
Using the CoinAll Binaries

Horand Gassmann, Jun Ma, Kipp Martin

October 17, 2013

Abstract

This document explains how to get up and running quickly with the CoinAll binaries. It
is intended for users of COIN-OR who are interested in solving optimization problems but do
not wish to compile source code. In particular, we show how the user can send optimization
problems to a COIN-OR server and get results back. One such COIN-OR server is located at
http://74.94.100.129:8080/OSServer/services/OSSolverService. It is a 2x Quad-Core
Intel(R) Xeon(TM) CPU 2.4GHz 256KB L2, 1536MB L3, 12GB DRAM machine.

1

Contents

1 The CoinEasy Project and CoinAll 4

2 Quick Roadmap 5

3 Downloading the CoinAll Binaries 5

4 The OSSolverService 6
4.1 OSSolverService Input Parameters . 6
4.2 The Command Line Parser . 9
4.3 Solving Problems Locally . 10
4.4 Solving Problems Remotely with Web Services . 11

4.4.1 The solve Service Method . 11
4.4.2 The send Service Method . 14
4.4.3 The retrieve Service Method . 15
4.4.4 The getJobID Service Method . 15
4.4.5 The knock Service Method . 16
4.4.6 The kill Service Method . 17

4.5 Passing Options to Solvers . 18

5 OS Support for AMPL and GAMS 21
5.1 AMPL Client: Hooking AMPL to Solvers . 21

5.1.1 Using OSAmplClient for a Local Solver . 21
5.1.2 Using OSAmplClient to Invoke an OS Solver Server remotely 22
5.1.3 AMPL Summary . 23

5.2 GAMS and Optimization Services . 24
5.2.1 Using GAMS to Invoke a Remote OS Solver Service 24
5.2.2 GAMS Summary: . 28

6 OS Protocols 29
6.1 OSiL (Optimization Services instance Language) . 29
6.2 OSnL (Optimization Services nonlinear Language) 31
6.3 OSrL (Optimization Services result Language) . 31
6.4 OSoL (Optimization Services option Language) . 33
6.5 OSpL (Optimization Services process Language) . 33

7 Appendix – Sample OSiL files 34
7.1 OSiL representation for problem given in (1)–(4) (p.29) 34

Bibliography 35

List of Figures

1 A local call to solve. 10
2 A remote call to solve. 12
3 Downloading the instance from a remote source. 13
4 The OS Communication Methods . 18
5 The <variables> element for the example (1)–(4). 30

2

6 The Variables complexType in the OSiL schema. 30
7 The Variable complexType in the OSiL schema. 31
8 The <linearConstraintCoefficients> element for constraints (2) and (3). 32
9 The <quadraticCoefficients> element for constraint (2). 32
10 The <nl> element for the nonlinear part of the objective (1). 33

List of Tables

1 Default solvers . 7

3

1 The CoinEasy Project and CoinAll

(Much of the material in this section is taken from the CoinEasy web page at
http://projects.coin-or.org/CoinEasy.)

As the name implies, the CoinEasy project is designed to make it easy to use COIN-OR projects.
It addresses the needs of two groups of users:

1. Users who want to access COIN-OR solvers to solve optimization problems without having
to compile code.

2. Users who want to write applications that use pre-built COIN-OR libraries.

Users who want to build COIN-OR projects from source code are directed to the home pages
of the respective projects for more information.

This document is aimed specifically at the first group of users. An enlarged document that also
includes material for group 2 users can be found at
https://projects.coin-or.org/svn/OS/trunk/OS/doc/UsingCoinAllLibs.pdf.

In the information below, we mention the CoinAll and CoinBinary projects. CoinAll is a meta
project that consists of most of the solver and utility projects in COIN-OR. As such it currently does
not have its own web page. CoinBinary is a project that provides compiled executable programs
and libraries for the projects in CoinAll as well as some other COIN-OR projects. Its web page is at
http://projects.coin-or.org/CoinBinary. The binary distribution of the CoinAll executables
and libraries can be found at http://www.coin-or.org/download/binary/CoinAll/.

Like other COIN-OR projects, CoinAll has a versioning system that ensures end users some
degree of stability and a stable upgrade path as project development continues. The current version
of the CoinAll binaries is 1.6.2.

The CoinAll binary distribution includes the following projects

• clp - an open-source linear programming solver .

• cbc - an open-source mixed integer programming solver .

• symphony - an open-source solver for mixed-integer linear programs (MILPs) . It supports
parallel computations.

• ipopt - a software package designed to find (local) solutions for large-scale nonlinear opti-
mization problems.

• bonmin - an experimental open-source C++ code for solving general MINLP (Mixed Integer
NonLinear Programming) problems.

• couenne - an exact solver for nonconvex MINLPs.

• blis - a high-performance parallel search implementation for mixed integer linear programs.

• OSSolverService - an integrative framework that allows the other solvers to be called both
locally and remotely.

OSSolverService is a harness around the other programs, calling any one of them as directed
by the user, or as determined by characteristics of the problem. This document is written mostly
from the point of view of explaining and supporting OSSolverService; for information on using the
individual solvers in stand-alone form, consult their respective wiki pages.

4

2 Quick Roadmap

If you want to:

• Download the CoinAll OS binaries (executables and libraries) – see Section 3.

• Use the OSSolverService to read files in nl, OSiL, or MPS format and call a solver locally or
remotely – see Section 4.

• Use modeling languages to generate model instances in OSiL format – see Section 5.

• Use AMPL to solve problems either locally or remotely with a COIN-OR solver, Cplex,
GLPK, or LINDO – see Section 5.1.

• Use GAMS to solve problems either locally or remotely – see Section 5.2.

3 Downloading the CoinAll Binaries

The CoinAll project is actually a meta-project consisting of most of the COIN-OR solvers and
supporting utility projects. We describe how to download this project.

Most users will only be interested in obtaining the binaries, which we describe next. It is also
possible to obtain the source code for the projects, which will be of interest mostly to developers.
If binaries are not provided for a particular operating system, it may be possible to build them
from the source. For details it is best to start reading the wiki page for the individual project or
projects of interest.

The repository of the binaries is at http://www.coin-or.org/download/binary/CoinAll/.
The binary distribution for the CoinAll library and executables follows the following naming

convention:

CoinAll-version_number-platform-compiler-build_options.tgz (zip)

For example, CoinAll Release 1.6.0 compiled with the Intel 11.1 compiler on a 64 bit Windows
system is:

CoinAll-1.6.0-win64-intel11.1.zip

For more detail on the naming convention and examples see:

https://projects.coin-or.org/CoinBinary/wiki/ArchiveNamingConventions

After unpacking the tgz or zip archives, the following folders are available.

bin – this directory contains all the executables.

examples – this directory contains several examples that illustrate working with the libraries.
Some data files for working with the examples are also included.

include – the header files that are necessary in order to link against the various libraries.

lib – the libraries that are necessary for creating applications that use the libraries.

share – license and author information for all the projects used by the CoinAll project as
well as a number of further data files of linear and integer programming problems.

5

4 The OSSolverService

The OSSolverService is a command line executable designed to pass problem instances in either
OSiL, AMPL nl, or MPS format to solvers and get the optimization result back to be displayed
either to standard output or a specified browser. The OSSolverService can be used to invoke a
solver locally or on a remote server. It can communicate with a remote solver both synchronously
and asynchronously. At present six service methods are implemented, solve, send, retrieve,
getJobID, knock and kill. These methods are explained in more detail in Section 4.4. Only the
solve method is available locally.

There are two ways to use the OSSolverService executable. The first way is to use the
interactive shell. The interactive shell is invoked by either double clicking on the icon for the
OSSolverService executable, or by opening a command window, connecting to the directory hold-
ing the executable, and then typing in OSSolverService with no arguments. Using the interactive
shell is fairly intuitive and we do not discuss in detail. The second way to use the OSSolverService
executable is to provide arguments at the command line. This is discussed next. The command
line arguments are also valid for the interactive shell.

