4.7 Documentation . 29
4.8 Platforms . 29

5 The OS Project Components 31

2

6 OS Protocols 33
6.1 OSiL (Optimization Services instance Language) . 33
6.2 OSrL (Optimization Services result Language) . 35
6.3 OSoL (Optimization Services option Language) . 37
6.4 OSnL (Optimization Services nonlinear Language) 37
6.5 OSpL (Optimization Services process Language) . 38

7 The OSSolverService 38
7.1 OSSolverService Input Parameters . 38
7.2 Solving Problems Locally . 40
7.3 Solving Problems Remotely with Web Services . 41

7.3.1 The solve Service Method . 42
7.3.2 The send Service Method . 43
7.3.3 The retrieve Service Method . 45
7.3.4 The getJobID Service Method . 46
7.3.5 The knock Service Method . 46
7.3.6 The kill Service Method . 48
7.3.7 Summary and description of the API . 48

7.4 Passing Options to Solvers . 49

8 Setting up a Solver Service with Apache Tomcat 53

9 Code samples to illustrate the OS Project 55
9.1 Algorithmic Differentiation: Using the OS Algorithmic Differentiation Methods . . . 56
9.2 Instance Generator: Using the OSInstance API to Generate Instances 57
9.3 osTestCode . 58
9.4 osRemoteTest . 58
9.5 OSAddCuts: Using the OSInstance API to Generate Cutting Planes 58

10 OS Support for Modeling Languages, Spreadsheets and Numerical Computing
Software 58
10.1 AMPL Client: Hooking AMPL to Solvers . 58
10.2 GAMSlinks: Hooking GAMS to Solvers . 59
10.3 MATLAB: Using MATLAB to Build and Run OSiL Model Instances 60

11 The OS Library Components 65
11.1 OSAgent . 65
11.2 OSCommonInterfaces . 65

11.2.1 The OSInstance Class . 66
11.2.2 Creating an OSInstance Object . 66
11.2.3 Mapping Rules . 66
11.2.4 The OSExpressionTree OSnLNode Classes . 67
11.2.5 The OSOption Class . 70

11.3 OSModelInterfaces . 70
11.3.1 Converting MPS Files . 71
11.3.2 Converting AMPL nl Files . 71

11.4 OSParsers . 71
11.5 OSSolverInterfaces . 73
11.6 OSUtils . 74

3

12 The OSInstance API 74
12.1 Get Methods . 75
12.2 Set Methods . 76
12.3 Calculate Methods . 76

13 The OS Algorithmic Differentiation Implementation 76
13.1 Algorithmic Differentiation: Brief Review . 76
13.2 Using OSInstance Methods: Low Level Calls . 77

13.2.1 First Derivative Reverse Sweep Calculations 81
13.2.2 Second Derivative Reverse Sweep Calculations 81

13.3 Using OSInstance Methods: High Level Calls . 82
13.3.1 Sparsity Methods . 82
13.3.2 Function Evaluation Methods . 83
13.3.3 Gradient Evaluation Methods . 85
13.3.4 Hessian Evaluation Methods . 86

14 File Upload: Using a File Upload Package 86

15 Appendix – Sample OSiL files 87
15.1 OSiL representation for problem given in (1)–(4) (p.34) 87
15.2 OSiL representation for problem given in (20)–(23) (p.77) 89

Bibliography 91

List of Figures

1 The OS distribution root directory. 11
2 The OS directory. 32
3 The <variables> element for the example (1)–(4). 34
4 The Variables complexType in the OSiL schema. 34
5 The Variable complexType in the OSiL schema. 35
6 The <linearConstraintCoefficients> element for constraints (2) and (3). 36
7 The <quadraticCoefficients> element for constraint (2). 36
8 The <nl> element for the nonlinear part of the objective (1). 37
9 A local call to solve. 41
10 A remote call to solve. 42
11 Downloading the instance from a remote source. 44
12 The OS Communication Methods . 50
13 Creating an OSInstance Object . 66
14 The OSInstance class . 66
15 The InstanceData class . 67
16 The <variables> element as an OSInstance object 68
17 Conceptual expression tree for the nonlinear part of the objective (1). 69
18 The function calculation method for the plus node class with polymorphism 69

4

List of Tables

1 Tested Platforms for Solvers . 30
2 Platform Description . 30
3 Solver configurations . 39

5

1 The Optimization Services (OS) Project

The objective of Optimization Services (OS) is to provide a general framework consisting of a set
of standards for representing optimization instances, results, solver options, and communication
between clients and solvers in a distributed environment using Web Services. This COIN-OR
project provides source code for libraries and executable programs that implement OS standards.
See the COIN-OR Trac page http://projects.coin-or.org/OS or the Optimization Services
Home Page http://www.optimizationservices.org for more information.

Like other COIN-OR projects, OS has a versioning system that ensures end users some degree
of stability and a stable upgrade path as project development continues. The current stable version
of OS is 1.1, and the current stable release is 1.1.1, based on trunk version 2093.

The OS project provides the following:

1. A set of XML based standards for representing optimization instances (OSiL), optimization
results (OSrL), and optimization solver options (OSoL). There are other standards, but these
are the main ones. The schemas for these standards are described in Section 6.

2. Open source libraries that support and implement many of the standards.

3. A robust solver and modeling language interface (API) for linear and nonlinear optimization
problems. Corresponding to the OSiL problem instance representation there is an in-memory
object, OSInstance, along with a collection of get(), set(), and calculate() methods for
accessing and creating problem instances. This is a very general API for linear, integer, and
nonlinear programs. Extensions for other major types of optimization problems are also in
the works. Any modeling language that can produce OSiL can easily communicate with any
solver that uses the OSInstance API. The OSInstance object is described in more detail in
Section 12. The nonlinear part of the API is based on the COIN-OR project CppAD by Brad
Bell (http://projects.coin-or.org/CppAD) but is written in a very general manner and
could be used with other algorithmic differentiation packages. More detail on algorithmic
differentiation is provided in Section 13.

4. A command line executable OSSolverService for reading problem instances (OSiL format,
AMPL nl format, MPS format) and calling a solver either locally or on a remote server. This
is described in Section 7.

5. Utilities that convert AMPL nl files and MPS files into the OSiL XML format. This is
described in Section 11.3.

6. Standards that facilitate the communication between clients and optimization solvers using
Web Services. In Section 11.1 we describe the OSAgent part of the OS library that is used to
create Web Services SOAP packages with OSiL instances and contact a server for solution.

7. An executable program OSAmplClient that is designed to work with the AMPL modeling
language. The OSAmplClient appears as a “solver” to AMPL and, based on options given in
AMPL, contacts solvers either remotely or locally to solve instances created in AMPL. This
is described in Section 10.1.

8. Server software that works with Apache Tomcat and Apache Axis. This software uses Web
Services technology and acts as middleware between the client that creates the instance and
the solver on the server that optimizes the instance and returns the result. This is illustrated
in Section 8.

6

9. A lightweight version of the project, OSCommon for modeling language and solver developers
who want to use OS API, readers and writers, without the overhead of other COIN-OR
projects or any third-party software. For information on how to download OSCommon see
Section 3.5.

2 Quick Roadmap

If you want to:

• Download the OS source code or binaries – see Section 3.

• Download just the OS API, readers and writers – see Section 3.5.

• Build the OS project from the source code – see Section 4.

• Use the OS library to build model instances or use solver APIs – see Sections 11.3, 11.5
and 12.

• Use the OSSolverService to read files in nl, OSiL, or MPS format and call a solver locally or
remotely – see Section 7.

• Use AMPL to solve problems either locally or remotely with a COIN-OR solver, Cplex,
GLPK, or LINDO – see Section 10.1.

• Build a remote solver service using Apache Tomcat – see Section 8.

• Use MATLAB to generate problem instances in OSiL format and call a solver either remotely
or locally – see Section 10.3.

• Use the OS library for algorithmic differentiation (in conjunction with COIN-OR CppAD) –
see Section 13.

• Use modeling languages to generate model instances in OSiL format – see Section 10.

3 Downloading the OS Project

The OS project is an open-source project with source code under the Common Public License (CPL).
See http://www.ibm.com/developerworks/library/os-cpl.html. This project was initially cre-
ated by Robert Fourer, Jun Ma, and Kipp Martin. The code has been written primarily by Horand
Gassmann, Jun Ma, and Kipp Martin. Horand Gassmann, Jun Ma, and Kipp Martin are the
COIN-OR project leaders and active developers for the OS project. Most users will only be inter-
ested in the obtaining the binaries, which we describe in section 3.1. The remaining sections of
this chapter deal with obtaining the source code for the project, which will be of interest mostly to
developers.

3.1 Obtaining the Binaries

If the user does not wish to compile source code, the OS library, OSSolverService executable and
Tomcat server software configuration are available at http://www.coin-or.org/download/binary/OS/
in binary format. The binary distribution for the OS library and executables follows the following
naming convention:

7

OS-version_number-platform-compiler-build_options.tgz (zip)

For example, OS Release 1.1.0 compiled with the Intel 9.1 compiler on an Intel 32-bit Linux system
is:

OS-1.1.0-linux-x86-icc9.1.tgz

For more detail on the naming convention and examples see:

https://projects.coin-or.org/CoinBinary/wiki/ArchiveNamingConventions

After unpacking the tgz or zip archives, the following folders are available.

bin – this directory has the executables OSSolverService and OSAmplClient.

include – the header files that are necessary necessary in order to link against the OS library.

lib – the libraries that are necessary for creating applications that use the OS library.

share – license and author information for all the projects used by the OS project.

Files are also provided for an Apache Tomcat Web server along with the associated Web service
that can read SOAP envelopes with model instances in OSiL format and/or options in OSoL
format, call the OSSolverService, and return the optimization result in OSrL format. The naming
convention for the server binary is

OS-server-version_number.tgz (.zip)

For example, the files associated with OS server release 1.0.0 are in the binary distribution

OS-server-1.0.0.tgz

There is no platform information given since the server and related binaries were written in Java.
The details and use of this distribution are described in Section 8.

Finally for Windows users we provide Visual Studio project files (and supporting libraries and
header files) for building projects based on the OS library and libraries used by the OS project.
The binary for this is named

OS-version_number-VisualStudio.zip

For example, the necessary files associated with OS stable 1.1 are in the binary distribution

OS-1.1-VisualStudio.zip

The binaries provided are based on Visual Studio Express 2008. See Section 4.2.2 for more detail.

3.2 Auxiliary Software for Working with the OS Project

Compiling and modifying the OS project source code can be a daunting task, made somewhat
easier by the inclusion of configure scripts and makefiles in the distribution of the source. However,
additional software packages are sometimes needed or convenient, especially on Windows. We
collect in this section a number of recommended packages that we ourselves use in the development
and maintenance of the code.

8

3.2.1 Subversion (SVN)

The Subversion version control package is used to obtain the C++ source code. Users with Unix
operating systems will most likely have a command line svn client. If an svn client is not present,
see http://subversion.tigris.org to download an svn client. For Windows users we recommend
the svn client TortoiseSVN. (See http://tortoisesvn.tigris.org.) The TortoiseSVN client is
integrated within the Windows Explorer.

3.2.2 wget

Certain third-party software (see section 4.5) is available in source form but is not contained in the
OS project distribution. Scripts are included to download this code using the wget executable.

A Windows version of wget is available at

http://www.christopherlewis.com/WGet/wget-1.11.4b.zip

There is no need to rebuild the code locally, which relies on several levels of other software.

3.2.3 Windows development platform

A development platform is essential for users on Windows. OS Project provides support for
Microsoft Visual Studio (see Section 4.2.1) and several unix emulators, including Cygwin (Sec-
tion 4.2.3), MinGW (Section 4.2.4) and MSYS (Section 4.2.5). Download instructions for all of
these packages are included in the sections indicated.

3.2.4 C++ compiler

A C++ compiler is needed to compile the OS source. This should be present under all unix instal-
lations. If no C++ compiler is available on the system, the free gcc compiler can be downloaded
from http://gcc.gnu.org.

Microsoft Visual Studio can be configured with the Microsoft cl compiler, which also works
under MSYS. MinGW is normally configured with the Gnu compiler collection (gcc), although
it can also be used with the cl compiler. However, extreme care is needed if the last option is
followed. gcc and cl have very different header files, and it is important to set up the $PATH
variable correctly in order not to confuse the header files. In our experience, best results are
achieved with the minimal unix-like installation, MSYS, and the Microsoft cl compiler.

3.2.5 Fortran Compiler

The COIN-OR project Ipopt (see section 4.4) and several of the third-party software described in
section 4.5 include Fortran subroutines, which must be compiled with a Fortran compiler if the user
wants to include these projects in the build. A free Fortran 95 compiler can be downloaded from
http://www.g95.org. For Fortran 77 code (which includes the Blas, HSL and Lapack projects —
but not Mumps) it might be sufficient to download the f2c translator which turns Fortran 77 code
into code that can subsequently be fed into a C compiler. The f2c translator and the f2c runtime
library can be downloaded from http://www.netlib.org/f2c. Further details are available in the
file BuildTools/compile_f2c/INSTALL, which is part of the OS distribution.

9

3.2.6 flex and bison

Users who want to edit the source code in the parsers described in Section 11.4 will need the
additional tools flex and bison. These can be downloaded from

http://sourceforge.net/project/showfiles.php?group_id=2435&package_id=67879

and are listed at the Web site as

bison-2.3-MSYS-1.0.11-1
flex-2.5.33-MSYS-1.0.11-1
regex-0.12-MSYS-1.0.11-1

The last one contains an important DLL, msys-regex-0.dll, without which flex will not start.

3.2.7 doxygen

Doxygen (http://www.doxygen.org) is a document production system that can be used to prepare
documentation for the OS project and related software. For details, see section 4.7.

3.3 Obtaining OS Source Code Using Subversion (SVN)

For the rest of this documentation, we assume that the name of the root directory of the OS
project distribution is COIN-OS. The COIN-OS directory structure is illustrated in Figure 1. OS
source code is mainly contained inside of the OS subdirectory. Other first level subdirectories are
mostly external projects (COIN-OR or third-party) that the OS project depends on.

For Users on a Unix system such as Linux, Solaris, Mac OS X, etc., the source code is obtained
as follows. In a command window execute:

svn co https://projects.coin-or.org/svn/OS/releases/1.1.1 COIN-OS

It is possible that on some systems you may get a message such as:

Error validating server certificate for ’https://projects.coin-or.org:443’:
- The certificate is not issued by a trusted authority. Use the

fingerprint to validate the certificate manually!
Certificate information:
- Hostname: projects.coin-or.org
- Valid: from Jun 10 22:51:18 2007 GMT until Jun 15 21:00:28 2009 GMT
- Issuer: 07969287, http://certificates.godaddy.com/repository, GoDaddy.com, Inc.,
Scottsdale, Arizona, US
- Fingerprint: f7:26:0f:bb:e1:94:a5:23:7f:5c:cb:c3:9a:c4:74:51:e5:c7:4d:29
(R)eject, accept (t)emporarily or accept (p)ermanently?

If so, select (p) and you should not get this message again.

For more information on downloading the OS project or other COIN-OR projects using SVN
see

http://projects.coin-or.org/BuildTools/wiki/user-download#DownloadingtheSourceCode.

10

Figure 1: The OS distribution root directory.

11

On Windows with TortoiseSVN, create a directory COIN-OS in the desired location and right-
click on this directory. Select the menu item SVN Checkout ... and in the textbox “URL of
Repository” give the URL for the version of the OS project you wish to check out, for instance,

https://projects.coin-or.org/svn/OS/stable/1.1.

Now build the project as described in Section 4.

The Java source code for setting up a solver service with Apache Tomcat is checked out as
follows:

svn co https://projects.coin-or.org/svn/OS/branches/OSjava OSJava

For more detail on running a Tomcat solver service see Section 8.

3.4 Obtaining the OS Source Code From a Tarball or Zip File

The OS source code can also be obtained from either a tarball or zip file. This may be preferred for
users who are not managing other COIN-OR projects and wish to only work with periodic release
versions of the code. In order to obtain the code from a Tarball or Zip file do the following.

Step 1: In a browser open the link http://www.coin-or.org/download/source/OS/. Listed at
this page are files in the format:

OS-release_number.tgz
OS-release_number.zip

Step 2: Click on either the tgz or zip file and download to the desired directory.

Step 3: Unpack the files. For tgz do the following at the command line:

gunzip OS-release_number.tgz
tar -xvf OS-release_number.tar

Windows users should be able to double click on the file OS-release_number.zip and
have the directory unpacked.

Step 4: (optional) Move the folder OS-release_number to the desired location and rename it to
COIN-OS.

Now build the project as described in Section 4.

3.5 Obtaining source for the OS Project API

The OS project is very extensive and relies on many other COIN-OR projects. This may not
be desirable for modeling language and solver developers who just wish to use the OS API in
conjunction with their modeling language or solver. Hence there is also an “OS lite” download that
consists of all the code for the OS API and for reading and writing instance and solution files. We
refer to this version of the project as OSCommon. To get the current version of OSCommon use the
svn command

svn co https://projects.coin-or.org/svn/OS/branches/OScpp/OSCommon OSCommon

12

4 Building and Testing the OS Project

Once the OS source code is obtained, the OS libraries, OSSolverService executable, and test
examples can be built. We describe how to do this on Unix/Linux systems (see Section 4.1) and
on Windows (see Section 4.2).

4.1 Building the OS Project on Unix/Linux Systems

In order to build the OS project on Unix/Linux systems do the following.

Step 1: Connect to the OS distribution root directory (COIN-OS in Figure 1).

Step 2: Run the configure script that will generate the makefiles. If you are running on a machine
with a Fortran 95 compiler present (e.g., gfortran), and you have previously downloaded
the third-party software packages BLAS and Mumps (see Section 4.4), run the command

./configure

otherwise use

./configure COIN_SKIP_PROJECTS="Ipopt Bonmin"

as COIN-OR’s Ipopt and Bonmin projects currently use Fortran to compile some of its
dependent libraries.

Notes:

• If gfortran is not present and you wish to build the nonlinear solver Ipopt see the
instructions in Section 4.4.

• When using configure you may wish to use the -C option. This instructs configure
to use a cache file, config.cache, to speed up configuration by remembering and
reusing the results of tests already performed.

• For more information and options on the ./configure script see
https://projects.coin-or.org/BuildTools/wiki/user-configure#PreparingtheCompilation.

• You cannot apply COIN_SKIP_PROJECTS to Cbc, Clp, Cgl, CoinUtils, CppAD, or Osi.
These projects must be present.

Step 3: Run the make files.

make

Step 4: Run the unitTest.

make test

Depending upon which third-party software you have installed, the result of running the
unitTest should look something like (we have included the third-party solver LINDO in
the test results below; it is not part of the default build):

13

HERE ARE THE UNIT TEST RESULTS:

Solved problem avion2.osil with Ipopt
Solved problem HS071.osil with Ipopt
Solved problem rosenbrockmod.osil with Ipopt
Solved problem parincQuadratic.osil with Ipopt
Solved problem parincLinear.osil with Ipopt
Solved problem callBack.osil with Ipopt
Solved problem callBackRowMajor.osil with Ipopt
Solved problem parincLinear.osil with Clp
Solved problem p0033.osil with Cbc
Solved problem p0033.osil with SYMPHONY
Solved problem parincLinear.osil with DyLP
Solved problem volumeTest.osil with Vol
Solved problem p0033.osil with GLPK
Solved problem lindoapiaddins.osil with Lindo
Solved problem rosenbrockmod.osil with Lindo
Solved problem parincQuadratic.osil with Lindo
Solved problem wayneQuadratic.osil with Lindo
Test the MPS -> OSiL converter on parinc.mps using Cbc
Test the AMPL nl -> OSiL converter on hs71.nl using LINDO
Test a problem written in b64 and then converted to OSInstance
Successful test of OSiL parser on problem parincLinear.osil
Successful test of OSrL parser on problem parincLinear.osrl
Successful test of prefix and postfix conversion routines on problem rosenbrockmod.osil
Successful test of all of the nonlinear operators on file testOperators.osil
Successful test of AD gradient and Hessian calculations on problem CppADTestLag.osil

All tests completed successfully

If you do not see

All tests completed successfully

then you have not passed the unitTest and hopefully some semi-intelligible error message
was given.

Step 5: Install the libraries and executables.

make install

This will install all of the libraries in the lib directory. In particular, the main OS library
libOS along with the libraries of the other COIN-OR projects that download with the
OS project will get installed in the lib directory. In addition the make install com-
mand will install four executable programs in the bin directory. One of these binaries is
OSSolverService which is the main OS project executable. This is described in Section 7.
In addition Clp, Cbc, Ipopt and SYMPHONY get installed in the bin directory. Necessary
header files are installed in the include directory. In this case, bin, lib and include
are all subdirectories of where ./configure is run. If the user wants these files installed
elsewhere, then configure should specify the prefix of these directories. That is,

./configure --prefix=prefixDirectory COIN_SKIP_PROJECTS="Ipopt Bonmin"

14

For example, running

./configure --prefix=/usr/local COIN_SKIP_PROJECTS="Ipopt Bonmin"

and then running make and make install will put the relevant files in

/usr/local/bin
/usr/local/include
/usr/local/lib

Run an Example! If make test works, proceed to Section 7 to run the key executable,
OSSolverService.

