

€ 2001 International Business Machines Corporation, Ted Ralphs and others. All right
reserved.

1.6.1 The Tree Manager Module
16.2 TheLP Module.
1.6.3 The Cut Generator Module
1.6.4 The Variable Generator Module

1.7 Parallelizing COIN/BCP

1.7.1 Parallel Execution and Inter-process Communication

1.7.2 Fault Tolerance i i i

Getting Started: Sample Compiling

2.1 System Requirements
2.2 Obtaining the Source Code
221 UsingCVS e
2.2.2 DownloadingatarFile
2.3 Initial compilation and testing
2.3.1 Compiling for serial execution

2.3.2 Compiling for distributed networks

Developing Applications with COIN/BCP

3.1 Directory Layout (location of the source files)

3.2 Overview of the Class Hierarchy

CONTENTS

CONTENTS

CONTENTS

Chapter 1

Introduction

1.1 A Brief History

8 CHAPTER 1. INTRODUCTION

nothing short of amazing. This hardware improvement made it possible to tackle larger

10 CHAPTER 1. INTRODUCTION

always a global upper bound on th eoptimal value. In the branch and bound algorithm
we maintain a list of

12

CHAPTER 1. INTRODUCTION

Bounding Operation
Input: A subproblem S, described in terms of a “small” set of inequalities L°
such that S = fx* :s 2 F and ax® = fl 8 (a;fl) 2 L'g and fi

1.4.

INTRODUCTION TO BRANCH, CUT AND PRICE

Generic Branch and Cut Algorithm
Input: A data array specifying the problem instance.
Output: The global optimal solution

13

14 CHAPTER 1. INTRODUCTION

1.4.4 Branch, Cut and Price

Finally, when both variables and cutting planes are generated dynamically during LP-based
branch and bound, the technique becomes known as branch, cut and price (BCP). In such a
scheme, there is a pleasing symmetry between the treatment of cuts and variables. However,
it is important to note that while branch, cut and price does combine ideas from both branch
and cut and branch and price (which are very similar to each other anyway), combining the

1.0. DESIGN OF COIN/BCP 15

number of global cuts and variables that need to be accounted for during the solution pro-

16 CHAPTER 1. INTRODUCTION

challenges inherent in BCP. In the remainder of this section, we will further discuss this
distinction and the details of how it is implemented.

Variables and Cuts

Although their algorithmic roles are dilerent, variables and cuts as objects are treated
identically in COIN/BCP. We will describe the various types of variables.

1.5. DESIGN OF COIN/BCP 17

to the variable. Using the schedule planning example, the compact representation may be
the information which flight legs a particular plane is going to fly. From this information
it’s easy to derive when the plane is on the ground and hence it is easy to compute the
coe Lciehts of the column for constraints that, say, specify that at a given time at a given
airport only so many planes can be on the ground.

To summarize the advantages and disadvantages of the various variable types:

18 CHAPTER 1. INTRODUCTION

start information is either inherited from the parent or comes from earlier partial processing
of the node itself (see Section 1.6.1). Along with the set of active objects, we must also store

1.5. DESIGN OF COIN/BCP

t Compute an initial upper bound using heuristics.
t Perform problem preprocessing.
T Initialize the BCP algorithm by constructing the root node.

t Initialize output devices and act as a central repository for output.

.I.

19

20 CHAPTER 1. INTRODUCTION

The Cut Generator M41.dule

The cut generator

1.6. DETAILS OF THE IMPLEMENTATION

21

22 CHAPTER 1. INTRODUCTION

Search Chains and Diving

Once execution of the algorithm begins, the tree manager’s primary job is to guide the

1.6. DETAILS OF THE IMPLEMENTATION 23

If no upper bounding subroutine is available, then a unique two-phase algorithm can also be
invoked. In the two-phase method, the algorithm is first run to completion on the specified

1.6. DETAILS OF THE IMPLEMENTATION

25

26

1.7. PARALLELIZING COIN/BCP 27

protocol supporting dynamic spawning of processes and basic message-passing functions.
All communication subroutines interface with COIN/BCP through a separate communi-
cations API. As mentioned above, currently PVM is the only message-passing protocol
supported, but interfacing with another protocol is a straightforward exercise.

Chapter 2

Getting Started: Sample
Compiling

Having familiarized yourself with the overall design of COIN/BCP

30 CHAPTER 2. GETTING STARTED: SAMPLE COMPILING

— Osi: open solver interface,
— Dfo: derivative free optimization,

— COIN: to get all modules,

If you are just starting with Bcp, get the module Bcp-all. It will automatically get the
two sample applications (Mkc and MaxCut), as well as the other necessary modules (Osi and
Vol). Note that the directory

2.3.

INITIAL COMPILATION AND TESTING

— OSLDIR

31

Chapter 3

Developing Applications with
COIN/BCP

3.2. OVERVIEW OF THE CLASS HIERARCHY 35

3.2 Overview of the Class Hierarchy

We now briefly describe the class hierarchy from the user’s point of view. Our aim here
is not to describe the full class structure, but just those parts that the user needs to be
familiar with in order to derive new user classes and override the appropriate methods.

36

CHAPTER 3. DEVELOPING APPLICATIONS WITH COIN/BCP

could be defined in a separate base class and then, using multiple inheritance, derived

38

CHAPTER 3.