4.1 OSSolverService Input Parameters

At present, the OSSolverService takes the following parameters. The order of the parameters is
irrelevant, and not all the parameters are required.

osil xxx.osil This is the path information and name of the file that contains the opti-
mization instance in OSiL format. It is assumed that this file is available on the machine
that is running OSSolverService. This parameter can be omitted, as there are other ways
to specify an optimization instance. Although we endorse the convention that OSiL schema
files have the extension .osil, OSoL files have the extension .osol, etc., it is not required.
Any other path and file name could be substituted for xxx.osil.

osol xxx.osol This is the path information and name of the file that contains the solver op-
tions. It is assumed that this file is available on the machine that is running OSSolverService.
It is not necessary to specify this parameter.

osrl xxx.osrl This is the path information and name of the file to which the solver solution
will be written upon return. A valid file path must be given on the machine that is running
OSSolverService. It is not necessary to specify this parameter. If this parameter is not
specified, then the solver solution is displayed to the screen.

osplInput xxx.ospl The name of an input file in the OS Process Language (OSpL); this
is used as input to the knock method. If serviceMethod knock is specified, this parameter
must also be present.

osplOutput xxx.ospl The name of an output file in the OS Process Language (OSpL); this
is the output string from the knock and kill method. If not present, the output is displayed
to the terminal screen.

serviceLocation url This is the URL of the solver service. It is not required, and if not
specified it is assumed that the problem is solved locally.

serviceMethod methodName This is the service method to be invoked. The options are
solve, send, kill, knock, getJobID, and retrieve. The use of these options is illustrated

6

Table 1: Default solvers

Problem type Default solver

Linear, continuous Clp
Linear, integer Cbc
Nonlinear, continuous Ipopt
Nonlinear, integer Bonmin

in the examples below. This parameter is not required, and it has no effect for problems
solved locally. The default value is solve.

jobID string In order to use the asynchronous methods send (Section 4.4.2), retrieve
(Section 4.4.3) and kill (Section ??) it is essential to identify the relevant job by a unique
jobID. (See also Section ??.)

mps xxx.mps This is the path information and name of the MPS file if the problem instance
is in MPS format. It is assumed that this file is available on the machine that is running
OSSolverService. The default file format is OSiL so this option is not required.

nl xxx.nl This is the path information and name of the AMPL nl file if the problem instance
is in AMPL nl format. It is assumed that this file is available on the machine that is running
OSSolverService. The default file format is OSiL so this option is not required.

solver solverName Possible values of this parameter depend on the installation. The OS
executable in the CoinAll binary collection supports the following solvers: Clp, Cbc, DyLP,
SYMPHONY, Ipopt, Bonmin, Couenne. If no value is specified for this parameter, then a default
solver is used for the (local) solve method. The default solver depends on the problem type
and can be read off from table 1. Note that this option only has effect for local calls.
For a remote solve or send, put the solver name into the field <solverToInvoke> in an OSoL
file and specify this file with osol xxx.osol.

printLevel nnn This parameter controls the amount of output generated by the OSSol-
verService. Currently the integer nnn can be any number between 0 and 8 inclusive, with
higher numbers corresponding to more voluminous output. The three highest output levels
are available only if the executable was compiled in debug mode; they are mainly useful as a
debugging tool.

logFile xxx This parameter specifies a secondary output device to which output can be
directed in addition to stdout.

filePrintLevel nnn This parameter controls the amount of output sent to the secondary
output device selected by logFile. In conjunction these three command line parameters are
extremely useful to manage large jobs. For instance, minimal output can be sent to stdout

(i.e., the terminal screen), mainly to assure the user that the job is still running as intended.
A higher output level can be used to send additional information to a file, to be analyzed
once the job has finished.

browser browserName This parameter is a path to the browser on the local machine. If
this optional parameter is specified then the solver result in OSrL format is transformed
into HTML using a stylesheet in XSLT format and is then displayed in the browser. This

7

parameter can only be used in conjunction with the osrl parameter. In addition, some
browsers require that the stylesheet OSrL.xslt is found in the same directory as the result file.
If necessary, this stylesheet must be moved or copied prior to starting up the OSSolverService
executable.

config xxx.config This optional parameter specifies a path on the local machine to a text
file containing values for the input parameters. This is convenient for the user not wishing
to constantly retype parameter values. A config file can be used instead of or in conjunction
with command line options. In case of conflicting information, command line options take
precedence over entries in the config file.

--help This parameter prints out the list of available options (in essence, this list). Synonyms
for --help are -h and -?.

--version This parameter prints version and licence information. -v is an acceptable syn-
onym.

The input parameters to the OSSolverService may be given entirely in the command line or
in a configuration file. We first illustrate giving all the parameters in the command line.

Remark. When invoking the commands below involving OSSolverService we assume that the
user is connected to the directory where the OSSolverService executable is located. If the binary
download was successful, the OSSolverService is in the bin directory, and the relative path to
the data directory is ../examples/data. There are several subdirectories corresponding to dif-
ferent file types used and illustrated in the following examples. The user may wish to execute
OSSolverService from the bin directory so that all that follows is correct in terms of path defini-
tions.

The following command will invoke the Clp solver on the local machine to solve the problem
instance parincLinear.osil.

./OSSolverService solver clp osil ../examples/data/osilFiles/parincLinear.osil

Windows users should note that the folder separator is always the forward slash (‘/’) instead
of the customary backslash (‘\’).

Alternatively, these parameters can be put into a configuration file. Assume that the configu-
ration file of interest is testlocalclp.config. It would contain the two lines of information

osil ../examples/data/osilFiles/parincLinear.osil

solver clp

Then the command line is

./OSSolverService config ../examples/data/configFiles/testlocalclp.config

Parameters specified in the configure file can be overridden by parameters specified at the
command line. This is convenient if a user has a base configure file and wishes to override only a
few options. For example,

./OSSolverService config ../examples/data/configFiles/testlocalclp.config solver dylp

or

8

./OSSolverService solver dylp config ../examples/data/configFiles/testlocalclp.config

will result in the DyLP solver being used to solve the problem parincLinear.osil even though
Clp is specified in the testlocalclp configure file.

Some things to note:

1. The default serviceMethod is solve if another service method is not specified. The service
method cannot be specified in the OSoL options file.

2. The command line parameters are intended to only influence the behavior of the local
OSSolverService. In particular, only the service method is transmitted to a remote location.
Any communication with a remote solver other than setting the service method must take
place through an OSoL options file.

3. Only the solve() method is available for local calls to OSSolverService.

4. If the options send, kill, knock, getJobID, or retrieve are specified, a serviceLocation

must be specified.

5. When using the send() or solve() methods a problem instance must be specified.

6. The order in which ambiguities in the instance location are specified is as follows: A .osil file
takes precedence if given. If no osil file is specified, an MPS file, AMPL .nl file, or GAMS
.dat file is selected, in the order given.

4.2 The Command Line Parser

The top layer of the local OSSolverService is a command line parser that parses the command line
and the config file (if one is specified) and passes the information to a local solver or a remote
solver service, depending on whether a serviceLocation was specified. If a serviceLocation is
specified a call is made to a remote solver service, otherwise a local solver is called.

If a local solve is indicated, we pass to a solver in the OSLibrary two things: an OSoL file if
one has been specified and a problem instance. The problem instance is the instance in the OSiL
file specified by the osil option. If there is no OSiL file, then it is the instance specified in the nl
file. If there is no nl file, it is the instance in the mps file. If no OSiL, nl or mps file is specified, an
error is thrown.

The OSoL file is simply passed on to the OSLibrary; it is not parsed at this point. The OSoL
file elements <solverToInvoke> and <instanceLocation> cannot be used for local calls. One can
specify which solver to use in the OSLibrary through the solver option. If this option is empty, a
default solver is selected (see Table 1).

If the serviceLocation parameter is used, a call is placed to the remote solver service specified
in the serviceLocation parameter. Two strings are passed to the remote solver service: a string
which is the OSoL file if one has been specified, or the empty string otherwise, and a string
containing an instance if one has been specified. The instance can be specified using the osil, nl,
or mps option. If an OSiL file is specified in the osil option, it is used. If there is no OSiL file,
then the instance specified in the nl file is used. If there is no nl file, the mps file is used. If no file
is given, an empty string is sent.

For remote calls, the solver can only be set in the osol file, using the element <solverToInvoke>;
the command line option solver has no effect.

9

Figure 1: A local call to solve.

4.3 Solving Problems Locally

When solving a problem locally, the OSSolverService executable is invoked synchronously and
waits for the solver to return the result. This is illustrated in Figure 1. As illustrated, the
OSSolverService reads a file on the hard drive with the optimization instance, usually in OSiL
format. The optimization instance is parsed into a string which is passed to the OSLibrary (see the
OS User’s Manual), which is linked with various solvers. Similarly an option file in OSoL format is
parsed into a string and passed to the OSLibrary. No interpretation of the options is done at this
stage, so that any <solverToInvoke> or <instanceLocation> directives in the OSoL file will be
ignored for local solves. The result of the optimization is passed back to the OSSolverService as
a string in OSrL format.

