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Abstract

This is the User’s Manual for the Optimization Services (OS) project. The objective of OS
is to provide a general framework consisting of a set of standards for representing optimization
instances, results, solver options, and communication between clients and solvers in a distributed
environment using Web Services. This COIN-OR project provides C++ and Java source code
for libraries and executable programs that implement OS standards. The OS library includes
a robust solver and modeling language interface (API) for linear, nonlinear and other types of
optimization problems. Also included is the C++ source code for a command line executable
OSSolverService for reading problem instances (OSiL format, nl format, MPS format) and
calling a solver either locally or on a remote server. Finally, both Java source code and a Java
war file are provided for users who wish to set up a solver service on a server running Apache
Tomcat. See the Optimization Services home page http://www.optimizationservices.org

and the COIN-OR Trac page http://projects.coin-or.org/OS for more information.
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1 The Optimization Services (OS) Project

The objective of Optimization Services (OS) is to provide a general framework consisting of a set
of standards for representing optimization instances, results, solver options, and communication
between clients and solvers in a distributed environment using Web Services. This COIN-OR
project provides source code for libraries and executable programs that implement OS standards.
See the COIN-OR Trac page http://projects.coin-or.org/OS or the Optimization Services
Home Page http://www.optimizationservices.org for more information.

Like other COIN-OR projects, OS has a versioning system that ensures end users some degree
of stability and a stable upgrade path as project development continues. The current stable version
of OS is 2.4, and the current stable release is 2.4.0, based on trunk version 4340.

The OS project provides the following:

1. A set of XML based standards for representing optimization instances (OSiL), optimization
results (OSrL), and optimization solver options (OSoL). There are other standards, but these
are the main ones. The schemas for these standards are described in Section ??.

2. Open source libraries that support and implement many of the standards.

3. A robust solver and modeling language interface (API) for linear and nonlinear optimization
problems. Corresponding to the OSiL problem instance representation there is an in-memory
object, OSInstance, along with a collection of get(), set(), and calculate() methods for
accessing and creating problem instances. This is a very general API for linear, integer, and
nonlinear programs. Extensions for other major types of optimization problems are also in
the works. Any modeling language that can produce OSiL can easily communicate with any
solver that uses the OSInstance API. The OSInstance object is described in more detail in
Section 7. The nonlinear part of the API is based on the COIN-OR project CppAD by Brad
Bell (http://projects.coin-or.org/CppAD) but is written in a very general manner and
could be used with other algorithmic differentiation packages. More detail on algorithmic
differentiation is provided in Section 8.

4. A command line executable OSSolverService for reading problem instances (OSiL format,
AMPL nl format, MPS format) and calling a solver either locally or on a remote server. This
is described in Section ??.

5. Utilities that convert AMPL nl files and MPS files into the OSiL XML format. This is
described in Section 6.3.

6. Standards that facilitate the communication between clients and optimization solvers using
Web Services. In Section 6.1 we describe the OSAgent part of the OS library that is used to
create Web Services SOAP packages with OSiL instances and contact a server for solution.

7. An executable program OSAmplClient that is designed to work with the AMPL modeling
language. The OSAmplClient appears as a “solver” to AMPL and, based on options given in
AMPL, contacts solvers either remotely or locally to solve instances created in AMPL. This
is described in Section ??.

8. Server software that works with Apache Tomcat and Apache Axis. This software uses Web
Services technology and acts as middleware between the client that creates the instance and
the solver on the server that optimizes the instance and returns the result. This is illustrated
in Section ??.
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9. A lightweight version of the project, OSCommon, for modeling language and solver developers
who want to use OS API, readers and writers, without the overhead of other COIN-OR
projects or any third-party software. For information on how to download OSCommon see
Section ??.

2 Quick Roadmap

If you want to:

• Download the OS source code or binaries – see Section ??.

• Download just the OS API, readers and writers – see Section ??.

• Build the OS project from the source code – see Section 5.1.

• Use the OS library to build model instances or use solver APIs – see Sections 6.3, 6.5 and 7.

• Use the OSSolverService to read files in nl, OSiL, or MPS format and call a solver locally or
remotely – see Section ??.

• Use AMPL to solve problems either locally or remotely with a COIN-OR solver, Cplex,
GLPK, or LINDO – see Section ??.

• Use GAMS to solve problems either locally or remotely – see Section ??.

• Build a remote solver service using Apache Tomcat – see Section ??.

• Use MATLAB to generate problem instances in OSiL format and call a solver either remotely
or locally – see Section ??.

• Use the OS library for algorithmic differentiation (in conjunction with COIN-OR CppAD) –
see Section 8.

• Use modeling languages to generate model instances in OSiL format – see Section ??.

3 Downloading the OS Binaries

The OS project is an open-source project with source code under the Common Public License (CPL).
See http://www.ibm.com/developerworks/library/os-cpl.html. This project was initially cre-
ated by Robert Fourer, Jun Ma, and Kipp Martin. The code has been written primarily by Horand
Gassmann, Jun Ma, and Kipp Martin. Horand Gassmann, Jun Ma, and Kipp Martin are the
COIN-OR project leaders and active developers for the OS project. Most users will only be in-
terested in obtaining the binaries, which we describe next. It is also possible to obtain the source
code for the project, which will be of interest mostly to developers. If binaries are not provided for
a particular operating system, it may be possible to build them from the source. For details it is
best to start reading the OS web page at http://projects.coin-or.org/OS/.
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3.1 Obtaining the Binaries

If the user does not wish to compile source code, the OS library, OSSolverService executable and
Tomcat server software configuration are available in binary format for some operating systems.
The repository is at http://www.coin-or.org/download/binary/OS/. Unlike the source code
described in Section ??, the binary files are not subject to version control and can be downloaded
using an ordinary browser. If binaries are not provided for a particular operating system, it may be
possible to build them from the source code. Since the source is under version control, this requires
svn. (See Sections ??, ?? and 5.1.

The binary distribution for the OS library and executables follows the following naming con-
vention:

OS-version_number-platform-compiler-build_options.tgz (zip)

For example, OS Release 2.1.0 compiled with the Intel 9.1 compiler on an Intel 32-bit Linux system
is:

OS-2.1.0-linux-x86-icc9.1.tgz

For more detail on the naming convention and examples see:

https://projects.coin-or.org/CoinBinary/wiki/ArchiveNamingConventions

After unpacking the tgz or zip archives, the following folders are available.

bin – this directory has the executables OSSolverService and OSAmplClient.

include – the header files that are necessary in order to link against the OS library.

lib – the libraries that are necessary for creating applications that use the OS library.

share – license and author information for all the projects used by the OS project.

Files are also provided for an Apache Tomcat Web server along with the associated Web service
that can read SOAP envelopes with model instances in OSiL format and/or options in OSoL
format, call the OSSolverService, and return the optimization result in OSrL format. The naming
convention for the server binary is

OS-server-version_number.tgz (.zip)

For example, the files associated with OS server release 2.0.0 are in the binary distribution

OS-server-2.0.0.tgz

There is no platform information given since the server and related binaries were written in Java.
The details and use of this distribution are described in Section ??.

Finally for Windows users we provide Visual Studio project files (and supporting libraries and
header files) for building projects based on the OS library and libraries used by the OS project.
The binary for this is named

OS-version_number-VisualStudio.zip

For example, the necessary files associated with OS stable 2.4 are in the binary distribution

OS-2.1-VisualStudio.zip

The binaries provided are based on Visual Studio Express 2008. See Section ?? for more detail.
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4 Code samples to illustrate the OS Project

The binary distribution contains makefiles for unix users, respectively MS Visual Studio project
files for Windows users that can be used as follows.

Under unix, connect to the appropriate directory for the desired project and run make. For
instance, the code and makefile for the osModDemo example of section 4.4 is in the directory

examples/osModDemo

Under Windows, connect to the MSVisualStudio directory and open examples.sln in Visual
Studio.

The Makefile in each example directory is fairly simple and is designed to be easily modified
by the user if necessary. The part of the Makefile to be adjusted, if necessary, is

##########################################################################

# You can modify this example makefile to fit for your own program. #

# Usually, you only need to change the five CHANGEME entries below. #

##########################################################################

# CHANGEME: This should be the name of your executable

EXE = OSModDemo

# CHANGEME: Here is the name of all object files corresponding to the source

# code that you wrote in order to define the problem statement

OBJS = OSModDemo.o

# CHANGEME: Additional libraries

ADDLIBS =

# CHANGEME: Additional flags for compilation (e.g., include flags)

ADDINCFLAGS = -I${prefix}/include

# CHANGEME: SRCDIR is the path to the source code; VPATH is the path to

# the executable. It is assumed that the lib directory is in prefix/lib

# and the header files are in prefix/include

SRCDIR = /Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OS/OS/examples/osModDemo

VPATH = /Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OS/OS/examples/osModDemo

prefix = /Users/kmartin/Documents/files/code/cpp/OScpp/vpath

Developers can use the Makefiles as a starting point for building applications that use the OS
project libraries.

4.1 Algorithmic Differentiation: Using the OS Algorithmic Differentiation Meth-
ods

In the OS/examples/algorithmicDiff folder is test code OSAlgorithmicDiffTest.cpp. This code
illustrates the key methods in the OSInstance API that are used for algorithmic differentiation.
These methods are described in Section 8.

4.2 Instance Generator: Using the OSInstance API to Generate Instances

This example is found in the instanceGenerator folder in the examples folder. This example
illustrates how to build a complete in-memory model instance using the OSInstance API. See the
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code OSInstanceGenerator.cpp for the complete example. Here we provide a few highlights to
illustrate the power of the API.

The first step is to create an OSInstance object.

OSInstance *osinstance;

osinstance = new OSInstance();

The instance has two variables, x0 and x1. Variable x0 is a continuous variable with lower
bound of −100 and upper bound of 100. Variable x1 is a binary variable. First declare the instance
to have two variables.

osinstance->setVariableNumber( 2);

Next, add each variable. There is an addVariable method with the signature

addVariable(int index, string name, double lowerBound, double upperBound, char type);

Then the calls for these two variables are

osinstance->addVariable(0, "x0", -100, 100, ’C’);

osinstance->addVariable(1, "x1", 0, 1, ’B’);

There is also a method setVariables for adding more than one variable simultaneously. The
objective function(s) and constraints are added through similar calls.

Nonlinear terms are also easily added. The following code illustrates how to add a nonlinear
term x0 ∗ x1 in the <nonlinearExpressions> section of OSiL. This term is part of constraint 1
and is the second of six constraints contained in the instance.

osinstance->instanceData->nonlinearExpressions->numberOfNonlinearExpressions = 6;

osinstance->instanceData->nonlinearExpressions->nl = new Nl*[ 6 ];

osinstance->instanceData->nonlinearExpressions->nl[ 1] = new Nl();

osinstance->instanceData->nonlinearExpressions->nl[ 1]->idx = 1;

osinstance->instanceData->nonlinearExpressions->nl[ 1]->osExpressionTree =

new OSExpressionTree();

// the nonlinear expression is stored as a vector of nodes in postfix format

// create a variable nl node for x0

nlNodeVariablePoint = new OSnLNodeVariable();

nlNodeVariablePoint->idx=0;

nlNodeVec.push_back( nlNodeVariablePoint);

// create the nl node for x1

nlNodeVariablePoint = new OSnLNodeVariable();

nlNodeVariablePoint->idx=1;

nlNodeVec.push_back( nlNodeVariablePoint);

// create the nl node for *

nlNodePoint = new OSnLNodeTimes();

nlNodeVec.push_back( nlNodePoint);

// now the expression tree

osinstance->instanceData->nonlinearExpressions->nl[ 1]->osExpressionTree->m_treeRoot =

nlNodeVec[ 0]->createExpressionTreeFromPostfix( nlNodeVec);
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4.3 branchCutPrice: Using Bcp

This example illustrates the use of the COIN-OR Bcp (Branch-cut-and-price) project. This project
offers the user with the ability to have control over each node in the branch and process. This makes
it possible to add user-defined cuts and/or user-defined variables. At each node in the tree, a call
is made to the method process_lp_result(). In the example problem we illustrate 1) adding
COIN-OR Cgl cuts, 2) a user-defined cut, and 3) a user-defined variable.