4.1.1 Building the OS Project on Mac OS X

When building OS on Mac OS X 10.5.x (Leopard) it may be necessary to add the following to the
configure line

ADD_CXXFLAGS="-mmacosx-version-min=10.4"
ADD_CFLAGS="-mmacosx-version-min=10.4"
ADD_FFLAGS="-mmacosx-version-min=10.4"
LDFLAGS="-flat_namespace"

Also, the Mac OS X operating system does not come configured with the gcc compiler. Users
wanting to build the OS project on the Mac should do the following:

• Install the Xcode developer tools. These are available on the install DVD that comes with
the machine or at the Apple developer site. See

http://developer.apple.com/technology/xcode.html

• Install a Fortran compiler. We have had good luck with the GNU gfortran compiler. Plat-
form specific binaries for the various Mac platforms (Leopard and Tiger, Intel and Power PC)
are obtained at

http://hpc.sourceforge.net/

We followed the instructions and installed the binary using the command

sudo tar -xvf gcc-bin.tar -C /

We have also successfully used the fink project, see
http://www.finkproject.org/
to download and build gcc/g++/gfortran compilers from source code.

15

4.2 Building the OS Project on Windows

There are a number of options open to Windows users. First, if you wish to work with source code
we recommend downloading the svn client, TortoiseSVN. (See section 3.2.1.) With TortoiseSVN
in the Windows Explorer connect to the directory (e.g., COIN-OS) where you wish to put the OS
code. Right-click on the directory and select SVN Checkout. In the textbox, URL of Repository
give the URL for the version of the OS project you wish to checkout, e.g.,

https://projects.coin-or.org/svn/OS/stable/1.1.

Also, if you plan to build any of the projects contained in ThirdParty (e.g., ASL) we recommend
using wget. (See section 3.2.2.)

4.2.1 Microsoft Visual Studio (MSVS)

Microsoft Visual Studio solution and project files are provided for users of Windows and the Mi-
crosoft Visual Studio IDE. We currently support Versions 8 and 9. These versions are also sometimes
referred to by their (approximate) release dates, which is 2008 for Version 9 and 2005 for Version 8.
In addition there is a free version of the Visual Studio IDE C++ compiler, called Visual C++
Express Edition.

The following steps are necessary to build the OS project using the Microsoft Visual Studio
IDE.

Step 0. If the C++ compiler cl is already installed, go to to Step 2.

Step 1. Download and install the Visual C++ Express Edition, which is available for free at Mi-
crosoft’s web site. Version 9 is at http://www.microsoft.com/express/download/#webInstall.
This download contains the Microsoft cl C++ compiler along with necessary libraries.

Step 2. The part of the OS library responsible for communication with a remote server depends
on some underlying Windows socket header files and libraries. These files are part of the
commercial for-pay version, but are not included in the Visual C++ Express download. If
you have the Express Edition, it is necessary to also download and install the Windows
Platform SDK, which can be found at

http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en.

Step 3. In the COIN-OR/OS directory you will find the folder MSVisualStudio, which contains root
directories organized by the version of Visual Studio. We currently provide solution files
for Version 8 and Version 9. Each contains the file OS.sln and project files for building the
unitTest (OSTest.vcproj), the OSSolverService (OSSolverService.vcproj) and the OS
library (libOS.vcproj). The Microsoft Visual Studio files are automatically downloaded
with an SVN checkout. They are also contained in the tarballs (see Section 3.4).

Open the solution file or the individual project files (for instance by double clicking on
them in Windows Explorer) and select Build from the menu bar. If you have ASL (see
Section 4.5.1) downloaded, you can also build the OSAmplClient (see Section 10.1 by
modifying the Configuration Manager and selecting the two projects libOSnl2OSiL and
OSAmplClient, which by default are not included in the build.

Step 4. Run the unitTest. Connect to the directory COIN-OR/OS/test and run either the release
or debug version of the unitTest executable.

16

The solution file OS.sln contains three configurations, Debug and Release, both of which are
configured without Ipopt, as well as Release-Plus, which can be used to add Ipopt, Bonmin and
ASL (see section 4.5.1). In order to build this section successfully, the user must first download
and process additional third-party software as explained in sections 4.4.2 and 4.5.1.

4.2.2 Visual Studio Examples Distribution

Many users will not be interested in actually building the OS project from source code. At the link
https://projects.coin-or.org/CoinBinary/browser/binary/OS are binaries for using the OS
project. There are also Visual Studio project files for building applications that use the precompiled
OS libraries. In particular, download and unpack the file

OS-version_number-VisualStudio.zip

This zip archive contains a bin directory that holds the executable OSSolverService.exe. The
OSSolverService.exe is configured to run, out-of-the-box, the following solvers.

• Bonmin

• Clp

• Cbc

• DyLP

• Ipopt

• SYMPHONY

The libraries necessary to run these solvers are included in the download. No additional soft-
ware is necessary to solve models with these solvers! See Section 7 for details on how to use the
OSSolverService.exe executable for solving optimization problems.

The bin directory also contains the OSAmplClient.exe executable. If the user has a Windows
version of AMPL, then AMPL can be used to invoke all of the solvers mentioned above through
the OSAmplClient. For details see Section 10.1.

This zip archive also contains a lib directory that holds libraries for a number of COIN-OR
projects, including OS. It is possible to build customized optimization applications that link against
these libraries. We provide several examples that use various aspects of the OS project in order to
build customized applications. The Visual Studio example solution file is named osExamples.sln
and it is in the folder MSVisualStudioOSExamples. The solution file osExamples.sln currently
contains five projects (examples).

addCuts – this project illustrates the use of the Cbc and Cgl projects. A file (p0033.osil)
in OSiL format is used to create an OSInstance object. The linear programming relaxation is
solved. Then, Gomory, simple rounding, and knapsack cuts are added using Cgl. The model
is then optimized using Cbc.

algorithmicDiff – this project illustrates the calculate() method calls in the OSInstance
class. These calculate() calls are used to calculate function values, gradients, and Hessians.
These methods make underlying calls to the CppAD project.

17

instanceGenerator – this project shows how to build an instance using the OSInstance
class. A number of key nonlinear operators are illustrated.

osRemoteTest – this project shows how to call a remote solver using Web Services. Im-
portant: This project links to wsock32.lib, which is not part of the Visual Studio Express
Package. It is necessary to also download and install the Windows Platform SDK, which can
be found at

http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en.
Refer to Section 4.2.1.

osTestCode – this provide yet another illustration of how to build an optimization instance
using the OSInstance class. In addition, this project shows how to build solver objects and
use the solver object to optimize the problem. In this particular case, the Clp solver is used.

In addition, in the zip archive there is a folder MSVisualStudioTemplate. This project contains
a simple Hello World demo in the code demoCode.cpp. However, the solution file is configured to
link with all of the libraries in the lib directory and points to all of the header files in the include
directory. The user can simply replace what is currently in demoCode.cpp with his or her own code.

4.2.3 Cygwin

Cygwin provides a Unix emulation environment for Windows. It comes with numerous tools and
libraries including the gcc compilers. See www.cygwin.com. Cygwin can be used with the Gnu
Compiler Collection (gcc) or with the Microsoft cl compiler.

Using Cygwin with gcc: With Cygwin and the corresponding gcc compiler the OS project
is built exactly as described in Section 4.1. If you previously downloaded Cygwin with gnome make
version 3.81-1, you must obtain a fixed 3.81 version from http://www.cmake.org/files/cygwin/make.exe.
(See also the discussion at http://projects.coin-or.org/BuildTools/wiki/current-issues.)

Using Cygwin with Microsoft cl: Users who are extremely adventuresome and have an
abundance of free time on their hands may wish to use Cygwin with the Microsoft cl compiler to
build the OS project. The following steps have led to a successful build.

Step 1: Download Cygwin from http://www.cygwin.com/setup.exe and install.

Step 2: Download Visual Studio Express C++ at

http://www.microsoft.com/express/download/#webInstall.

Step 3: The part of the OS library responsible for communication with a remote server depends
on some underlying Windows socket header files and libraries. Therefore it is necessary to
also download and install the Windows Platform SDK. Download the necessary files at

http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en

and install.

Step 4: Set the Cygwin search path configuration. This is important. This step is necessary to
insure that Cygwin looks for compilers, linkers, etc in the correct order. The right order
of directories is: MSVS command directories, Cygwin command directories, and finally
Windows command directories. This is illustrated below.

18

• First, Cygwin should look in the Microsoft Visual Studio directories. If a standard
Visual Studio install is done, the following should be part of the Cygwin search path.

.
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/Common7/IDE
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/VC/bin
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/Common7/Tools
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/SDK/v2.0/Bin
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/VC/vcpackages
:/cygdrive/c/WINDOWS/Microsoft.NET/Framework/v2.0.50727

• Second, Cygwin should next search its command directories. The following is typical
of a standard install.

/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin

• Third, Cygwin should search the Windows specific command directories. The follow-
ing is typical.
:/cygdrive/c/WINDOWS/system32:/cygdrive/c/WINDOWS

:/cygdrive/c/WINDOWS/System32/Wbem:/cygdrive/c/Program Files/ATI Technologies/ATI Control Panel

:/cygdrive/c/Program Files/Common Files/Roxio Shared/DLLShared/

:/cygdrive/c/Program Files/QuickTime/QTSystem/:/cygdrive/c/Program Files/Microsoft SQL Server/90/Tools/binn/

:/cygdrive/c/Program Files/Microsoft Platform SDKfor Windows Server 2003 R2/Bin/

:/cygdrive/c/Program Files/Microsoft Platform SDK for Windows Server 2003 R2/Bin/WinNT/

:/cygdrive/c/Program Files/SSH Communications Security/SSH Secure Shell

:/cygdrive/c/Program Files/Microsoft Platform SDK for Windows Server 2003 R2/Bin/

:/cygdrive/c/Program Files/Microsoft Platform SDK for Windows Server 2003 R2/Bin/WinNT/

:/cygdrive/d/SSH

Open the Cygwin shell and check the value of $PATH. If directories don’t appear in an order
described above, then the $PATH value needs to be reset.

library.

Step 5: Build the OS project (or any COIN-OR project). If you wish to avoid the FORTRAN
related issues you should build without Ipopt or Bonmin. Issue the following command in
the project root.

./configure COIN_SKIP_PROJECTS="Ipopt Bonmin" --enable-doscompile=msvc

If you wish to build with Ipopt or Bonmin, then FORTRAN is required — and Visual
Studio does not ship with a FORTRAN compiler. The following is a work-around. (See
also section 4.4.)

Step a. Obtain one of the Harwell Subroutine Library (HSL) routines ma27ad.f or MA57ad.f.
See http://www.cse.scitech.ac.uk/nag/hsl/. Put the Harwell code in the di-
rectory ThirdParty/HSL. (Note the case in the file names, which is relevant in a
unix-like environment.)

Step b. Follow the instructions for downloading and installing the f2c compiler from Netlib.
The installation instructions for this are in the INSTALL file in

BuildTools/compile_f2c

Step c. Run the configure script

./configure --enable-doscompile=msvc

19

4.2.4 MinGW

MinGW (Minimalist GNU for Windows) is a set of runtime headers to be used with the GNU gcc
compilers for Windows. See www.mingw.org. As with Cygwin, the OS project is built exactly as
described in Section 4.1.

The MinGW installation includes the gcc compiler, which can interact negatively with the
Microsoft cl compiler. For that reason it is advisable to download the even smaller installation
MSYS (see next section) if you intend to build any software with the Microsoft Visual Studio suite.

4.2.5 MSYS

MSYS (Minimal SYStem) provides an easy way to use the COIN-OS build system with compil-
ers/linkers of your own choice, such as the Microsoft command line C++ cl compiler. MSYS is
intended as an alternative to the DOS command window. It is an application that gives the user
a Bourne shell that can run configure scripts and Makefiles. No compilers come with MSYS. In
the Cygwin, MinGW, and MSYS hierarchy, it is at the bottom of the food chain in terms of tools
provided. However, it is very easy to use and build the OS project with MSYS. In this discussion
we assume that the user has downloaded the OS source code (most likely with TortoiseSVN) and
that the cl compiler is present. The project is built using the following steps.

Note:

• If you wish to use the third-party software with MSYS it is best to get wget. See section 3.2.2.

• Do not put any imbedded blanks in the path to the OS project.

Execute the following steps to use the Microsoft C++ cl compiler with MSYS.

Step 1. Download MSYS at

http://downloads.sourceforge.net/mingw/MSYS-1.0.11.exe?modtime=1079444447&big_mirror=1

and install. Double clicking on the MSYS icon will open a Bourne shell window.

Step 2. Download Visual Studio Express C++ at

http://www.microsoft.com/express/download/#webInstall

and install.

Step 3. The part of the OS library responsible for communication with a remote server depends
on some underlying Windows socket header files and libraries. Therefore it is necessary to
also download and install the Windows Platform SDK. Download the necessary files at

http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en

and install.

Step 4. Set the Visual Studio environment variables so that paths to the necessary libraries and
header files are recognized. Assuming that a standard installation was done for the Visual
Studio Express and the Windows Platform SDK set the variables as follows:

PATH=C:\Program Files\Microsoft Visual Studio 8\Common7\IDE;
C:\Program Files\Microsoft Visual Studio 8\VC\BIN;
C:\Program Files\Microsoft Visual Studio 8\Common7\Tools;

20

C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\bin;
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;
C:\Program Files\Microsoft Visual Studio 8\VC\VCPackages

INCLUDE=C:\Program Files\Microsoft Visual Studio 8\VC\INCLUDE;
C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Include

LIB = C:\Program Files\Microsoft Visual Studio 8\VC\LIB;
C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\lib;
C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Lib

The environment variables can be set using the System Properties in the Windows
Control Panel.

Step 5. In the MSYS command window connect to the root of the OS project and run the configure
script followed by make as described in Section 4.1.

Run an Example! If make test works, proceed to Section 7 to run the key executable,
OSSolverService.

Microsoft Windows users who wish to obtain MSYS for building the OS project can download
the appropriate software at http://sourceforge.net/project/showfiles.php?group_id=2435.
The user may find this Web site confusing. It is only necessary to download what is referred to as
the MSYS Base System. As of this writing the most recent version is MSYS-1.0.11. This file is
listed as bash-3.1-MSYS-1.0.11 and the binary download is
http://downloads.sourceforge.net/mingw/bash-3.1-MSYS-1.0.11-1.tar.bz2?modtime=1195140582&big_mirror=1

This will provide the necessary Bourne shell for executing the configure scripts. Users who want
to edit the source code in the parsers described in Section 11.4 will need the additional tools flex
and bison as described in section 3.2.6.

4.3 VPATH Installations

It is possible to build the OS project in a directory that is different from the directory where the
source code is present. This is called a VPATH compilation. A VPATH compilation is very useful if
you wish to build several versions (e.g., debug and non-debug versions, or versions with availability
of various combinations of third-party software) of the OS project from a single copy of the source
code.

For example, assume you wish to build a debug version of the OS project in the directory
vpath-debug and that ../COIN-OS is the path to the root of the OS project distribution. Create
the vpath-debug directory, leaving it empty for the moment. From the vpath-debug directory,
run configure as follows:

../COIN-OS/configure --enable-debug

After you run configure, the OS distribution directory structure (see Figure 1) will be mirrored
in the vpath-debug directory, and all of the necessary Makefiles will be copied there. Next from
the vpath-debug directory execute

make

21

and all of the libraries created will be in their respective directories inside vpath-debug and not
../COIN-OS.

Notes:

1. If you have already run the configure script inside the ../COIN-OS directory, you cannot do
a VPATH build until you have run

make distclean

in the ../COIN-OS directory.

2. Note also that configure automatically detects the presence of third-party software and
prepares the configuration and make files accordingly. Once you have downloaded, e.g., Blas,
you must specify

configure COIN_SKIP_PROJECTS="ThirdParty/Blas"

if you want to recreate the default configuration.

3. If you work with the trunk version of OS, it is possible that files are added to and removed
from the distribution due to development activities. These files are not recognized properly
by the system unless it is reconfigured by running

make distclean

followed by

./configure

4.4 Using Ipopt and Bonmin

Ipopt and Bonmin are COIN-OR projects (projects.coin-or.org/Ipopt and projects.coin-or.
org/Bonmin) and are included in the download with the OS project. However, unlike the other
COIN-OR projects that download with OS, these two projects require third-party software that is
based on FORTRAN and is not part of the default distribution. Care must therefore be taken if
you wish to build OS with the Ipopt or Bonmin solver.

You can exclude Ipopt and Bonmin from the OS build by adding the option

COIN_SKIP_PROJECTS="Ipopt Bonmin"

to the configure script.

4.4.1 Building Ipopt and Bonmin in Unix or a Unix-like environment

If you are working in Unix or one of the Unix-like environments described in section 4.2, you can
proceed as follows. To get the necessary third-party software, first connect into the ThirdParty
directory. Then execute the following commands:

22

$ cd Blas
$./get.Blas
$ cd ../Lapack
$./get.Lapack
$ cd ../Mumps
$./get.Mumps

Alternatively, you can connect into the project root COIN-OS and execute the script get.AllThirdParty.
This will also get the AMPL ASL libraries (see section 4.5.1).

What you do next depends upon whether or not a FORTRAN compiler is present, and if so,
which version of FORTRAN. There are several options. See also

http://www.coin-or.org/Ipopt/documentation/node13.html

Option 1. If you have a Fortran 95 compiler that recognizes embedded preprocessor statements
(such as gfortran — see http://gcc.gnu.org/fortran/ or g95 — see http://www.g95.org),
you can simply run the configure script and the FORTRAN compiler will be detected
and the Ipopt and Bonmin projects will be built.

Option 2. If you have a Fortran 95 compiler that cannot deal with the preprocessor statements
embedded in the Mumps code, you may have to resort to manual edits before you can
build Ipopt — or see Option 3.

Option 3. If you have a FORTRAN 77 compiler, you can replace Mumps by one of the Harwell
Subroutine Library (HSL) routines ma27ad.f or MA57ad.f. (Unix is case-sensitive, so
note the file names carefully.) See

http://www.cse.scitech.ac.uk/nag/hsl/.

You must obtain the Harwell code and put it in the directory _./ThirdParty/HSL. Now
run the configure script as described in Section 4.1.

Note that the Harwell Subroutine Library is not governed by the Common Public Li-
cense. It is the user’s responsibility to ensure adherence to appropriate copyright and
distribution agreements.

Option 4. If you do not have a FORTRAN compiler and do not wish to obtain one, you can use
the f2c translator from Netlib to translate HSL to C. The installation instructions for
f2c are in the INSTALL file in

BuildTools/compile_f2c

Two important points:

• Option 4 also requires that one of the Harwell Subroutine Library (HSL) routines ma27ad.f
or MA57ad.f be present in the HSL directory.

• If you run configure with the --enable-debug option on Windows, then when building the
vcf2c.lib, use the command line

CFLAGS = -MTd -DUSE_CLOCK -DMSDOS -DNO_ONEXIT

23

4.4.2 Ipopt and Microsoft Visual Studio

Users of Microsoft Visual Studio without access to a unix-like environment (Cygwin, MinGW or
MSYS) will have to prepare the third-party code after downloading. Since some of this code is
written in Fortran, you also need to obtain the f2c Fortran to C translator. The steps are as
follows.

1. From netlib, download the file

http://www.netlib.org/f2c/libf2c.zip

and extract it in

Ipopt\MSVisualStudio\v8

which is a folder in the root directory (see figure 1). Make sure that the files are extracted
into the subfolder libf2c directly, instead of the subfolder libf2c\libf2c. One file created
in this process should be

Ipopt\MSVisualStudio\v8\libf2c\makefile.vc

2. Open a Command Window (DOS prompt) and go into the directory

Ipopt\MSVisualStudio\v8\libf2c\

Here, type

nmake -f makefile.vc all

(If you see a problem related to the file comptry.bat, edit the file makefile.vc and just
delete the line containing the one occurrence of ’comptry.bat’.)

Another possible error is that the system cannot find the header file unistd.h. If this occurs,
add

-DNO_ISATTY

at the end of line 9 of makefile.vc.

3. Download the executable f2c.exe from http://www.netlib.org/f2c/mswin/ and put it
somewhere into your path (e.g., C:\Windows)

4. Download the source code for Blas (from ftp://www.netlib.org/blas/blas.tgz), Lapack
(from ftp://www.netlib.org/lapack/lapack-lite-3.1.0.tgz), and HSL (see previous
section). Install each download into the appropriate subdirectory in ThirdParty.

5. In a DOS window, go to the directory

Ipopt\MSVisualStudio\v8\libCoinBlas

24

and run the batch file

convert_blas.bat

This runs the f2c translator and generates new C files.

6. Repeat step 5 in the directories

Ipopt\MSVisualStudio\v8\libCoinLapack

Ipopt\MSVisualStudio\v8\libCoinHSL

using the convert_*.bat files you find there.

7. Download the ASL code and follow the steps in section 4.5.1.

8. Now you can open the solution file

OS\MSVisualStudio\v8\OS.sln

and select the configuration Release-Plus. Open the Configuration Manager (in the Build
menu) and set all projects to “Build” (by clicking the check-box next to the project name).
Then select Build (or press F7). This will build all the necessary libraries for the OSSolverService
executable with the Ipopt solver. The solution file for the Bonmin solver will be available in
a future release.