Here is an example that uses a configure file, testlocal.config, to invoke Ipopt locally using
the solve command. The example is invoked by specifying

./OSSolverService config ../examples/data/configFiles/testLocal.config

where the content of the file testLocal.config is

osil ../examples/data/osilFiles/parincQuadratic.osil

solver ipopt

browser /usr/lib/firefox/firefox.sh

osrl /tmp/OS/test.osrl

The first line of testlocal.config gives the location of the OSiL file, parincQuadratic.osil,
that contains the problem instance. The second parameter, solver ipopt, is the solver to be
invoked, in this case COIN-OR Ipopt. The third parameter is the location of the browser on the

10

local machine. The fourth parameter is osrl. The value of this parameter, /tmp/OS/test.osrl,
specifies the location on the local machine where the OSrL result file will get written.

Due to security concerns when working with stylesheets, some browsers require copying the file
../examples/data/OSrL.xslt into the /tmp/OS directory before invoking OSSolverService.

4.4 Solving Problems Remotely with Web Services

In many cases the client machine may be a “weak client” and using a more powerful machine to
solve a hard optimization instance is required. Indeed, one of the major purposes of Optimization
Services is to facilitate optimization in a distributed environment. We now provide examples that
illustrate using the OSSolverService executable to call a remote solver service. By remote solver
service we mean a solver service that is called using Web Services. One such solver service is
maintained at

http://74.94.100.129:8080/OSServer/services/OSSolverService

The implementation of this solver service uses Apache Tomcat. See tomcat.apache.org. The Web
Service running on the server is a Java program based on Apache Axis. See ws.apache.org/axis.
This is described in greater detail in the OS User’s Manual. Other servers may become available,
and there is no requirement to use the Tomcat/Axis combination.

See Figure 2 for an illustration of this process. The client machine uses the OSSolverService

executable to call one of the six service methods, e.g., solve. The information such as the problem
instance in OSiL format and solver options in OSoL format are packaged into a SOAP envelope
and sent to the server. The server is running the Java Web Service OSSolverService.jws. This
Java program running in the Tomcat Java Servlet container implements the six service meth-
ods. If a solve or send request is sent to the server from the client, an optimization prob-
lem must be solved. The Java solver service solves the optimization instance by calling the
OSSolverService on the server. So there is an OSSolverService on the client that calls the
Web Service OSSolverService.jws that in turn calls the executable OSSolverService on the
server. The Java solver service passes information to the server’s OSSolverService in form of two
strings, an osil string representing the optimization instance and an osol string representing the
options (if any).

For remote calls the instance location can be specified either as a command parameter (on the
command line or in a config file), if the instance resides on the client machine, or through the
<instanceLocation> element in the OSoL options file, if it does not. OSiL files specified in the
<instanceLocation> element must be converted to an osil string by the remote solver service. If
two instance files are specified in this way — one through the local command interface, the other
in an options file — the information on the command line takes precedent.

In the following sections we illustrate each of the six service methods.

4.4.1 The solve Service Method

First we illustrate a simple call to OSSolverService. The call on the client machine is

./OSSolverService config ../examples/data/configFiles/testRemote1.config

where the testRemote1.config file is

osil ../examples/data/osilFiles/parincLinear.osil

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

serviceMethod solve

11

Figure 2: A remote call to solve.

The third parameter serviceMethod solve is not really needed, since the default solver service
is solve. It is included only for illustration.

The only way to specify a solver for the remote call is by using an OSoL file that contains the
element <solverToInvoke>. Since no OSol file was given, the remote OSSolverService on the
server side will use the Clp solver by default. (The problem parincLinear.osil is a continuous
linear program.)

If, for example, the user wished to solve the problem with the SYMPHONY solver instead, then
this is accomplished by specifying the OSoL file either on the command line or in the config file
using the parameter

osol ../examples/data/osolFiles/remoteSolve1.osol

The content of remoteSolve1.osol is

<?xml version="1.0" encoding="UTF-8"?>

<osol xmlns="os.optimizationservices.org"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSoL.xsd">

<general>

<solverToInvoke>symphony</solverToInvoke>

</general>

</osol>

By adding the <instanceLocation> element and setting the locationType attribute to http

we could specify the instance location on yet another machine. The scenario is depicted in Figure 3.

12

Figure 3: Downloading the instance from a remote source.

The OSiL string passed from the client to the solver service is empty. However, the text of the
<instanceLocation> element contains the URL of a third machine (the COIN-OR web server at
http://www.coin-or.org), which has the problem instance p0033.osil. The solver service will
contact the machine with URL http://www.coin-or.org/OS/p0033.osil and download this test
problem. The command line to accomplish this is

./OSSolverService osol ../examples/data/osolFiles/remoteSolve2.osol \

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

where remoteSolve2.osol contains

<?xml version="1.0" encoding="UTF-8"?>

<osol xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSiL.xsd">

<general>

<instanceLocation locationType="http">

http://www.coin-or.org/OS/p0033.osil

</instanceLocation>

<solverToInvoke>symphony</solverToInvoke>

</general>

</osol>

Note: The solve method communicates synchronously with the remote solver service and once
started, these jobs cannot be killed. This may not be desirable for large problems when the user

13

does not want to wait for a response or when there is a possibility for the solver to enter an infinite
loop. The send service method should be used when asynchronous communication is desired.

4.4.2 The send Service Method

When the solve service method is used, then the OSSolverService does not finish execution
until the solution is returned from the remote solver service. When the send method is used, the
instance is communicated to the remote service, and the local OSSolverService terminates after
submission. An example of this is

./OSSolverService config ../examples/data/configFiles/testRemoteSend.config

where the testremoteSend.config file is

nl ../examples/data/amplFiles/hs71.nl

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

serviceMethod send osol ../examples/osolFiles/sendWithJobID.osol

In this example the COIN-OR Ipopt solver is specified. The input file hs71.nl is in AMPL nl
format. Before sending this to the remote solver service the OSSolverService executable converts
the nl format into the OSiL XML format and packages this into the SOAP envelope used by Web
Services.

Since the send method involves asynchronous communication the remote solver service must
keep track of jobs. The send method requires a JobID. In the above example the <jobID> element
in the osol file provides such a job ID:

<?xml version="1.0" encoding="UTF-8"?>

<osol xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSoL.xsd">

<general>

<jobID>xyz1234-03Jun13-10AM</jobID>

<contact transportType="smtp">

your.name@address.domain

</contact>

<solverToInvoke>ipopt</solverToInvoke>

</general>

</osol>

The <contact> element can be used to trigger an email message once the job has finished.
Another way to determine the status of a job uses the knock method (see Section 4.4.5.)

Any string can be used as a job ID, but in order to be accepted, the job ID must not have been
used before. If xyz1234-03Jun13-10AM was used earlier on the remote system, either by you or
somebody else, the result of the send will be an error condition. When a user creates their own job
ID, there is therefore a danger that it will be rejected by the remote system. It is probably easiest
to request a job ID that is guaranteed to work, by first invoking the getJobID service method to
get a JobID. More information on the getJobID service method is provided in Section 4.4.4.

When no JobID is specified the OSSolverService method first invokes the getJobID service
method to get a JobID, puts this information into an OSoL file it creates, and sends the information

14

to the server. The OSSolverService prints the OSoL file to standard output before termination.
The printout includes the generated job ID, which is essential to retrieve the results of the execution
later (see Section 4.4.3).

Note that in this examples we provided a value for the <solverToInvoke> element. A default
solver is used (see Table 1) if no solver is specified.

4.4.3 The retrieve Service Method

The retrieve method is used to get information about the instance solution. This method has
a single string argument which is an OSoL instance. Here is an example of using the retrieve

method with OSSolverService.

./OSSolverService config ../examples/data/configFiles/testRemoteRetrieve.config

The testRemoteRetrieve.config file is

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

osol ../examples/data/osolFiles/retrieve.osol

serviceMethod retrieve

osrl ./test.osrl

and the retrieve.osol file is

<?xml version="1.0" encoding="UTF-8"?>

<osol xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSiL.xsd">

<general>

<jobID>xyz1234-03Jun13-10AM</jobID>

</general>

</osol>

The OSoL file retrieve.osol contains a tag <jobID> that is communicated to the remote
service. The remote service locates the result and returns it as a string. The <jobID> should reflect
a <jobID> that was previously submitted using a send() command. The result is returned as a
string in OSrL format. The osrl parameter specifies a location where the result file is stored. By
using the browser parameter one could further display the results in a web browser. If no osrl

parameter is given, the result will be displayed on the screen instead.