4.4 OSModificationDemo: Modifying an In-Memory OSInstance Object

The osModificationDemo folder holds the file OSModificationDemo.cpp. This is similar to the
instanceGenerator example. In this case, a simple linear program is generated. However, this
example also illustrates how to modify an in-memory OSInstance object. In particular, we illustrate
how to modify an objective function coeffient. Note the dual occurrence of the following code

solver->osinstance->bObjectivesModified = true;

in the OSModificationDemo.cpp file (lines 177 and 187). This line is critical, since otherwise
changes made to the OSInstance object will not be passed to the solver.

This example also illustrates calling a COIN-OR solver, in this case Clp.

Important: the ability to modify a problem instance is still extremely limited in this release.
A better API for problem modification will come with a later release of OS.

4.5 OSSolverDemo: Building In-Memory Solver and Option Objects

The code in the example file OSSolverDemo.cpp in the folder osSolverDemo illustrates how to build
solver interfaces and an in-memory OSOption object. In this example we illustrate building a solver
interface and corresponding OSOption object for the solvers Clp, Cbc, SYMPHONY, Ipopt, Bonmin,
and Couenne. Each solver class inherits from a virtual OSDefaultSolver class. Each solver class
has the string data members

• osil -- this string conforms to the OSiL standard and holds the model instance.

• osol -- this string conforms to the OSoL standard and holds an instance with the solver
options (if there are any); this string can be empty.

• osrl -- this string conforms to the OSrL standard and holds the solution instance; each
solver interface produces an osrl string.

Corresponding to each string there is an in-memory object data member, namely

• osinstance -- an in-memory OSInstance object containing the model instance and get()
and set() methods to access various parts of the model.

• osoption -- an in-memory OSOption object; solver options can be accessed or set using get()
and set() methods.

• osresult -- an in-memory OSResult object; various parts of the model solution are acces-
sible through get() and set() methods.

For each solver we detail five steps:
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Step 1: Read a model instance from a file and create the corresponding OSInstance object. For four
of the solvers we read a file with the model instance in OSiL format. For the Clp example we
read an MPS file and convert to OSiL. For the Couenne example we read an AMPL nl file
and convert to OSiL.

Step 2: Create an OSOption object and set options appropriate for the given solver. This is done by
defining

OSOption* osoption = NULL;

osoption = new OSOption();

A key method in the OSOption interface is setAnotherSolverOption(). This method takes
the following arguments in order.

std::string name – the option name;

std::string value – the value of the option;

std::string solver – the name of the solver to which the option applies;

std::string category – options may fall into categories. For example, consider the
Couenne solver. This solver is also linked to the Ipopt and Bonmin solvers and it is
possible to set options for these solvers through the Couenne API. In order to set an
Ipopt option you would set the solver argument to couenne and set the category

option to ipopt.

std::string type – many solvers require knowledge of the data type, so you can set
the type to double, integer, boolean or string, depending on the solver requirements.
Special types defined by the solver, such as the type numeric used by the Ipopt solver,
can also be accommodated. It is the user’s responsibility to verify the type expected by
the solver.

std::string description – this argument is used to provide any detail or additional
information about the option. An empty string ("") can be passed if such additional
information is not needed.

For excellent documentation that details solver options for Bonmin, Cbc, and Ipopt we rec-
ommend

http://www.coin-or.org/GAMSlinks/gamscoin.pdf

Step 3: Create the solver object. In the OS project there is a virtual solver that is declared by

DefaultSolver *solver = NULL;

The Cbc, Clp and SYMPHONY solvers as well as other solvers of linear and integer linear
programs are all invoked by creating a CoinSolver(). For example, the following is used to
invoke Cbc.

solver = new CoinSolver();

solver->sSolverName ="cbc";
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Other solvers, particularly Ipopt, Bonmin and Couenne are implemented separately. So to
declare, for example, an Ipopt solver, one should write

solver = new IpoptSolver();

The syntax is the same regardless of solver.

Step 4: Import the OSOption and OSInstance into the solver and solve the model. This process is
identical regardless of which solver is used. The syntax is:

solver->osinstance = osinstance;

solver->osoption = osoption;

solver->solve();

Step 5: After optimizing the instance, each of the OS solver interfaces uses the underlying solver
API to get the solution result and write the result to a string named osrl which is a string
representing the solution instance in the OSrL XML standard. This string is accessed by

solver->osrl

In the example code OSSolverDemo.cpp we have written a method,

void getOSResult(std::string osrl)

that takes the osrl string and creates an OSResult object. We then illustrate several of the
OSResult API methods

double getOptimalObjValue(int objIdx, int solIdx);

std::vector<IndexValuePair*> getOptimalPrimalVariableValues(int solIdx);

to get and write out the optimal objective function value, and optimal primal values. See
also Section 4.6.

We now highlight some of the features illustrated by each of the solver examples.

• Clp – In this example we read in a problem instance in MPS format. The class OSmps2osil
has a method mps2osil that is used to convert the MPS instance contained in a file into an
in-memory OSInstance object. This example also illustrates how to set options using the Osi
interface. In particular we turn on intermediate output which is turned off by default in the
Coin Solver Interface.

• Cbc – In this example we read a problem instance that is in OSiL format and create an
in-memory OSInstance object. We then create an OSOption object. This is quite trivial. A
plain-text XML file conforming to the OSiL schema is read into a string osil which is then
converted into the in-memory OSInstance object by
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OSiLReader *osilreader = NULL;

OSInstance *osinstance = NULL;

osilreader = new OSiLReader();

osinstance = osilreader->readOSiL( osil);

We set the linear programming algorithm to be the primal simplex method and then set the
option on the pivot selection to be Dantzig rule. Finally, we set the print level to be 10.

• SYMPHONY – In this example we also read a problem instance that is in OSiL format and
create an in-memory OSInstance object. We then create an OSOption object and illustrate
setting the verbosity option.

• Ipopt – In this example we also read a problem instance that is in OSiL format. However,
in this case we do not create an OSInstance object. We read the OSiL file into a string osil.
We then feed the osil string directly into the Ipopt solver by

solver->osil = osil;

The user always has the option of providing the OSiL to the solver as either a string or
in-memory object.

Next we create an OSOption object. For Ipopt, we illustrate setting the maximum iteration
limit and also provide the name of the output file. In addition, the OSOption object can hold
initial solution values. We illustrate how to initialize all of the variable to 1.0.

numVar = 2; //rosenbrock mod has two variables

xinitial = new double[numVar];

for(i = 0; i < numVar; i++){

xinitial[ i] = 1.0;

}

osoption->setInitVarValuesDense(numVar, xinitial);

• Bonmin – In this example we read a problem instance that is in OSiL format and create an
in-memory OSInstance object just as was done in the Cbc and SYMPHONY examples. We
then create an OSOption object. In setting the OSOption object we intentionally set an option
that will cause the Bonmin solver to terminate early. In particular we set the node_limit to
zero.

osoption->setAnotherSolverOption("node_limit","0","bonmin","","integer","");

This results in early termination of the algorithm. The OSResult class API has a method

std::string getSolutionStatusDescription(int solIdx);

For this example, invoking

osresult->getSolutionStatusDescription( 0)

gives the result:
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LIMIT_EXCEEDED[BONMIN]: A resource limit was exceeded, we provide the current solution.

• Couenne – In this example we read in a problem instance in AMPL nl format. The class
OSnl2osil has a method nl2osil that is used to convert the nl instance contained in a file
into an in-memory OSInstance object. This is done as follows:

// convert to the OS native format

OSnl2osil *nl2osil = NULL;

nl2osil = new OSnl2osil( nlFileName);

// create the first in-memory OSInstance

nl2osil->createOSInstance() ;

osinstance = nl2osil->osinstance;

This part of the example also illustrates setting options in one solver from another. Couenne
uses Bonmin which uses Ipopt. So for example,

osoption->setAnotherSolverOption("max_iter","100","couenne","ipopt","integer","");

identifies the solver as couenne, but the category of value of ipopt tells the solver interface to set
the iteration limit on the Ipopt algorithm that is solving the continuous relaxation of the problem.
Likewise, the setting

osoption->setAnotherSolverOption("num_resolve_at_node","3","couenne","bonmin","integer","");

identifies the solver as couenne, but the category of value of bonmin tells the solver interface to tell
the Bonmin solver to try three starting points at each node.

4.6 OSResultDemo: Building In-Memory Result Object to Display Solver Re-
sult

The OS protocol for representing an optimization result is OSrL. Like the OSiL and OSoL protocol,
this protocol has an associated in-memory OSResult class with corresponding API. The use of the
API is demonstrated in the code OSResultDemo.cpp in the folder OS/examples/OSResultDemo. In
the code we solve a linear program with the Clp solver. The OS solver interface builds an OSrL

string that we read into the OSrLReader class and create and OSResult object. We then use the
OSResult API to get the optimal primal and dual solution. We also use the API to get the reduced
cost values.

4.7 OSCglCuts: Using the OSInstance API to Generate Cutting Planes

In this example, we show how to add cuts to tighten an LP using COIN-OR Cgl (Cut Generation
Library). A file (p0033.osil) in OSiL format is used to create an OSInstance object. The linear
programming relaxation is solved. Then, Gomory, simple rounding, and knapsack cuts are added
using Cgl. The model is then optimized using Cbc.
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4.8 OSRemoteTest: Calling a Remote Server

This example illustrates the API for the six service methods described in Section ??. The file
osRemoteTest.cpp in folder osRemoteTest first builds a small linear example, solves it remotely in
synchronous mode and displays the solution. The asynchronous mode is also tested by submitting
the problem to a remote solver, checking the status and either retrieving the answer or killing the
process if it has not yet finished.

Windows users should note that this project links to wsock32.lib, which is not part of the
Visual Studio Express Package. It is necessary to also download and install the Windows Platform
SDK, which can be found at

http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en. See

also Section ??.

4.9 OSJavaInstanceDemo: Building an OSiL Instance in Java

In this example we demonstrate how to build an OSiL instance using the Java OSInstance API.
The example code also illustrates calling the OSSolverService executable from Java. In order to
use this example, the user should do an svn checkout:

svn co https://projects.coin-or.org/svn/OS/branches/OSjava OSjava

The OSjava folder contains the file INSTALL.txt. Please follow the instructions in INSTALL.txt

under the heading:

== Install Without a Web Server==

These instructions assume that the user has installed the Eclipse IDE. See http://www.eclipse.
org/downloads/. At this link we recommend that the user get Eclipse Classic. In addition,
the user should also have a copy of the OSSolverService executable that is compatible with his
or her platform. The OSSolverService executable for several different platforms is available at
http://www.coin-or.org/download/binary/OS/OSSolverService/. The user can also build the
executable as described in this Manual. See Section 5.1. The code base for this example is in the
folder:

OSjava/OSJavaExamples/src/OSJavaInstanceDemo.java

The code in the file OSJavaInstanceDemo.java demonstrates how the Java OSInstance API that
is in OSCommon can be used to generate a linear program and then call the C++ OSSolverService

executable to solve the problem. Running this example in Eclipse will generate in the folder

OSjava/OSJavaExamples

two files. It will generate parincLinear.osil which is a linear program in the OS OSiL format, it
will also call the OSSolverService executable which generates the result file result.osrl in the
OS OSrL format.
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5 Using Dip (Decomposition In Integer Programming)

Important Note: This example uses COIN-OR projects that are not part of the OS distribution
and assumes you have downloaded the CoinAll binary.

We follow the notation of Galati and Ralphs [?]. The integer program of interest is:

zIP = min –c>x |A′x ≥ b′, A′′x ≥ b′′, x ∈ Zn˝ (1)

The problem is divided into two constraint sets, A′x ≥ b′ which we refer to as the relaxed, coupling,
or block constraints, and the core constraints A′′x ≥ b′′. We then define the following polyhedron
based on the relaxed constraints.

