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Chapter 1

Introduction

1.1 A Brief History

Since the inception of optimization as a mathematical discipline, researchers have been
intrigued and stymied by the difficulty of solving discrete optimization problems. Even
problems with natural and concise formulations remain challenging to solve in practice.
The most significant advance in general methodologies occured in 1991 when Padberg and
Rinaldi [16] merged the enumeration approach of branch and bound algorithms with the
polyhedral approach of cutting planes to create the technique we call branch, cut and price
or simply BCP. Integrating the contributions of many in the field , their paper launched a
new era in discrete optimization techniques.

In the last two decades, we have seen tremendous progress in our ability to solve specially
structured large-scale discrete optimization problems. Indeed, in 1998, Applegate, Bixby,
Cook, and Chvátal [7] solved a Traveling Salesman Problem (TSP) instance with 13,509
cities; a full order of magnitude larger than what had been possible just a decade earlier
and two orders of magnitude larger than the largest problem that had been solved up until
1978. This progress becomes even more impressive when one realizes that the number of
variables in the standard formulation for this problem is approximately the square of the
problem size. Hence, we are talking about solving a problem with somewhere in excess of
100 million variables.

This fantastic progress can be attributed to several factors. The increase in available com-
puting power over the last decade, both in terms of processor speed and memory, has been
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8 CHAPTER 1. INTRODUCTION

nothing short of amazing. This hardware improvement made it possible to tackle larger
problems thus accumulating knowledge about how the large problems “behave”. In turn,
this led to increasingly sophisticated software for optimization, and to a wealth of theo-
retical results. Also, many theoretical results, which had no computational importance for
small problems, were “re-discovered” as larger problems became the target. Finally, the use
of parallel computing has allowed researchers to further leverage their gains.

As computational research in optimization becomes more widespread and the sophistication
of computational techniques increases, one of the main difficulties faced by researchers in the
area is the level of effort required to develop an efficient implementation. The need for incor-
porating problem-dependent methods (most notably dynamic generation of variables and
cutting planes) typically required time-consuming development of custom implementations.
In the early 1990’s a research group was formed with the goal of creating a generic soft-
ware framework which users could easily customize for their particular problem class. This
group eventually produced what was then known as COMPSys (Combinatorial Optimiza-
tion Multi-processing System) [9]. After several revisions which broadened the framework’s
functionality, COMPSys became SYMPHONY (Single- or Multi-Process Optimization over
Networks) [22]. Starting in 1998 a total reimplementation in C++ was undertaken at
IBM research to enable greater flexibility. The result of this effort was opened up as an
open-source project in 2000 under the auspices of the Common Optimization INterface for
Operations Research (COIN-OR) [6] and is codenamed COIN/BCP.

1.2 Related Work

In the 1990’s, there was a virtual explosion of software for discrete optimization. Al-
most without exception, these new software packages were based on the basic techniques
of branch, cut and price. The general-purpose packages fall into two main categories –
those based on algorithms not exploing special structures for solving general mixed inte-
ger programs (MIPs) and those facilitating the use of special structure via user-supplied,
problem-specific subroutines. We will call packages in this second category frameworks.
There have also been numerous special-purpose codes developed specifically for use in a
particular problem setting.

Of the two categories, general-purpose MIP solvers are the most common. Among the
dozens of offerings in this category, the most notable are MINTO [13], MIPO [14], bc-opt
[4] and several commercial packages.

Generic frameworks, on the other hand, are far less numerous. The most full-featured
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packages available are the two frameworks we have already mentioned (SYMPHONY and
COIN/BCP) and a commercial product, ABACUS [1]. Some general-purpose MIP solver,
such as MINTO [13] and several commercial packages, now have a limited capability of
utilizing problem-specific subroutines.

Related software includes general MIP solvers implementing parallel branch and bound
(PARINO [17] and FATCOP [10]); frameworks for general parallel branch and bound
(PUBB [20], BoB [5], PPBB-Lib [19], and PICO [18]) and special-purpose codes, like CON-
CORDE, a package for solving the Traveling Salesman Problem (TSP). This latter code is
the most sophisticated special-purpose code developed to date.