4.4.4 The getJobID Service Method

Before submitting a job with the send method a JobID is required. The OSSolverService can get
a JobID with the following command line options.

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

serviceMethod getJobID

Note that no OSoL input file is specified. In this case, the OSSolverService sends an empty string.
A string is sent to the standard output device with the JobID. This JobID can then be put into a
<jobID> element in an OSoL string that would be used by the send method.

15

4.4.5 The knock Service Method

The OSSolverService terminates after executing the send method. Therefore, it is necessary to
know when the job is completed on the remote server. One way is to include an email address
in the <contact> element with the attribute transportType set to smtp. This was illustrated in
Section 4.4.1. A second way to check on the status of a job is to use the knock service method. For
example, assume a user wants to know if the job with JobID 123456abcd has completed. A user
would make the request

./OSSolverService config ../examples/data/configFiles/testRemoteKnock.config

where the testRemoteKnock.config file is

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

osplInput ../examples/data/osolFiles/knock.ospl

osol ../examples/data/osolFiles/retrieve.osol

serviceMethod knock

the knock.ospl file is

<?xml version="1.0" encoding="UTF-8"?>

<ospl xmlns="os.optimizationservices.org">

<processHeader>

<request action="getAll"/>

</processHeader>

<processData/>

</ospl>

and the retrieve.osol file is as in Section 4.4.3.
The result of this request is a string in OSpL format, with the data contained in its processData

section. The result is displayed on the screen; if the user desires it to be redirected to a file, a
osplOutput command should be added to the testRemoteKnock.config file with a valid path
name on the local system, e.g.,

osplOutput ./result.ospl

Part of the return format is illustrated below.

<?xml version="1.0" encoding="UTF-8"?>

<ospl xmlns="os.optimizationservices.org">

<processHeader>

<serviceURI>http://localhost:8080/os/ossolver/CGSolverService.jws</serviceURI>

<serviceName>CGSolverService</serviceName>

<time>2006-05-10T15:49:26.7509413-05:00</time>

<processHeader>

<processData>

<statistics>

<currentState>idle</currentState>

<availableDiskSpace>23440343040</availableDiskSpace>

<availableMemory>70128</availableMemory>

<currentJobCount>0</currentJobCount>

16

<totalJobsSoFar>1</totalJobsSoFar>

<timeServiceStarted>2006-05-10T10:49:24.9700000-05:00</timeServiceStarted>

<serviceUtilization>0.1</serviceUtilization>

<jobs>

<job jobID="123456abcd">

<state>finished</state>

<serviceURI>http://kipp.chicagobooth.edu/ipopt/IPOPTSolverService.jws</serviceURI>

<submitTime>2007-06-16T14:57:36.678-05:00</submitTime>

<startTime>2007-06-16T14:57:36.678-05:00</startTime>

<endTime>2007-06-16T14:57:39.404-05:00</endTime>

<duration>2.726</duration>

</job>

</jobs>

</statistics>

</processData>

</ospl>

Notice that the <state> element in <job jobID="123456abcd"> indicates that the job is finished.
When making a knock request, the OSoL string can be empty. In this example, if the OSoL

string had been empty the status of all jobs kept in the file ospl.xml is reported. In our de-
fault solver service implementation, there is a configuration file OSParameter that has a parameter
MAX_JOBIDS_TO_KEEP . The current default setting is 100. In a large-scale or commercial imple-
mentation it might be wise to keep problem results and statistics in a database. Also, there are
values other than getAll (i.e., get all process information related to the jobs) for the OSpL action

attribute in the <request> tag. For example, the action can be set to a value of ping if the user
just wants to check if the remote solver service is up and running. For details, check the OSpL
schema in the folder OS/schemas at http://www.coin-or.org/OS/OSpL.html. All schemas can
also be downloaded from http://www.coin-or.org/OS/downloads/OSSchemas-2.0.zip.

4.4.6 The kill Service Method

If the user submits a job that is taking too long or is a mistake, it is possible to kill the job on
the remote server using the kill service method. For example, to kill job 123456abcd, at the
command line type

./OSSolverService config ../examples/data/configFiles/kill.config

where the configure file kill.config is

osol ../examples/data/osolFiles/kill.osol

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

serviceMethod kill

and the kill.osol file is

<?xml version="1.0" encoding="UTF-8"?>

<osol xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSiL.xsd">

17

<general>

<jobID>123456abcd</jobID>

</general>

</osol>

The result is returned in OSpL format.

Figure 4: The OS Communication Methods

4.5 Passing Options to Solvers

The OSoL (Optimization Services option Language) protocol is used to pass options to solvers.
When using the OSSolverService executable this will typically be done through an OSoL XML
file by specifying the osol option followed by the location of the file. We next describe the features
of the OSoL protocol that will be the most useful to the typical user.

In the OSoL protocol there is an element <solverOptions> that can have any number of
<solverOption> children. (See the file parsertest.osol in OS/data/osolFiles.) Each <solverOption>

child can have six attributes, all of which except one are optional. These attributes are:

• name: this is the only required attribute and is the option name. It should be unique.

• value: the value of the option.

• solver: the name of the solver associated with the option. At present the values recognized
by this attribute are "ipopt", "bonmin", "couenne", "cbc", and "osi". The last option is

18

used for all solvers that are accessed through the Osi interface, which are clp, DyLP, SYMPHONY
and Vol, in addition to Glpk and Cplex, if the latter are included in the particular build of
OSSolverService.

• type: this will usually be a data type (such as integer, string, double, etc.) but this is not
necessary.

• category: the same solver option may apply in more than one context (and with different
meaning) so it may be necessary to specify a category to remove ambiguities. For example, in
LINDO an option can apply to a specific model or to every model in an environment. Hence
we might have

<solverOption name="LS_IPARAM_LP_PRINTLEVEL"

solver="lindo" category="model" type="integer" value="0"/>

<solverOption name="LS_IPARAM_LP_PRINTLEVEL"

solver="lindo" category="environment" type="integer" value="1"/>

where we specify the print level for a specific model or the entire environment. The category
attribute should be separated by a colon (‘:’) if there is more than one category or additional
subcategories, as in the following hypothetical example.

<solverOption name="hypothetical"

solver="SOLVER" category="cat1:subcat2:subsubcat3"

type="string" value="illustration"/>

• description: a description of the option; typically this would not get passed to the solver
but could be useful for documentation purposes.

Below is an example of options for Ipopt.

<solverOption name="mu_strategy" solver="ipopt"

type="string" value="adaptive"/>

<solverOption name="tol" solver="ipopt"

type="numeric" value="1.e-9"/>

<solverOption name="print_level" solver="ipopt"

type="integer" value="5"/>

<solverOption name="max_iter" solver="ipopt"

type="integer" value="2000"/>

Options for the Osi solvers (Clp, Cbc, SYMPHONY, DyLP, Vol, GLPK, Cplex) can be set
through the Osi solver interface. We have implemented all of the options listed in OsiSolverParameters.hpp

in Osi trunk version 1316. In the Osi solver interface, in addition to string, double, and integer types
there is a type called HintParam and a type called OsiHintParam. The value of the OsiHintParam

is an OsiHintStrength type, which may be confusing. For example, to have the following Osi
method called

setHintParam(OsiDoReducePrint, true, hintStrength);

the user should set the following <solverOption> tags:

19

<solverOption name="OsiDoReducePrint" solver="osi"

type="OsiHintParam" value="true" />

<solverOption name="OsiHintIgnore" solver="osi"

type="OsiHintStrength" />

There should be only one <solverOption> with type OsiHintStrength in the OSoL file (string);
if there is more than one, the last one is the one used.

In addition to setting options using the Osi Solver interface, it is possible to pass options directly
to the Cbc solver. By default the following options are sent to the Cbc solver,

-log=0 -solve

The option -log=0 will keep the branch-and-bound output to a minimum. Default options are
overridden by putting into the OSoL file at least one <solverOption> tag with the solver attribute
set to cbc. For example, the following sequence of options will limit the search to 100 nodes, cut
generation turned off.