A unitTest, the OSAmplClient (see section 10.1) and all the utility programs in sections 14
and 9 are included in the build, as well.

4.5 Other Third-Party Software

This section deals with other third-party software not available for download at www.coin-or.org.
The OS project distribution includes the COIN-OR projects Bonmin, Cbc, Clp, Cgl, CoinUtils,
CppAD, DyLP, Ipopt, Osi, SYMPHONY, and Vol. (For details on any of these projects see the COIN-
OR web site at http://www.coin-or.org/projects/.) However, the project is also designed
to work with several other open source and commercial software projects. In the OS distribution
directory structure (see Figure 1), there is a ThirdParty directory, which does not contain anything
other than get.xxxx scripts and other utilities. The source code for any of these packages must
be downloaded separately using the get.xxxx scripts, as configure will not build these projects
without the source code being present. After the download, configure will recognize the presence
of these files and will configure the makefiles accordingly.

If the user wants to exclude these projects from the build after they have been downloaded and
detected, a new configure is required with instructions to skip them. For instance, if the user
experiences problems with the Fortran compiler and its interaction with the system, the following
command can be used to skip all projects that use Fortran code:

configure COIN_SKIP_PROJECTS="Ipopt Bonmin ThirdParty/Blas ThirdParty/Lapack \
ThirdParty/Mumps"

25

In the inc subdirectory of the OS directory, there is a header file, config_os.h that defines the
values of a number of

COIN_HAS_XXXXX

variables.
Many of the other header files contain #include statements inside #ifdef statements. For

example,

#ifdef COIN_HAS_LINDO
#include "LindoSolver.h"
#endif
#ifdef COIN_HAS_GLPK
#include <OsiGlpkSolverInterface.hpp>
#endif

If the project is configured with the simple ./configure command given in Step 2 on page 13
with no arguments, then in the config_os.h header file the variables associated with the third-
party software described in this subsection will be undefined. For example:

/* Define to 1 if the Cplex package is used */
/* #undef COIN_HAS_CPX */

unlike the configured COIN-OR projects that appear as

/* Define to 1 if the Clp package is used */
#define COIN_HAS_CLP 1

In the following subsections we describe how to incorporate various third-party packages into the
OS project and see to it that the

COIN_HAS_XXXXX

variable is defined in config_os.h.

Make sure to run configure after you have downloaded the required source code, in order to
modify the makefiles appropriately. It is important to note that even though there are multiple
files named configure in various subdirectories, you should only ever run the master configure in
the distribution root directory, possibly accessed from a VPATH as in Section 4.3. It sets important
global variables and will call all other necessary configure files in turn. You may also wish to view
http://projects.coin-or.org/BuildTools/wiki/user-configure#CommandLineArgumentsforconfigure

for more information on command line arguments that are illustrated in the subsections below.

4.5.1 AMPL Solver Library (ASL)

The OS library contains a class, OSnl2osil (see Section 11.3.2), and the program OSAmplClient
(see Section 10.1) that require the use of the AMPL Solver Library (ASL). See http://netlib.sandia.gov/ampl/
and http://www.ampl.com. Users with a Unix system should locate the ASL folder that is part
of the distribution. The ASL folder is in the ThirdParty folder which is in the distribution root
folder. Locate and execute the get.ASL script. Do this prior to running the configure script. The
configure script will then build the correct ASL library.

Microsoft Visual Studio users will have to build the ASL library separately and then link it
with the OS library in the OS project file. The necessary source files are at

26

http://netlib.sandia.gov/cgi-bin/netlib/netlibfiles.tar?filename=netlib/ampl/solvers
After unpacking the distribution you will have to create the file ThirdParty/ASL/details.c

by hand, as follows: Copy the file details.c0 to details.c and replace the line

char sysdetails_ASL[] = "System_details";

by

char sysdetails_ASL[] = "MS VC++ n.0";

where n is the version number of the cl compiler on your system (most likely 7, 8 or 9).
To avoid linker errors in MSVS, you may have to edit the file fpinitmt.c. Specifically, if

you see the error “multiply defined object ˙matherr”, you must hide the definition of _matherr in
fpinitmt.c and comment out lines 212–225 which read

matherr_rettype
matherr(struct _exception *e)
{
switch(e->type) {

case _DOMAIN:
case _SING:

errno = set_errno(EDOM);
break;

case _TLOSS:
case _OVERFLOW:

errno = set_errno(ERANGE);
}

return 0;
}

Then you must build the source code with the utility nmake which should be part of the Visual
Studio distribution. (This can be done in a Command Window.) The appropriate command is

nmake -f makefile.vc

This produces the library file amplsolv.lib, which is placed in the subfolder ThirdParty\ASL\solvers.
Before you can use the Release-Plus configuration in our solution file OS.sln, you must also

prepare the source for the solver Ipopt (see section 4.4.2). If you want to add other third-party
software or include debug information, you may have to modify (or copy) this configuration and
tailor it to your needs.

4.5.2 GLPK

GLPK is a an open-source linear and integer-programming solver from the GNU organization. See
http://www.gnu.org/software/glpk/. In order to use GLPK with OS, either execute get.AllThirdParty
(see Section 4.4) or connect to ThirdParty/Glpk and execute get.Glpk. Once the source code has
been downloaded, run configure, followed by a make, as explained in Section 4.1 or Section 4.3.

Users on MSVS can download the source by anonymous ftp from

ftp://ftp.gnu.org/gnu/glpk/glpk-version_number.tar.gz

At the time of this writing, the most up-to-date version is 4.32, which can be found at
ftp://ftp.gnu.org/gnu/glpk/glpk-4.32.tar.gz

27

4.5.3 Cplex

Cplex is a linear, integer, and quadratic solver. See http://www.ilog.com/products/cplex/.
Cplex does not provide source code and you can only download the platform dependent binaries.
After installing the binaries and include files in an appropriate directory, run configure to point
to the include and library directory. An example is given below:

configure --with-cplex-lib="-L$(CPLEXDIR)/lib/$(SYSTEM)/$(LIBFORMAT) $(CPLEX_LIBS)"
--with-cplex-incdir= $(CPLEXDIR)/include

You may also need the following environment variables (if they are not already set). The
following are values we used in a working implementation.

SYSTEM =i86_linux2_glibc2.3_gcc3.2
LIBFORMAT =static_pic_mt
CPLEXDIR =/usr/local/ilog/cplex81/include/ilcplex
CPLEXLIBPATH= -L$(CPLEXDIR)/lib/$(SYSTEM)/$(LIBFORMAT)
CPLEXINCDIR = $(CPLEXDIR)/include
CPLEX_LIBS=-lcplex -lilocplex -lm -lpthread
ILOG_HOME=/usr/local/ilog/cplex81/bin/i86_linux2_glibc2.3_gcc3.2
ILOG_LICENSE_FILE=/usr/local/ilog/ilm/access.ilm
PATH=***:/usr/local/ilog/cplex81/bin/i86_linux2_glibc2.3_gcc3.2:***
CLASSPATH=:/usr/local/ilog/cplex81/bin/i86_linux2_glibc2.3_gcc3.2:

4.5.4 LINDO

LINDO is a commercial linear, integer, and nonlinear solver. See www.lindo.com. LINDO does not
provide source code and you can only download the platform dependent binaries. After installing
the binaries and include files in an appropriate directory, run configure to point to the include
and library directory. An example is given below:

configure --with-lindo-incdir=/home/kmartin/files/code/lindo/linux/include
--with-lindo-lib="-L/home/kmartin/files/code/lindo/linux/lib -llindo -lmosek"

4.5.5 MATLAB

Install MATLAB on the client machine and follow the instruction in Section 10.3.

4.5.6 Library Paths

After running configure as described above, on Unix systems, it will be necessary to set the
environment variables LD_LIBRARY_PATH or DYLD_LIBRARY_PATH (on Mac OS X) to point to the
location of the installed third-party libraries in the case that the libraries are dynamic and not
static libraries.

28

4.6 Bug Reporting

Bug reporting is done through the project Trac page. This is at

http://projects.coin-or.org/OS

To report a bug, you must be a registered user. For instructions on how to register, go to

http://www.coin-or.org/usingTrac.html

After registering, log in and then file a trouble ticket by going to

http://projects.coin-or.org/OS/newticket

4.7 Documentation

If you have Doxygen (www.doxygen.org) available (the executable doxygen should be in the path
command) then executing

make doxydoc

in the project root directory will result in the Doxygen documentation being generated and stored
in the doxydoc folder in the project root.

In order to view the documentation, open a browser and open the file

projectroot/doxydoc/html/index.html

By default, running Doxygen will generate documentation for only the OS project. Documen-
tation will not be generated for the other COIN-OR projects in the project root. In the doxydoc
folder is a configuration file doxygen.conf. This configuration file contains the EXCLUDE parameter

EXCLUDE = Bonmin \
Cbc\
Cgl \
Clp \
CoinUtils \
cppad \
SYMPHONY \
Vol \
DyLP \
ThirdParty \
Osi \
include

This file can be edited, and any project for which documentation is desired, can be deleted from
the EXCLUDE list.

4.8 Platforms

The build process described in Section 4.1 has been tested on Linux, Mac OS X, and on Windows
using MinGW/MSYS and Cygwin. The gcc/g++ and Microsoft cl compiler have been tested.
A number of solvers have also been tested with the OS library. For a list of tested solvers and
platforms see Table 1. More detail on the platforms listed in Table 1 is given in Table 2. For a list
of other platforms testing the OS project see

https://projects.coin-or.org/TestTools/wiki/NightlyBuildInAction.

29

Table 1: Tested Platforms for Solvers

Mac Linux Cyg-gcc Msys-cl MinGW-gcc MSVS
Bonmin x x x x x
Cbc x x x x x x
Cgl x x x x x x
Clp x x x x x x
Cplex x
DyLP x x x x x x
Glpk x x x x x
Ipopt x x x x x x
Lindo x x x x
MATLAB x
OSAmplClient x x x x
SYMPHONY x x x x x x
Vol x x x x x x

Table 2: Platform Description

Operating System Compiler Hardware
Mac Mac OS X 10.4.9 gcc 4.0.1 Power PC
Mac Mac OS X 10.4.10 gcc 4.0.1 Intel
Linux Ubuntu 7.10 gcc 4.1.2 Dell Intel 32 bit chip
Cyg-gcc Windows 2003 Server gcc 4.2.2 Dell Intel 32 bit chip
Msys-cl Windows XP Visual Studio 8 and 9 Dell Intel 32 bit chip
MinGW-gcc Windows XP gcc 3.4.2 Dell Intel 32 bit chip
MSVS Windows XP Visual Studio 8 and 9 Dell Intel 32 bit chip

30

5 The OS Project Components

The directories in the project root are outlined in Figure 1.
If you download the OS package, you get these additional COIN-OR projects. The links to the

project home pages are provided below and give more information on these projects.

• BuildTools - http://projects.coin-or.org/BuildTools

• Cbc - http://projects.coin-or.org/Cbc

• Cgl - http://projects.coin-or.org/Cgl

• Clp - http://projects.coin-or.org/Clp

• CoinUtils - http://projects.coin-or.org/CoinUtils

• CppAD - http://projects.coin-or.org/CppAD

• DyLP - http://projects.coin-or.org/DyLP

• Ipopt - http://projects.coin-or.org/Ipopt

• Osi - http://projects.coin-or.org/Osi

• SYMPHONY - http://projects.coin-or.org/SYMPHONY

• Vol - http://projects.coin-or.org/Vol

The following directories are also in the project root.

• bin - after executing make install the bin directory will contain OSSolverService, clp,
cbc, cbc-generic and symphony.

• Data - this directory contains numerous test problems that are used by the unitTests of the
COIN-OR projects just mentioned.

• doxydoc - is a folder for documentation.

• include - is a directory for header files. If the user wishes to write code to link against any
of the libraries in the lib directory, it may be necessary to include these header files.

• lib - is a directory of libraries. After running make install the OS library along with all
other COIN-OR libraries are installed in lib.

• ThirdParty - is a directory for third-party software. For example, if AMPL related software
such as OSAmplClient is used, then certain AMPL libraries need to be present. This should
go into the ASL directory in ThirdParty.

The directories in the OS directory are outlined in Figure 2. The OS directories include the
following:

• applications - is a directory that holds the OSAmplClient and OSFileUpload applications
in subdirectories called, respectively, amplClient and fileUpload. See Section 10.1 and 14.

31

Figure 2: The OS directory.

32

• data - is a directory that holds test problems. These test problems are used by the unitTest
of the OS Project. Many of these files are also used to illustrate how the OSSolverService
works. See Section 7.

• doc - is the directory with documentation, including this OS User’s Manual.

• examples - is a directory with code examples that illustrate various aspects of the OS project.
These are described in Section 9.

• inc - is the directory with the config˙os.h file which has information about which projects are
included in the distribution.

• m4 - is a directory that contains macro scripts written in the m4 language for auto configura-
tion.

• MSVisualStudio - is a directory that contains folders for the solution files for the Microsoft
Visual Studio IDE. The subdirectories are organized by the version of Visual Studio. We
currently provide solution files for versions 8 and 9.

• schemas - is the directory that contains the W3C XSD (see www.w3.org) schemas that are
behind the OS standards. These are described in more detail in Section 6.

• src - is the directory with all of the source code for the OS Library and for the executable
OSSolverService. The OS Library components are described in Section 11.

• stylesheets - this directory contains the XSLT stylesheet that is used to transform the
solution instance in OSrL format into HTML so that it can be displayed in a browser.

• test - this directory contains the unitTest.

• wsdl - is a directory of WSDL (Web Services Discovery Language) files. These are used to
specify the inputs and outputs for the methods and other invocation details provided by a Web
service. The most relevant file for the current version of the OS project is OShL.wsdl. This
describes the set of inputs and outputs for the methods implemented in the OSSolverService.
See Section 7.

6 OS Protocols

The objective of OS is to provide a set of standards for representing optimization instances, results,
solver options, and communication between clients and solvers in a distributed environment using
Web Services. These standards are specified by W3C XSD schemas. The schemas for the OS
project are contained in the schemas folder under the OS root. There are numerous schemas in this
directory that are part of the OS standard. For a full description of all the schemas see Ma [4]. We
briefly discuss the standards most relevant to the current version of the OS project.

6.1 OSiL (Optimization Services instance Language)

OSiL is an XML-based language for representing instances of large-scale optimization problems
including linear programs, mixed-integer programs, quadratic programs, and very general nonlinear
programs.

33

OSiL stores optimization problem instances as XML files. Consider the following problem
instance, which is a modification of an example of Rosenbrock [5]:

Minimize (1− x0)2 + 100(x1 − x2
0)

2 + 9x1 (1)

s.t. x0 + 10.5x2
0 + 11.7x2

1 + 3x0x1 ≤ 25 (2)
ln(x0x1) + 7.5x0 + 5.25x1 ≥ 10 (3)

x0, x1 ≥ 0 (4)

There are two continuous variables, x0 and x1, in this instance, each with a lower bound of 0.
Figure 3 shows how we represent this information in an XML-based OSiL file. Like all XML files,
this is a text file that contains both markup and data. In this case there are two types of markup,
elements (or tags) and attributes that describe the elements. Specifically, there are a <variables>
element and two <var> elements. Each <var> element has attributes lb, name, and type that
describe properties of a decision variable: its lower bound, “name”, and domain type (continuous,
binary, general integer).

To be useful for communication between solvers and modeling languages, OSiL instance files
must conform to a standard. An XML-based representation standard is imposed through the
use of a W3C XML Schema. The W3C, or World Wide Web Consortium (www.w3.org), promotes
standards for the evolution of the web and for interoperability between web products. XML Schema
(www.w3.org/XML/Schema) is one such standard. A schema specifies the elements and attributes
that define a specific XML vocabulary. The W3C XML Schema is thus a schema for schemas; it
specifies the elements and attributes for a schema that in turn specifies elements and attributes for
an XML vocabulary such as OSiL. An XML file that conforms to a schema is called valid for that
schema.

By analogy to object-oriented programming, a schema is akin to a header file in C++ that
defines the members and methods in a class. Just as a class in C++ very explicitly describes
member and method names and properties, a schema explicitly describes element and attribute
names and properties.

<variables numberOfVariables="2">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>

</variables>

Figure 3: The <variables> element for the example (1)–(4).

<xs:complexType name="Variables">
<xs:sequence>

<xs:element name="var" type="Variable" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="numberOfVariables"

type="xs:positiveInteger" use="required"/>
</xs:complexType>

Figure 4: The Variables complexType in the OSiL schema.

34

Figure 4 is a piece of our schema for OSiL. In W3C XML Schema jargon, it defines a complex-
Type, whose purpose is to specify elements and attributes that are allowed to appear in a valid
XML instance file such as the one excerpted in Figure 3. In particular, Figure 4 defines the com-
plexType named Variables, which comprises an element named <var> and an attribute named
numberOfVariables. The numberOfVariables attribute is of a standard type positiveInteger,
whereas the <var> element is a user-defined complexType named Variable. Thus the complex-
Type Variables contains a sequence of <var> elements that are of complexType Variable. OSiL’s
schema must also provide a specification for the Variable complexType, which is shown in Figure 5.

In OSiL the linear part of the problem is stored in the <linearConstraintCoefficients>
element, which stores the coefficient matrix using three arrays as proposed in the earlier LPFML
schema [2]. There is a child element of <linearConstraintCoefficients> to represent each array:
<value> for an array of nonzero coefficients, <rowIdx> or <colIdx> for a corresponding array of
row indices or column indices, and <start> for an array that indicates where each row or column
begins in the previous two arrays.

The quadratic part of the problem is represented in Figure 7.
The nonlinear part of the problem is given in Figure 8.
The complete OSiL representation can be found in the Appendix (Section 15.1).

6.2 OSrL (Optimization Services result Language)

OSrL is an XML-based language for representing the solution of large-scale optimization problems
including linear programs, mixed-integer programs, quadratic programs, and very general nonlinear
programs. An example solution (for the problem given in (1)–(4)) in OSrL format is given below.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type = "text/xsl"
href = "/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OSX/OS/stylesheets/OSrL.xslt"?>

<osrl xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="os.optimizationservices.org

<xs:complexType name="Variable">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="init" type="xs:string" use="optional"/>
<xs:attribute name="type" use="optional" default="C">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="C"/>
<xs:enumeration value="B"/>
<xs:enumeration value="I"/>
<xs:enumeration value="S"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="lb" type="xs:double" use="optional" default="0"/>
<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>

</xs:complexType>

Figure 5: The Variable complexType in the OSiL schema.

35

<linearConstraintCoefficients numberOfValues="3">
<start>

<el>0</el><el>2</el><el>3</el>
</start>
<rowIdx>

<el>0</el><el>1</el><el>1</el>
</rowIdx>
<value>

<el>1.</el><el>7.5</el><el>5.25</el>
</value>

</linearConstraintCoefficients>

Figure 6: The <linearConstraintCoefficients> element for constraints (2) and (3).

<quadraticCoefficients numberOfQuadraticTerms="3">
<qTerm idx="0" idxOne="0" idxTwo="0" coef="10.5"/>
<qTerm idx="0" idxOne="1" idxTwo="1" coef="11.7"/>
<qTerm idx="0" idxOne="0" idxTwo="1" coef="3."/>

</quadraticCoefficients>

Figure 7: The <quadraticCoefficients> element for constraint (2).

http://www.optimizationservices.org/schemas/OSrL.xsd">
<resultHeader>

<generalStatus type="success"/>
<serviceName>Solved using a LINDO service</serviceName>
<instanceName>Modified Rosenbrock</instanceName>

</resultHeader>
<resultData>

<optimization numberOfSolutions="1" numberOfVariables="2" numberOfConstraints="2"
numberOfObjectives="1">
<solution objectiveIdx="-1">

<status type="optimal"/>
<variables>

<values>
<var idx="0">0.87243</var>
<var idx="1">0.741417</var>

</values>
<other name="reduced costs" description="the variable reduced costs">

<var idx="0">-4.06909e-08</var>
<var idx="1">0</var>

</other>
</variables>
<objectives>

<values>
<obj idx="-1">6.7279</obj>

</values>
</objectives>
<constraints>

36

<nl idx="-1">
<plus>

<power>
<minus>

<number value="1.0"/>
<variable coef="1.0" idx="0"/>

</minus>
<number value="2.0"/>

</power>
<times>

<power>
<minus>

<variable coef="1.0" idx="0"/>
<power>

<variable coef="1.0" idx="1"/>
<number value="2.0"/>

</power>
</minus>
<number value="2.0"/>

</power>
<number value="100"/>

</times>
</plus>

</nl>

Figure 8: The <nl> element for the nonlinear part of the objective (1).

<dualValues>
<con idx="0">0</con>
<con idx="1">0.766294</con>

</dualValues>
</constraints>

</solution>
</optimization>

6.3 OSoL (Optimization Services option Language)

OSoL is an XML-based language for representing options that get passed to an optimization solver
or a hosted optimization solver Web service. It contains both standard options for generic services
and extendable option tags for solver-specific directives. Several examples of files in OSoL format
are presented in Section 7.3.

6.4 OSnL (Optimization Services nonlinear Language)

The OSnL schema is imported by the OSiL schema and is used to represent the nonlinear part of an
optimization instance. This is explained in greater detail in Section 11.2.4. Also refer to Figure 8
for an illustration of elements from the OSnL standard. This figure represents the nonlinear part
of the objective in equation (1), that is,

(1− x0)2 + 100(x1 − x2
0)

2.