P = conv(–x ∈ Zn |A′x ≥ b′˝) (2)

The LP relaxation of the original problem is:

zLP = min –c>x |A′x ≥ b′, A′′x ≥ b′′, x ∈ Rn˝ (3)

We also make use of another, related problem zD, defined by

zD = min –c>x |A′x ≥ b′, x ∈ P, x ∈ Rn˝. (4)

Ideally, the constraints A′x ≥ b′ should be selected so that solving ZD is an easy hard problem and
provides better bounds than ZLP .

A generic block-angular decomposition algorithm is now available. We employ an implemen-
tation that uses the Optimization Services (OS) project together with another COIN-OR project,
Decomposition in Integer Programming (Dip). We call this the OS Dip solver. It has the following
features:

1. All subproblems are solved via an oracle; either the default oracle contained in our distribution
(see below) or one provided by the user.

2. The OS Dip Solver code is independent of the oracle used to optimize the subproblems.

3. Variables are assigned to blocks using an OS option file; the block definition and assignment
of variables to these blocks has no effect on the OS Dip Solver code.

4. Different blocks can be assigned different solver oracles based on the option values given in
the OSoL file.

5. There is a default oracle implemented (called OSDipBlockCoinSolver) that currently uses
Cbc.

6. Users can add their own oracles without altering the OS Dip Solver code. This is done via
polymorphic factories. The user creates a separate file containing the oracle class. The user-
provided Oracle class inherits from the generic OSDipBlockSolver class. The user need only:
1) add the object file name for the new oracle to the Makefile, and 2) add the necessary line
to OSDipFactoryInitializer.h indicating that the new oracle is present.
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In particular, the implementation of the OS Dip solver provides a virtual class OSDipBlockSolver
with a pure virtual function solve(). The user is expected to provide a class that inherits from
OSDipBlockSolver and implements the method solve(). The solve() method should optimize a
linear objective function over P. More details are provided in Section 5.2. The implementation is
such that the user only has to provide a class with a solve method. The user does not have to edit
or alter any of the OS Dip Solver code. By using polymorphic factories the actual solver details are
hidden from the OS Solver. A default solver, OSDipBlockCoinSolver, is provided. This default
solver takes no advantage of special structure and simply calls the COIN-OR solver Cbc.

5.1 Building and Testing the OS-Dip Example

Currently, the Decomposition in Integer Programming (Dip) package is not a dependency of the
Optimization Services (OS) package – Dip is not included in the OS Externals file. In order to
run the OS Dip solver it is necessary to download both the OS and Dip projects. Download order
is irrelevant. In the discussion that follows we assume that for both OS and Dip the user has
successfully completed a configure, make, and make install. We also assume that the user is
working with the trunk version of both OS and Dip.

The OS Dip solver C++ code is contained in TemplateApplication/osDip. The configure

will create a Makefile in the TemplateApplication/osDip folder. The Makefile must be edited
to reflect the location of the Dip project. The Makefile contains the line

DIPPATH = /Users/kmartin/coin/dip-trunk/vpath-debug/

This setting assumes that there is a lib directory:

/Users/kmartin/coin/dip-trunk/vpath-debug/lib

with the Dip library that results from make install and an include directory

/Users/kmartin/coin/dip-trunk/vpath/include

with the Dip header files generated by make install. The user should adjust

/Users/kmartin/coin/dip-trunk/vpath/

to a path containing the Dip lib and include directories. After building the executable by
executing the make command, run the osdip application using the command:

./osdip --param osdip.parm

This should produce the following output.

FINISH SOLVE

Status= 0 BestLB= 16.00000 BestUB= 16.00000 Nodes= 1

SetupCPU= 0.01 SolveCPU= 0.10 TotalCPU= 0.11 SetupReal= 0.08

SetupReal= 0.12 TotalReal= 0.16

Optimal Solution

-------------------------

Quality = 16.00

0 1.00

1 1.00
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12 1.00

13 1.00

14 1.00

15 1.00

17 1.00

If you see this output, things are working properly.
The file osdip.parm is a parameter file. The use of the parameter file is explained in Section

5.7.

5.2 The OS Dip Solver – Code Description and Key Classes

The OS Dip Solver uses Dip to implement a Dantzig-Wofe decomposition algorithm for block-
angular integer programs. Here are some key classes.

OSDipBlockSolver: This is a virtual class with a pure virtual function:

void solve(double *cost, std::vector<IndexValuePair*> *solIndexValPair,

double *optVal)

OSDipBlockSolverFactory: This is also virtual class with a pure virtual function:

OSDipBlockSolver* create()

This class also has the static method

OSDipBlockSolver* createOSDipBlockSolver(const string &solverName)

and a map

std::map<std::string, OSDipBlockSolverFactory*> factories;

Factory: This class inherits from the class OSDipBlockSolverFactory. Every sover class that
inherits from the OSDipBlockSolver class should have a Factory class member and since this
Factory class member inherits from the OSDipBlockSolverFactory class it should implement
a create() method that creates an object in the class inheriting from OSDipBlockSolver.

OSDipFactoryInitializer: This class initializes the static map

OSDipBlockSolverFactory::factories

in the OSDipBlockSolverFactory class.

OSDipApp: This class inherits from the Dip class DecompApp. In OSDipApp we implement
methods for creating the core (coupling) constraints, i.e., the constraints A′′x ≥ b′′. This is done
by implementing the createModels() method. Regardless of the problem, none of the relaxed
or block constraints in A′x ≥ b′ are created. These are treated implicitly in the solver class that
inherits from the class OSDipBlockSolver. This class also implements a method that defines
the variables that appear only in the blocks (createModelMasterOnlys2), and a method for
generating an initial master (the method generateInitVars() ).

Since the constraints A′x ≥ b′ are treated explicitly by the Dip solver the solveRelaxed()

method must be implemented. In our implementation we have the OSDipApp class data member
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std::vector<OSDipBlockSolver* > m_osDipBlockSolver;

when the solveRelaxed() method is called for block whichBlock in turn we make the call

m_osDipBlockSolver[whichBlock]->solve(cost, &solIndexValPair, &varRedCost);

and the appropriate solver in class OSDipBlockSolver is called. Finally, the OSDipApp class
also initiates the reading of the OS option and instance files. How these files are used is discussed
in Section 5.6. Based on option input data this class also creates the appropriate solver object for
each block, i.e., it populates the m_osDipBlockSolver vector.

OSDipInterface: This class is used as an interface between the OSDipApp class and classes in
the OS library. This provides a number of get methods to provide information to OSDipApp
such as the coefficients in the A′′ matrix, objective function coefficients, number of blocks etc. The
OSDipInterface class reads the input OSiL and OSoL files and creates in-memory data structures
based on these files.

OSDipBlockCoinSolver: This class inherits from the OSDipBlockSolver class. It is meant to
illustrate how to create a solver class. This class solves each block by calling Cbc. Use of this class
provides a generic block angular decomposition algorithm.

There is also OSDip˙Main.cpp: which contains the main() routine and is the entry point for
the executable. It first creates a new price-branch-and-cut decomposition algorithm and then an
Alps solver for which the solve() method is called.

5.3 User Requirements

The OSDipBlockCoinSolver class provides a solve method for optimizing a linear objective
function over P given a linear objective function. However, this takes no advantage of the special
structure available in the blocks. Therefore, the user may wish to implement his or her own solver
class. In this case the user is required to do the following:

1. implement a class that inherits from the OSDipBlockSolver class and implements the solve
method,

2. implement a class Factory that inherits from the class OSDipBlockSolverFactory and
implements the create() method,

3. edit the file OSDipFactoryInitializer.h and add a line:

OSDipBlockSolverFactory::factories["MyBlockSolver"] = new

MyBlockSolver::Factory;

4. alter the Makefile to include the new source code.

Important – Directory Structure: In order to keep things clean, there is a directory solvers
in the osDip folder. We suggest using the solvers directory for all of the solvers that inherit from
OSDipBlockSolver.
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5.4 Simple Plant/Lockbox Location Example

The problem is to minimize the sum of the cost of capital due to float and the cost of operating
the lock boxes.
Parameters:

m− number of customers to be assigned a lock box

n− number of potential lock box sites

cij− annual cost of capital associated with serving customer j from lock box i

fi− annual fixed cost of operating a lock box at location i

Variables:

xij− a binary variable which is equal to 1 if customer j is assigned to lock box i and 0 if not

yi− a binary variable which is equal to 1 if the lock box at location i is opened and 0 if not

The integer linear program for the lock box location problem is

min
n∑

i=1

m∑
j=1

cijxij +
n∑

i=1

fiyi (5)

(LB) xij − yi ≤ 0, i = 1, . . . , n, j = 1, . . . ,m (6)

s.t.
n∑

i=1

xij = 1, j = 1, . . . ,m (7)

xij , yi ∈ –0, 1˝, i = 1, . . . , n, j = 1, . . . ,m. (8)

The objective (5) is to minimize the sum of the cost of capital plus the fixed cost of operating
the lock boxes. Constraints (6) are forcing constraints and require that a lock box be open if a
customer is served by that lock box. For now, we consider these the A′x ≥ b′ constraints. The
requirement that every customer be assigned a lock box is modeled by constraints (7). For now,
we consider these the A′′x ≥ b′′ constraints.

Location Example 1: A three plant, five customer model.

CUSTOMER
1 2 3 4 5 FIXED COSTS

1 2 3 4 5 7 2
PLANT 2 4 3 1 2 6 3

3 5 4 2 1 3 3

Table 1: Data for a 3 plant, 5 customer problem

min 2x11 + 3x12 + 4x13 + 5x14 + 7x15 + 2y1 +

4x21 + 3x22 + x23 + 2x24 + 6x25 + 3y2 +

5x31 + 4x32 + 2x33 + x34 + 3x35 + 3y3
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x11 ≤ y1 ≤ 1
x12 ≤ y1 ≤ 1
x13 ≤ y1 ≤ 1
x14 ≤ y1 ≤ 1
x15 ≤ y1 ≤ 1
x21 ≤ y2 ≤ 1
x22 ≤ y2 ≤ 1
x23 ≤ y2 ≤ 1
x24 ≤ y2 ≤ 1
x25 ≤ y2 ≤ 1
x31 ≤ y3 ≤ 1
x32 ≤ y3 ≤ 1
x33 ≤ y3 ≤ 1
x33 ≤ y3 ≤ 1
x33 ≤ y3 ≤ 1

A′x ≥ b′ constraints

xij , yi ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.

s.t. x11 + x21 + x31 = 1
x12 + x22 + x32 = 1
x13 + x23 + x33 = 1
x14 + x24 + x34 = 1
x15 + x25 + x35 = 1

A′′x ≥ b′′ constraints

Location Example 2 (SPL2): A three plant, three customer model.