<solverOption name="maxN" solver="cbc" value="100" />

<solverOption name="cuts" solver="cbc" value="off" />

<solverOption name="solve" solver="cbc" />

Any option that Cbc accepts at the command line can be put into a <solverOption> tag. We
list those below.

Double parameters:

dualB(ound) dualT(olerance) primalT(olerance) primalW(eight)

Branch and Cut double parameters:

allow(ableGap) cuto(ff) inc(rement) inf(easibilityWeight) integerT(olerance)

preT(olerance) ratio(Gap) sec(onds)

Integer parameters:

cpp(Generate) force(Solution) idiot(Crash) maxF(actor) maxIt(erations)

output(Format) slog(Level) sprint(Crash)

Branch and Cut integer parameters:

cutD(epth) log(Level) maxN(odes) maxS(olutions) passC(uts)

passF(easibilityPump) passT(reeCuts) pumpT(une) strat(egy) strong(Branching)

trust(PseudoCosts)

Keyword parameters:

chol(esky) crash cross(over) direction dualP(ivot)

error(sAllowed) keepN(ames) mess(ages) perturb(ation) presolve

primalP(ivot) printi(ngOptions) scal(ing)

Branch and Cut keyword parameters:

clique(Cuts) combine(Solutions) cost(Strategy) cuts(OnOff) Dins

DivingS(ome) DivingC(oefficient) DivingF(ractional) DivingG(uided) DivingL(ineSearch)

DivingP(seudoCost) DivingV(ectorLength) feas(ibilityPump) flow(CoverCuts) gomory(Cuts)

greedy(Heuristic) heur(isticsOnOff) knapsack(Cuts) lift(AndProjectCuts) local(TreeSearch)

mixed(IntegerRoundingCuts) node(Strategy) pivot(AndFix) preprocess probing(Cuts)

rand(omizedRounding) reduce(AndSplitCuts) residual(CapacityCuts) Rens Rins

round(ingHeuristic) sos(Options) two(MirCuts)

Actions or string parameters:

allS(lack) barr(ier) basisI(n) basisO(ut) directory

dirSample dirNetlib dirMiplib dualS(implex) either(Simplex)

end exit export help import

initialS(olve) max(imize) min(imize) netlib netlibD(ual)

20

netlibP(rimal) netlibT(une) primalS(implex) printM(ask) quit

restore(Model) saveM(odel) saveS(olution) solu(tion) stat(istics)

stop unitTest userClp

Branch and Cut actions:

branch(AndCut) doH(euristic) miplib prio(rityIn) solv(e)

strengthen userCbc

The user may also wish to specify an initial starting solution. This is particularly useful with
interior point methods. This is accomplished by using the <initialVariableValues> tag. Below
we illustrate how to set the initial values for variables with an index of 0, 1, and 3.

<initialVariableValues numberOfVar="3">

<var idx="0" value="1"/>

<var idx="1" value="4.742999643577776" />

<var idx="3" value="1.379408293215363"/>

</initialVariableValues>

As of trunk version 2164 the initial values for variables can be passed to the Bonmin and Ipopt

solvers.

5 OS Support for AMPL and GAMS

Algebraic modeling languages can be used to generate model instances as input to an OS compliant
solver. We describe two such hook-ups, OSAmplClient for AMPL, and CoinOS for GAMS (version
23.8 and above).

5.1 AMPL Client: Hooking AMPL to Solvers

It is possible to call all of the COIN-OR solvers that are contained in the CoinAll distribution
directly from the AMPL (see http://www.ampl.com) modeling language. In this discussion we
assume the user has already obtained and installed AMPL. The binary download described in
Section 3 contains an executable, OSAmplClient.exe, that is linked to all of the COIN-OR solvers
the same solvers as OSSolverService described in Section 4. From the perspective of AMPL, the
OSAmplClient acts like an AMPL “solver”. The OSAmplClient.exe can be used to solve problems
either locally or remotely.

5.1.1 Using OSAmplClient for a Local Solver

In the following discussion we assume that the AMPL executable ampl.exe, the OSAmplClient,
and the test problem eastborne.mod are all in the same directory.

The problem instance eastborne.mod is an AMPL model file included in the OS distribution
in the amplFiles directory. To solve this problem locally by calling OSAmplClient.exe from
AMPL, first start AMPL and then open the eastborne.mod file inside AMPL. The test model
eastborne.mod is a linear integer program.

model eastborne.mod;

The next step is to tell AMPL that the solver it is going to use is OSAmplClient.exe. Do this
by issuing the following command inside AMPL.

21

option solver OSAmplClient;

It is not necessary to provide the OSAmplclient.exe solver with any options. You can just
issue the solve command in AMPL as illustrated below.

solve;

Of the six methods described in Section 4 only the solve method has been implemented to
date.

If no options are specified, the default solver is used, depending on the problem characteristics
(see Table 1 on p.7). If you wish to specify a specific solver, use the solver option. For example,
since the test problem eastborne.mod is a linear integer program, Cbc is used by default. If instead
you want to use SYMPHONY, then you would pass a solver option to the OSAmplclient.exe solver
as follows.

option OSAmplClient_options "solver symphony";

Valid values for the solver option are installation-dependent. The solver name in the solver

option is case insensitive.

5.1.2 Using OSAmplClient to Invoke an OS Solver Server remotely

Next, assume that you have a large problem you want to solve on a remote solver. It is necessary
to specify the location of the server solver as an option to OSAmplClient. The serviceLocation

option is used to specify the location of a solver server. In this case, the string of options for
OSAmplClient_options is:

serviceLocation http://xxx/OSServer/services/OSSolverService

where xxx is the IP Address for the server. (For instance, Kipp Martin maintains a server that
is reachable at 74.94.100.129:8080 This string is used to replace the string ‘solver symphony’
in the previous example. The serviceLocation option will send the problem to the location
http://xxx and, assuming the remote executable is indeed found in the indicated folder, will start
the executable.

However, each call

option OSAmplClient_options

is memoryless. That is, the options set in the last call will overwrite any options set in previous
calls and cause them to be discarded. For instance, the sequence of option calls

option OSAmplClient_options "solver symphony";

option OSAmplClient_options "serviceLocation

http://xxx/OSServer/services/OSSolverService";

solve;

will result in the default solver being called. If the intent is to use the SYMPHONY solver at the
remote location, the option must be declared as follows:

option OSAmplClient_options "solver symphony \

serviceLocation http://xxx/OSServer/services/OSSolverService";

solve;

22

For brevity we will omit the AMPL instruction

option OSAmplClient_options

the double quotes and the trailing semicolon in the remaining examples.

Finally, the user may wish to pass options to the individual solver. This is done by speci-
fying an options file. (A sample options file, solveroptions.osol is provided with this distri-
bution). The name of the options file is the value of the osol option. The string of options to
OSAmplClient_options is now

serviceLocation http://xxx/OSServer/services/OSSolverService \

osol solveroptions.osol

This solveroptions.osol file contains four solver options; two for Cbc, one for Ipopt, and one for
SYMPHONY. You can have any number of options. Note the format for specifying an option:

<solverOption name="maxN" solver="cbc" value="5" />

The attribute name specifies that the option name is maxN which is the maximum number of nodes
allowed in the branch-and-bound tree, the solver attribute specifies the name of the solver that
the option should be applied to, and the value attribute specifies the value of the option. As a
second example, consider the specification

<solverOption name="max_iter" solver="ipopt" type="integer" value="2000"/>

In this example we are specifying an iteration limit for Ipopt. Note the additional attribute type

that has value integer. The Ipopt solver requires specifying the data type (string, integer, or
numeric) for its options. Different solvers have different options, and we recommend that the user
look at the documentation for the solver of interest in order to see which options are available.
A good summary of options for COIN-OR solvers is http://www.gams.com/dd/docs/solvers/

coin.pdf.
If you examine the file solveroptions.osol you will see that there is an XML tag with the

name <solverToInvoke> and that the solver given is symphony. This has no effect on a local
solve! However, if this option file is paired with

serviceLocation http://xxx/OSServer/services/OSSolverService

osol solveroptions.osol

then in our reference implementation the remote solver service will parse the file solveroptions.osol,
find the <solverToInvoke> tag and then pass the symphony solver option to the OSSolverService
on the remote server.