37

6.5 OSpL (Optimization Services process Language)

This is a standard for dynamic process information that is kept by the Optimization Services
registry. The string returned from the knock method is in the OSpL format. See the example given
in Section 7.3.5.

7 The OSSolverService

The OSSolverService is a command line executable designed to pass problem instances in either
OSiL, AMPL nl, or MPS format to solvers and get the optimization result back to be displayed
either to standard output or a specified browser. The OSSolverService can be used to invoke
a solver locally or on a remote server. It can work either synchronously or asynchronously. At
present six service methods are implemented, solve, send, retrieve, getJobID, knock and kill.
These methods are explained in more detail in section 7.3.

7.1 OSSolverService Input Parameters

At present, the OSSolverService takes the following parameters. The order of the parameters is
irrelevant. Not all the parameters are required. However, if the solve or send service methods
(see Section 7.3) are invoked a problem instance location must be specified.

-osil xxx.osil This is the name of the file that contains the optimization instance in OSiL
format. It is assumed that this file is available in a directory on the machine that is running
OSSolverService. If this option is not specified then the instance location must be specified
in the OSoL solver options file.

-osol xxx.osol This is the name of the file that contains the solver options. It is assumed
that this file is available in a directory on the machine that is running OSSolverService. It
is not necessary to specify this option.

-osrl xxx.osrl This is the name of the file that contains the solver solution. A valid file
path must be given on the machine that is running OSSolverService. It is not necessary to
specify this option. If this option is not specified then the solver solution is displayed to the
screen.

-serviceLocation url This is the URL of the solver service. It is not required, and if not
specified it is assumed that the problem is solved locally.

-serviceMethod methodName This is the method on the solver service to be invoked. The
options are solve, send, kill, knock, getJobID, and retrieve. The use of these options is
illustrated in the examples below. This option is not required, and the default value is solve.

-mps xxx.mps This is the name of the mps file if the problem instance is in mps for-
mat. It is assumed that this file is available in a directory on the machine that is running
OSSolverService. The default file format is OSiL so this option is not required.

-nl xxx.nl This is the name of the AMPL nl file if the problem instance is in AMPL nl
format. It is assumed that this file is available in a directory on the machine that is running
OSSolverService. The default file format is OSiL so this option is not required.

38

Table 3: Solver configurations

binaries UNIX build MSVS build
(Section 3.1) (Section 4.1) (Section 4.2)

Bonmin x x1 —
Cbc x x x
Clp x x x
DyLP x x —
Ipopt x x1 x1,2

SYMPHONY x x x
Vol x x x

Explanations:
1Requires third-party software to be downloaded
2Requires Fortran compiler (see Section 4.4)

-solver solverName Possible values of this parameter depend on the installation. The
default configurations can be read off from Table 3. Other solvers supported (if the necessary
libraries are present) are cplex (Cplex through COIN-OR Osi), glpk (GLPK through COIN-
OR Osi),and lindo (LINDO). If no value is specified for this parameter, then cbc is the
default value of this parameter if the solve or send service methods are used.

-browser browserName This parameter is a path to the browser on the local machine.
If this optional parameter is specified then the solver result in OSrL format is transformed
using XSLT into HTML and displayed in the browser.

-config pathToConfigureFile This parameter specifies a path on the local machine to
a text file containing values for the input parameters. This is convenient for the user not
wishing to constantly retype parameter values.

The input parameters to the OSSolverService may be given entirely in the command line or
in a configuration file. We first illustrate giving all the parameters in the command line. The
following command will invoke the Clp solver on the local machine to solve the problem instance
parincLinear.osil. When invoking the commands below involving OSSolverService we assume
that 1) the user is connected to the directory where the OSSolverService executable is located,
and 2) that ../data/osilFiles is a valid path to COIN-OS/data/osilFiles. If the OS project
was built successfully, then there is a copy of OSSolverService in COIN-OS/OS/src. The user may
wish to execute OSSolverService from this src directory so that all that follows is correct in terms
of path definitions.

./OSSolverService -solver clp -osil ../data/osilFiles/parincLinear.osil

Alternatively, these parameters can be put into a configuration file. Assume that the configu-
ration file of interest is testlocalclp.config. It would contain the two lines of information

-osil ../data/osilFiles/parincLinear.osil
-solver clp

Then the command line is

./OSSolverService -config ../data/configFiles/testlocalclp.config

39

Windows users should note that the folder separator is always the forward slash (‘/’) instead
of the customary backslash (‘\’).

Some Rules:

1. When using the send() or solve() methods a problem instance file location must be specified
either at the command line, in the configuration file, or in the <instanceLocation> element
in the OSoL options file.

2. The default serviceMethod is solve if another service method is not specified. The service
method cannot be specified in the OSoL options file.

3. If the solver option is not specified, the COIN-OR solver Cbc is the default solver used. In
this case an error is thrown if the problem instance has quadratic or other nonlinear terms.

4. If the options send, kill, knock, getJobID, or retrieve are specified, a serviceLocation
must be specified.

Parameters specified in the configure file are overridden by parameters specified at the command
line. This is convenient if a user has a base configure file and wishes to override only a few options.
For example,

./OSSolverService -config ../data/configFiles/testlocalclp.config -solver lindo

or

./OSSolverService -solver lindo -config ../data/configFiles/testlocalclp.config

will result in the LINDO solver being used even though Clp is specified in the testlocalclp
configure file.

7.2 Solving Problems Locally

Generally, when solving a problem locally the user will use the solve service method. The solve
method is invoked synchronously and waits for the solver to return the result. This is illustrated in
Figure 9. As illustrated, the OSSolverService reads a file on the hard drive with the optimization
instance, usually in OSiL format. The optimization instance is parsed into a string which is passed
to the OSLibrary (see 11), which is linked with various solvers. The result of the optimization is
passed back to the OSSolverService as a string in OSrL format.

Here is an example of using a configure file, testlocal.config, to invoke Ipopt locally using
the solve command.

-osil ../data/osilFiles/parincQuadratic.osil
-solver ipopt
-serviceMethod solve
-browser /Applications/Firefox.app/Contents/MacOS/firefox
-osrl /Users/kmartin/temp/test.osrl

The first line of testlocal.config gives the local location of the OSiL file, parincQuadratic.osil,
that contains the problem instance. The second parameter, -solver ipopt, is the solver to be
invoked, in this case COIN-OR Ipopt. The third parameter -serviceMethod solve is not re-
ally needed, but included only for illustration. The default solver service is solve. The fourth

40

Figure 9: A local call to solve.

parameter is the location of the browser on the local machine. It will write the OSrL file on
the local machine using the path specified by the value of the osrl parameter, in this case
/Users/kmartin/temp/test.osrl.

Parameters may also be contained in an XML-file in OSoL format. In the configuration file
testlocalosol.config we illustrate specifying the instance location in an OSoL file.

-osol ../data/osolFiles/demo.osol
-solver clp

The file demo.osol is

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<instanceLocation locationType="local">

../data/osilFiles/parincLinear.osil
</instanceLocation>

</general>
</osol>

7.3 Solving Problems Remotely with Web Services

In many cases the client machine may be a “weak client” and using a more powerful machine to
solve a hard optimization instance is required. Indeed, one of the major purposes of Optimization
Services is to facilitate optimization in a distributed environment. We now provide examples that
illustrate using the OSSolverService executable to call a remote solver service. By remote solver
service we mean a solver service that is called using Web Services. The OS implementation of the
solver service uses Apache Tomcat. See tomcat.apache.org. The Web Service running on the
server is a Java program based on Apache Axis. See ws.apache.org/axis. This is described in

41

Figure 10: A remote call to solve.

greater detail in Section 8. This Web Service is called OSSolverService.jws. It is not necessary
to use the Tomcat/Axis combination.

See Figure 10 for an illustration of this process. The client machine uses OSSolverService
executable to call one of the six service methods, e.g., solve. The information such as the problem
instance in OSiL format and solver options in OSoL format are packaged into a SOAP envelope and
sent to the server. The server is running the Java Web Service OSSolverService.jws. This Java
program running in the Tomcat Java Servlet container implements the six service methods. If a
solve or send request is sent to the server from the client, an optimization problem must be solved.
The Java solver service solves the optimization instance by calling the OSSolverService on the server.
So there is an OSSolverService on the client that calls the Web Service OSSolverService.jws that
in turn calls the executable OSSolverService on the server. The Java solver service passes options
to the local OSSolverService such as where the OSiL file is located and where to write the solution
result.

In the following sections we illustrate each of the six service methods.

7.3.1 The solve Service Method

First we illustrate a simple call to OSSolverService.jws. The call on the client machine is

./OSSolverService -config ../data/configFiles/testremote.config

where the testremote.config file is

-osil ../data/osilFiles/parincLinear.osil
-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws

No solver is specified and by default the Cbc solver is used by the OSSolverService. If, for
example, the user wished to solve the problem with the Clp solver then this is accomplished either
by using the -solver option on the command line

./OSSolverService -config ../data/configFiles/testremote.config -solver clp

or by adding the line

42

-solver clp

to the testremote.config file.
Next we illustrate a call to the remote SolverService and specify an OSiL instance that is

actually residing on the remote machine that is hosting the OSSolverService and not on the client
machine.

./OSSolverService -osol ../data/osolFiles/remoteSolve1.osol
-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws

where the remoteSolve1.osol file is

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<instanceLocation locationType="local">c:\parincLinear.osil</instanceLocation>
<contact transportType="smtp">kipp.martin@chicagogsb.edu</contact>
<solverToInvoke>ipopt</solverToInvoke>

</general>
</osol>

If we were to change the locationType attribute in the <instanceLocation> element to http
then we could specify the instance location on yet another machine. This is illustrated below for
remoteSolve2.osol. The scenario is depicted in Figure 11. The OSiL string passed from the client
to the solver service is empty. However, the OSoL element <instanceLocation> has an attribute
locationType equal to http. In this case, the text of the <instanceLoction> element contains the
URL of a third machine which has the problem instance parincLinear.osil. The solver service will
contact the machine with URL http://www.coin-or.org/OS/parincLinear.osil and download
this test problem. So the OSSolverService is running on the server gsbkip.chicagogsb.edu
which contacts the server www.coin-or.org for the model instance.

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<instanceLocation locationType="http">

http://www.coin-or.org/OS/parincLinear.osil
</instanceLocation>
<solverToInvoke>ipopt</solverToInvoke>

</general>
</osol>

Note: The solve method communicates synchronously with the remote solver service and once
started, these jobs cannot be killed. This may not be desirable for large problems when the user
does not want to wait for a response or when there is a possibility for the solver to enter an infinite
loop. The send service method should be used when asynchronous communication is desired.

7.3.2 The send Service Method

When the solve service method is used, the OSSolverService does not finish execution until the
solution is returned from the remote solver service. When the send method is used the instance
is communicated to the remote service and the OSSolverService terminates after submission. An
example of this is

43

Figure 11: Downloading the instance from a remote source.

./OSSolverService -config ../data/configFiles/testremoteSend.config

where the testremoteSend.config file is

-nl ../data/amplFiles/hs71.nl
-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-serviceMethod send

In this example the COIN-OR Ipopt solver is specified. The input file hs71.nl is in AMPL nl
format. Before sending this to the remote solver service the OSSolverService executable converts
the nl format into the OSiL XML format and packages this into the SOAP envelope used by Web
Services.

Since the send method involves asynchronous communication the remote solver service must
keep track of jobs. The send method requires a JobID. In the above example no JobID was specified.
When no JobID is specified the OSSolverService method first invokes the getJobID service method
to get a JobID, puts this information into an OSoL file it creates, and sends the information to
the server. More information on the getJobID service method is provided in Section 7.3.4. The
OSSolverService prints the OSoL file to standard output before termination. This is illustrated
below,

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<jobID>

gsbrkm4__127.0.0.1__2007-06-16T15.46.46.075-05.00149771253
</jobID>
<solverToInvoke>ipopt</solverToInvoke>

</general>

44

</osol>

The JobID is one that is randomly generated by the server and passed back to the OSSolverService.
The user can also provide a JobID in their OSoL file. For example, below is a user-provided OSoL
file that could be specified in a configuration file or on the command line.

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<jobID>123456abcd</jobID>
<solverToInvoke>ipopt</solverToInvoke>

</general>
</osol>

The same JobID cannot be used twice, so if 123456abcd was used earlier, the result of send
will be false.

In order to be of any use, it is necessary to get the result of the optimization. This is described
in Section 7.3.3. Before proceeding to this section, we describe two ways for knowing when the
optimization is complete. One feature of the standard OS remote SolverService is the ability to
send an email when the job is complete. Below is an example of the OSoL that uses the email
feature.

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<jobID>123456abcd</jobID>
<contact transportType="smtp">

kipp.martin@chicagogsb.edu
</contact>
<solverToInvoke>ipopt</solverToInvoke>

</general>
</osol>

The remote Solver Service will send an email to the above address when the job is complete. A
second option for knowing when a job is complete is to use the knock method.

Note that in all of these examples we provided a value for the <solverToInvoke> element. The
remote solver service will use Cbc if another solver is not specified.

7.3.3 The retrieve Service Method

The retrieve method is used to get information about the instance solution. This method has
a single string argument which is an OSoL instance. Here is an example of using the retrieve
method with OSSolverService.

./OSSolverService -config ../data/configFiles/testremoteRetrieve.config

The testremoteRetrieve.config file is

-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-osol ../data/osolFiles/retrieve.osol
-serviceMethod retrieve
-osrl /home/kmartin/temp/test.osrl

45

and the retrieve.osol file is

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<jobID>123456abcd</jobID>

</general>
</osol>

The OSoL file retrieve.osol contains a tag <jobID> that is communicated to the remote
service. The remote service locates the result and returns it as a string. The <jobID> should reflect
a <jobID> that was previously submitted using a send() command. The result is returned as a
string in OSrL format. The user must modify the line

-osrl /home/kmartin/temp/test.osrl

to reflect a valid path for their own machine. (It is also possible to delete the line in which case
the result will be displayed on the screen instead of being saved to the file indicated in the -osrl
option.)

7.3.4 The getJobID Service Method

Before submitting a job with the send method a JobID is required. The OSSolverService can get
a JobID with the following options.

-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-serviceMethod getJobID

Note that no OSoL input file is specified. In this case, the OSSolverService sends an empty string.
A string is returned with the JobID. This JobID is then put into a <jobID> element in an OSoL
string that would be used by the send method.

7.3.5 The knock Service Method

The OSSolverService terminates after executing the send method. Therefore, it is necessary to
know when the job is completed on the remote server. One way is to include an email address
in the <contact> element with the attribute transportType set to smtp. This was illustrated in
Section 7.3.1. A second way to check on the status of a job is to use the knock service method.
For example, assume a user wants to know if the job with JobID 123456abcd is complete. A user
would make the request

./OSSolverService -config ../data/configFiles/testRemoteKnock.config

where the testRemoteKnock.config file is

-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-osplInput ../data/osolFiles/demo.ospl
-osol ../data/osolFiles/retrieve.osol
-serviceMethod knock

the demo.ospl file is

46

<?xml version="1.0" encoding="UTF-8"?>
<ospl xmlns="os.optimizationservices.org">

<processHeader>
<request action="getAll"/>

</processHeader>
<processData/>

</ospl>

and the retrieve.osol file is

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<jobID>123456abcd</jobID>

</general>
</osol>

The result of this request is a string in OSpL format, with the data contained in its processData
section. The result is displayed on the screen; if the user desires it to be redirected to a file, a
command should be added to the testRemoteKnock.config file with a valid path name on the
local system, e.g.,

-osplOutput ./result.ospl

Part of the return format is illustrated below.

<?xml version="1.0" encoding="UTF-8"?>
<ospl xmlns="os.optimizationservices.org">

<processHeader>
<serviceURI>http://localhost:8080/os/ossolver/CGSolverService.jws</serviceURI>
<serviceName>CGSolverService</serviceName>
<time>2006-05-10T15:49:26.7509413-05:00</time>

<processHeader>
<processData>

<statistics>
<currentState>idle</currentState>
<availableDiskSpace>23440343040</availableDiskSpace>
<availableMemory>70128</availableMemory>
<currentJobCount>0</currentJobCount>
<totalJobsSoFar>1</totalJobsSoFar>
<timeServiceStarted>2006-05-10T10:49:24.9700000-05:00</timeServiceStarted>
<serviceUtilization>0.1</serviceUtilization>
<jobs>
<job jobID="123456abcd">

<state>finished</state>
<serviceURI>http://gsbkip.chicagogsb.edu/ipopt/IPOPTSolverService.jws</serviceURI>
<submitTime>2007-06-16T14:57:36.678-05:00</submitTime>
<startTime>2007-06-16T14:57:36.678-05:00</startTime>
<endTime>2007-06-16T14:57:39.404-05:00</endTime>
<duration>2.726</duration>

47

</job>
</jobs>

</statistics>
</processData>

</ospl>

Notice that the <state> element in <job jobID="123456abcd"> indicates that the job is finished.
When making a knock request, the OSoL string can be empty. In this example, if the OSoL

string had been empty the status of all jobs kept in the file ospl.xml is reported. In our de-
fault solver service implementation, there is a configuration file OSParameter that has a parameter
MAX_JOBIDS_TO_KEEP . The current default setting is 100. In a large-scale or commercial imple-
mentation it might be wise to keep problem results and statistics in a database. Also, there are
values other than getAll (i.e., get all process information related to the jobs) for the OSpL action
attribute in the <request> tag. For example, the action can be set to a value of ping if the user
just wants to check if the remote solver service is up and running. For details, check the OSpL
schema.

7.3.6 The kill Service Method

If the user submits a job that is taking too long or is a mistake, it is possible to kill the job on
the remote server using the kill service method. For example, to kill job 123456abcd, at the
command line type

./OSSolverService -config ../data/configFiles/kill.config

where the configure file kill.config is

-osol ../data/osolFiles/kill.osol
-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-serviceMethod kill

and the kill.osol file is

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<jobID>123456abcd</jobID>

</general>
</osol>

The result is returned in OSpL format.

7.3.7 Summary and description of the API

The six service methods just described are also available as callable routines. Below is a summary
of the inputs and outputs of the six methods. See also Figure 12. A test program illustrating the
use of the methods is described in Section 9.4.

• solve(osil, osol):

– Inputs: a string with the instance in OSiL format and an optional string with the solver
options in OSoL format

48

– Returns: a string with the solver solution in OSrL format
– Synchronous call, blocking request/response

• send(osil, osol):

– Inputs: a string with the instance in OSiL format and a string with the solver options
in OSoL format (same as in solve)

– Returns: a boolean, true if the problem was successfully submitted, false otherwise
– Has the same signature as solve
– Asynchronous (server side), non-blocking call
– The osol string should have a JobID in the <jobID> element

• getJobID(osol):

– Inputs: a string with the solver options in OSoL format (in this case, the string may be
empty because no options are required to get the JobID)

– Returns: a string which is the unique job id generated by the solver service
– Used to maintain session and state on a distributed system

• knock(ospl, osol):

– Inputs: a string in OSpL format and an optional string with the solver options in OSoL
format

– Returns: process and job status information from the remote server in OSpL format

• retrieve(osol):

– Inputs: a string with the solver options in OSoL format
– Returns: a string with the solver solution in OSrL format
– The osol string should have a JobID in the <jobID> element

• kill(osol):

– Inputs: a string with the solver options in OSoL format
– Returns: process and job status information from the remote server in OSpL format
– Critical in long running optimization jobs

7.4 Passing Options to Solvers

The OSoL (Optimization Services option Language) protocol is used to pass options to solvers.
When using the OSSolverService executable this will typically be done through an OSoL XML
file by specifying the -osol option followed by the location of the file. However, it is also possible to
write a custom application that links to the OS library and to build an OSOption object in-memory
and then pass this to a solver. We next describe the feature of the OSoL protocol that will be the
most useful to the typical user.

In the OSoL protocol there is an element <solverOptions> that can have any number of
<solverOption> children. (See the file parsertest.osol in OS/data/osolFiles.) Each <solverOption>
child can have six attributes, all of which except one are optional. These attributes are:

49

Figure 12: The OS Communication Methods

• name: this is the only required attribute and is the option name. It should be unique.

• value: the value of the option.

• solver: the name of the solver associated with the option.

• type: this will usually be a data type (such as integer, string, double, etc.) but this is not
necessary.

• category: the same solver option may apply to multiple categories so it may be necessary to
specify a category for solver. For example, in LINDO an option can apply to a specific model
or to every model in an environment. Hence we might have

<solverOption name="LS_IPARAM_LP_PRINTLEVEL"
solver="lindo" category="model" type="integer" value="0"/>

<solverOption name="LS_IPARAM_LP_PRINTLEVEL"
solver="lindo" category="environment" type="integer" value="1"/>

where we specify the print level for a specific model or the entire environment. The category
attribute should be separated by a colon (‘:’) if there is more than one category or additional
subcategories, as in the following hypothetical example.

<solverOption name="hypothetical"
solver="SOLVER" category="cat1:subcat2:subsubcat3"

type="string" value="illustration"/>

50

• description: a description of the option, typically this would not get passed to the solver.