DEVELOPING APPLICATIONS WITH COIN/BCP

Create and initialize the

BCP _user init)
B HSer ()

user’s data structures
xx_init()

initialize_core()

Set the core and extra

variables and cuts
create_root()

pack_module_data()

unpack_feasible_solution()

init_new_phase()

compare_tree_nodes()

unpack_module_data()

initialize_search_tree_node()

See the solver loop figure

3.3. THE FLOW OF THE ALGORITHM

pack_feasible solution()

39

42

CHAPTER 3. DEVELOPING APPLICATIONS WITH COIN/BCP

T (un)pack_cut_

44

CHAPTER 3. DEVELOPING APPLICATIONS WITH COIN/BCP

pair, unpack_primal_solution() in the cut generator. There is no reason to override
it if no cut generator processes are started.

T pack_dual solution()

3.4. DETAILS OF THE INTERFACE

46

CHAPTER 3. DEVELOPING APPLICATIONS WITH COIN/BCP

jective values in the children and makes a decision based on those (the decision is

3.4. DETAILS OF THE INTERFACE 47

there is no need to pack algorithmic variables. They are only received with the primal
solution.

t pack_cut_algo(): pack an algorithmic cut. By default this method throws an ex-
ception since if it is invoked then the user must have generated an algorithmic cut in

3.5. DERIVING PROBLEM-SPECIFIC CLASSES 49

3.5.2 Generating variables

Generally speaking, dynamic variable generation (often called column generation) is used
less frequently than dynamic cut generation. If it is possible to e Lciehtly generate all
variables explicitly in the root node and there is enough memory to store them, this is
generally the best thing to do. This allows variables to be fixed by reduced cost and nodes
to be fathomed without expensive pricing (see the last paragraph). However, sometimes
this is either not possible or not e Lcieht because (1) there is not enough memory to store
all of the variables in the matrix at once, (2) it is expensive to generate the variables, or (3)
there is an e [cieht method of pricing large subsets of variables at once. There may also be

3.6. INTERNAL DATA STRUCTURES

Create the root node.
T Override create_root() in BCP_tm_user.

Modify the LP solver parameters.
T Override modify_lp_parameters() in BCP_Ip

_solution.
T Override (un)pack_feasible_solution() in the classes BCP_Ip_user
BCP _tm_user (unpacking).

Define data structure to send LP solutions.
t Override (un)pack_fprimal,dualg

53

54 CHAPTER 3. DEVELOPING APPLICATIONS WITH COIN/BCP

appropriate module. This method will return a pointer to the data structure for the ap-
propriate module. Casual users are advised against modifying COIN/BCP’s internal data
structures directly.

3.7 Inter-process Communication

The implementation of COIN/BCP strives to shield the user from having to know anything

3.8. DEBUGGING YOUR APPLICATION 55
3.8.2 Debugging with PVM

If you wish to venture into debugging your distributed application, then you simply need
to set the parameter DebugXxProcesses, where Xx is the name of the module you wish to
debug, to the value “1” (representing true) in the parameter file. This will tell PVM to
spawn the particular process or processes in question under a debugger. What PVM actually
d actJ/F6n this caseactJ/F6s to launch $R¥MAEQOT/ 1ib/debugger. You will undoubtedly
want to modify this script to launch your preferred debugger 6n the manner you deem fit.

Chapter 4

Sample Application: The MKC
Problem

In this chapter we describe how the solver for the MKC problem were implemented. This

58

CHAPTER 4. SAMPLE APPLICATION: THE MKC PROBLEM

4.3. A FORMULATION SUITABLE FOR COLUMN GENERATION 59

4.3 A formulation suitable for column generation

This new formulation has significantly more columns than the original formulation, on the
other hand it results in a well studied problem, the set packing problem ([?]).

There are two types of constraints in this formulation. The first type corresponds to the slabs
in the problem, the second type to the orders. The variables represent feasible production
patterns, that is, variable u has a 1 in the row corresponding to the slab the production
pattern is to be made of and 1’s in the rows corresponding to the orders in the production

62 CHAPTER 4. SAMPLE APPLICATION: THE MKC PROBLEM

eliminating the need to bother about cuts.

For the variables first we had to decide which ones are going to be core variables and which

4.4. IMPLEMENTATION DETAILS

4.4.3 Packing and unpacking

63

Chapter 5

Sample Application: The
Maximum Cut Problem

66 CHAPTER 5. SAMPLE APPLICATION: THE MAXIMUM CUT PROBLEM

idea during initial development since it makes debugging much easier. Because we are not
using a separate cut generator, we do not need to consider the BCP_cg_user class either.

As with virtually any BCP implementation, we will need to consider the BCP_tm_user
and BCP_lIp_user classes. Also, because we will be dynamically generating algorithmic
cuts, we will need to derive a new class to represent the cycle cuts (5.5) from the class
BCP_cut_algo

5.2. IMPLEMENTATION 67

t create_root(): To initialize the root node, we use some heuristics to generate an
initial set of cycle cuts. However, as noted before, these are “extra” cuts and do not
get put into the core. They may be removed later in the calculation.

t display_feasible_solution()

Bibliography

[1]

70

BIBLIOGRAPHY