5.1.3 AMPL Summary

1. Tell AMPL to use the OSAmplClient as the solver:

option solver OSAmplClient;

2. Specify options to the OSAmplClient solver by using the AMPL command

option OSAmplClient_options "(option string)";

23

3. There are three possible options to specify:

• the location of the options file using the osol option;

• the location of the remote server using the serviceLocation option;

• the name of the solver using the solver option; valid values for this option are installation-
dependent. For details, see Table ?? on page ?? and the discussion in Section 4.1.

These three options behave exactly like the solver, serviceLocation, and osol options used
by the OSSolverService described in Section 4.2. Note that the solver option only has an
effect with a local solve; if the user wants to invoke a specific solver with a remote solve, then
this must be done in the OSoL file using the <solverToInvoke> element.

4. The options given to OSAmplClient_options can be given in any order.

5. If no solver is specified using OSAmplClient_options, the default solver is used. (For details
see Table 1).

6. A remote solver is called if and only if the serviceLocation option is specified.

5.2 GAMS and Optimization Services

This section pertains to GAMS version 23.8 (and above) that now includes support for OS. Here
we describe the GAMS implementation of Optimization Services. We assume that the user has
installed GAMS.

In GAMS, OS is implemented through the CoinOS solver that is packaged with GAMS. The
GAMS CoinOS solver is really a solver interface that links to the OS library. At present the
GAMS CoinOS solver does not support local calls, but it can be used to make remote calls to an
OSSolverService executable on a remote server. How this is done is the topic of the next section.

5.2.1 Using GAMS to Invoke a Remote OS Solver Service

We now describe how to call a remote OS solver service using the GAMS CoinOS. Before proceeding,
it is important to emphasize that when calling a remote OS solver service, different sets of solvers
may be supported, even for the same version of the OS solver service. For example, the remote
implementation may provide access to solvers such as SYMPHONY, Couenne, Glpk and DyLP. There
are several reason why you might wish to use a remote OS solver service.

• Have access to a faster machine.

• Be able to submit jobs to run in asynchronous mode – submit your job, turn off your laptop,
and check later to see if the job ran.

• Call several additional solvers (e.g., SYMPHONY, Couenne, Glpk and DyLP). Note, however, that
not all solvers may be available available locally (especially Glpk) may not be available for a
remote call.

We will illustrate several possible calls with the sample GAMS file eastborne.gms which found
in the data/gamsFiles directory. We assume that this file exists in the current directory and that
the GAMS executable is found in the search path. The command to execute at the command line
would then be

24

gams eastborne.gms MIP=CoinOS optfile=1

The server name (CoinOS) is case-insensitive and could equally well have been written as
“MIP=coinos” or “MIP=COINOS”. Moreover, the file eastborne.gms contains the directive

Option MIP = CoinOS;

and hence the option MIP=CoinOS could have been omitted from the command line.
Since the solver is named CoinOS, the options file pointed to by the last part of the command

(optfile=1) should be named CoinOS.opt. In general multiple option files are possible, and the
GAMS convention is as follows:

optfile=1 corresponds to CoinOS.opt

optfile=2 corresponds to CoinOS.op2

. . .
optfile=99 corresponds to CoinOS.o99

It is important to distinguish between the option files for GAMS just mentioned and the option
file (in OSoL format) passed to the OS solver server (see below). We now explain the valid options
that can go into a GAMS option file when using the CoinOS solver. The options are

service (string): Specifies the URL of the COIN-OR solver service. This option is required in
order to direct the remote call appropriately.

Use the following value for this option.

service http://74.94.100.129:8080/OSServer/services/OSSolverService

writeosil (string): If this option is used, GAMS will write the optimization instance to file
(string) in OSiL format.

writeosrl (string): If this option is used, GAMS will write the result of the optimization to file
(string) in OSrL format.

The options just described are options for the GAMS modeling language. It is also possible to
pass options directly to the COIN-OR solvers by using the OS interface. This is done by passing
the name of an options file that conforms to the OSoL standard. The option

readosol (string) specifies the name of an OS option file in OSoL format that is given to the
solver. Note well: The file CoinOS.opt is an option file for GAMS but the GAMS option readosol

in the GAMS options file is specifying the name of an OS options file.

The file solveroptions.osol is contained in the OS distribution in the osolFiles directory
in the data directory. This file contains four solver options; two for Cbc, one for Ipopt, and one for
SYMPHONY (which is available for remote server calls, but not locally). You can have any number of
options. Note the format for specifying an option:

<solverOption name="maxN" solver="cbc" value="5" />

The attribute name specifies that the option name is maxN which is the maximum number of nodes
allowed in the branch-and-bound tree, the solver attribute specifies the name of the solver to
which the option should be applied, and the value attribute specifies the value of the option.

25

Default solver values are present, depending on the problem characteristics. For more details,
consult Table 1 (p.7). In order to control the solver used, it is necessary to specify the name of the
solver inside the XML tag <solverToInvoke>. The example solveroptions.osol file contains
the XML tag

<solverToInvoke>symphony</solverToInvoke>

Valid values for the remote solver service specified in the <solverToInvoke> tag are installation
dependent; the solver service at http://74.94.100.129:8080/OSServer/services/OSSolverService
accepts clp, cbc, dylp, glpk, ipopt, bonmin, couenne, symphony, and vol.

By default, the call to the server is a synchronous call. The GAMS process will wait for the
result and then display the result. This may not be desirable when solving large optimization
models. The user may wish to submit a job, turn off his or her computer, and then check at a
later date to see if the job is finished. In order to use the remote solver service in this fashion, i.e.,
asynchronously, it is necessary to use the service_method option.

service_method (string) specifies the method to execute on a server. Valid values for this option
are solve, getJobID, send, knock, retrieve, and kill. We explain how to use each of these.

The default value of service_method is solve. A solve invokes the remote service in syn-
chronous mode. When using the solve method you can optionally specify a set of solver options
in an OSoL file by using the readosol option. The remaining values for the service_method

option are used for an asynchronous call. We illustrate them in the order in which they would most
logically be executed.

service_method getJobID: When working in asynchronous mode, the server needs to uniquely
identify each job. The getJobID service method will result in the server returning a unique job ID.
For example if the following CoinOS.opt file is used

service http://74.94.100.129:8080/OSServer/services/OSSolverService

service_method getJobID

with the command

gams.exe eastborne.gms optfile=1

the user will see a rather long job ID returned to the screen as output. Assume that the job id
returned is coinor12345xyz. This job ID is used to submit a job to the server with the send

method. Any job ID can be sent to the server as long as it has not been used before.

service_method send: When working in asynchronous mode, use the send service method to
submit a job. When using the send service method a job ID is required. An options file must
be present and must specify a job ID that has not been used before. Assume that in the file
CoinOS.opt we specify the options:

service http://74.94.100.129:8080/OSServer/services/OSSolverService

service_method send

readosol sendWithJobID.osol

The sendWithJobID.osol options file is identical to the solveroptions.osol options file except
that it has an additional XML tag:

26

<jobID>coinor12345xyz</jobID>

We then execute

gams.exe eastborne.gms optfile=1

If all goes well, the response to the above command should be: “Problem instance successfully sent
to OS service”. At this point the server will schedule the job and work on it. It is possible to turn
off the user computer at this point. At some point the user will want to know if the job is finished.
This is accomplished using the knock service method.

service_method knock: When working in asynchronous mode, this is used to check the status of
a job. Consider the following CoinOS.opt file:

service http://74.94.100.129:8080/OSServer/services/OSSolverService

service_method knock

readosol sendWithJobID.osol

readospl knock.ospl

writeospl knockResult.ospl

The knock service method requires two inputs. The first input is the name of an options file, in
this case sendWithJobID.osol, specified through the readosol option. In addition, a file in OSpL
format is required. You can use the knock.opsl file provided in the binary distribution. This file
name is specified using the readospl option. If no job ID is specified in the OSoL file then the
status of all jobs on the server will be returned in the file specified by the writeospl option. If a
job ID is specified in the OSoL file, then only information on the specified job ID is returned in the
file specified by the writeospl option. In this case the file name is knockResult.ospl. We then
execute

gams.exe eastborne.gms optfile=1

The file knockResult.ospl will contain information similar to the following:

<job jobID="coinor12345xyz">

<state>finished</state>

<serviceURI>http://192.168.0.219:8443/os/OSSolverService.jws</serviceURI>

<submitTime>2009-11-10T02:13:11.245-06:00</submitTime>

<startTime>2009-11-10T02:13:11.245-06:00</startTime>

<endTime>2009-11-10T02:13:12.605-06:00</endTime>

<duration>1.36</duration>

</job>

Note that the job is complete as indicated in the <state> tag. It is now time to actually retrieve
the job solution. This is done with the retrieve method.

service_method retrieve: When working in asynchronous mode, this method is used to retrieve
the job solution. It is necessary when using retrieve to specify an options file and in that options
file specify a job ID. Consider the following CoinOS.opt file:

service http://74.94.100.129:8080/OSServer/services/OSSolverService

service_method retrieve

readosol sendWithJobID.osol

writeosrl answer.osrl

27

When we then execute

gams.exe eastborne.gms optfile=1

the result is written to the file answer.osrl.
Finally there is a kill service method which is used to kill a job that was submitted by mistake

or is running too long on the server.

service_method kill: When working in asynchronous mode, this method is used to terminate a
job. You should specify an OSoL file containing the job ID by using the readosol option.