As of trunk version 2164 the reading of an OSoL file is implemented in the OSCoinSolver,
OSBonmin, and OSIpopt solver interfaces. The OSBonmin, and OSIpopt solvers have particularly
easy interfaces. They have methods for integer, string, and numeric data types and then take
options in format of (name, value) pairs. Below is an example of options for Ipopt.

<solverOption name="mu_strategy" solver="ipopt"
type="string" value="adaptive"/>

<solverOption name="tol" solver="ipopt"
type="numeric" value="1.e-9"/>

<solverOption name="print_level" solver="ipopt"
type="integer" value="5"/>

<solverOption name="max_iter" solver="ipopt"
type="integer" value="2000"/>

We have also implemented the OSOption class for the OSCoinSolver interface. This can be
done in two ways. First, options can be set through the Osi Solver interface (the OSCoinSolver
interface wraps around the Osi Solver interface). We have implemented all of the options listed in
OsiSolverParameters.hpp in Osi trunk version 1316. In the Osi solver interface, in addition to
string, double, and integer types there is a type called HintParam and a type called OsiHintParam.
The value of the OsiHintParam is an OsiHintStrength type, which may be confusing. For example,
to have the following Osi method called

setHintParam(OsiDoReducePrint, true, hintStrength);

the user should set the following <solverOption> tags:

<solverOption name="OsiDoReducePrint" solver="osi"
type="OsiHintParam" value="true" />

<solverOption name="OsiHintIgnore" solver="osi"
type="OsiHintStrength" />

There should be only one <solverOption> with type OsiHintStrength and if there are more than
one in the OSoL file (string) the last one is the one implemented.

In addition to setting options using the Osi Solver interface, it is possible to pass options directly
to the Cbc solver. By default the following options are sent to the Cbc solver,

-log=0 -solve

The option -log=0 will keep the branch-and-bound output to a minimum. Default options are
overridden by putting into the OSoL file at least one <solverOption> tag with the solver attribute
set to cbc. For example, the following sequence of options will limit the search to 100 nodes, cut
generation turned off.

<solverOption name="maxN" solver="cbc" value="100" />
<solverOption name="cuts" solver="cbc" value="off" />
<solverOption name="solve" solver="cbc" />

Any option that Cbc accepts at the command line can be put into a <solverOption> tag. We
list those below.

51

Double parameters:
dualB(ound) dualT(olerance) primalT(olerance) primalW(eight)

Branch and Cut double parameters:
allow(ableGap) cuto(ff) inc(rement) inf(easibilityWeight) integerT(olerance)
preT(olerance) ratio(Gap) sec(onds)

Integer parameters:
cpp(Generate) force(Solution) idiot(Crash) maxF(actor) maxIt(erations)
output(Format) slog(Level) sprint(Crash)

Branch and Cut integer parameters:
cutD(epth) log(Level) maxN(odes) maxS(olutions) passC(uts)
passF(easibilityPump) passT(reeCuts) pumpT(une) strat(egy) strong(Branching)
trust(PseudoCosts)

Keyword parameters:
chol(esky) crash cross(over) direction dualP(ivot)
error(sAllowed) keepN(ames) mess(ages) perturb(ation) presolve
primalP(ivot) printi(ngOptions) scal(ing)

Branch and Cut keyword parameters:
clique(Cuts) combine(Solutions) cost(Strategy) cuts(OnOff) Dins
DivingS(ome) DivingC(oefficient) DivingF(ractional) DivingG(uided) DivingL(ineSearch)
DivingP(seudoCost) DivingV(ectorLength) feas(ibilityPump) flow(CoverCuts) gomory(Cuts)
greedy(Heuristic) heur(isticsOnOff) knapsack(Cuts) lift(AndProjectCuts) local(TreeSearch)
mixed(IntegerRoundingCuts) node(Strategy) pivot(AndFix) preprocess probing(Cuts)
rand(omizedRounding) reduce(AndSplitCuts) residual(CapacityCuts) Rens Rins
round(ingHeuristic) sos(Options) two(MirCuts)

Actions or string parameters:
allS(lack) barr(ier) basisI(n) basisO(ut) directory
dirSample dirNetlib dirMiplib dualS(implex) either(Simplex)
end exit export help import
initialS(olve) max(imize) min(imize) netlib netlibD(ual)
netlibP(rimal) netlibT(une) primalS(implex) printM(ask) quit
restore(Model) saveM(odel) saveS(olution) solu(tion) stat(istics)
stop unitTest userClp

Branch and Cut actions:
branch(AndCut) doH(euristic) miplib prio(rityIn) solv(e)
strengthen userCbc

The user may also wish to specify an initial starting solution. This is particularly useful with
interior point methods. This is accomplished by using the <initialVariableValues> tag. Below
we illustrate how to set the initial values for variables with an index of 0, 1, and 3.

<initialVariableValues numberOfVar="3">
<var idx="0" value="1"/>
<var idx="1" value="4.742999643577776" />
<var idx="3" value="1.379408293215363"/>

</initialVariableValues>

As of trunk version 2164 the initial values for variables can be passed to the Bonmin and Ipopt
solvers.

When implementing solver options in-memory, the typical calling sequence is:

solver->buildSolverInstance();
solver->setSolverOptions();
solver->solve();

52

8 Setting up a Solver Service with Apache Tomcat

This section explains how to download and use the java implementation of the remote solver service
described in section 7.3. The server side of the Java distribution is based on the Tomcat 5.5 imple-
mentation. The first step of the installation procedure is to download the Java binary distribution
at

OS-server-release_number.zip

For example, the current release 1.0.0 is in OS-server-1.0.0.zip. This zip archive contains
all of the necessary files for a OS Solver Service. The installation depends on whether a Tomcat
server is already installed on the user’s machine and whether the machine is running under unix or
Windows.

After unpacking OS-server-release_number.zip you should see the directory OS-server-1.0.0
and a single file os.war.

If you do not have a Tomcat server running, do the following to set up a Tomcat server with
the OS Solver Service on a Unix system:

Step 1. Put the folder OS-server-1.0.0 in the desired location for the OS Solver Service on the
server machine.

Step 2. Connect to the Tomcat bin directory in the OS-server-1.0.0 root and execute ./startup.sh.

Step 3. Test to see if the server is running the OSSolverService. Open a browser on the server
and enter the URL

http://localhost:8080/os/OSSolverService.jws

or

http://127.0.0.1:8080/os/OSSolverService.jws

You should see a message Click to see the WSDL. Click on the link and you should see
an XML description of the various methods available from the OSSolverService.

Step 4. On a client machine, create the file testremote.config with the following lines of text

-serviceLocation http://***.***.***.***:8080/os/OSSolverService.jws
-osil /parincLinear.osil

where ***.***.***.*** is the IP address of the Tomcat server machine. Then, assuming
the files testremote.config and parincLinear.osil are in the same directory on the
client machine as the OSSolverService execute:

./OSSolverService -config testremote.config

You should get back an OSrL message saying the problem was optimized.

In a Windows environment you may want to start the Tomcat server as a service so you can log
off (not shutdown) the machine and have the server continue to run. On a Windows machine do
the following:

53

Step 1. Put the folder OS-server-1.0.0 in the desired location for the OS Solver Service on the
server machine.

Step 2. Connect to the Tomcat bin directory in the OS-server-1.0.0 root and execute

service.bat install

This will install Tomcat as a Windows service. To remove the service execute

service.bat remove

Step 3. Connect to the Tomcat bin directory and and double click on the tomcat5w.exe applica-
tion. This will open a Window for controlling the Tomcat server.

Step 4. Select the Startup tab and set the Working Directory to the path to OS-server-1.0.0.

Step 5. Select the General tab and then click the Start button.

Step 6. Same as Step 3 for Unix.

Step 7. Same as Step 4 for Unix.

Note: There are many ways to start the Tomcat server and the exact way you choose may be
different. See http://tomcat.apache.org/ and check out Tomcat version 5.5 for more detail. But
do remember to properly set the Tomcat Working Directory to the path to OS-server-1.0.0.
By default, if you start Tomcat on Windows, the Working Directory is set to the Windows system
folder, which will yield unpredictable results.

If you already have a Tomcat server with Axis installed do the following:

1. copy the file os.war into the Tomcat WEB-INF directory in the ROOT folder under webapps.

2. Follow Steps 2-5 outlined above.

In the directory,

OS-server-1.0.0/webapps/os/WEB-INF/code/OSConfig

there is a configuration file OSParameter.xml that can be modified to fit individual user needs.
You can configure such parameters as service name, service URL/URI. Refer to the xml file for
more detail. Descriptions for all the parameters are within the file itself.

Below is a summary of the common and important directories and files you may want to know.

• OS-server-1.0.0/webapps/os/

contains the OS Web application. All directories and files outside of this folder are Tomcat
server related.

• OS-server-1.0.0/webapps/os/WEB-INF

contains private and important configuration, library, class and executable files to run the
Optimization Service. All files and directories outside of this folder but within the /os Web
application folder are publicly viewable (e.g., Web pages).

54

• OS-server-1.0.0/webapps/os/WEB-INF/code/OSConfig

contains configuration files for Optimization Services, such as the OSParameter.xml file.

• OS-server-1.0.0/webapps/os/WEB-INF/code/temp

contains temporarily saved files such as submitted OSiL/OSoL input files, and OSrL output
files. This folder can get bigger as the service starts to run more jobs. For maintenance
purpose, you may want to keep an eye on it.

• OS-server-1.0.0/webapps/os/WEB-INF/code/log

contains log files from the running services in the current Web application.

• OS-server-1.0.0/webapps/os/WEB-INF/code/solver

contains solver binaries that actually carry out the optimization process.

• OS-server-1.0.0/webapps/os/WEB-INF/code/backup

contains backup files from some of the above directories. This folder can get bigger as the
service starts to run more jobs.

• OS-server-1.0.0/webapps/os/WEB-INF/classes

contains class files to run the Optimization Services.

• OS-server-1.0.0/webapps/os/WEB-INF/lib

contains library files needed by the Optimization Services.

• OS-server-1.0.0/conf

contains configuration files for the Tomcat server, such as http server port.

• OS-server-1.0.0/bin

contains executables and scripts to start and shutdown the Tomcat server.

9 Code samples to illustrate the OS Project

The example executable files are not built by running configure and make. In order to build the
examples in a unix environment the user must first run

make install

in the COIN-OS project root directory (the discussion in this section assumes that the project root
directory is COIN-OS). Running make install will place all of header files required by the examples
in the directory

COIN-OS/include

and all of the libraries required by the examples in the directory

COIN-OS/lib

The source code for the examples is in the directory COIN-OS/OS/examples. For example, the
osTestCode example is in the directory

55

COIN-OS/OS/examples/osTestCode

Next, the user should connect to the appropriate example directory and run make. If the user has
done a VPATH build, the Makefiles will be in each respective example directory under

vpath_root/OS/examples

otherwise, the Makefiles will be in each respective example directory under

COIN-OS/OS/examples

The Makefile in each example directory is fairly simple and is designed to be easily modified
by the user if necessary. The part of the Makefile to be adjusted, if necessary, is

##
You can modify this example makefile to fit for your own program.
Usually, you only need to change the five CHANGEME entries below.
##

CHANGEME: This should be the name of your executable
EXE = OSTestCode
CHANGEME: Here is the name of all object files corresponding to the source
code that you wrote in order to define the problem statement
OBJS = OSTestCode.o
CHANGEME: Additional libraries
ADDLIBS =
CHANGEME: Additional flags for compilation (e.g., include flags)
ADDINCFLAGS = -I${prefix}/include
CHANGEME: SRCDIR is the path to the source code; VPATH is the path to
the executable. It is assumed # that the lib directory is in prefix/lib
and the header files are inprefix/include
SRCDIR = /Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OS/OS/examples/osTestCode
VPATH = /Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OS/OS/examples/osTestCode
prefix = /Users/kmartin/Documents/files/code/cpp/OScpp/vpath

Developers can use the Makefiles as a starting point for building applications that use the OS
project libraries.

Users of Microsoft Visual Studio can obtain the executables by opening the solution file OS.sln
in Visual Studio (or by double-clicking on the file in Windows Explorer). Once the file is opened,
select the Configuration Manager from the Build menu and select the projects you desire to be
built. Then select Build Solution from the Build menu (or press F7).

The executables are also part of the binary distribution described in section 4.2.2

9.1 Algorithmic Differentiation: Using the OS Algorithmic Differentiation Meth-
ods

In the OS/examples/algorithmicDiff folder is test code algorithmicDiffTest.cpp. This code
illustrates the key methods in the OSInstance API that are used for algorithmic differentiation.
These methods were described in Section 13.

56

9.2 Instance Generator: Using the OSInstance API to Generate Instances

This example is found in the instanceGenerator folder in the examples folder. This example
illustrates how to build a complete in-memory model instance using the OSInstance API. See
the code instanceGenerator.cpp for the complete example. Here we provide a few highlights to
illustrate the power of the API.

The first step is to create an OSInstance object.

OSInstance *osinstance;
osinstance = new OSInstance();

The instance has two variables, x0 and x1. Variable x0 is a continuous variable with lower
bound of −100 and upper bound of 100. Variable x1 is a binary variable. First declare the instance
to have two variables.

osinstance->setVariableNumber(2);

Next, add each variable. There is an addVariable method with the signature

addVariable(int index, string name, double lowerBound, double upperBound,
char type, double init, string initString);

Then the calls for these two variables are

osinstance->addVariable(0, "x0", -100, 100, ’C’, OSNAN, "");
osinstance->addVariable(1, "x1", 0, 1, ’B’, OSNAN, "");

There is also a method setVariables for adding more than one variable simultaneously. The
objective function(s) and constraints are added through similar calls.

Nonlinear terms are also easily added. The following code illustrates how to add a nonlinear
term x0 ∗ x1 in the <nonlinearExpressions> section of OSiL. This term is part of constraint 1
and is the second of six constraints contained in the instance.

osinstance->instanceData->nonlinearExpressions->numberOfNonlinearExpressions = 6;
osinstance->instanceData->nonlinearExpressions->nl = new Nl*[6];
osinstance->instanceData->nonlinearExpressions->nl[1] = new Nl();
osinstance->instanceData->nonlinearExpressions->nl[1]->idx = 1;
osinstance->instanceData->nonlinearExpressions->nl[1]->osExpressionTree =
new OSExpressionTree();
// create a variable nl node for x0
nlNodeVariablePoint = new OSnLNodeVariable();
nlNodeVariablePoint->idx=0;
nlNodeVec.push_back(nlNodeVariablePoint);
// create the nl node for x1
nlNodeVariablePoint = new OSnLNodeVariable();
nlNodeVariablePoint->idx=1;
nlNodeVec.push_back(nlNodeVariablePoint);
// create the nl node for *
nlNodePoint = new OSnLNodeTimes();
nlNodeVec.push_back(nlNodePoint);
// the vectors are in postfix format
// now the expression tree
osinstance->instanceData->nonlinearExpressions->nl[1]->osExpressionTree->m_treeRoot =
nlNodeVec[0]->createExpressionTreeFromPostfix(nlNodeVec);

57

9.3 osTestCode

The osTestCode folder holds the file osTestCode.cpp. This is similar to the instanceGenerator
example. In this case, a simple linear program is generated. This example also illustrates calling a
COIN-OR solver, in this case Clp.

9.4 osRemoteTest

This example illustrates the API for the six service methods described in Section 7.3. The file
osRemoteTest.cpp in folder osRemoteTest first builds a small linear example, solves it remotely in
synchronous mode and displays the solution. The asynchronous mode is also tested by submitting
the problem to a remote solver, checking the status and either retrieving the answer or killing the
process if it has not yet finished.

9.5 OSAddCuts: Using the OSInstance API to Generate Cutting Planes

In this example, we show how to add cuts to tighten an LP using Cgl (Cut Generation Library).

10 OS Support for Modeling Languages, Spreadsheets and Nu-
merical Computing Software

Algebraic modeling languages can be used to generate model instances as input to an OS compliant
solver. We describe two such hook-ups, OSAmplClient for AMPL, and GAMSlinks for GAMS.

10.1 AMPL Client: Hooking AMPL to Solvers

The OSAmplClient executable (in COIN-OS/OS/applications/amplClient) is designed to work
with the AMPL program (see www.ampl.com). The OSAmplClient acts like an AMPL “solver”.
The OSAmplClient is linked with the OS library and can be used to solve problems either locally or
remotely. In both cases the OSAmplClient uses the OSnl2osil class to convert the AMPL generated
nl file (which represents the problem instance) into the corresponding instance representation in
the OSiL format.

In the following discussion we assume that the AMPL executable ampl (or ampl.exe on Win-
dows) obtained from www.ampl.com, the OSAmplClient, and the test problem hs71.mod are all in
the same directory. At first, the user may wish to run everything in the directory

COIN-OS/OS/applications/amplClient

which is where OSAmplClient is located when the OS project is built. The user must obtain ampl
and put it in this directory. The test problem hs71.mod can be copied from

COIN-OS/OS/data/amplFiles

It is also assumed that . (the current directory) is in the search path.
The problem instance, hs71.mod is an AMPL model file included in the amplClient directory.

To solve this problem locally by calling the OSAmplClient from AMPL first start AMPL and then
execute the following commands. In this case we are testing Ipopt as the local server and therefore
it is necessary that Ipopt be part of the local OS build. If it is not then another solver must be
selected and a test problem used that is a linear or integer program.

58

take in problem 71 in Hock and Schittkowski
assume the problem is in the AMPL directory
model hs71.mod;
tell AMPL that the solver is OSAmplClient
option solver OSAmplClient;
now tell OSAmplClient to use Ipopt
option OSAmplClient_options "solver ipopt";
the name of the nl file (this is optional)
write gtestfile;
now solve the problem
solve;

This will invoke Ipopt locally and the result in OSrL format will be displayed on the screen.
In order to call a remote solver service, after the command

option OSAmplClient_options "solver ipopt";

set the solver service option to the address of the remote solver service.

option ipopt_options "service http://gsbkip.chicagogsb.edu/os/OSSolverService.jws";

In this case it is necessary that the Ipopt solver be part of the OS build on the server.

10.2 GAMSlinks: Hooking GAMS to Solvers

GAMSlinks For instructions on downloading and building the GAMSlinks project see projects.
coin-or.org/GAMSlinks. In the following discussion we assume that the user has both GAMS
and GAMSlinks on their machine. The user should build the GAMSlinks project as follows.

1. Check out https://projects.coin-or.org/svn/GAMSlinks/trunk into a suitable folder. In
the following we will refer to this GAMSlinks root directory as COIN-GAMSLINKS.

2. Open the file Externals and make sure the projects cppad and OS are not commented. (These
projects appear in line 9 and 10, respectively.)

3. Execute the command

svn propset svn:externals . -F Externals

4. Do an svn update

5. Run configure with

./configure --enable-os-solver

Note that the configuration of the GAMSlinks project is completely separate from the OS instal-
lation process described in section 4. The GAMSlinks configuration and make should be started
from the COIN-GAMSLINKS directory.

6. Run make and then make install.

59

After successfully running the make install you should have in the folder GAMSlinks/bin the
following files:

gmsbm_.zip
gmscc_.zip
gmsip_.zip
gmsos_.zip

Copy these files into your GAMS root folder (where you keep the GAMS system). Then run
gamsinst. You can now solve a wide variety of problems either locally or remotely.

In OS/data/gamsFiles directory are several test problems in GAMS model format. For exam-
ple, to solve the test problem rbrockmod.gms copy this file into the GAMS root folder and execute
the following command.

gams rbrockmod nlp=os

It is also possible to have GAMSlinks generate the instance OSiL file and write the solution
OSrL file. This is done by giving GAMS an options file. One such file, os.opt, is illustrated below.
In addition, the options file specifies a service address (dummyaddress) and a solver (Ipopt) to call.
The os.opt file is:

writeosil osil.xml
writeosrl osrl.xml
service dummyaddress
solver ipopt

GAMS options files follow specific naming conventions as set out below:

optfile=1 corresponds to <solver>.opt
optfile=2 corresponds to <solver>.op2
...
optfile=99 corresponds to <solver>.op99

For example, in order to solve the Rosenbrock test problem using the options file os.opt execute
the command

gams rbrock nlp=os optfile=1

Note: On Mac OS X add -DUSE_UNUSED_SYMBOLS to CXXFLAGS so the configure line is

./configure --enable-os-solver CXXFLAGS=-DUSE_UNUSED_SYMBOLS

10.3 MATLAB: Using MATLAB to Build and Run OSiL Model Instances

This example differs from the other examples in that makefiles are not used. Indeed, if the user has
done a VPATH build, the relevant cpp file remains in the original OS download directory under
OS/examples/matlab, not in the VPATH directory.

Linear, integer, and quadratic problems can be formulated in MATLAB and then optimized
either locally or over the network using the OS Library. The OSMatlab class functions much
like OSnl2osil and OSmps2osil and takes MATLAB arrays to create an OSiL instance. This

60

class is part of the OS library. In order to use the OSMatlab class it is necessary to compile
OSmatlabSolver.cpp into a MATLAB Executable (mex) file. The OSmatlabSolver.cpp file is in
the OS/examples/matlab directory. We assume the user has already done a make install and
that in the OS root directory

/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OS

there is an include directory and lib directory that results from the make install. The following
steps should be followed.