CUSTOMER
1 2 3 FIXED COSTS

1 2 1 1 1
PLANT 2 1 2 1 1

3 1 1 2 1

Table 2: Data for a three plant, three customer problem

min 2x11 + x12 + x13 + y1 +

x21 + 2x22 + x23 + y2 +

x31 + x32 + 1x33 + +y3
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x11 ≤ y1 ≤ 1
x12 ≤ y1 ≤ 1
x13 ≤ y1 ≤ 1
x21 ≤ y2 ≤ 1
x22 ≤ y2 ≤ 1
x23 ≤ y2 ≤ 1
x31 ≤ y3 ≤ 1
x32 ≤ y3 ≤ 1
x33 ≤ y3 ≤ 1

A′x ≥ b′ constraints

xij , yi ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.

s.t. x11 + x21 + x31 = 1
x12 + x22 + x32 = 1
x13 + x23 + x33 = 1

A′′x ≥ b′′ constraints

5.5 Generalized Assignment Problem Example

A problem that plays a prominent role in vehicle routing is the generalized assignment problem.
The problem is to assign each of n tasks to m servers without exceeding the resource capacity of
the servers.
Parameters:

n− number of required tasks

m− number of servers

fij− cost of assigning task i to server j

bj− units of resource available to server j

aij− units of server j resource required to perform task i

Variables:

xij− a binary variable which is equal to 1 if task i is assigned to server j and 0 if not

The integer linear program for the generalized assignment problem is

min

n∑
i=1

m∑
j=1

fijxij (9)

(GAP ) s.t.
m∑
j=1

xij = 1, i = 1, . . . , n (10)

n∑
i=1

aijxij ≤ bj , j = 1, . . . ,m (11)

xij ∈ –0, 1˝, i = 1, . . . , n, j = 1, . . . ,m. (12)

The objective function (9) is to minimize the total assignment cost. Constraint (10) requires
that each task is assigned a server. These constraints correspond to the A′′x ≥ b′′ constraints. The
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requirement that the server capacity not be exceeded is given in (11). These corresspond to the
A′x ≥ b′ constraints that are used to define P. The test problem used in the file genAssign.osil

is:

min 2x11 + 11x12 + 7x21 + 7x22

+20x31 + 2x32 + 5x41 + 5x42

x11 + x12 = 1

x21 + x22 = 1

x31 + x32 = 1

x41 + x42 = 1

3x11 + 6x21 + 5x31 + 7x41 ≤ 13

2x12 + 4x22 + 10x32 + 4x42 ≤ 10

5.6 Defining the Problem Instance and Blocks

Here we describe how to use the OSOption and OSInstance formats. We illustrate with a simple
plant location problem. Refer back to the example in Table 1 for a three-plant, five-customer
problem. We treat the fixed charge constraints as the block constraints, i.e., we treat constraint set
(6) as the set A′x ≥ b′ constraints. These constraints naturally break into a block for each plant,
i.e., there is a block of constraints:

xij ≤ yi (13)

In order to use the OS Dip solver it is necessary to: 1) define the set of variables in each block and
2) define the set of constraints that constitute the core or coupling constraints. This information
is communicated to the OS Dip solver using Optimization Services option Language (OSoL). The
OSoL input file for the example in Table 1 appears in Figures 1 and 2. See lines 32-55. There
is an <other> option with name="variableBlockSet" for each block. Each block then lists the
variables in the block. For example, the first block consists of the variables indexed by 0, 1, 2, 3,
4, and 15. These correspond to variables x11, x12, x13, x13, x14, and y1. Likewise the second block
corresponds to the variable for the second plant and the third block corresponds to variables for
the third plant.

It is also necessary to convey which constraints constitute the core constraints. This is done in
lines 58-64. The core constraints are indexed by 15, 16, 17, 18, 19. These constitute the demand
constraints given in Equation (7).

Notice also that in lines 32, 40, and 48 there is an attribute value in the <other> variable
element with the attribute name equal to variableBlockSet. The attribute value should be
the name of the solver factory that should be assigned to solve that block. For example, if the
optimization problem that results from solving a linear objective over the constraints defining the
first block is solved using MySolver1 then this must correspond to a

OSDipBlockSolverFactory::factories["MySolver1"] = new

MySolver1::Factory;

in the file OSDipFactoryInitializer.h. In the test file, spl1.osol for the first block we set
the solver to a specialized solver for the simple plant location problem (OSDipBlockSplSolver)
and for the other two blocks we use the generic solver (OSDipBlockCoinSolver).
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1 <?xml version="1.0" encoding="UTF-8"?>

2 <osol>

3 <general>

4 <instanceName>spl1 -- setup constraints are the blocks</instanceName>

5 </general>

6 <optimization>

7 <variables numberOfOtherVariableOptions="6">

8 <other name="initialCol" solver="Dip" numberOfVar="6" value="0">

9 <var idx="0" value="1"/>

10 <var idx="1" value="1"/>

11 <var idx="2" value="1"/>

12 <var idx="3" value="1"/>

13 <var idx="4" value="1"/>

14 <var idx="15" value="1"/>

15 </other>

16 <other name="initialCol" solver="Dip" numberOfVar="6" value="1">

17 <var idx="5" value="1"/>

18 <var idx="6" value="1"/>

19 <var idx="7" value="1"/>

20 <var idx="8" value="1"/>

21 <var idx="9" value="1"/>

22 <var idx="16" value="1"/>

23 </other>

24 <other name="initialCol" solver="Dip" numberOfVar="6" value="2">

25 <var idx="10" value="1"/>

26 <var idx="11" value="1"/>

27 <var idx="12" value="1"/>

28 <var idx="13" value="1"/>

29 <var idx="14" value="1"/>

30 <var idx="17" value="1"/>

31 </other>

32 <other name="variableBlockSet" solver="Dip" numberOfVar="6" value="MySolver1">

33 <var idx="0"/>

34 <var idx="1"/>

35 <var idx="2"/>

36 <var idx="3"/>

37 <var idx="4"/>

38 <var idx="15"/>

39 </other>

40 <other name="variableBlockSet" solver="Dip" numberOfVar="6" value="MySolver2">

41 <var idx="5"/>

42 <var idx="6"/>

43 <var idx="7"/>

44 <var idx="8"/>

45 <var idx="9"/>

46 <var idx="16"/>

47 </other>

Figure 1: A sample OSoL file – SPL1.osol
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One can use the OSoL file to specify a set of starting columns for the initial restricted master.
In Figure 1 see lines 8-31. In and OS option file (OSoL) there is <variables> element that has
<other> children. Initial columns are specified using the <other> elements. This is done by using
the name attribute and setting its value to initialCol. Then the children of the tag contain
index-value pairs that specify the column. For example, the first initial column corresponds to
setting:

x11 = 1, x12 = 1, x13 = 1, x14 = 1, x15 = 1, y1 = 1

Finally note that in all of this discussion we know to apply the options to Dip because the
attribute solver always had value Dip. It is critical to set this attribute in all of the option tags.

5.7 The Dip Parameter File

The Dip solver has a utility class UtilParameters, for parsing a parameter file. The UtilPa-
rameters class constructor takes a parameter file as an argument. In the case of the OS Dip solver
the name of the parameter file is osdip.parm and the parameter file is read in at the command
line with the command

./osdip -param osdip.parm

The UtilParameters class has a method GetSetting() for reading the parameter values. In
the OS Dip implementation there is a class OSDipParam that has as data members key parameters
such as the name of the input OSiL file and input OSoL file. The OSDipParam class has a method
getSettings() that takes as an argument a pointer to an object in the UtilParameters and uses
the GetSetting() method to return the relevant parameter values. For example:

OSiLFile = utilParam.GetSetting("OSiLFile", "", common);

OSoLFile = utilParam.GetSetting("OSoLFile", "", common);

In the current osdip.parm file we have:

#first simple plant location problem

OSiLFile = spl1.osil

#setup constraints as blocks

OSoLFile = spl1.osol

#assignment constraints as blocks

#OSoLFile = spl1-b.osol

#second simple plant location problem

#OSiLFile = spl2.osil

#setup constraints as blocks

#OSoLFile = spl2.osol

#assignment constraints as blocks

#OSoLFile = spl2-b.osol

#third simple plant location problem -- block matrix data not used

#OSiLFile = spl3.osil

#setup constraints as blocks
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#OSoLFile = spl3.osol

#generalized assignment problem

#OSiLFile = genAssign.osil

#OSoLFile = genAssign.osol

#Martin textbook example

#OSiLFile = smallIPBook.osil

#OSoLFile = smallIPBook.osol

By commenting and uncommenting you can run one of four problems that are in the data
directory. The first example, spl1.osil, corresponds to the simple plant location model given in
Table 1. Using the option file spl1.osol treats the setup forcing constraints 6 as the A′x ≥ b′

constraints. Using the option file spl1-b.osol treats the demand constraints 7 as the A′x ≥ b′

constraints. Likewise for the problem spl2.osil which correponds to the simple plant location data
given in Table 2.

In both examples spl1.osil and spl2.osil the A′x ≥ b′ constraints are explicitly represented
in the OSiL file. However, this is not necessary. The solver Factory OSDipBlockSlpSolver is a
special oracle that only needs the objective function coefficients and pegs variables based on the
sign of the objective function coefficients. The spl3.osil is the example given in Table 1 but without
the setup forcing constraints. Each block uses the OSDipBlockSlpSolver oracle.

The genAssign.osil file corresponds to the generalized assignment problem given in Section
5.5. The option file genAssign.osol treats the capacity constraints 11 as the A′x ≥ b′ constraints.

The last problem defined in the file smallIPBook.osil is based on Example 16.3 on page 567
in Large Scale Linear and Integer Optimization. The option file treats the constraints

4x1 + 9x2 ≤ 18, −2x1 + 4x2 ≤ 4

as the A′x ≥ b′ constraints.
The user should also be aware of the parameter solverFactory. This parameter is the name

of the default solver Factory. If a solver is not named for a block in the OSoL file this value is used.
We have set the value of this string to be OSDipBlockCoinSolver.

5.8 Issues to Fix

• Enhance solveRelaxed to allow parallel processing of blocks. See ticket 30.

• Does not work when there are 0 integer variables. See ticket 31.

• Be able to set options in C++ code. See ticket 41. It would be nice to be able to read all
the options from a generic options file. It seems like right now options for the DecompAlgo
class cannot be set inside C++.

• Problem with Alps bounds at node 0. See ticket 43

• Figure out how to use BranchEnforceInMaster or BranchEnforceInSubProb so I don’t get the
large bonds on the variables. See ticket 47.
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5.9 Miscellaneous Issues

If you want to terminate at the root node and just get the dual value under the ALPS option put:

[ALPS]

nodeLimit = 1

More from Matt:

Kipp - the example you sent finds the optimal solution after a few passes of pricing and therefore never calls the cut generator. By default, the PC solver, in the root node starts with pricing, and does not stop until it prices out (or finds optimal, or within gap limits).

If it prices out and has not yet found optimal, then it will proceed to cuts.

This is parameter driven.

You’ll see in the log file (LogDebugLevel = 3),

PRICE_AND_CUT LimitRoundCutIters 2147483647

PRICE_AND_CUT LimitRoundPriceIters 2147483647

This is the number of Price/Cut iterations to take before switching off (i.e., MAXINT).

To force it to cut before pricing out, change this parameter in the parm file. For example, if you change to :

[DECOMP]

LimitRoundPriceIters = 1

LimitRoundCutIters = 1

It will then go into your generateCuts after one pricing iteration.

\vskip 12pt

If there is an integer solution at the root node, it may be the case that we are still not optimal. A perfect example is where you want to add tour-breaking constraints. There could be an integer solution, but you still violate a tour-breaking constraint. Here is what Matt says:

‘‘By default, DIP assumes, that if problem is LP feasible to the linear system and IP feasible, then it is feasible. In the case where the user knows something that DIP does not (e.g., that the linear system does not define the entire valid constraint system, as in TSP), then they must provide a derivation of this function APPisUserFeasible. Then, DIP will check LP feasible, IP feasible and lastly, APPisUserFeasible before declaring a point a feasible solution.’’

For an example of using this see, \url{https://projects.coin-or.org/Dip/browser/trunk/Dip/examples/TSP/TSP_DecompApp.cpp}.

6 The OS Library Components

6.1 OSAgent

The OSAgent part of the library is used to facilitate communication with remote solvers. It is not
used if the solver is invoked locally (i.e., on the same machine). There are two key classes in the
OSAgent component of the OS library. The two classes are OSSolverAgent and WSUtil.

The OSSolverAgent class is used to contact a remote solver service. For example, assume that
sOSiL is a string with a problem instance and sOSoL is a string with solver options. Then the
following code will call a solver service and invoke the solve method.
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OSSolverAgent *osagent;

string serviceLocation = http://kipp.chicagobooth.edu/os/OSSolverService.jws

osagent = new OSSolverAgent( serviceLocation );

string sOSrL = osagent->solve(sOSiL, sOSoL);

Other methods in the OSSolverAgent class are send, retrieve, getJobID, knock, and kill. The
use of these methods is described in Section ??.

The methods in the OSSolverAgent class call methods in the WSUtil class that perform such
tasks as creating and parsing SOAP messages and making low level socket calls to the server running
the solver service. The average user will not use methods in the WSUtil class, but they are available
to anyone wanting to make socket calls or create SOAP messages.