5.2.2 GAMS Summary:

1. In order to use OS with GAMS you can either specify CoinOS as an option to GAMS at the
command line,

gams eastborne.gms MIP=CoinOS

or you can place the statement Option ProblemType = CoinOS; somewhere in the model
before the Solve statement in the GAMS file.

2. If no options are given, then the model will be solved locally using the default solver (see
Table 1 on p.7).

3. In order to control behavior (for example, whether a local or remote solver is used) an options
file, CoinOS.opt, must be used as follows

gams.exe eastborne.gms optfile=1

4. The CoinOS.opt file is used to specify eight potential options:

• service (string): using the COIN-OR solver server; this is done by giving the option

service http://74.94.100.129:8080/OSServer/services/OSSolverService

• readosol (string): whether or not to send the solver an options file; this is done by
giving the option

readosol solveroptions.osol

• solver (string): if a local solve is being done, a specific solver is specified by the
option

solver solver_name

Valid values are clp, cbc, glpk, ipopt and bonmin. When the COIN-OR solver service
is being used, the only way to specify the solver to use is through the <solverToInvoke>
tag in an OSoL file. In this case the valid values for the solver are clp, cbc, dylp, glpk,
ipopt, bonmin, couenne, symphony and vol.

• writeosrl (string): the solution result can be put into an OSrL file by specifying the
option

writeosrl osrl_file_name

28

• writeosil (string): the optimization instance can be put into an OSiL file by speci-
fying the option

writeosil osil_file_name

• writeospl (string): Specifies the name of an OSpL file in which the answer from the
knock or kill method is written, e.g.,

writeospl write_ospl_file_name

• readospl (string): Specifies the name of an OSpL file that the knock method sends
to the server

readospl read_ospl_file_name

• service_method (string): Specifies the method to execute on a server. Valid values
for this option are solve, getJobID, send, knock, retrieve, and kill.

5. If an OS options file is passed to the GAMS CoinOS solver using the GAMS CoinOS option
readosol, then GAMS does not interpret or act on any options in this file. The options in
the OS options file are passed directly to either: i) the default local solver, ii) the local solver
specified by the GAMS CoinOS option solver, or iii) to the remote OS solver service if one
is specified by the GAMS CoinOS option service.

6 OS Protocols

The objective of OS is to provide a set of standards for representing optimization instances, results,
solver options, and communication between clients and solvers in a distributed environment using
Web Services. These standards are specified by W3C XSD schemas. The schemas for the OS
project are contained in the schemas folder under the OS root. There are numerous schemas in this
directory that are part of the OS standard. For a full description of all the schemas see Ma [2]. We
briefly discuss the standards most relevant to the current version of the OS project.

6.1 OSiL (Optimization Services instance Language)

OSiL is an XML-based language for representing instances of large-scale optimization problems
including linear programs, mixed-integer programs, quadratic programs, and very general nonlinear
programs.

OSiL stores optimization problem instances as XML files. Consider the following problem
instance, which is a modification of an example of Rosenbrock [3]:

Minimize (1− x0)
2 + 100(x1 − x20)

2 + 9x1 (1)

s.t. x0 + 10.5x20 + 11.7x21 + 3x0x1 ≤ 25 (2)

ln(x0x1) + 7.5x0 + 5.25x1 ≥ 10 (3)

x0, x1 ≥ 0 (4)

There are two continuous variables, x0 and x1, in this instance, each with a lower bound of 0.
Figure 5 shows how we represent this information in an XML-based OSiL file. Like all XML files,
this is a text file that contains both markup and data. In this case there are two types of markup,

29

elements (or tags) and attributes that describe the elements. Specifically, there are a <variables>

element and two <var> elements. Each <var> element has attributes lb, name, and type that
describe properties of a decision variable: its lower bound, “name”, and domain type (continuous,
binary, general integer).

To be useful for communication between solvers and modeling languages, OSiL instance files
must conform to a standard. An XML-based representation standard is imposed through the
use of a W3C XML Schema. The W3C, or World Wide Web Consortium (www.w3.org), promotes
standards for the evolution of the web and for interoperability between web products. XML Schema
(www.w3.org/XML/Schema) is one such standard. A schema specifies the elements and attributes
that define a specific XML vocabulary. The W3C XML Schema is thus a schema for schemas; it
specifies the elements and attributes for a schema that in turn specifies elements and attributes for
an XML vocabulary such as OSiL. An XML file that conforms to a schema is called valid for that
schema.

By analogy to object-oriented programming, a schema is akin to a header file in C++ that
defines the members and methods in a class. Just as a class in C++ very explicitly describes
member and method names and properties, a schema explicitly describes element and attribute
names and properties.

Figure 6 is a piece of our schema for OSiL. In W3C XML Schema jargon, it defines a complex-
Type, whose purpose is to specify elements and attributes that are allowed to appear in a valid
XML instance file such as the one excerpted in Figure 5. In particular, Figure 6 defines the com-
plexType named Variables, which comprises an element named <var> and an attribute named
numberOfVariables. The numberOfVariables attribute is of a standard type positiveInteger,
whereas the <var> element is a user-defined complexType named Variable. Thus the complex-
Type Variables contains a sequence of <var> elements that are of complexType Variable. OSiL’s
schema must also provide a specification for the Variable complexType, which is shown in Figure 7.

In OSiL the linear part of the problem is stored in the <linearConstraintCoefficients>

element, which stores the coefficient matrix using three arrays as proposed in the earlier LPFML
schema [1]. There is a child element of <linearConstraintCoefficients> to represent each array:

<variables numberOfVariables="2">

<var lb="0" name="x0" type="C"/>

<var lb="0" name="x1" type="C"/>

</variables>

Figure 5: The <variables> element for the example (1)–(4).

<xs:complexType name="Variables">

<xs:sequence>

<xs:element name="var" type="Variable" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="numberOfVariables"

type="xs:positiveInteger" use="required"/>

</xs:complexType>

Figure 6: The Variables complexType in the OSiL schema.

30

<value> for an array of nonzero coefficients, <rowIdx> or <colIdx> for a corresponding array of
row indices or column indices, and <start> for an array that indicates where each row or column
begins in the previous two arrays. This is shown in Figure 8.

The quadratic part of the problem is represented in Figure 9.
The nonlinear part of the problem is given in Figure 10.
The complete OSiL representation can be found in the Appendix (Section 7.1).

6.2 OSnL (Optimization Services nonlinear Language)

The OSnL schema is imported by the OSiL schema and is used to represent the nonlinear part of
an optimization instance. This is explained in greater detail in the OS User’s Manual. Also refer
to Figure 10 for an illustration of elements from the OSnL standard. This figure represents the
nonlinear part of the objective in equation (1), that is,

(1− x0)
2 + 100(x1 − x20)

2.

6.3 OSrL (Optimization Services result Language)

OSrL is an XML-based language for representing the solution of large-scale optimization problems
including linear programs, mixed-integer programs, quadratic programs, and very general nonlinear
programs. An example solution (for the problem given in (1)–(4)) in OSrL format is given below.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type = "text/xsl"

href = "/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OSX/OS/stylesheets/OSrL.xslt"?>

<osrl xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSiL.xsd">

<xs:complexType name="Variable">

<xs:attribute name="name" type="xs:string" use="optional"/>

<xs:attribute name="init" type="xs:string" use="optional"/>

<xs:attribute name="type" use="optional" default="C">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="C"/>

<xs:enumeration value="B"/>

<xs:enumeration value="I"/>

<xs:enumeration value="S"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="lb" type="xs:double" use="optional" default="0"/>

<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>

</xs:complexType>

Figure 7: The Variable complexType in the OSiL schema.