Step 1: Edit the MATLAB file mexopts.sh (UNIX) or mexopts.bat (Windows) so that the
CXXFLAGS option includes the header files in the cppad directory and the include di-
rectory in the project root. For example, it should look like:

CXXFLAGS=’-fno-common -no-cpp-precomp -fexceptions
-I/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OS/
-I/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OS/include’

Next edit the CXXLIBS flag so that the OS and supporting libraries are included. For
example, it should look like:

CXXLIBS="$MLIBS -lstdc++
-L/Users/kmartin/Documents/files/code/ipopt/macosx/Ipopt-3.2.2/lib
-L/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OSX/lib
-lOS -lbonmin -lIpopt -lOsiCbc -lOsiClp -lOsiSym -lCbc -lCgl -lOsi -lClp
-lSym -lCoinUtils -lm"

For a UNIX system the mexopts.sh file is typically found in a directory with the re-
lease name in ∼/.matlab. For example, ∼/.matlab/R14SP3. It may also be in the bin
directory in the MATLAB application root folder.

On a Windows system, the mexopts.bat file will usually be in a directory with the release
name in C:\Documents and Settings\Username\Application Data\Mathworks\MATLAB

Step 2: Build the MATLAB executable file. Start MATLAB and in the MATLAB command win-
dow connect to the directory OS/examples/matlab which contains the file OSmatlabSolver.cpp.
Execute the command:

mex -v OSMatlabSolver.cpp

On an Intel MAC OS X the resulting executable will be named OSmatlabSolver.mexmaci.
On the Windows system the file is named OSmatlabSolver.mexw32.

Step 3: Set the MATLAB path to include the directory with the OSmatlabSolver executable.

Step 4: In the MATLAB command window, connect to the directory OS/data/matlabFiles. Run
either of the MATLAB files markowitz.m or parincLinear.m. The result should be
displayed in the MATLAB browser window.

61

To use the OSmatlabSolver it is necessary to put the coefficients from a linear, integer, or
quadratic problem into MATLAB arrays. We illustrate for the linear program:

Minimize 10x1 + 9x2 (5)
Subject to .7x1 + x2 ≤ 630 (6)

.5x1 + (5/6)x2 ≤ 600 (7)
x1 + (2/3)x2 ≤ 708 (8)
.1x1 + .25x2 ≤ 135 (9)

x1, x2 ≥ 0 (10)

The MATLAB representation of this problem in MATLAB arrays is

% the number of constraints
numCon = 4;
% the number of variables
numVar = 2;
% variable types
VarType=’CC’;
% constraint types
A = [.7 1; .5 5/6; 1 2/3 ; .1 .25];
BU = [630 600 708 135];
BL = [];
OBJ = [10 9];
VL = [-inf -inf];
VU = [];
ObjType = 1;
% leave Q empty if there are no quadratic terms
Q = [];
prob_name = ’ParInc Example’
password = ’chicagoesmuyFRIO’;
%
%
%the solver
solverName = ’lindo’;
%the remote service address
%if left empty we solve locally
serviceAddress=’http://gsbkip.chicagogsb.edu/os/OSSolverService.jws’;
% now solve
callMatlabSolver(numVar, numCon, A, BL, BU, OBJ, VL, VU, ObjType, ...

VarType, Q, prob_name, password, solverName, serviceAddress)

This example m-file is in the data directory and is file parincLinear.m. Note that in addition to
the problem formulation we can specify which solver to use through the solverName variable. If
solution with a remote solver is desired this can be specified with the serviceAddress variable. If
the serviceAddress is left empty, i.e.,

serviceAddress=’’;

62

then a local solver is used. In this case it is crucial that the appropriate solver is linked in with the
matlabSolver executable using the CXXLIBS option.

The data directory also contains the m-file template.m which contains extensive comments
about how to formulate the problems in MATLAB. The user can edit template.m as necessary and
create a new instance.

A second example which is a quadratic problem is given in section 10.3. The appropriate MAT-
LAB m-file is markowitz.m in the data/matlabFiles directory. The problem consists in investing in
a number of stocks. The expected returns and risks (covariances) of the stocks are known. Assume
that the decision variables xi represent the fraction of wealth invested in stock i and that no stock
can have more than 75% of the total wealth. The problem then is to minimize the total risk subject
to a budget constraint and a lower bound on the expected portfolio return.

Assume that there are three stocks (variables) and two constraints (do not count the upper
limit of .75 on the investment variables).

% the number of constraints
numCon = 2;
% the number of variables
numVar = 3;

All the variables are continuous:

VarType=’CCC’;

Next define the constraint upper and lower bounds. There are two constraints, an equality
constraint (an =) and a lower bound on portfolio return of .15 (a ≥). These two constraints are
expressed as

BL = [1 .15];
BU = [1 inf];

The variables are nonnegative and have upper limits of .75 (no stock can comprise more than
75% of the portfolio). This is written as

VL = [];
VU = [.75 .75 .75];

There are no nonzero linear coefficients in the objective function, but the objective function
vector must always be defined and the number of components of this vector is the number of
variables.

OBJ = [0 0 0]

Now the linear constraints. In the model the two linear constraints are

x1 + x2 + x3 = 1
0.3221x1 + 0.0963x2 + 0.1187x3 ≥ .15

These are expressed as

63

A = [1 1 1 ;
0.3221 0.0963 0.1187];

Now for the quadratic terms. The only quadratic terms are in the objective function. The
objective function is

min 0.425349694x2
1 + 0.445784443x2

2 + 0.231430983x2
3 + 2× 0.185218694x1x2

+2× 0.139312545x1x3 + 2× 0.13881692x2x3

The quadratic matrix Q has four rows and a column for each quadratic term. In this example
there are six quadratic terms. The first row of Q is the row index where the terms appear. By
convention, the objective function has index -1 and we count constraints starting at 0. The first
row of Q is

-1 -1 -1 -1 -1 -1

The second row of Q is the index of the first variable in the quadratic term. We use zero based
counting. Variable x1 has index 0, variable x2 has index 1, and variable x3 has index 2. Therefore,
the second row of Q is

0 1 2 0 0 1

The third row of Q is the index of the second variable in the quadratic term. Therefore, the
third row of Q is

0 1 2 1 2 2

The last (fourth) row is the coefficient. Therefore, the fourth row reads

.425349654 .445784443 .231430983

.370437388 .27862509 .27763384

The quadratic matrix is

Q = [-1 -1 -1 -1 -1 -1;
0 1 2 0 0 1 ;
0 1 2 1 2 2;
.425349654 .445784443 .231430983 ...
.370437388 .27862509 .27763384

];

Finally, name the problem, specify the solver (in this case ipopt), the service address (and
password if required by the service), and call the solver.

64

% replace Template with the name of your problem
prob_name = ’Markowitz Example from Anderson, Sweeney, Williams, and Martin’;
password = ’chicagoesmuyFRIO’;
%
%the solver
solverName = ’ipopt’;
%the remote service service address
%if left empty we solve locally
serviceAddress=’http://gsbkip.chicagogsb.edu/os/OSSolverService.jws’;
% now solve
OSCallMatlabSolver(numVar, numCon, A, BL, BU, OBJ, VL, VU, ObjType, VarType, ...

Q, prob_name, password, solverName, serviceAddress)

11 The OS Library Components

11.1 OSAgent

The OSAgent part of the library is used to facilitate communication with remote solvers. It is not
used if the solver is invoked locally (i.e., on the same machine). There are two key classes in the
OSAgent component of the OS library. The two classes are OSSolverAgent and WSUtil.

The OSSolverAgent class is used to contact a remote solver service. For example, assume that
sOSiL is a string with a problem instance and sOSoL is a string with solver options. Then the
following code will call a solver service and invoke the solve method.

OSSolverAgent *osagent;
string serviceLocation = http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
osagent = new OSSolverAgent(serviceLocation);
string sOSrL = osagent->solve(sOSiL, sOSoL);

Other methods in the OSSolverAgent class are send, retrieve, getJobID, knock, and kill. The
use of these methods is described in Section 7.3.

The methods in the OSSolverAgent class call methods in the WSUtil class that perform such
tasks as creating and parsing SOAP messages and making low level socket calls to the server running
the solver service. The average user will not use methods in the WSUtil class, but they are available
to anyone wanting to make socket calls or create SOAP messages.

There is also a method, OSFileUpload, in the OSAgentClass that is used to upload files from
the hard drive of a client to the server. It is very fast and does not involve SOAP or Web Services.
The OSFileUpload method is illustrated and described in the example code OSFileUpload.cpp
described in Section 14.

11.2 OSCommonInterfaces

The classes in the OSCommonInterfaces component of the OS library are used to read and write
files and strings in the OSiL and OSrL protocols. See Section 6 for more detail on OSiL, OSrL, and
other OS protocols. For a complete listing of all of the files in OSCommonInterfaces see the Doxygen
documentation we deposited at http://www.doxygen.org. Users who have Doxygen installed on
their system can also create their own version of the documentation (see Section 4.7). Below we
highlight some key classes.

65

11.2.1 The OSInstance Class

The OSInstance class is the in-memory representation of an optimization instance and is a key
class for users of the OS project. This class has an API defined by a collection of get() methods
for extracting various components (such as bounds and coefficients) from a problem instance, a
collection of set() methods for modifying or generating an optimization instance, and a collection
of calculate() methods for function, gradient, and Hessian evaluations. See Section 12. We now
describe how to create an OSInstance object and the close relationship between the OSiL schema
and the OSInstance class.

11.2.2 Creating an OSInstance Object

The OSCommonInterfaces component contains an OSiLReader class for reading an instance in an
OSiL string and creating an in-memory OSInstance object. Assume that sOSiL is a string that
will hold the instance in OSiL format. Creating an OSInstance object is illustrated in Figure 13.

OSiLReader *osilreader = NULL;
OSInstance *osinstance = NULL;
osilreader = new OSiLReader();
osinstance = osilreader->readOSiL(sOSiL);

Figure 13: Creating an OSInstance Object

11.2.3 Mapping Rules

The OSInstance class has two member classes, InstanceHeader and InstanceData. These corre-
spond to the OSiL schema’s complexTypes InstanceHeader and InstanceData, and to the XML
elements <instanceHeader> and <instanceData>.

Moving down one level, Figure 15 shows that the InstanceData class has in turn the member
classes Variables, Objectives, Constraints, LinearConstraintCoefficients, QuadraticCoefficients,
and NonlinearExpressions, corresponding to the respective elements in the OSiL schema with
the same name.

class OSInstance{
public:

OSInstance();
InstanceHeader *instanceHeader;
InstanceData *instanceData;

}; //class OSInstance

Figure 14: The OSInstance class

Figure 16 uses the Variables class to provide a closer look at the correspondence between
schema and class. On the right, the Variables class contains the data member numberOfVariables

66

class InstanceData{
public:

InstanceData();
Variables *variables;
Objectives *objectives;
Constraints *constraints;
LinearConstraintCoefficients *linearConstraintCoefficients;
QuadraticCoefficients *quadraticCoefficients;
NonlinearExpressions *nonlinearExpressions;

}; // class InstanceData

Figure 15: The InstanceData class

and a sequence of var objects of class Variable. The Variable class has lb (double), ub (double),
name (string), init (double), and type (char) data members. On the left the corresponding XML
complexTypes are shown, with arrows indicating the correspondences. The following rules describe
the mapping between the OSiL schema and the OSInstance class.

. Each complexType in an OSiL schema corresponds to a class in OSInstance. Thus the OSiL
schema’s complexType Variables corresponds to OSInstance’s class Variables. Elements in
an actual XML file then correspond to objects in OSInstance; for example, the <variables>
element that is of type Variables in an OSiL file corresponds to a variables object in class
Variables of OSInstance.

. An attribute or element used in the definition of a complexType is a member of the corre-
sponding OSInstance class, and the type of the attribute or element matches the type of
the member. In Figure 16, for example, lb is an attribute of the OSiL complexType named
Variable, and lb is a member of the OSInstance class Variable; both have type double.
Similarly, var is an element in the definition of the OSiL complexType named Variables,
and var is a member of the OSInstance class Variables; the var element has type Variable
and the var member is a Variable object.

. A schema sequence corresponds to an array. For example, in Figure 16 the complexType
Variables has a sequence of <var> elements that are of type Variable, and the corresponding
Variables class has a member that is an array of type Variable.

General nonlinear terms are stored in the data structure as OSExpressionTree objects, which are
the subject of the next section.

The OSInstance class has a collection of get(), set(), and calculate() methods that act as
an API for the optimization instance and described in Section 12.

11.2.4 The OSExpressionTree OSnLNode Classes

The OSExpressionTree class provides the in-memory representation of the nonlinear terms. Our
design goal is to allow for efficient parsing of OSiL instances, while providing an API that meets
the needs of diverse solvers. Conceptually, any nonlinear expression in the objective or constraints
is represented by a tree. The expression tree for the nonlinear part of the objective function (1), for
example, has the form illustrated in Figure 17. The choice of a data structure to store such a tree

67

— along with the associated methods of an API — is a key aspect in the design of the OSInstance
class.

A base abstract class OSnLNode is defined and all of an OSiL file’s operator and operand elements
used in defining a nonlinear expression are extensions of the base element type OSnLNode. There
is an element type OSnLNodePlus, for example, that extends OSnLNode; then in an OSiL instance
file, there are <plus> elements that are of type OSnLNodePlus. Each OSExpressionTree object
contains a pointer to an OSnLNode object that is the root of the corresponding expression tree. To
every element that extends the OSnLNode type in an OSiL instance file, there corresponds a class
that derives from the OSnLNode class in an OSInstance data structure. Thus we can construct an
expression tree of homogenous nodes, and methods that operate on the expression tree to calculate
function values, derivatives, postfix notation, and the like do not require switches or complicated
logic.

Schema complexType In-memory class

<xs:complexType name="Variables"> <--> class Variables{

public:

<xs:sequence> Variables();

<xs:element name="var" type="Variable" maxOccurs="unbounded"/> <-----------> Variable *var;

</xs:sequence>

<xs:attribute name="numberOfVariables" type="xs:positiveInteger"

use="required"/> <---> int numberOfVariables;

</xs:complexType> }; // class Variables

<xs:complexType name="Variable"> <---> class Variable{

public:

Variable();

<xs:attribute name="name" type="xs:string" use="optional"/> <----------------> string name;

<xs:attribute name="init" type="xs:double" use="optional"/> <----------------> double init;

<xs:attribute name="initString" type="xs:string" use="optional"/> <----------> string initString;

<xs:attribute name="type" use="optional" default="C"> <----------------------> char type;

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="C"/>

<xs:enumeration value="B"/>

<xs:enumeration value="I"/>

<xs:enumeration value="S"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="lb" type="xs:double" use="optional" default="0"/> <------> double lb;

<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/> <----> double ub;

</xs:complexType> }; // class Variable

OSiL elements In-memory objects

<variables numberOfVariables="2"> OSInstance osinstance;

<var lb="0" name="x0" type="C"/> osinstance.instanceData.variables.numberOfVariables=2;

<var lb="0" name="x1" type="C"/> osinstance.instanceData.variables.var=new Var[2];

</variables> osinstance.instanceData.variables.var[0].lb=0;

osinstance.instanceData.variables.var[0].name=x0;

osinstance.instanceData.variables.var[0].type=C;

osinstance.instanceData.variables.var[1].lb=0;

osinstance.instanceData.variables.var[1].name=x1;

osinstance.instanceData.variables.var[1].type=C;

Figure 16: The <variables> element as an OSInstance object

68

Figure 17: Conceptual expression tree for the nonlinear part of the objective (1).

double OSnLNodePlus::calculateFunction(double *x){
m_dFunctionValue =

m_mChildren[0]->calculateFunction(x) +
m_mChildren[1]->calculateFunction(x);

return m_dFunctionValue;
} //calculateFunction

Figure 18: The function calculation method for the plus node class with polymorphism

The OSInstance class has a variety of calculate() methods, based on two pure virtual func-
tions in the OSInstance class. The first of these, calculateFunction(), takes an array of double
values corresponding to decision variables, and evaluates the expression tree for those values. Every
class that extends OSnLNode must implement this method. As an example, the calculateFunction
method for the OSnLNodePlus class is shown in Figure 18. Because the OSiL instance file must be
validated against its schema, and in the schema each <OSnLNodePlus> element is specified to have
exactly two child elements, this calculateFunction method can assume that there are exactly
two children of the node that it is operating on. The use of polymorphism and recursion makes
adding new operator elements easy; it is simply a matter of adding a new class and implementing
the calculateFunction() method for it.

Although in the OSnL schema, there are 200+ nonlinear operators, only the following OSnLNode
classes are currently supported in our implementation.

• OSnLNodeVariable

• OSnLNodeTimes

• OSnLNodePlus

• OSnLNodeSum

• OSnLNodeMinus

69

• OSnLNodeNegate

• OSnLNodeDivide

• OSnLNodePower

• OSnLNodeProduct

• OSnLNodeLn

• OSnLNodeSqrt

• OSnLNodeSquare

• OSnLNodeSin

• OSnLNodeCos

• OSnLNodeExp

• OSnLNodeIf

• OSnLNodeAbs

• OSnLNodeMax

• OSnLNodeMin

• OSnLNodeE

• OSnLNodePI

• OSnLNodeAllDiff

11.2.5 The OSOption Class

The OSOption class is the in-memory representation of the options associated with a particular
optimization task. It is another key class for users of the OS project. This class has an API
defined by a collection of get() methods for extracting various components (such as initial values
for decision variables, solver options, job parameters, etc.), and a collection of set() methods
for modifying or generating an option instance. The relationship between in-memory classes and
objects on one hand and complexTypes and elements of the OSoL schema follow the same mapping
rules laid out in section 11.2.3.

11.3 OSModelInterfaces

This part of the OS library is designed to help integrate the OS standards with other standards
and modeling systems.

70

11.3.1 Converting MPS Files

The MPS standard is still a popular format for representing linear and integer programming prob-
lems. In OSModelInterfaces, there is a class OSmps2osil that can be used to convert files in MPS
format into the OSiL standard. It is used as follows.

OSmps2osil *mps2osil = NULL;
DefaultSolver *solver = NULL;
solver = new CoinSolver();
solver->sSolverName = "cbc";
mps2osil = new OSmps2osil(mpsFileName);
mps2osil->createOSInstance() ;
solver->osinstance = mps2osil->osinstance;
solver->solve();

The OSmps2osil class constructor takes a string which should be the file name of the instance
in MPS format. The constructor then uses the CoinUtils library to read and parse the MPS file.
The class method createOSInstance then builds an in-memory osinstance object that can be
used by a solver.

11.3.2 Converting AMPL nl Files

AMPL is a popular modeling language that saves model instances in the AMPL nl format. The
OSModelInterfaces library provides a class, OSnl2osil for reading in an nl file and creating a
corresponding in-memory osinstance object. It is used as follows.

OSnl2osil *nl2osil = NULL;
DefaultSolver *solver = NULL;
solver = new LindoSolver();
nl2osil = new OSnl2osil(nlFileName);
nl2osil->createOSInstance() ;
solver->osinstance = nl2osil->osinstance;
solver->solve();

The OSnl2osil class works much like the OSmps2osil class. The OSnl2osil class constructor
takes a string which should be the file name of the instance in nl format. The constructor then uses
the AMPL ASL library routines to read and parse the nl file. The class method createOSInstance
then builds an in-memory osinstance object that can be used by a solver.

In Section 10.1 we describe the OSAmplClient executable that acts as a “solver” for AMPL.
The OSAmplClient uses the OSnl2osil class to convert the instance in nl format to OSiL format
before calling a solver either locally or remotely.

11.4 OSParsers

The OSParsers component of the OS library contains reentrant parsers that read OSiL and OSrL
strings and build, respectively, in-memory OSInstance and OSResult objects.

The OSiL parser is invoked through an OSiLReader object as illustrated below. Assume osil
is a string with the problem instance.

71

OSiLReader *osilreader = NULL;
OSInstance *osinstance = NULL;
osilreader = new OSiLReader();
osinstance = osilreader->readOSiL(&osil);

The readOSiL method has a single argument which is a pointer to a string. The readOSiL method
then calls an underlying method yygetOSInstance that parses the OSiL string. The major com-
ponents of the OSiL schema recognized by the parser are

<instanceHeader>
<variables>
<objectives>
<constraints>
<linearConstraintCoefficients>
<quadraticCoefficients>
<nonlinearExpressions>

There are other components in the OSiL schema, but they are not yet implemented. In most large-
scale applications the <variables>, <objectives>, <constraints>, and <linearConstraintCoefficients>
will comprise the bulk of the instance memory. Because of this, we have “hard-coded” the OSiL
parser to read these specific elements very efficiently. The parsing of the <quadraticCoefficients>
and <nonlinearExpressions> is done using code generated by flex and bison. In the OSParsers
the file OSParseosil.l is used by flex to generate OSParseosil.cpp and the file OSParseosil.y
is used by bison to generate OSParseosil.tab.cpp. In OSParseosil.l we use the reentrant
option and in OSParseosil.y we use the pure-parser option to generate reentrant parsers.
The OSParseosil.y file contains both our “hard-coded” parser and the grammar rules for the
<quadraticCoefficients> and <nonlinearExpressions> sections. We are currently using GNU
Bison version 3.2 and flex 2.5.33.