There is also a method, OSFileUpload, in the OSAgentClass that is used to upload files from
the hard drive of a client to the server. It is very fast and does not involve SOAP or Web Services.
The OSFileUpload method is illustrated and described in the example code OSFileUpload.cpp

described in Section ??.

6.2 OSCommonInterfaces

The classes in the OSCommonInterfaces component of the OS library are used to read and write
files and strings in the OSiL and OSrL protocols. See Section ?? for more detail on OSiL, OSrL,
and other OS protocols. For a complete listing of all of the files in OSCommonInterfaces see the
Doxygen documentation we deposited at http://www.doxygen.org. Users who have Doxygen
installed on their system can also create their own version of the documentation (see Section ??).
Below we highlight some key classes.

6.2.1 The OSInstance Class

The OSInstance class is the in-memory representation of an optimization instance and is a key
class for users of the OS project. This class has an API defined by a collection of get() methods
for extracting various components (such as bounds and coefficients) from a problem instance, a
collection of set() methods for modifying or generating an optimization instance, and a collection
of calculate() methods for function, gradient, and Hessian evaluations. See Section 7. We now
describe how to create an OSInstance object and the close relationship between the OSiL schema
and the OSInstance class.

6.2.2 Creating an OSInstance Object

The OSCommonInterfaces component contains an OSiLReader class for reading an instance in an
OSiL string and creating an in-memory OSInstance object. Assume that sOSiL is a string that
will hold the instance in OSiL format. Creating an OSInstance object is illustrated in Figure 3.

6.2.3 Mapping Rules

The OSInstance class has two members, instanceHeader and instanceData. These correspond
to the XML elements <instanceHeader> and <instanceData>. They are of type InstanceHeader

and InstanceData, respectively, which in turn correspond to the OSiL schema’s complexTypes
InstanceHeader and InstanceData, and in themselves are C++ classes.

Moving down one level, Figure 5 shows that the InstanceData class has in turn the members
variables, objectives, constraints, linearConstraintCoefficients, quadraticCoefficients,
and nonlinearExpressions, corresponding to the respective elements in the OSiL file that have
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the same name. Each of these are instances of associated classes which correspond to complexTypes
in the OSiL schema.

Figure 6 uses the Variables class to provide a closer look at the correspondence between schema
and class. On the right, the Variables class contains the data member numberOfVariables and
a pointer to the object var of class Variable. The Variable class has data members lb (double),
ub (double), name (string), and type (char). On the left the corresponding XML complexTypes
are shown, with arrows indicating the correspondences. The following rules describe the mapping
between the OSiL schema and the OSInstance class. (In order to facilitate the mapping, we insist
in the schema construction that every complexType be named, even though this is not strictly
necessary in XML.)

• Each complexType in an OSiL schema corresponds to a class in OSInstance. Thus the OSiL
schema’s complexType Variables corresponds to OSInstance’s class Variables. Elements in
an actual XML file then correspond to objects in OSInstance; for example, the <variables>

element that is of type Variables in an OSiL file corresponds to a variables object in
OSInstance.

• An attribute or element used in the definition of a complexType is a member of the cor-
responding OSInstance class, and the type of the attribute or element matches the type
of the member. In Figure 6, for example, lb is an attribute of the OSiL complexType

named Variable, and lb is a member of the OSInstance class Variable; both have type
double. Similarly, <var> is an element in the definition of the OSiL complexType named
Variables, and var is a member of the OSInstance class Variables; the <var> element has
type Variable and the var member is a Variable object.

• A schema sequence corresponds to an array. For example, in Figure 6 the complexType
Variables has a sequence of <var> elements that are of type Variable, and the corresponding
Variables class has a member that is an array of type Variable.

• XML allows a wide range of data subtypes, which do not always have counterparts in the
OSInstance object. For instance, the attribute type in the <var> element forms an enumer-
ation, while the corresponding member of the Variable class is declared as char.

• XML allows default values for optional attributes; these default values can be set inside of
the constructor of the corresponding data member.

General nonlinear terms are stored in the data structure as OSExpressionTree objects, which are
the subject of the next section.

The OSInstance class has a collection of get(), set(), and calculate() methods that act as
an API for the optimization instance and are described in Section 7.

6.2.4 The OSExpressionTree OSnLNode Classes

The OSExpressionTree class provides the in-memory representation of the nonlinear terms. Our
design goal is to allow for efficient parsing of OSiL instances, while providing an API that meets
the needs of diverse solvers. Conceptually, any nonlinear expression in the objective or constraints
is represented by a tree. The expression tree for the nonlinear part of the objective function (??),
for example, has the form illustrated in Figure 7. The choice of a data structure to store such a tree
— along with the associated methods of an API — is a key aspect in the design of the OSInstance

class.
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A base abstract class OSnLNode is defined and all of an OSiL file’s operator and operand elements
used in defining a nonlinear expression are extensions of the base element type OSnLNode. There
is an element type OSnLNodePlus, for example, that extends OSnLNode; then in an OSiL instance
file, there are <plus> elements that are of type OSnLNodePlus. Each OSExpressionTree object
contains a pointer to an OSnLNode object that is the root of the corresponding expression tree. To
every element that extends the OSnLNode type in an OSiL instance file, there corresponds a class
that derives from the OSnLNode class in an OSInstance data structure. Thus we can construct an
expression tree of homogenous nodes, and methods that operate on the expression tree to calculate
function values, derivatives, postfix notation, and the like do not require switches or complicated
logic.

The OSInstance class has a variety of calculate() methods, based on two pure virtual func-
tions in the OSInstance class. The first of these, calculateFunction(), takes an array of double
values corresponding to decision variables, and evaluates the expression tree for those values. Every
class that extends OSnLNode must implement this method. As an example, the calculateFunction
method for the OSnLNodePlus class is shown in Figure 8. Because the OSiL instance file must be
validated against its schema, and in the schema each <OSnLNodePlus> element is specified to have
exactly two child elements, this calculateFunction method can assume that there are exactly
two children of the node that it is operating on. The use of polymorphism and recursion makes
adding new operator elements easy; it is simply a matter of adding a new class and implementing
the calculateFunction() method for it.

Although in the OSnL schema, there are 200+ nonlinear operators, only the following OSnLNode

classes are currently supported in our implementation.

• OSnLNodeVariable

• OSnLNodeTimes

• OSnLNodePlus

• OSnLNodeSum

• OSnLNodeMinus

• OSnLNodeNegate

• OSnLNodeDivide

• OSnLNodePower

• OSnLNodeProduct

• OSnLNodeLn

• OSnLNodeSqrt

• OSnLNodeSquare

• OSnLNodeSin

• OSnLNodeCos

• OSnLNodeExp

• OSnLNodeIf
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• OSnLNodeAbs

• OSnLNodeMax

• OSnLNodeMin

• OSnLNodeE

• OSnLNodePI

• OSnLNodeAllDiff

6.2.5 The OSOption Class

The OSOption class is the in-memory representation of the options associated with a particular
optimization task. It is another key class for users of the OS project. This class has an API
defined by a collection of get() methods for extracting various components (such as initial values
for decision variables, solver options, job parameters, etc.), and a collection of set() methods
for modifying or generating an option instance. The relationship between in-memory classes and
objects on one hand and complexTypes and elements of the OSoL schema follow the same mapping
rules laid out in Section 6.2.3.

6.2.6 The OSResult Class

Similarly the OSResult class is the in-memory representation of the results returned by the solver
and other information associated with a particular optimization task. This class has an API defined
by a collection of set() methods that allow a solver to create a result instance and a collection of
get() methods for extracting various components (such as optimal values for decision variables,
optimal objective function value, optimal dual variables, etc.). The relationship between in-memory
classes and objects on one hand and complexTypes and elements of the OSoL schema follow the
same mapping rules laid out in Section 6.2.3.

6.3 OSModelInterfaces

This part of the OS library is designed to help integrate the OS standards with other standards
and modeling systems.

6.3.1 Converting MPS Files

The MPS standard is still a popular format for representing linear and integer programming prob-
lems. In OSModelInterfaces, there is a class OSmps2osil that can be used to convert files in MPS
format into the OSiL standard. It is used as follows.

OSmps2osil *mps2osil = NULL;

DefaultSolver *solver = NULL;

solver = new CoinSolver();

solver->sSolverName = "cbc";

mps2osil = new OSmps2osil( mpsFileName);

mps2osil->createOSInstance() ;

solver->osinstance = mps2osil->osinstance;

solver->solve();
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The OSmps2osil class constructor takes a string which should be the file name of the instance
in MPS format. The constructor then uses the CoinUtils library to read and parse the MPS file.
The class method createOSInstance then builds an in-memory osinstance object that can be
used by a solver.

6.3.2 Converting AMPL nl Files

AMPL is a popular modeling language that saves model instances in the AMPL nl format. The
OSModelInterfaces library provides a class, OSnl2osil, for reading an nl file and creating a
corresponding in-memory osinstance object. It is used as follows.

OSnl2osil *nl2osil = NULL;

DefaultSolver *solver = NULL;

solver = new LindoSolver();

nl2osil = new OSnl2osil( nlFileName);

nl2osil->createOSInstance() ;

solver->osinstance = nl2osil->osinstance;

solver->solve();

The OSnl2osil class works much like the OSmps2osil class. The OSnl2osil class constructor
takes a string which should be the file name of the instance in nl format. The constructor then uses
the AMPL ASL library routines to read and parse the nl file. The class method createOSInstance

then builds an in-memory osinstance object that can be used by a solver.
In Section ?? we describe the OSAmplClient executable that acts as a “solver” for AMPL. The

OSAmplClient uses the OSnl2osil class to convert the instance in nl format to OSiL format before
calling a solver either locally or remotely.

6.4 OSParsers

The OSParsers component of the OS library contains reentrant parsers that read OSiL, OSoL and
OSrL strings and build, respectively, in-memory OSInstance, OSOption and OSResult objects.

The OSiL parser is invoked through an OSiLReader object as illustrated below. Assume osil

is a string with the problem instance.

OSiLReader *osilreader = NULL;

OSInstance *osinstance = NULL;

osilreader = new OSiLReader();

osinstance = osilreader->readOSiL( osil);

The readOSiL method has a single argument which is a (pointer to a) string. The readOSiL

method then calls an underlying method yygetOSInstance that parses the OSiL string. The
major components of the OSiL schema recognized by the parser are

<instanceHeader>

<instanceData>

<variables>

<objectives>

<constraints>

<linearConstraintCoefficients>

<quadraticCoefficients>

<nonlinearExpressions>
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There are other components in the OSiL schema, but they are not yet implemented. In most large-
scale applications the <variables>, <objectives>, <constraints>, and <linearConstraintCoefficients>

will comprise the bulk of the instance memory. Because of this, we have “hard-coded” the OSiL
parser to read these specific elements very efficiently. The parsing of the <quadraticCoefficients>
and <nonlinearExpressions> is done using code generated by flex and bison. The file OSParseosil.l
is used by flex to generate OSParseosil.cpp and the file OSParseosil.y is used by bison to gener-
ate OSParseosil.tab.cpp. In OSParseosil.l we use the reentrant option and in OSParseosil.y

we use the pure-parser option to generate reentrant parsers. The OSParseosil.y file contains
both our “hard-coded” parser and the grammar rules for the <quadraticCoefficients> and
<nonlinearExpressions> sections. We are currently using GNU bison version 3.2 and flex

2.5.33.
The typical OS user will have no need to edit either OSParseosil.l or OSParseosil.y and

therefore will not have to worry about running either flex or bison to generate the parsers. The
generated parser code from flex and bison is distributed with the project and works on all of
the platforms listed in Table ??. If the user does edit either parseosil.l or parseosil.y then
parseosil.cpp and parseosil.tab.cpp need to be regenerated with flex and bison. If these
programs are present, in the OS directory execute

make run_parsers

(This requires Unix or a unix-like environment (Cygwin, MinGW, MSYS, etc.) under Windows.)
The files OSParseosrl.l and OSParseosrl.y are used by flex and bison to generate the code

OSParseosrl.cpp and OSParseosrl.tab.cpp for parsing strings in OSrL format. The comments
made above about the OSiL parser apply to the OSrL parser. The OSrL parser, like the OSiL
parser, is invoked using an OSrL reading object. This is illustrated below (osrl is a string in OSrL
format).