31

<linearConstraintCoefficients numberOfValues="3">

<start>

<el>0</el><el>2</el><el>3</el>

</start>

<rowIdx>

<el>0</el><el>1</el><el>1</el>

</rowIdx>

<value>

<el>1.</el><el>7.5</el><el>5.25</el>

</value>

</linearConstraintCoefficients>

Figure 8: The <linearConstraintCoefficients> element for constraints (2) and (3).

<quadraticCoefficients numberOfQuadraticTerms="3">

<qTerm idx="0" idxOne="0" idxTwo="0" coef="10.5"/>

<qTerm idx="0" idxOne="1" idxTwo="1" coef="11.7"/>

<qTerm idx="0" idxOne="0" idxTwo="1" coef="3."/>

</quadraticCoefficients>

Figure 9: The <quadraticCoefficients> element for constraint (2).

<general>

<generalStatus type="normal"/>

<serviceName>Solved using a LINDO service</serviceName>

<instanceName>Modified Rosenbrock</instanceName>

</general>

<optimization numberOfSolutions="1" numberOfVariables="2" numberOfConstraints="2"

numberOfObjectives="1">

<solution targetObjectiveIdx="-1">

<status type="optimal"/>

<variables>

<values numberOfVar="2">

<var idx="0">0.87243</var>

<var idx="1">0.741417</var>

</values>

<other numberOfVar="2" name="reduced_costs" description="the variable reduced costs">

<var idx="0">-4.06909e-08</var>

<var idx="1">0</var>

</other>

</variables>

<objectives>

<values numberOfObj="1">

<obj idx="-1">6.7279</obj>

</values>

</objectives>

<constraints>

<dualValues numberOfCon="2">

<con idx="0">0</con>

32

<nl idx="-1">

<plus>

<power>

<minus>

<number value="1.0"/>

<variable coef="1.0" idx="0"/>

</minus>

<number value="2.0"/>

</power>

<times>

<power>

<minus>

<variable coef="1.0" idx="0"/>

<power>

<variable coef="1.0" idx="1"/>

<number value="2.0"/>

</power>

</minus>

<number value="2.0"/>

</power>

<number value="100"/>

</times>

</plus>

</nl>

Figure 10: The <nl> element for the nonlinear part of the objective (1).

<con idx="1">0.766294</con>

</dualValues>

</constraints>

</solution>

</optimization>

6.4 OSoL (Optimization Services option Language)

OSoL is an XML-based language for representing options that get passed to an optimization solver
or a hosted optimization solver Web service. It contains both standard options for generic services
and extendable option tags for solver-specific directives. Several examples of files in OSoL format
are presented in Section 4.4.

6.5 OSpL (Optimization Services process Language)

This is a standard used to enquire about dynamic process information that is kept by the Opti-
mization Services registry. The string passed to the knock method is in the OSpL format. See the
example given in Section 4.4.5.

33

7 Appendix – Sample OSiL files

7.1 OSiL representation for problem given in (1)–(4) (p.29)

<?xml version="1.0" encoding="UTF-8"?>

<osil xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSiL.xsd">

<instanceHeader>

<name>Modified Rosenbrock</name>

<source>Computing Journal 3:175-184, 1960</source>

<description>Rosenbrock problem with constraints</description>

</instanceHeader>

<instanceData>

<variables numberOfVariables="2">

<var lb="0" name="x0" type="C"/>

<var lb="0" name="x1" type="C"/>

</variables>

<objectives numberOfObjectives="1">

<obj maxOrMin="min" name="minCost" numberOfObjCoef="1">

<coef idx="1">9.0</coef>

</obj>

</objectives>

<constraints numberOfConstraints="2">

<con ub="25.0"/>

<con lb="10.0"/>

</constraints>

<linearConstraintCoefficients numberOfValues="3">

<start>

<el>0</el><el>2</el><el>3</el>

</start>

<rowIdx>

<el>0</el><el>1</el><el>1</el>

</rowIdx>

<value>

<el>1.</el><el>7.5</el><el>5.25</el>

</value>

</linearConstraintCoefficients>

<quadraticCoefficients numberOfQuadraticTerms="3">

<qTerm idx="0" idxOne="0" idxTwo="0" coef="10.5"/>

34

<qTerm idx="0" idxOne="1" idxTwo="1" coef="11.7"/>

<qTerm idx="0" idxOne="0" idxTwo="1" coef="3."/>

</quadraticCoefficients>

<nonlinearExpressions numberOfNonlinearExpressions="2">

<nl idx="-1">

<plus>

<power>

<minus>

<number type="real" value="1.0"/>

<variable coef="1.0" idx="0"/>

</minus>

<number type="real" value="2.0"/>

</power>

<times>

<power>

<minus>

<variable coef="1.0" idx="0"/>

<power>

<variable coef="1.0" idx="1"/>

<number type="real" value="2.0"/>

</power>

</minus>

<number type="real" value="2.0"/>

</power>

<number type="real" value="100"/>

</times>

</plus>

</nl>

<nl idx="1">

<ln>

<times>

<variable coef="1.0" idx="0"/>

<variable coef="1.0" idx="1"/>

</times>

</ln>

</nl>

</nonlinearExpressions>

</instanceData>

</osil>

35

References

[1] R. Fourer, L. Lopes, and K. Martin. LPFML: A W3C XML schema for linear and integer
programming. INFORMS Journal on Computing, 17:139–158, 2005.

[2] J. Ma. Optimization Services (OS), A General Framework for Optimization Modeling Sys-
tems, 2005. Ph.D. Dissertation, Department of Industrial Engineering & Management Sciences,
Northwestern University, Evanston, IL.

[3] H.H. Rosenbrock. An automatic method for finding the greatest or least value of a function.
Comp. J., 3:175–184, 1960.

36

Index

AMPL, 5, 21–24
AMPL nl format, 5–7, 14
AMPL Solver Library , see Third-party software,

ASL
amplFiles, 21
Apache Axis, 11
Apache Tomcat, 11
ASL, see Third-party software, ASL

Blas, see Third-party software, Blas
Bonmin, see COIN-OR projects, Bonmin
BuildTools, see COIN-OR projects, BuildTools

Cbc, see COIN-OR projects, Cbc
Cgl, see COIN-OR projects, Cgl
Clp, see COIN-OR projects, Clp
COIN-OR projects

Bonmin, 18
Cbc, 18
Clp, 8, 9, 19
Couenne, 18
DyLP, 9, 19
Ipopt, 10, 14, 18
Osi, 18–19
SYMPHONY, 12, 19, 22–23

CoinUtils, see COIN-OR projects, CoinUtils
Couenne, see COIN-OR projects, Couenne
cplex, 5, 19
CppAD, see COIN-OR projects, CppAD

default solver, 7, 9, 15, 22, 24
Downloading

binaries, 5
DyLP, see COIN-OR projects, DyLP

eastborne.mod, 21–22

GAMS, 5, 21, 24–29
getJobID, 6, 9, 15
GLPK, see Third-party software, GLPK

Harwell Subroutine Library, see Third-party soft-
ware, HSL

HSL, see Third-party software, HSL

interactive shell, 6
Ipopt, see COIN-OR projects, Ipopt

JobID, 14–16
jobID, 7

kill, 6, 9, 17–18
knock, 6, 9, 16–17

Lapack, see Third-party software, Lapack
LINDO, 5

MPS format, 5–7
Mumps, see Third-party software, Mumps

nl files, see AMPL nl format

OS project
trunk version, 21

OSAmplClient, 21–24
Osi, see COIN-OR projects, Osi
OSiL, 5–7, 10, 11, 14, 29–31, 34–35
OSLibrary, 10
OSnL, 31
OSoL, 10, 11, 14, 15, 33
OSpL, 16–17, 33
OSrL, 7, 10, 11, 31–33
OSSolverService, 6–18

parincLinear.osil, 8

retrieve, 6, 9, 15
Rosenbrock, H.H., 29

send, 6, 9, 14–16
serviceLocation, 9
SOAP protocol, 11, 14
solve, 6–7, 9–14
solveroptions.osol, 23
SYMPHONY, see COIN-OR projects, SYMPHONY

testlocal.config, 10
testRemote1.config, 11–12
Third-party software, GLPK, 5, 19

Vol, see COIN-OR projects, Vol

37