The typical OS user will have no need to edit either OSParseosil.l or OSParseosil.y and
therefore will not have to worry about running either flex or bison to generate the parsers. The
generated parser code from flex and bison is distributed with the project and works on all of
the platforms listed in Table 1. If the user does edit either parseosil.l or parseosil.y then
parseosil.cpp and parseosil.tab.cpp need to be regenerated with flex and bison. If these
programs are present, in the OS directory execute

make run_parsers

The files OSParseosrl.l and OSParseosrl.y are used by flex and bison to generate the code
OSParseosrl.cpp and OSParseosrl.tab.cpp for parsing strings in OSrL format. The comments
made above about the OSiL parser apply to the OSrL parser. The OSrL parser, like the OSiL
parser, is invoked using an OSrL reading object. This is illustrated below (osrl is a string in OSrL
format).

OSrLReader *osrlreader = NULL;
osrlreader = new OSrLReader();
OSResult *osresult = NULL;
osresult = osrlreader->readOSrL(osrl);

The OSoL parser follows the same layout and rules. The files OSParseosol.l and OSParseosol.y
are used by flex and bison to generate the code OSParseosol.cpp and OSParseosol.tab.cpp for
parsing strings in OSoL format. The OSoL parser is invoked using an OSoL reading object. This is
illustrated below (osol is a string in OSoL format).

72

OSoLReader *osolreader = NULL;
osolreader = new OSoLReader();
OSOption *osoption = NULL;
osoption = osolreader->readOSoL(osol);

There is also a lexer OSParseosss.l for tokenizing the command line for the OSSolverService
executable described in Section 7.

11.5 OSSolverInterfaces

The OSSolverInterfaces library is designed to facilitate linking the OS library with various solver
APIs. We first describe how to take a problem instance in OSiL format and connect to a solver that
has a COIN-OR OSI interface. See the OSI project www.projects.coin-or.org/Osi. We then
describe hooking to the COIN-OR nonlinear code Ipopt. See www.projects.coin-or.org/Ipopt.
Finally we describe hooking to the commercial solver LINDO. The OS library has been tested with
the following solvers using the Osi Interface.

• Cbc

• Clp

• Cplex

• DyLP

• Glpk

• SYMPHONY

• Vol

In the OSSolverInterfaces library there is an abstract class DefaultSolver that has the
following key members:

std::string osil;
std::string osol;
std::string osrl;
OSInstance *osinstance;
OSResult *osresult;

and the pure virtual function

virtual void solve() = 0 ;

In order to use a solver through the COIN-OR Osi interface it is necessary to create an object in
the CoinSolver class which inherits from the DefaultSolver class and implements the appropriate
solve() function. We illustrate with the Clp solver.

DefaultSolver *solver = NULL;
solver = new CoinSolver();
solver->m_sSolverName = "clp";

73

Assume that the data file containing the problem has been read into the string osil and the
solver options are in the string osol. Then the Clp solver is invoked as follows.

solver->osil = osil;
solver->osol = osol;
solver->solve();

Finally, get the solution in OSrL format as follows

cout << solver->osrl << endl;

Commercial solvers like LINDO do not have a COIN-OR Osi interface, but it is possible to
write wrappers so that they can be used in exactly the same manner as a COIN-OR solver. For
example, to invoke the LINDO solver we do the following.

solver = new LindoSolver();

A similar call is used for Ipopt. In this case, the IpoptSolver class inherits from both the
DefaultSolver class and the Ipopt TNLP class. See

https://projects.coin-or.org/Ipopt/browser/stable/3.5/Ipopt/doc/documentation.pdf?format=raw

for more information on the Ipopt solver C++ implementation and the TNLP class.
In the examples above, the problem instance was assumed to be read from a file into the

string osil and then into the class member solver->osil. However, everything can be done
entirely in memory. For example, it is possible to use the OSInstance class to create an in-memory
problem representation and give this representation directly to a solver class that inherits from
DefaultSolver. The class member to use is osinstance. This is illustrated in the example given
in Section 9.2.

11.6 OSUtils

The OSUtils component of the OS library contains utility codes. For example, the FileUtil class
contains useful methods for reading files into string or char* and writing files from string and
char*. The OSDataStructures class holds other classes for things such as sparse vectors, sparse
Jacobians, and sparse Hessians. The MathUtil class contains a method for converting between
sparse matrices in row and column major form.

12 The OSInstance API

The OSInstance API can be used to:

• get information about model parameters, or convert the OSExpressionTree into a prefix or
postfix representation through a collection of get methods,

• modify, or even create an instance from scratch, using a number of set methods,

• provide information to solvers that require function evaluations, Jacobian and Hessian sparsity
patters, function gradient evaluations, and Hessian evaluations.

74

12.1 Get Methods

The get() methods are used by other classes to access data in an existing OSInstance object or get
an expression tree representation of an instance in postfix or prefix format. Assume osinstance is
an object in the OSInstance class created as illustrated in Figure 13. Then, for example,

osinstance->getVariableNumber();

will return an integer which is the number of variables in the problem,

osinstance->getVariableTypes();

will return a char pointer to the variable types (C for continuous, B for binary, and I for general
integer),

getVariableLowerBounds();

will return a double pointer to the lower bound on each variable. There are similar get methods for
the constraints. There are numerous get methods for the data in the <linearConstraintCoefficients>
element, the <quadraticCoefficients> element, and the <nonlinearExpressions> element.

When an osinstance object is created, it is stored as an expression tree in an OSExpressionTree
object. However, some solver APIs (e.g., LINDO) may take the data in a different format such as
postfix and prefix. There are methods to return the data in either postfix or prefix format.

First define a vector of pointers to OSnLNode objects.

std::vector<OSnLNode*> postfixVec;

then get the expression tree for the objective function (index = -1) as a postfix vector of nodes.

postfixVec = osinstance->getNonlinearExpressionTreeInPostfix(-1);

If, for example, the osinstance object was the in-memory representation of the instance illustrated
in Section 15.1 then the code

for (i = 0 ; i < n; i++){
cout << postfixVec[i]->snodeName << endl;

}

will produce

number
variable
minus
number
power
number
variable
variable
number
power
minus
number
power
times
plus

75

The method, processNonlinearExpressions() in the LindoSolver class in the OSSolverInterfaces
library component illustrates using a postfix vector of OSnLNode objects to build a Lindo model
instance.

12.2 Set Methods

The set methods can be used to build an in-memory OSInstance object. A code example of how
to do this is in Section 9.2.

12.3 Calculate Methods

The calculate methods are described in Section 13.

13 The OS Algorithmic Differentiation Implementation

The OS library provides a set of calculate methods for calculating function values, gradients, and
Hessians. The calculate methods are part of the OSInstance class and are designed to work with
solver APIs.

13.1 Algorithmic Differentiation: Brief Review

First and second derivative calculations are made using algorithmic differentiation. Here we provide
a brief review of this topic. An excellent reference on algorithmic differentiation is Griewank [3]. The
OS package uses the COIN-OR project CppAD (http://projects.coin-or.org/CppAD), which
is also an excellent resource with extensive documentation and information about algorithmic dif-
ferentiation. See the documentation written by Brad Bell [1]. The development here is from the
CppAD documentation. Consider the function f : X → Y from Rn to Rm. (That is, Y = f(X).)

Express the input vector as a function of t by

X(t) = x(0) + x(1)t + x(2)t2 (11)

where x(0), x(1), and x(2) are vectors in Rn and t is a scalar. By judiciously choosing x(0), x(1), and
x(2) we will be able to derive many different expressions of interest. Note first that

X(0) = x(0),

X ′(0) = x(1),

X ′′(0) = 2x(2).

In general, x(k) corresponds to the kth order Taylor coefficient, i.e.,

x(k) =
1
k!

X(k)(0), k = 0, 1, 2. (12)

Then Y (t) = f(X(t)) is a function from R1 to Rm and it is expressed in terms of its Taylor series
expansion as

Y (t) = y(0) + y(1)t + y(2)t2 + o(t3), (13)

where

y(k) =
1
k!

Y (k)(0), k = 0, 1, 2. (14)

76

The following are shown in Bell [1].

y(0) = f(x(0)). (15)

Let e(i) denote the ith unit vector. If x(1) = e(i) then y(1) is equal to the ith column of the Jacobian
matrix of f(x) evaluated at x(0). That is

y(1) =
∂f

∂xi
(x(0)). (16)

In addition, if x(1) = e(i) and x(2) = 0 then for function fk(x), (the kth component of f)

y
(2)
k =

1
2

∂2fk(x(0))
∂xi∂xi

. (17)

In order to evaluate the mixed partial derivatives, one can instead set x(1) = e(i) + e(j) and
x(2) = 0. This gives for function fk(x),

y
(2)
k =

1
2

(
∂2fk(x(0))

∂xi∂xi
+

∂2fk(x(0))
∂xi∂xj

+
∂2fk(x(0))

∂xj∂xi
+

∂2fk(x(0))
∂xj∂xj

)
, (18)

or, expressed in terms of the mixed partials,

∂2fk(x(0))
∂xi∂xj

= y
(2)
k − 1

2

(
∂2fk(x(0))

∂xi∂xi
+

∂2fk(x(0))
∂xj∂xj

)
. (19)

13.2 Using OSInstance Methods: Low Level Calls

The code snippets used in this section are from the example code algorithmicDiffTest.cpp in the
algorithmicDiffTest folder in the examples folder. The code is based on the following example.

Minimize x2
0 + 9x1 (20)

s.t. 33− 105 + 1.37x1 + 2x3 + 5x1 ≤ 10 (21)
ln(x0x3) + 7x2 ≥ 10 (22)

x0, x1, x2, x3 ≥ 0 (23)

The OSiL representation of the instance (20)–(23) is given in Appendix 15.2. This example
is designed to illustrate several features of OSiL. Note that in constraint (21) the constant 33
appears in the <con> element corresponding to this constraint and the constant 105 appears as
a <number> OSnL node in the <nonlinearExpressions> section. This distinction is important,
as it will lead to different treatment by the code as documented below. Variables x1 and x2

do not appear in any nonlinear terms. The terms 5x1 in (21) and 7x2 in (22) are expressed in
the <objectives> and <linearConstraintCoefficients> sections, respectively, and will again
receive special treatment by the code. However, the term 1.37x1 in (21), along with the term 2x3, is
expressed in the <nonlinearExpressions> section, hence x1 is treated as a nonlinear variable for
purposes of algorithmic differentiation. Variable x2 never appears in the <nonlinearExpressions>
section and is therefore treated as a linear variable and not used in any algorithmic differentiation

77

calculations. Variables that do not appear in the <nonlinearExpressions> are never part of the
algorithmic differentiation calculations.

Ignoring the nonnegativity constraints, instance (20)–(23) defines a mapping from R4 to R3:

 x2
0 + 9x1

33− 105 + 1.37x1 + 2x3 + 5x1

ln(x0x3) + 7x2

 =

 9x1

33 + 5x1

7x2

+

 x2
0

−105 + 1.37x1 + 2x3

ln(x0x3)

=

 9x1

33 + 5x1

7x2

+

 f1(x)
f2(x)
f3(x)

 , (24)

where f(x) :=

 f1(x)
f2(x)
f3(x)

 . (25)

The OSiL representation for the instance in (20)–(23) is read into an in-memory OSInstance
object as follows (we assume that osil is a string containing the OSiL instance)

osilreader = new OSiLReader();
osinstance = osilreader->readOSiL(&osil);

There is a method in the OSInstance class, initForAlgDiff() that is used to initialize the non-
linear data structures. A call to this method

osinstance->initForAlgDiff();

will generate a map of the indices of the nonlinear variables. This is critical because the algorithmic
differentiation only operates on variables that appear in the <nonlinearExpressions> section. An
example of this map follows.

std::map<int, int> varIndexMap;
std::map<int, int>::iterator posVarIndexMap;
varIndexMap = osinstance->getAllNonlinearVariablesIndexMap();
for(posVarIndexMap = varIndexMap.begin(); posVarIndexMap

!= varIndexMap.end(); ++posVarIndexMap){
std::cout << "Variable Index = " << posVarIndexMap->first << std::endl ;

}

The variable indices listed are 0, 1, and 3. Variable 2 does not appear in the <nonlinearExpressions>
section and is not included in varIndexMap. That is, the function f in (25) will be considered as
a map from R3 to R3.

Once the nonlinear structures are initialized it is possible to take derivatives using algorithmic
differentiation. Algorithmic differentiation is done using either a forward or reverse sweep through
an expression tree (or operation sequence) representation of f . The two key public algorithmic
differentiation methods in the OSInstance class are forwardAD and reverseAD. These are actually
generic “wrappers” around the corresponding CppAD methods with the same signature. This keeps
the OS API public methods independent of any underlying algorithmic differentiation package.

The forwardAD signature is

std::vector<double> forwardAD(int k, std::vector<double> vdX);

78

where k is the highest order Taylor coefficient of f to be returned, vdX is a vector of doubles in Rn,
and the function return is a vector of doubles in Rm. Thus, k corresponds to the k in Equations
(12) and (14), where vdX corresponds to the x(k) in Equation (12), and the y(k) in Equation (14)
is the vector in range space returned by the call to forwardAD. For example, by Equation (15)
the following call will evaluate each component function defined in (25) corresponding only to the
nonlinear part of (24) – the part denoted by f(x).

funVals = osinstance->forwardAD(0, x0);

Since there are three components in the vector defined by (25), the return value funVals will have
three components. For an input vector,

x0[0] = 1; // the value for variable x0 in function f
x0[1] = 5; // the value for variable x1 in function f
x0[2] = 5; // the value for variable x3 in function f

the values returned by osinstance->forwardAD(0, x0) are 1, -63.15, and 1.6094, respectively.
The Jacobian of the example in (25) is

J =

 2x0 9.00 0.00 0.00
0.00 6.37 0.00 2.00
1/x0 0.00 7.00 1/x3

 (26)

and the Jacobian Jf of the nonlinear part is

Jf =

 2x0 0.00 0.00
0.00 1.37 2.00
1/x0 0.00 1/x3

 . (27)

When x0 = 1, x1 = 5, x2 = 10, and x3 = 5 the Jacobian Jf is

Jf =

 2.00 0.00 0.00
0.00 1.37 2.00
1.00 0.00 0.20

 . (28)

A forward sweep with k = 1 will calculate the Jacobian column-wise. See (16). The following code
will return column 3 of the Jacobian (28) which corresponds to the nonlinear variable x3.

x1[0] = 0;
x1[1] = 0;
x1[2] = 1;
osinstance->forwardAD(1, x1);

Now calculate second derivatives. To illustrate we use the results in (17)-(19) and calculate

∂2fk(x(0))
∂x0∂x3

k = 1, 2, 3.

Variables x0 and x3 are the first and third nonlinear variables so by (18) the x(1) should be the
sum of the e(1) and e(3) unit vectors and used in the first-order forward sweep calculation.

79

x1[0] = 1;
x1[1] = 0;
x1[2] = 1;
osinstance->forwardAD(1, x1);

Next set x(2) = 0 and do a second-order forward sweep.

std::vector<double> x2(n);
x2[0] = 0;
x2[1] = 0;
x2[2] = 0;
osinstance->forwardAD(2, x2);

This call returns the vector of values

y
(2)
1 = 1, y

(2)
2 = 0, y

(2)
3 = −0.52.

By inspection of (24) (or by appropriate calls to osinstance->forwardAD — not shown here),

∂2f1(x(0))
∂x0∂x0

= 2,

∂2f2(x(0))
∂x0∂x0

= 0,

∂2f3(x(0))
∂x0∂x0

= −1,

∂2f1(x(0))
∂x3∂x3

= 0,

∂2f2(x(0))
∂x3∂x3

= 0,

∂2f3(x(0))
∂x3∂x3

= −0.04.

Then by (19),

∂2f1(x(0))
∂x0∂x3

= y
(2)
1 − 1

2

(
∂2f1(x(0))
∂x0∂x0

+
∂2fk(x(0))
∂x3∂x3

)
= 1− 1

2
(2 + 0) = 0,

∂2f2(x(0))
∂x0∂x3

= y
(2)
2 − 1

2

(
∂2f2(x(0))
∂x0∂x0

+
∂2fk(x(0))
∂x3∂x3

)
= 0− 1

2
(0 + 0) = 0,

∂2f3(x(0))
∂x0∂x3

= y
(2)
3 − 1

2

(
∂2f3(x(0))
∂x0∂x0

+
∂2fk(x(0))
∂x3∂x3

)
= −0.52− 1

2
(−1− 0.04) = 0.

Making all of the first and second derivative calculations using forward sweeps is most effective
when the number of rows exceeds the number of variables.

The reverseAD signature is

std::vector<double> reverseAD(int k, std::vector<double> vdlambda);

where vdlambda is a vector of Lagrange multipliers. This method returns a vector in the range
space. If a reverse sweep of order k is called, a forward sweep of all orders through k− 1 must have
been made prior to the call.

80

13.2.1 First Derivative Reverse Sweep Calculations

In order to calculate first derivatives execute the following sequence of calls.

x0[0] = 1;
x0[1] = 5;
x0[2] = 5;
std::vector<double> vlambda(3);
vlambda[0] = 0;
vlambda[1] = 0;
vlambda[2] = 1;
osinstance->forwardAD(0, x0);
osinstance->reverseAD(1, vlambda);

Since vlambda only includes the third function f3, this sequence of calls will produce the third row
of the Jacobian Jf , i.e.,

∂f3(x(0))
∂x0

= 1,
∂f3(x(0))

∂x1
= 0,

∂f3(x(0))
∂x3

= 0.2.

13.2.2 Second Derivative Reverse Sweep Calculations

In order to calculate second derivatives using reverseAD forward sweeps of order 0 and 1 must have
been completed. The call to reverseAD(2, vlambda) will return a vector of dimension 2n where
n is the number of variables. If the zero-order forward sweep is forward(0,x0) and the first-order
forward sweep is forwardAD(1, x1) where x1 = e(i), then the return vector z = reverseAD(2,
vlambda) is

z[2j − 2] =
∂L(x(0), λ(0))

∂xj
, j = 1, . . . , n (29)

z[2j − 1] =
∂2L(x(0), λ(0))

∂xi∂xj
, j = 1, . . . , n (30)

where

L(x, λ) =
m∑

k=1

λkfk(x). (31)

For example, the following calls will calculate the third row (column) of the Hessian of the
Lagrangian.

x0[0] = 1;
x0[1] = 5;
x0[2] = 5;
osinstance->forwardAD(0, x0);
x1[0] = 0;
x1[1] = 0;
x1[2] = 1;
osinstance->forwardAD(1, x1);
vlambda[0] = 1;

81

vlambda[1] = 2;
vlambda[2] = 1;
osinstance->reverseAD(2, vlambda);

This returns

∂L(x(0), λ(0))
∂x0

= 3,
∂L(x(0), λ(0))

∂x1
= 2.74,

∂L(x(0), λ(0))
∂x3

= 4.2

∂2L(x(0), λ(0))
∂x3∂x0

= 0,
∂2L(x(0), λ(0))

∂x3∂x0
= 0,

∂2L(x(0), λ(0))
∂x3∂x3

= −.04

The reason why
∂L(x(0), λ(0))

∂x1
= 2× 1.37 = 2.74

and not
∂L(x(0), λ(0))

∂x1
= 1× 9 + 2× 6.37 = 9 + 12.74 = 21.74

is that the terms 9x1 in the objective and 5x1 in the first constraint are captured in the linear sec-
tion of the OSiL input and therefore do not appear as nonlinear terms in <nonlinearExpressions>.
Again, forwardAD and reverseAD only operate on variables and terms in either the <quadraticCoefficients>
or <nonlinearExpressions> sections.

13.3 Using OSInstance Methods: High Level Calls

The methods forwardAD and reverseAD are low-level calls and are not designed to work directly
with solver APIs. The OSInstance API has other methods that most users will want to invoke
when linking with solver APIs. We describe these now.

13.3.1 Sparsity Methods

Many solvers such as Ipopt (projects.coin-or.org/Ipopt) require the sparsity pattern of the
Jacobian of the constraint matrix and the Hessian of the Lagrangian function. Note well that the
constraint matrix of the example in Section 13.2 constitutes only the last two rows of (25) but
does include the linear terms. The following code illustrates how to get the sparsity pattern of the
constraint Jacobian matrix

SparseJacobianMatrix *sparseJac;
sparseJac = osinstance->getJacobianSparsityPattern();
for(idx = 0; idx < sparseJac->startSize; idx++){

std::cout << "number constant terms in constraint " << idx << " is "
<< *(sparseJac->conVals + idx) << std::endl;
for(k = *(sparseJac->starts + idx); k < *(sparseJac->starts + idx + 1); k++){

std::cout << "row idx = " << idx << "
col idx = "<< *(sparseJac->indexes + k) << std::endl;

}
}

For the example problem this will produce

82

JACOBIAN SPARSITY PATTERN
number constant terms in constraint 0 is 0
row idx = 0 col idx = 1
row idx = 0 col idx = 3
number constant terms in constraint 1 is 1
row idx = 1 col idx = 2
row idx = 1 col idx = 0
row idx = 1 col idx = 3

The constant term in constraint 1 corresponds to the linear term 7x2, which is added after the
algorithmic differentiation has taken place. However, the linear term 5x1 in equation 0 does not
contribute a nonzero in the Jacobian, as it is combined with the term 1.37x1 that is treated as a
nonlinear term and therefore accounted for explicitly. The SparseJacobianMatrix object has a
data member starts which is the index of the start of each constraint row. The int data member
indexes gives is the variable index of every potentially nonzero derivative. There is also a double
data member values that will the value of the partial derivative of the corresponding index at each
iteration. Finally, there is an int data member conVals that is the number of constant terms in
each gradient. A constant term is a partial derivative that cannot change at an iteration. A variable
is considered to have a constant derivative if it appears in the <linearConstraintCoefficients>
section but not in the <nonlinearExpressions>. For a row indexed by idx the variable indices are
in the indexes array between the elements sparseJac->starts + idx and sparseJac->starts
+ idx + 1. The first sparseJac->conVals + idx variables listed are indices of variables with
constant derivatives. In this example, when idx is 1, there is one variable with a constant derivative
and it is variable x2. (Actually variable x1 has a constant derivative but the code does not check
to see if variables that appear in the <nonlinearExpressions> section have constant derivative.)
The variables with constant derivatives never appear in the AD evaluation.