OSrLReader *osrlreader = NULL;

osrlreader = new OSrLReader();

OSResult *osresult = NULL;

osresult = osrlreader->readOSrL( osrl);

The OSoL parser follows the same layout and rules. The files OSParseosol.l and OSParseosol.y

are used by flex and bison to generate the code OSParseosol.cpp and OSParseosol.tab.cpp for
parsing strings in OSoL format. The OSoL parser is invoked using an OSoL reading object. This is
illustrated below (osol is a string in OSoL format).

OSoLReader *osolreader = NULL;

osolreader = new OSoLReader();

OSOption *osoption = NULL;

osoption = osolreader->readOSoL( osol);

There is also a lexer OSParseosss.l for tokenizing the command line for the OSSolverService
executable described in Section ??.

6.5 OSSolverInterfaces

The OSSolverInterfaces library is designed to facilitate linking the OS library with various solver
APIs. We first describe how to take a problem instance in OSiL format and connect to a solver that
has a COIN-OR OSI interface. See the OSI project www.projects.coin-or.org/Osi. We then
describe hooking to the COIN-OR nonlinear code Ipopt. See www.projects.coin-or.org/Ipopt.
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Finally we describe hooking to the commercial solver LINDO. The OS library has been tested with
the following solvers using the Osi Interface.

• Bonmin

• Cbc

• Clp

• Couenne

• Cplex

• DyLP

• Glpk

• Ipopt

• SYMPHONY

• Vol

In the OSSolverInterfaces library there is an abstract class DefaultSolver that has the
following key members:

std::string osil;

std::string osol;

std::string osrl;

OSInstance *osinstance;

OSResult *osresult;

OSOption *osoption;

and the pure virtual function

virtual void solve() = 0 ;

In order to use a solver through the COIN-OR Osi interface it is necessary to create an object in
the CoinSolver class which inherits from the DefaultSolver class and implements the appropriate
solve() function. We illustrate with the Clp solver.

DefaultSolver *solver = NULL;

solver = new CoinSolver();

solver->m_sSolverName = "clp";

Assume that the data file containing the problem has been read into the string osil and the
solver options are in the string osol. Then the Clp solver is invoked as follows.

solver->osil = osil;

solver->osol = osol;

solver->solve();

Finally, get the solution in OSrL format as follows
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cout << solver->osrl << endl;

Some commercial solvers, e.g., LINDO, do not have a COIN-OR Osi interface, but it is possible
to write wrappers so that they can be used in exactly the same manner as a COIN-OR solver. For
example, to invoke the LINDO solver we do the following.

solver = new LindoSolver();

A similar call is used for Ipopt. In this case, the IpoptSolver class inherits from both the
DefaultSolver class and the Ipopt TNLP class. See

smallhttps://projects.coin-or.org/Ipopt/browser/stable/3.5/Ipopt/doc/documentation.pdf?format=raw

for more information on the Ipopt solver C++ implementation and the TNLP class.
In the examples above, the problem instance was assumed to be read from a file into the

string osil and then into the class member solver->osil. However, everything can be done
entirely in memory. For example, it is possible to use the OSInstance class to create an in-memory
problem representation and give this representation directly to a solver class that inherits from
DefaultSolver. The class member to use is osinstance. This is illustrated in the example given
in Section 4.2.

6.6 OSUtils

The OSUtils component of the OS library contains utility codes. For example, the FileUtil class
contains useful methods for reading files into string or char* and writing files from string and
char*. The OSDataStructures class holds other classes for things such as sparse vectors, sparse
Jacobians, and sparse Hessians. The MathUtil class contains a method for converting between
sparse matrices in row and column major form.

7 The OSInstance API

The OSInstance API can be used to:

• get information about model parameters, or convert the OSExpressionTree into a prefix or
postfix representation through a collection of get() methods,

• modify, or even create an instance from scratch, using a number of set() methods,

• provide information to solvers that require function evaluations, Jacobian and Hessian sparsity
patters, function gradient evaluations, and Hessian evaluations.

7.1 Get Methods

The get() methods are used by other classes to access data in an existing OSInstance object or get
an expression tree representation of an instance in postfix or prefix format. Assume osinstance is
an object in the OSInstance class created as illustrated in Figure 3. Then, for example,

osinstance->getVariableNumber();

will return an integer which is the number of variables in the problem,
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osinstance->getVariableTypes();

will return a char pointer to the variable types (C for continuous, B for binary, and I for general
integer),

getVariableLowerBounds();

will return a double pointer to the lower bound on each variable. There are similar get() methods
for the constraints. There are numerous get() methods for the data in the <linearConstraintCoefficients>
element, the <quadraticCoefficients> element, and the <nonlinearExpressions> element.

When an osinstance object is created, it is stored as an expression tree in an OSExpressionTree

object. However, some solver APIs (e.g., LINDO) may take the data in a different format such as
postfix and prefix. There are methods to return the data in either postfix or prefix format.

First define a vector of pointers to OSnLNode objects.

std::vector<OSnLNode*> postfixVec;

then get the expression tree for the objective function (index = -1) as a postfix vector of nodes.

postfixVec = osinstance->getNonlinearExpressionTreeInPostfix( -1);

If, for example, the osinstance object was the in-memory representation of the instance illustrated
in Section ?? and Figure 7 then the code

for (i = 0 ; i < n; i++){

cout << postfixVec[i]->snodeName << endl;

}

will produce

number

variable

minus

number

power

number

variable

variable

number

power

minus

number

power

times

plus

This postfix traversal of the expression tree in Figure 7 lists all the nodes by recursively process-
ing all subtrees, followed by the root node. The method processNonlinearExpressions() in the
LindoSolver class in the OSSolverInterfaces library component illustrates the use of a postfix
vector of OSnLNode objects to build a Lindo model instance.
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7.2 Set Methods

The set() methods can be used to build an in-memory OSInstance object. A code example of
how to do this is in Section 4.2.

7.3 Calculate Methods

The calculate() methods are described in Section 8.

7.4 Modifying an OSInstance Object

The OSInstance API is designed to be used to either build an in-memory OSInstance object or
provide information about the in-memory object (e.g., the number of variables). This interface is
not designed for problem modification. We plan on later providing an OSModification object for
this task. However, by directly accessing an OSInstance object it is possible to modify parameters
in the following classes:

• Variables

• Objectives

• Constraints

• LinearConstraintCoefficients

For example, to modify the first nonzero objective function coefficient of the first objective
function to 10.7 the user would write,

osinstance->instanceData->objectives->obj[0]->coef[0]->value = 10.7;

If the user wanted to modify the actual number of nonzero coefficients as declared by

osinstance->instanceData->objectives->obj[0]->numberOfObjCoef;

then the only safe course of action would be to delete the current OSInstance object and build a
new one with the modified coefficients. It is strongly recommend that no changes are made involving
allocated memory – i.e., any kind of numberOf***. Modifying an objective function coefficient is
illustrated in the OSModDemo example. See Section 4.4.

After modifying an OSInstance object, it is necessary to set certain boolean variables to true
in order for these changes to get reflected in the OS solver interfaces.

• Variables – if any changes are made to a parameter in this class set

osinstance->bVariablesModified = true;

• Objectives – if any changes are made to a parameter in this class set

osinstance->bObjectivesModified = true;

• Constraints – if any changes are made to a parameter in this class set
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osinstance->bConstraintsModified = true;

• LinearConstraintCoefficients – if any changes are made to a parameter in this class set

osinstance->bAMatrixModified = true;

At this point, if the user desires to modify an OSInstance object that contains nonlinear terms,
the only safe strategy is to delete the object and build a new object that contains the modifications.

7.5 Printing a Model for Debugging

The OSiL representation for the test problem rosenbrockmod.osil is given in Appendix ??. Many
users will not find the OSiL representation useful for model debugging purposes. For users who
wish to see a model in a standard infix representation we provide a method printModel(). Assume
that we have an osinstance object in the OSInstance class that represents the model of interest.
The call

osinstance->printModel( -1)

will result in printing the (first) objective function indexed by -1. In order to print constraint k use

osinstance->printModel( k)

In order to print the entire model use

osinstance->printModel( )

Below we give the result of osintance->printModel( ) for the problem rosenbrockmod.osil.

Objectives:

min 9*x_1 + (((1 - x_0) ^ 2) + (100*((x_1 - (x_0 ^ 2)) ^ 2)))

Constraints:

(((((10.5*x_0)*x_0) + ((11.7*x_1)*x_1)) + ((3*x_0)*x_1)) + x_0) <= 25

10 <= ((ln( (x_0*x_1)) + (7.5*x_0)) + (5.25*x_1))

Variables:

x_0 Type = C Lower Bound = 0 Upper Bound = 1.7976931348623157e308

x_1 Type = C Lower Bound = 0 Upper Bound = 1.7976931348623157e308

8 The OS Algorithmic Differentiation Implementation

The OS library provides a set of calculate methods for calculating function values, gradients, and
Hessians. The calculate methods are part of the OSInstance class and are designed to work with
solver APIs. For instance, Ipopt requires derivatives but does not provide its own differentiation
routines, expecting the user to make them available through callbacks.
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8.1 Algorithmic Differentiation: Brief Review

First and second derivative calculations are made using algorithmic differentiation. Here we provide
a brief review of this topic. An excellent reference on algorithmic differentiation is Griewank [3]. The
OS package uses the COIN-OR project CppAD (http://projects.coin-or.org/CppAD), which
is also an excellent resource with extensive documentation and information about algorithmic dif-
ferentiation. See the documentation written by Brad Bell [1]. The development here is from the
CppAD documentation. Consider the function f : X → Y from Rn to Rm. (That is, Y = f(X).)
Assume that f is twice continuously differentiable, so that in particular the second order partials

∂2fk
∂xi∂xj

and
∂2fk
∂xj∂xi

(14)

exist and are equal to each other for all k = 1, . . . ,m and i, j = 1, . . . , n. The task is to compute
the derivatives of f .

First express the input vector as a function of t by

X(t) = x(0) + x(1)t+ x(2)t2 (15)

where x(0), x(1), and x(2) are vectors in Rn and t is a scalar. By judiciously choosing x(0), x(1), and
x(2) we will be able to derive many different expressions of interest. Note first that

X(0) = x(0),

X ′(0) = x(1),

X ′′(0) = 2x(2).

In general, x(k) corresponds to the kth order Taylor coefficient, i.e.,

x(k) =
1

k!
X(k)(0), k = 0, 1, 2. (16)

Then Y (t) = f(X(t)) is a function from R1 to Rm and is expressed in terms of its Taylor series
expansion as

Y (t) = y(0) + y(1)t+ y(2)t2 + o(t3), (17)

where

y(k) =
1

k!
Y (k)(0), k = 0, 1, 2. (18)

The following are shown in Bell [1].

y(0) = f(x(0)). (19)

Let e(i) denote the ith unit vector. If x(1) = e(i) then y(1) is equal to the ith column of the Jacobian
matrix of f(x) evaluated at x(0). That is

y(1) =
∂f

∂xi
(x(0)). (20)

In addition, if x(1) = e(i) and x(2) = 0 then for function fk(x), (the kth component of f)

y
(2)
k =

1

2

∂2fk(x(0))

∂xi∂xi
. (21)
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In order to evaluate the mixed partial derivatives, one can instead set x(1) = e(i) + e(j) and
x(2) = 0. This gives for function fk(x),

y
(2)
k =

1

2

(
∂2fk(x(0))

∂xi∂xi
+
∂2fk(x(0))

∂xi∂xj
+
∂2fk(x(0))

∂xj∂xi
+
∂2fk(x(0))

∂xj∂xj

)
, (22)

or, expressed in terms of the mixed partials,

∂2fk(x(0))

∂xi∂xj
= y

(2)
k −

1

2

(
∂2fk(x(0))

∂xi∂xi
+
∂2fk(x(0))

∂xj∂xj

)
. (23)

8.2 Using OSInstance Methods: Low Level Calls

The code snippets used in this section are from the example code algorithmicDiffTest.cpp in the
algorithmicDiffTest folder in the examples folder. The code is based on the following example.