The following code illustrates how to get the sparsity pattern of the Hessian of the Lagrangian.

SparseHessianMatrix *sparseHessian;
sparseHessian = osinstance->getLagrangianHessianSparsityPattern();
for(idx = 0; idx < sparseHessian->hessDimension; idx++){

std::cout << "Row Index = " << *(sparseHessian->hessRowIdx + idx) ;
std::cout << " Column Index = " << *(sparseHessian->hessColIdx + idx);

}

The SparseHessianMatrix class has the int data members hessRowIdx and hessColIdx for index-
ing potential nonzero elements in the Hessian matrix. The double data member hessValues holds
the value of the respective second derivative at each iteration. The data member hessDimension
is the number of nonzero elements in the Hessian.

13.3.2 Function Evaluation Methods

There are several overloaded methods for calculating objective and constraint values. The method

double *calculateAllConstraintFunctionValues(double* x, bool new_x)

will return a double pointer to an array of constraint function values evaluated at x. If the value
of x has not changed since the last function call, then new_x should be set to false and the most
recent function values are returned. When using this method, with this signature, all function
values are calculated in double using an OSExpressionTree object.

A second signature for the calculateAllConstraintFunctionValues is

83

double *calculateAllConstraintFunctionValues(double* x, double *objLambda,
double *conLambda, bool new_x, int highestOrder)

In this signature, x is a pointer to the current primal values, objLambda is a vector of dual multipli-
ers, conLambda is a vector of dual multipliers on the constraints, new_x is true if any components
of x have changed since the last evaluation, and highestOrder is the highest order of derivative
to be calculated at this iteration. The following code snippet illustrates defining a set of variable
values for the example we are using and then the function call.

double* x = new double[4]; //primal variables
double* z = new double[2]; //Lagrange multipliers on constraints
double* w = new double[1]; //Lagrange multiplier on objective
x[0] = 1; // primal variable 0
x[1] = 5; // primal variable 1
x[2] = 10; // primal variable 2
x[3] = 5; // primal variable 3
z[0] = 2; // Lagrange multiplier on constraint 0
z[1] = 1; // Lagrange multiplier on constraint 1
w[0] = 1; // Lagrange multiplier on the objective function
calculateAllConstraintFunctionValues(x, w, z, true, 0);

When making all high level calls for function, gradient, and Hessian evaluations we pass all the
primal variables in the x argument, not just the nonlinear variables. Underneath the call, the
nonlinear variables are identified and used in AD function calls.

The use of the parameters new_x and highestOrder is important and requires further expla-
nation. The parameter highestOrder is an integer variable that will take on the value 0, 1, or 2
(actually higher values if we want third derivatives etc.). The value of this variable is the highest
order derivative that is required of the current iterate. For example, if a callback requires a func-
tion evaluation and highestOrder = 0 then only the function is evaluated at the current iterate.
However, if highestOrder = 2 then the function call

calculateAllConstraintFunctionValues(x, w, z, true, 2)

will trigger first and second derivative evaluations in addition to the function evaluations.
In the OSInstance class code, every time a forward (forwardAD) or reverse sweep (reverseAD)

is executed a private member, m_iHighestOrderEvaluated is set to the order of the sweep. For
example, forwardAD(1, x) will result in m_iHighestOrderEvaluated = 1. Just knowing the value
of new_x alone is not sufficient. It is also necessary to know highestOrder and compare it with
m_iHighestOrderEvaluated. For example, if new_x is false, but m_iHighestOrderEvaluated =
0, and the callback requires a Hessian calculation, then it is necessary to calculate the first and
second derivatives at the current iterate.

There are exactly two conditions that require a new function or derivative evaluation. A new
evaluation is required if and only if

1. The value of new_x is true

–OR–

2. For the callback function the value of the input parameter highestOrder is strictly greater
than the current value of m_iHhighestOrderEvaluated.

84

For an efficient implementation of AD it is important to be able to get the Lagrange multipliers
and highest order derivative that is required from inside any callback – not just the Hessian evalu-
ation callback. For example, in Ipopt, if eval_g or eval_f are called, and for the current iterate,
eval_jac and eval_hess are also going to be called, then a more efficient AD implementation is
possible if the Lagrange multipliers are available for eval_g and eval_f.

Currently, whenever new_x = true in the underlying AD implementation we do not retape
(record into the CppAD data structure) the function. This is because we currently throw an
exception if there are any logical operators involved in the AD calculations. This may change in a
future implementation.

There are also similar methods for objective function evaluations. The method

double calculateFunctionValue(int idx, double* x, bool new_x);

will return the value of any constraint or objective function indexed by idx. This method works
strictly with double data using an OSExpressionTree object.

There is also a public variable, bUseExpTreeForFunEval that, if set to true, will cause the
method

calculateAllConstraintFunctionValues(x, objLambda, conLambda, true, highestOrder)

to also use the OS expression tree for function evaluations when highestOrder = 0 rather than
use the operator overloading in the CppAD tape.

13.3.3 Gradient Evaluation Methods

One OSInstance method for gradient calculations is

SparseJacobianMatrix *calculateAllConstraintFunctionGradients(double* x, double *objLambda,
double *conLambda, bool new_x, int highestOrder)

If a call has been placed to calculateAllConstraintFunctionValues with highestOrder = 0,
then the appropriate call to get gradient evaluations is

calculateAllConstraintFunctionGradients(x, NULL, NULL, false, 1);

Note that in this function call new_x = false. This prevents a call to forwardAD() with order 0
to get the function values.

If, at the current iterate, the Hessian of the Lagrangian function is also desired then an appro-
priate call is

calculateAllConstraintFunctionGradients(x, objLambda, conLambda, false, 2);

In this case, if there was a prior call

calculateAllConstraintFunctionValues(x, w, z, true, 0);

then only first and second derivatives are calculated, not function values.
When calculating the gradients, if the number of nonlinear variables exceeds or is equal to the

number of rows, a forwardAD(0, x) sweep is used to get the function values, and a reverseAD(1,
ek) sweep for each unit vector ek in the row space is used to get the vector of first order partials for
each row in the constraint Jacobian. If the number of nonlinear variables is less then the number
of rows then a forwardAD(0, x) sweep is used to get the function values and a forwardAD(1, ei)
sweep for each unit vector ei in the column space is used to get the vector of first order partials for
each column in the constraint Jacobian.

Two other gradient methods are

85

SparseVector *calculateConstraintFunctionGradient(double* x,
double *objLambda, double *conLambda, int idx, bool new_x, int highestOrder);

and

SparseVector *calculateConstraintFunctionGradient(double* x, int idx,
bool new_x);

Similar methods are available for the objective function; however, the objective function gradient
methods treat the gradient of each objective function as a dense vector.

13.3.4 Hessian Evaluation Methods

There are two methods for Hessian calculations. The first method has the signature

SparseHessianMatrix *calculateLagrangianHessian(double* x,
double *objLambda, double *conLambda, bool new_x, int highestOrder);

so if either function or first derivatives have been calculated an appropriate call is

calculateLagrangianHessian(x, w, z, false, 2);

If the Hessian of a single row or objective function is desired the following method is available

SparseHessianMatrix *calculateHessian(double* x, int idx, bool new_x);

14 File Upload: Using a File Upload Package

When the OSAgent class methods solve and send are used, the problem instance in OSiL format is
packaged into a SOAP envelope and communication with the server is done using Web Services (for
example Tomcat Axis). However, packing an XML file into a SOAP envelope may add considerably
to the size of the file (each < is replaced with < and each > is replaced with >). Also, commu-
nicating with a Web Services servlet can further slow down the communication process. This could
be a problem for large instances. An alternative approach is to use the OSFileUpload executable
on the client end and the Java servlet OSFileUpload on the server end. The OSFileUpload client
executable is contained in the fileUpload directory inside the applications directory.

This servlet is based upon the Apache Commons FileUpload. See

http://jakarta.apache.org/commons/fileupload/.

The OSFileUpload Java class, OSFileUpload.class is in the directory

webapps\os\WEB-INF\classes\org\optimizationservices\oscommon\util

relative to the Web server root. The source code OSFileUpload.class is in the directory

COIN-OS/OS/applications/fileUpload

Before you can use OSFileUpload, you must give a valid URL for the location of the server.
This information must be provided in line 82 of the source code OSFileUpload.cpp before issuing
the make command (in a unix environment) or the build (under MS VisualStudio).

The OSFileUpload client executable (see OS/applications/fileUpload) takes one argument
on the command line, which is the location of the file on the local directory to upload to the server.
For example,

86

OSFileUpload ../../data/osilFiles/parincQuadratic.osil

The OSFileUpload executable first creates an OSAgent object.

OSSolverAgent* osagent = NULL;
osagent = new OSSolverAgent("http://gsbkip.chicagogsb.edu/fileupload/servlet/OSFileUpload");

The OSAgent has a method OSFileUpload with the signature

std::string OSFileUpload(std::string osilFileName, std::string osil);

where osilFileName is the name of the OSiL problem instance to be written on the server and
osil is the string with the actual instance. Then

osagent->OSFileUpload(osilFileName, osil);

will place a call to the server, upload the problem instance in the osil string, and cause the
server to write a file on its hard drive named osilFileName. In our implementation, the uploaded
file (parincQuadratic.osil) is saved to the /home/kmartin/temp/parincQuadratic.osil on the
server hard drive. This location is used in the osol file as shown below.

Once the file is on the server, invoke the local OSSolverService by

./OSSolverService -config ../data/configFiles/testremote.config

where the config file is as follows. Notice there is no -osil option as the OSiL file has already
been uploaded and its instance location (“local” to the server) is specified in the osol file.

-osol ../data/osolFiles/remoteSolve2.osol
-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-serviceMethod solve

and the osol file is

<osol>
<general>

<instanceLocation locationType="local">
/home/kmartin/temp/parincQuadratic.osil

</instanceLocation>
<solverToInvoke>ipopt</solverToInvoke>

</general>
</osol>

15 Appendix – Sample OSiL files

15.1 OSiL representation for problem given in (1)–(4) (p.34)

<?xml version="1.0" encoding="UTF-8"?>

<osil xmlns="os.optimizationservices.org">

<instanceHeader>

<name>Modified Rosenbrock</name>

<source>Computing Journal 3:175-184, 1960</source>

87

<description>Rosenbrock problem with constraints</description>

</instanceHeader>

<instanceData>

<variables numberOfVariables="2">

<var lb="0" name="x0" type="C"/>

<var lb="0" name="x1" type="C"/>

</variables>

<objectives numberOfObjectives="1">

<obj maxOrMin="min" name="minCost" numberOfObjCoef="1">

<coef idx="1">9.0</coef>

</obj>

</objectives>

<constraints numberOfConstraints="2">

<con ub="25.0"/>

<con lb="10.0"/>

</constraints>

<linearConstraintCoefficients numberOfValues="3">

<start>

<el>0</el><el>2</el><el>3</el>

</start>

<rowIdx>

<el>0</el><el>1</el><el>1</el>

</rowIdx>

<value>

<el>1.</el><el>7.5</el><el>5.25</el>

</value>

</linearConstraintCoefficients>

<quadraticCoefficients numberOfQuadraticTerms="3">

<qTerm idx="0" idxOne="0" idxTwo="0" coef="10.5"/>

<qTerm idx="0" idxOne="1" idxTwo="1" coef="11.7"/>

<qTerm idx="0" idxOne="0" idxTwo="1" coef="3."/>

</quadraticCoefficients>

<nonlinearExpressions numberOfNonlinearExpressions="2">

<nl idx="-1">

<plus>

<power>

<minus>

<number type="real" value="1.0"/>

<variable coef="1.0" idx="0"/>

</minus>

<number type="real" value="2.0"/>

88

</power>

<times>

<power>

<minus>

<variable coef="1.0" idx="0"/>

<power>

<variable coef="1.0" idx="1"/>

<number type="real" value="2.0"/>

</power>

</minus>

<number type="real" value="2.0"/>

</power>

<number type="real" value="100"/>

</times>

</plus>

</nl>

<nl idx="1">

<ln>

<times>

<variable coef="1.0" idx="0"/>

<variable coef="1.0" idx="1"/>

</times>

</ln>

</nl>

</nonlinearExpressions>

</instanceData>

</osil>

15.2 OSiL representation for problem given in (20)–(23) (p.77)

<?xml version="1.0" encoding="UTF-8"?>
<osil xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/OSiL.xsd">
<instanceHeader>

<description>A test problem for Algorithmic Differentiation</description>
</instanceHeader>
<instanceData>

<variables numberOfVariables="4">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>
<var lb="0" name="x2" type="C"/>
<var lb="0" name="x3" type="C"/>

89

</variables>
<objectives numberOfObjectives=" 1">

<obj maxOrMin="min" name="minCost" numberOfObjCoef="1">
<coef idx="1">9.0</coef>

</obj>
</objectives>
<constraints numberOfConstraints="2">

<con ub="10.0" constant="33"/>
<con lb="10.0"/>

</constraints>
<linearConstraintCoefficients numberOfValues="2">

<start>
<el>0</el>
<el>0</el>
<el>1</el>
<el>2</el>
<el>2</el>

</start>
<rowIdx>

<el>0</el>
<el>1</el>

</rowIdx>
<value>

<el>5</el>
<el>7</el>

</value>
</linearConstraintCoefficients>
<nonlinearExpressions numberOfNonlinearExpressions="3">

<nl idx="1">
<ln>

<times>
<variable coef="1.0" idx="0"/>
<variable coef="1.0" idx="3"/>

</times>
</ln>

</nl>
<nl idx="0">

<sum>
<number type="real" value="-105"/>
<variable coef="1.37" idx="1"/>
<variable coef="2" idx="3"/>

</sum>
</nl>
<nl idx="-1">

<power>
<variable coef="1.0" idx="0"/>
<number type="real" value="2.0"/>

</power>

90

</nl>
</nonlinearExpressions>

</instanceData>
</osil>

References

[1] Bradley Bell. CppAD Documentation, 2007. http://www.coin-or.org/CppAD/Doc/cppad.
xml.

[2] R. Fourer, L. Lopes, and K. Martin. LPFML: A W3C XML schema for linear and integer
programming. INFORMS Journal on Computing, 17:139–158, 2005.

[3] Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differen-
tiation. SIAM, Philadelphia, PA, 2000.

[4] J. Ma. Optimization services (OS), a general framework for optimization modeling systems,
2005. Ph.D. Dissertation, Department of Industrial Engineering & Management Sciences, North-
western University, Evanston, IL.

[5] H.H. Rosenbrock. An automatic method for finding the greatest or least value of a function.
Comp. J., 3:175–184, 1960.

91

Index

Algorithmic differentiation, 7, 56–57, 76–77
AMPL, 6, 7, 31, 58
AMPL nl format, 1, 6, 7, 38, 44, 58, 71
AMPL Solver Library (ASL), 16, 17, 19, 23, 25–

27
Apache Axis, 6, 41
Apache Tomcat, 1, 6–8, 12, 41, 53–55, 86
ASL, see AMPL Solver Library (ASL)

Bell, Bradley M., 76
bison, 10, 21, 72
Blas, 9, 13, 22, 24
Bonmin, see COIN-OR projects, Bonmin
Bug reporting, 29
BuildTools, see COIN-OR projects, BuildTools

C++ compiler, 9, 16
Cbc, see COIN-OR projects, Cbc
Cgl, see COIN-OR projects, Cgl
cl compiler, 9, 20
Clp, see COIN-OR projects, Clp
COIN-OR, 1, 12
COIN-OR projects

Bonmin, 13, 17, 19, 22–23, 25
BuildTools, 31
Cbc, 13, 14, 25, 31, 39, 40
Cgl, 13, 25, 31, 58
Clp, 13, 14, 25, 31, 39, 40, 58
CoinUtils, 13, 25, 31, 71
CppAD, 6, 7, 13, 25, 31, 76–77
DyLP, 25, 31
Ipopt, 9, 13, 14, 17, 19, 22–23, 25, 27, 31,

40, 44, 58–59, 73, 74, 82
Osi, 13, 25, 31, 39
SYMPHONY, 14, 25, 31
Vol, 25, 31

COIN_SKIP_PROJECTS, 13, 15, 19, 22, 26
CoinUtils, see COIN-OR projects, CoinUtils
Common Public License (CPL), 7, 23
Configuration Manager, see Microsoft Visual Stu-

dio, Configuration Manager
configure, 22–23, 25–26

cache file, 13
scripts, 8

configure, 13, 14
cplex, 7, 28, 39

CppAD, see COIN-OR projects, CppAD
Cygwin, 18–20, 29

Debug configuration, see Microsoft Visual Stu-
dio, Debug configuration

debug version, MSYS, 21–22
Downloading

binaries, 7
subversion

unix, 10
Windows, 12

tarball, 12
zip file, 12

Doxygen, 10, 29, 65
DyLP, see COIN-OR projects, DyLP

f2c, 9, 19, 23–25
file naming conventions, 8, 17
flex, 10, 21, 72
Fortran, 9, 13, 19, 22, 23, 25

GAMS, 58
GAMSlinks, 59–60
gcc, 9
getJobID, 38, 40, 46, 49
GLPK, 7, 27, 39
Griewank, A., 76

Harwell Subroutine Library (HSL), 9, 19, 23, 24
HSL, see Harwell Subroutine Library (HSL)

Ipopt, see COIN-OR projects, Ipopt

Java, 1, 8, 12
JobID, 44–46, 49

kill, 38, 40, 48–49
knock, 38, 40, 45–49

Lapack, 9, 24
LibOS, 14
libOS.vcproj, 16
libOSnl2OSiL, 16
LINDO, 7, 13, 28, 39, 40, 73, 74
linker errors, 27
Linux, 29

Mac OS X, 29

92

MATLAB, 7, 28, 60–65
Microsoft Visual Studio, 8, 26, 27, 33

Debug configuration, 17
Release-Plus configuration, 17, 25, 27
Release configuration, 17
Configuration Manager, 16, 25

Microsoft Windows, 12, 13
MinGW, 9, 20, 29
MPS format, 1, 6, 7, 38, 71
MSYS, 9, 20–21, 29
Mumps, 9, 13, 23

nl files, see AMPL nl format

Optimization Services, 6
OS

source code, 8, 9, 16
stable release, 6, 8
trunk version, 22, 51, 52
unit test, 13

OS project
root directory, 10

OS.sln, 16, 17, 27, 56
OSAgent, 6, 65, 86
OSAmplClient, 6, 8, 16, 25, 26, 31, 58–59, 71
OSCommon, 7, 12
OSExpressionTree, 67
OSFileUpload, 86–87
Osi, see COIN-OR projects, Osi
OSiL, 1, 6–8, 33–35, 37, 38, 40, 42, 44, 48, 49,

58, 66, 67, 71–73, 86–91
OSInstance, 6, 56, 57, 66–71, 74, 78
OSLibrary, 40, 65–74
OSmps2osil, 60, 71
OSnL, 37–38
OSnl2osil, 26, 58, 60, 71
OSoL, 6, 8, 37–38, 40–42, 44–46, 48, 49
OSOption, 70
OSpL, 38, 47–49
OSResult, 71
OSrL, 6, 8, 35–37, 39–41, 49, 59, 71
OSSolverAgent, 65
OSSolverService, 1, 6, 8, 13–15, 25, 31, 33, 38–

49
OSSolverService.jws, 42
OSSolverService.vcproj, 16
OSTest.vcproj, 16

parincLinear.osil, 39

$PATH, 9, 19

Release configuration, see Microsoft Visual Stu-
dio, Release configuration

Release-plus configuration, see Microsoft Visual
Studio, Release-plus configuration

remoteSolve1.osol, 43
retrieve, 38, 40, 45–46, 49
Rosenbrock, H.H., 34

send, 38–40, 43–46, 86
serviceLocation, 40
SOAP protocol, 6, 8, 42, 44, 86
solve, 38–40, 42–43, 48, 49, 86
Subversion, 9
SVN, 10, 12, 16
SYMPHONY, see COIN-OR projects, SYMPHONY

testlocal.config, 40
testremote.config, 42–43
Third-party software, 16, 17, 22, 25–26
TortoiseSVN, 12, 16, 20
Trac system, 1, 6, 29

unitTest, 13, 16, 25, 33
Unix, 9, 10, 13, 26, 29

Vol, see COIN-OR projects, Vol
VPATH, 21–22, 26, 56, 60

wget, 9, 16, 20
Windows Platform SDK, 16, 18, 20
WSUtil, 65

XML, 6

93