Minimize x20 + 9x1 (24)

s.t. 33− 105 + 1.37x1 + 2x3 + 5x1 ≤ 10 (25)

ln(x0x3) + 7x2 ≥ 10 (26)

x0, x1, x2, x3 ≥ 0 (27)

The OSiL representation of the instance (24)–(27) is given in Appendix ??. This example
is designed to illustrate several features of OSiL. Note that in constraint (25) the constant 33
appears in the <con> element corresponding to this constraint and the constant 105 appears as
a <number> OSnL node in the <nonlinearExpressions> section. This distinction is important,
as it will lead to different treatment by the code as documented below. Variables x1 and x2
do not appear in any nonlinear terms. The terms 5x1 in (25) and 7x2 in (26) are expressed in
the <objectives> and <linearConstraintCoefficients> sections, respectively, and will again
receive special treatment by the code. However, the term 1.37x1 in (25), along with the term 2x3, is
expressed in the <nonlinearExpressions> section, hence x1 is treated as a nonlinear variable for
purposes of algorithmic differentiation. Variable x2 never appears in the <nonlinearExpressions>
section and is therefore treated as a linear variable and not used in any algorithmic differentiation
calculations. Variables that do not appear in the <nonlinearExpressions> are never part of the
algorithmic differentiation calculations.

Ignoring the nonnegativity constraints, instance (24)–(27) defines a mapping from R4 to R3:

 x20 + 9x1
33− 105 + 1.37x1 + 2x3 + 5x1

ln(x0x3) + 7x2

 =

 9x1
33 + 5x1

7x2

+

 x20
−105 + 1.37x1 + 2x3

ln(x0x3)


=

 9x1
33 + 5x1

7x2

+

 f1(x)
f2(x)
f3(x)

 , (28)

where f(x) :=

 f1(x)
f2(x)
f3(x)

 . (29)
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The OSiL representation for the instance in (24)–(27) is read into an in-memory OSInstance
object as follows (we assume that osil is a string containing the OSiL instance)

osilreader = new OSiLReader();

osinstance = osilreader->readOSiL( &osil);

There is a method in the OSInstance class, initForAlgDiff() that is used to initialize the non-
linear data structures. A call to this method

osinstance->initForAlgDiff( );

will generate a map of the indices of the nonlinear variables. This is critical because the algorithmic
differentiation only operates on variables that appear in the <nonlinearExpressions> section. An
example of this map follows.

std::map<int, int> varIndexMap;

std::map<int, int>::iterator posVarIndexMap;

varIndexMap = osinstance->getAllNonlinearVariablesIndexMap( );

for(posVarIndexMap = varIndexMap.begin(); posVarIndexMap

!= varIndexMap.end(); ++posVarIndexMap){

std::cout << "Variable Index = " << posVarIndexMap->first << std::endl ;

}

The variable indices listed are 0, 1, and 3. Variable 2 does not appear in the <nonlinearExpressions>
section and is not included in varIndexMap. That is, the function f in (29) will be considered as
a map from R3 to R3.

Once the nonlinear structures are initialized it is possible to take derivatives using algorithmic
differentiation. Algorithmic differentiation is done using either a forward or reverse sweep through
an expression tree (or operation sequence) representation of f . The two key public algorithmic
differentiation methods in the OSInstance class are forwardAD and reverseAD. These are actually
generic “wrappers” around the corresponding CppAD methods with the same signature. This keeps
the OS API public methods independent of any underlying algorithmic differentiation package.

The forwardAD signature is

std::vector<double> forwardAD(int k, std::vector<double> vdX);

where k is the highest order Taylor coefficient of f to be returned, vdX is a vector of doubles in Rn,
and the function return is a vector of doubles in Rm. Thus, k corresponds to the k in Equations
(16) and (18), where vdX corresponds to the x(k) in Equation (16), and the y(k) in Equation (18)
is the vector in range space returned by the call to forwardAD. For example, by Equation (19)
the following call will evaluate each component function defined in (29) corresponding only to the
nonlinear part of (28) – the part denoted by f(x).

funVals = osinstance->forwardAD(0, x0);

Since there are three components in the vector defined by (29), the return value funVals will have
three components. For an input vector,

x0[0] = 1; // the value for variable x0 in function f

x0[1] = 5; // the value for variable x1 in function f

x0[2] = 5; // the value for variable x3 in function f
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the values returned by osinstance->forwardAD(0, x0) are 1, -63.15, and 1.6094, respectively.
The Jacobian of the example in (29) is

J =

 2x0 9.00 0.00 0.00
0.00 6.37 0.00 2.00
1/x0 0.00 7.00 1/x3

 (30)

and the Jacobian Jf of the nonlinear part is

Jf =

 2x0 0.00 0.00
0.00 1.37 2.00
1/x0 0.00 1/x3

 . (31)

When x0 = 1, x1 = 5, x2 = 10, and x3 = 5 the Jacobian Jf is

Jf =

 2.00 0.00 0.00
0.00 1.37 2.00
1.00 0.00 0.20

 . (32)

A forward sweep with k = 1 will calculate the Jacobian column-wise. See (20). The following code
will return column 3 of the Jacobian (32) which corresponds to the nonlinear variable x3.

x1[0] = 0;

x1[1] = 0;

x1[2] = 1;

osinstance->forwardAD(1, x1);

Now calculate second derivatives. To illustrate we use the results in (21)-(23) and calculate

∂2fk(x(0))

∂x0∂x3
k = 1, 2, 3.

Variables x0 and x3 are the first and third nonlinear variables so by (22) the x(1) should be the
sum of the e(1) and e(3) unit vectors and used in the first-order forward sweep calculation.

x1[0] = 1;

x1[1] = 0;

x1[2] = 1;

osinstance->forwardAD(1, x1);

Next set x(2) = 0 and do a second-order forward sweep.

std::vector<double> x2( n);

x2[0] = 0;

x2[1] = 0;

x2[2] = 0;

osinstance->forwardAD(2, x2);

This call returns the vector of values

y
(2)
1 = 1, y

(2)
2 = 0, y

(2)
3 = −0.52.
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By inspection of (28) (or by appropriate calls to osinstance->forwardAD — not shown here),

∂2f1(x
(0))

∂x0∂x0
= 2,

∂2f1(x
(0))

∂x3∂x3
= 0,

∂2f2(x
(0))

∂x0∂x0
= 0,

∂2f2(x
(0))

∂x3∂x3
= 0,

∂2f3(x
(0))

∂x0∂x0
= −1,

∂2f3(x
(0))

∂x3∂x3
= −0.04.

Then by (23),

∂2f1(x
(0))

∂x0∂x3
= y

(2)
1 −

1

2

(
∂2f1(x

(0))

∂x0∂x0
+
∂2fk(x(0))

∂x3∂x3

)
= 1− 1

2
(2 + 0) = 0,

∂2f2(x
(0))

∂x0∂x3
= y

(2)
2 −

1

2

(
∂2f2(x

(0))

∂x0∂x0
+
∂2fk(x(0))

∂x3∂x3

)
= 0− 1

2
(0 + 0) = 0,

∂2f3(x
(0))

∂x0∂x3
= y

(2)
3 −

1

2

(
∂2f3(x

(0))

∂x0∂x0
+
∂2fk(x(0))

∂x3∂x3

)
= −0.52− 1

2
(−1− 0.04) = 0.

Making all of the first and second derivative calculations using forward sweeps is most effective
when the number of rows exceeds the number of variables.

The reverseAD signature is

std::vector<double> reverseAD(int k, std::vector<double> vdlambda);

where vdlambda is a vector of Lagrange multipliers. This method returns a vector in the range
space. If a reverse sweep of order k is called, a forward sweep of all orders through k− 1 must have
been made prior to the call.

8.2.1 First Derivative Reverse Sweep Calculations

In order to calculate first derivatives execute the following sequence of calls.

x0[0] = 1;

x0[1] = 5;

x0[2] = 5;

std::vector<double> vlambda(3);

vlambda[0] = 0;

vlambda[1] = 0;

vlambda[2] = 1;

osinstance->forwardAD(0, x0);

osinstance->reverseAD(1, vlambda);

Since vlambda only includes the third function f3, this sequence of calls will produce the third row
of the Jacobian Jf , i.e.,

∂f3(x
(0))

∂x0
= 1,

∂f3(x
(0))

∂x1
= 0,

∂f3(x
(0))

∂x3
= 0.2.
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8.2.2 Second Derivative Reverse Sweep Calculations

In order to calculate second derivatives using reverseAD forward sweeps of order 0 and 1 must have
been completed. The call to reverseAD(2, vlambda) will return a vector of dimension 2n where n
is the number of variables. If the zero-order forward sweep is forwardAD(0,x0) and the first-order
forward sweep is forwardAD(1, x1) where x1 = e(i), then the return vector z = reverseAD(2,

vlambda) is

z[2j − 2] =
∂L(x(0), λ(0))

∂xj
, j = 1, . . . , n (33)

z[2j − 1] =
∂2L(x(0), λ(0))

∂xi∂xj
, j = 1, . . . , n (34)

where

L(x, λ) =

m∑
k=1

λkfk(x). (35)

For example, the following calls will calculate the third row (column) of the Hessian of the
Lagrangian.

x0[0] = 1;

x0[1] = 5;

x0[2] = 5;

osinstance->forwardAD(0, x0);

x1[0] = 0;

x1[1] = 0;

x1[2] = 1;

osinstance->forwardAD(1, x1);

vlambda[0] = 1;

vlambda[1] = 2;

vlambda[2] = 1;

osinstance->reverseAD(2, vlambda);

This returns

∂L(x(0), λ(0))

∂x0
= 3,

∂L(x(0), λ(0))

∂x1
= 2.74,

∂L(x(0), λ(0))

∂x3
= 4.2,

∂2L(x(0), λ(0))

∂x3∂x0
= 0,

∂2L(x(0), λ(0))

∂x3∂x0
= 0,

∂2L(x(0), λ(0))

∂x3∂x3
= −.04.

The reason why
∂L(x(0), λ(0))

∂x1
= 2× 1.37 = 2.74

and not
∂L(x(0), λ(0))

∂x1
= 1× 9 + 2× 6.37 = 9 + 12.74 = 21.74

is that the terms 9x1 in the objective and 5x1 in the first constraint are captured in the linear section
of the OSiL input and therefore do not appear as nonlinear terms in <nonlinearExpressions>.
As noted before, forwardAD and reverseAD only operate on variables and terms in either the
<quadraticCoefficients> or <nonlinearExpressions> sections.

43



8.3 Using OSInstance Methods: High Level Calls

The methods forwardAD and reverseAD are low-level calls and are not designed to work directly
with solver APIs. The OSInstance API has other methods that most users will want to invoke
when linking with solver APIs. We describe these now.

8.3.1 Sparsity Methods

Many solvers such as Ipopt (projects.coin-or.org/Ipopt) require the sparsity pattern of the
Jacobian of the constraint matrix and the Hessian of the Lagrangian function. Note well that
the constraint matrix of the example in Section 8.2 constitutes only the last two rows of (29) but
does include the linear terms. The following code illustrates how to get the sparsity pattern of the
constraint Jacobian matrix

SparseJacobianMatrix *sparseJac;

sparseJac = osinstance->getJacobianSparsityPattern();

for(idx = 0; idx < sparseJac->startSize; idx++){

std::cout << "number constant terms in constraint " << idx << " is "

<< *(sparseJac->conVals + idx) << std::endl;

for(k = *(sparseJac->starts + idx); k < *(sparseJac->starts + idx + 1); k++){

std::cout << "row idx = " << idx << "

col idx = "<< *(sparseJac->indexes + k) << std::endl;

}

}

For the example problem this will produce

JACOBIAN SPARSITY PATTERN

number constant terms in constraint 0 is 0

row idx = 0 col idx = 1

row idx = 0 col idx = 3

number constant terms in constraint 1 is 1

row idx = 1 col idx = 2

row idx = 1 col idx = 0

row idx = 1 col idx = 3

The constant term in constraint 1 corresponds to the linear term 7x2, which is added after the
algorithmic differentiation has taken place. However, the linear term 5x1 in constraint 0 does not
contribute a nonzero in the Jacobian, as it is combined with the term 1.37x1 that is treated as a
nonlinear term and therefore accounted for explicitly. The SparseJacobianMatrix object has a
data member starts which is the index of the start of each constraint row. The int data member
indexes gives the variable index of every potentially nonzero derivative. There is also a double

data member values that gives the value of the partial derivative of the corresponding index at each
iteration. Finally, there is an int data member conVals that is the number of constant terms in
each gradient. A constant term is a partial derivative that cannot change at an iteration. A variable
is considered to have a constant derivative if it appears in the <linearConstraintCoefficients>

section but not in the <nonlinearExpressions>. For a row indexed by idx the variable indices are
in the indexes array between the elements sparseJac->starts + idx and sparseJac->starts

+ idx + 1. The first sparseJac->conVals + idx variables listed are indices of variables with
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constant derivatives. In this example, when idx is 1, there is one variable with a constant derivative
and it is variable x2. (Actually variable x1 has a constant derivative but the code does not check
to see if variables that appear in the <nonlinearExpressions> section have constant derivative.)
The variables with constant derivatives never appear in the AD evaluation.

The following code illustrates how to get the sparsity pattern of the Hessian of the Lagrangian.

SparseHessianMatrix *sparseHessian;

sparseHessian = osinstance->getLagrangianHessianSparsityPattern( );

for(idx = 0; idx < sparseHessian->hessDimension; idx++){

std::cout << "Row Index = " << *(sparseHessian->hessRowIdx + idx) ;

std::cout << " Column Index = " << *(sparseHessian->hessColIdx + idx);

}

The SparseHessianMatrix class has the int data members hessRowIdx and hessColIdx for index-
ing potential nonzero elements in the Hessian matrix. The double data member hessValues holds
the value of the respective second derivative at each iteration. The data member hessDimension

is the number of nonzero elements in the Hessian.

8.3.2 Function Evaluation Methods

There are several overloaded methods for calculating objective and constraint values. The method

double *calculateAllConstraintFunctionValues(double* x, bool new_x)

will return a double pointer to an array of constraint function values evaluated at x. If the value
of x has not changed since the last function call, then new_x should be set to false and the most
recent function values are returned. When using this method, with this signature, all function
values are calculated in double using an OSExpressionTree object.

A second signature for the calculateAllConstraintFunctionValues is

double *calculateAllConstraintFunctionValues(double* x, double *objLambda,

double *conLambda, bool new_x, int highestOrder)

In this signature, x is a pointer to the current primal values, objLambda is a vector of dual multipli-
ers, conLambda is a vector of dual multipliers on the constraints, new_x is true if any components
of x have changed since the last evaluation, and highestOrder is the highest order of derivative
to be calculated at this iteration. The following code snippet illustrates defining a set of variable
values for the example we are using and then the function call.

double* x = new double[4]; //primal variables

double* z = new double[2]; //Lagrange multipliers on constraints

double* w = new double[1]; //Lagrange multiplier on objective

x[ 0] = 1; // primal variable 0

x[ 1] = 5; // primal variable 1

x[ 2] = 10; // primal variable 2

x[ 3] = 5; // primal variable 3

z[ 0] = 2; // Lagrange multiplier on constraint 0

z[ 1] = 1; // Lagrange multiplier on constraint 1

w[ 0] = 1; // Lagrange multiplier on the objective function

calculateAllConstraintFunctionValues(x, w, z, true, 0);
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When making all high level calls for function, gradient, and Hessian evaluations we pass all the
primal variables in the x argument, not just the nonlinear variables. Underneath the call, the
nonlinear variables are identified and used in AD function calls.

The use of the parameters new_x and highestOrder is important and requires further expla-
nation. The parameter highestOrder is an integer variable that will take on the value 0, 1, or 2
(actually higher values if we want third derivatives etc.). The value of this variable is the highest
order derivative that is required of the current iterate. For example, if a callback requires a func-
tion evaluation and highestOrder = 0 then only the function is evaluated at the current iterate.
However, if highestOrder = 2 then the function call

calculateAllConstraintFunctionValues(x, w, z, true, 2)

will trigger first and second derivative evaluations in addition to the function evaluations.
In the OSInstance class code, every time a forward (forwardAD) or reverse sweep (reverseAD)

is executed a private member, m_iHighestOrderEvaluated is set to the order of the sweep. For
example, forwardAD(1, x) will result in m_iHighestOrderEvaluated = 1. Just knowing the value
of new_x alone is not sufficient. It is also necessary to know highestOrder and compare it with
m_iHighestOrderEvaluated. For example, if new_x is false, but m_iHighestOrderEvaluated =

0, and the callback requires a Hessian calculation, then it is necessary to calculate the first and
second derivatives at the current iterate.

There are exactly two conditions that require a new function or derivative evaluation. A new
evaluation is required if and only if

1. The value of new_x is true

–OR–

2. For the callback function the value of the input parameter highestOrder is strictly greater
than the current value of m_iHhighestOrderEvaluated.

For an efficient implementation of AD it is important to be able to get the Lagrange multipliers
and highest order derivative that is required from inside any callback – not just the Hessian evalu-
ation callback. For example, in Ipopt, if eval_g or eval_f are called, and for the current iterate,
eval_jac and eval_hess are also going to be called, then a more efficient AD implementation is
possible if the Lagrange multipliers are available for eval_g and eval_f.

Currently, whenever new_x = true in the underlying AD implementation we do not retape
(record into the CppAD data structure) the function. This is because we currently throw an
exception if there are any logical operators involved in the AD calculations. This may change in a
future implementation.

There are also similar methods for objective function evaluations. The method

double calculateFunctionValue(int idx, double* x, bool new_x);

will return the value of any constraint or objective function indexed by idx. This method works
strictly with double data using an OSExpressionTree object.

There is also a public variable, bUseExpTreeForFunEval that, if set to true, will cause the
method

calculateAllConstraintFunctionValues(x, objLambda, conLambda, true, highestOrder)

to also use the OS expression tree for function evaluations when highestOrder = 0 rather than
use the operator overloading in the CppAD tape.
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8.3.3 Gradient Evaluation Methods

One OSInstance method for gradient calculations is

SparseJacobianMatrix *calculateAllConstraintFunctionGradients(double* x, double *objLambda,

double *conLambda, bool new_x, int highestOrder)

If a call has been placed to calculateAllConstraintFunctionValues with highestOrder = 0,
then the appropriate call to get gradient evaluations is

calculateAllConstraintFunctionGradients( x, NULL, NULL, false, 1);

Note that in this function call new_x = false. This prevents a call to forwardAD() with order 0
to get the function values.

If, at the current iterate, the Hessian of the Lagrangian function is also desired then an appro-
priate call is

calculateAllConstraintFunctionGradients(x, objLambda, conLambda, false, 2);

In this case, if there was a prior call

calculateAllConstraintFunctionValues(x, w, z, true, 0);

then only first and second derivatives are calculated, not function values.
When calculating the gradients, if the number of nonlinear variables exceeds or is equal to the

number of rows, a forwardAD(0, x) sweep is used to get the function values, and a reverseAD(1,

ek) sweep for each unit vector ek in the row space is used to get the vector of first order partials for
each row in the constraint Jacobian. If the number of nonlinear variables is less then the number
of rows then a forwardAD(0, x) sweep is used to get the function values and a forwardAD(1, ei)
sweep for each unit vector ei in the column space is used to get the vector of first order partials for
each column in the constraint Jacobian.

Two other gradient methods are

SparseVector *calculateConstraintFunctionGradient(double* x,

double *objLambda, double *conLambda, int idx, bool new_x, int highestOrder);

and

SparseVector *calculateConstraintFunctionGradient(double* x, int idx,

bool new_x );

Similar methods are available for the objective function; however, the objective function gradient
methods treat the gradient of each objective function as a dense vector.

8.3.4 Hessian Evaluation Methods

There are two methods for Hessian calculations. The first method has the signature

SparseHessianMatrix *calculateLagrangianHessian( double* x,

double *objLambda, double *conLambda, bool new_x, int highestOrder);

so if either function or first derivatives have been calculated an appropriate call is

calculateLagrangianHessian( x, w, z, false, 2);

If the Hessian of a single row or objective function is desired the following method is available

SparseHessianMatrix *calculateHessian( double* x, int idx, bool new_x);
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48 <other name="variableBlockSet" solver="Dip" numberOfVar="6" value="MySolver3">

49 <var idx="10"/>

50 <var idx="11"/>

51 <var idx="12"/>

52 <var idx="13"/>

53 <var idx="14"/>

54 <var idx="17"/>

55 </other>

56 </variables>

57 <constraints numberOfOtherConstraintOptions="1">

58 <other name="constraintSet" solver="Dip" numberOfCon="5" type="Core">

59 <con idx="15"/>

60 <con idx="16"/>

61 <con idx="17"/>

62 <con idx="18"/>

63 <con idx="19"/>

64 </other>

65 </constraints>

66 </optimization>

67 </osol>

Figure 2: A sample OSoL file – SPL1.osol (Continued)

OSiLReader *osilreader = NULL;

OSInstance *osinstance = NULL;

osilreader = new OSiLReader();

osinstance = osilreader->readOSiL( sOSiL);

Figure 3: Creating an OSInstance Object

class OSInstance{

public:

OSInstance();

InstanceHeader *instanceHeader;

InstanceData *instanceData;

}; //class OSInstance

Figure 4: The OSInstance class
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class InstanceData{

public:

InstanceData();

Variables *variables;

Objectives *objectives;

Constraints *constraints;

LinearConstraintCoefficients *linearConstraintCoefficients;

QuadraticCoefficients *quadraticCoefficients;

NonlinearExpressions *nonlinearExpressions;

}; // class InstanceData

Figure 5: The InstanceData class

Schema complexType In-memory class

<xs:complexType name="Variables"> <--------------------------------------------> class Variables{

public:

<xs:sequence> Variables();

<xs:element name="var" type="Variable" maxOccurs="unbounded"/> <-----------> Variable *var;

</xs:sequence>

<xs:attribute name="numberOfVariables" type="xs:nonnegativeInteger"

use="required"/> <---------------------------------------------> int numberOfVariables;

</xs:complexType> }; // class Variables

<xs:complexType name="Variable"> <---------------------------------------------> class Variable{

public:

Variable();

<xs:attribute name="name" type="xs:string" use="optional"/> <----------------> string name;

<xs:attribute name="type" use="optional" default="C"> <----------------------> char type;

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="C"/>

<xs:enumeration value="B"/>

<xs:enumeration value="I"/>

<xs:enumeration value="S"/>

<xs:enumeration value="D"/>

<xs:enumeration value="J"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="lb" type="xs:double" use="optional" default="0"/> <------> double lb;

<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/> <----> double ub;

</xs:complexType> }; // class Variable

OSiL elements In-memory objects

<variables numberOfVariables="2"> OSInstance *osinstance;

<var lb="0" name="x0" type="C"/> osinstance->instanceData->variables->numberOfVariables=2;

<var lb="0" name="x1" type="C"/> osinstance->instanceData->variables->var=new Variable*[2];

</variables> osinstance->instanceData->variables->var[0]->lb=0;

osinstance->instanceData->variables->var[0]->name="x0";

osinstance->instanceData->variables->var[0]->type= ’C’;
osinstance->instanceData->variables->var[1]->lb=0;

osinstance->instanceData->variables->var[1]->name="x1";

osinstance->instanceData->variables->var[1]->type= ’C’;

Figure 6: The <variables> element as an OSInstance object
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Figure 7: Conceptual expression tree for the nonlinear part of the objective (??).

double OSnLNodePlus::calculateFunction(double *x){

m_dFunctionValue =

m_mChildren[0]->calculateFunction(x) +

m_mChildren[1]->calculateFunction(x);

return m_dFunctionValue;

} //calculateFunction

Figure 8: The function calculation method for the plus node class with polymorphism
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