1.3 Organization of the Manual

The manual is divided into three parts. Part I is a gentle introduction to branch, cut and
price algorithms, including an overview of the design of COIN/BCP. Anyone interested
in learning about or using the framework should spend time with Part I; those already
familiar with BCP algorithms will probably want to skim the introductory sections. The
reader merely interested in only a high-level description of the framework may wish to stop
after reading Part I. Part II is intended to provide the specific details needed to actually
develop applications using COIN/BCP. This includes “how-to” descriptions of customizing
the Makefiles, compiling the sample code, deciding wich built-in methods to override, and
performing other development tasks such as debugging. Part III illustrates these principles
with a concrete example. A reference manual of every class structure is available in HTML
format and is part of the standard distribution.

1.4 Introduction to Branch, Cut and Price

1.4.1 Branch and Bound

Branch and bound is the broad class of algorithms from which branch, cut and price is
descended. A branch and bound algorithm uses a divide and conquer strategy; it partitions
the solution space into subproblems and then optimizes over each subproblem individually.
For instance, let S be the set of solutions to a given problem, and let c ∈ RS be a vector
of costs associated with members of S. Suppose we wish to determine a least cost member
of S and we are given ŝ ∈ S, a “good” solution determined heuristically. Whenever a new,
better solution is found we will replace ŝ with the new solution. Thus the value of ŝ is
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always a global upper bound on th eoptimal value. In the branch and bound algorithm
we maintain a list of candidate subproblems each of which contain a subset of the original
feasible solutions. This list is initialized by placing S on it. In the processing or bounding
phase of the algorithm we take an entry, say S′. from the candidate list and remove it from
the list. We relax S′, that is, we admit solutions that are not in S′ and solve the relaxd
problem. There are four possible results.

• The relaxed problem is found to be infeasible. In this case we obviously cannot find a
new feasible solution that is feasible and is in S′, thus we can prune (or fathom) the
subproblem, that is, we discard it.

• The optimal solution to the relaxed problem is not better (not lower) than the global
upper bound. In this case the value of any feasible solution in S′ must also not be
better than the global upper bound thus we cannot find a feasible solution in s′ that
would be better than the currently known best solution. Therefore we can fathom the
subproblem in this case, too.

• The optimal solution to the relaxed problem is better than the global upper bound
and it is in S′, i.e., it is feasible. In this case we replace ŝ with this new solution. Also,
we cannot find any even better solution in this subproblem thus we can fathom it.

• The optimal solution to the relaxed problem is better than the global upper bound
but is not in S′. In this case we branch, i.e., we identify n subsets of S′, S′1, . . . , S′n,
such that ∪n

i=1S
′
i = S′. Each of these subsets, the children of S′, is a new candidate

subproblem and is added to the candidate list.

After a subproblem is processed (and either pruned or branched) a new subproblem is
selected for processing as long as the candidate list is not empty, at which point our current
best solution is the optimal one.

The sequence of subproblems generated can be displayed as a rooted directed graph; the
original problem being the root and there are edges from each subproblem to its children.
This graph is the search tree and the expression search (tree) node is used interchangeably
with subproblem.

In many applications, the bounding operation is accomplished using the tools of linear
programming (LP), a technique first described in full generality by Hoffman and Padberg
[12]. This general class of algorithms is known as LP-based branch and bound. Typically, the
integrality constraints of an integer programming formulation of the problem are relaxed to
obtain a LP relaxation, which is then solved to obtain a lower bound for the problem.
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1.4.2 Branch and Cut

Padberg and Rinaldi [16] improved on the basic idea of LP-based branch and bound by
describing a method of using globally valid inequalities (i.e., inequalities valid for the convex
hull of integer solutions) to strengthen the LP relaxation. They called this technique branch
and cut. Since then, many implementations (including ours) have been fashioned around
the framework they described for solving the Traveling Salesman Problem.

As an example, let a combinatorial optimization problem CP = (E,F) with ground set E
and feasible set F ⊆ 2E be given along with a cost function c ∈ RE . Now let P be the
convex hull of incidence vectors of members of F . Then we know by Weyl’s Theorem (see
[15]) that there exists a finite set of inequalities L which are valid for P such that

P = {x ∈ Rn : ax ≤ β ∀ (a, β) ∈ L}. (1.1)

Unfortunately, it is usually difficult, if not impossible, to enumerate all inequalities in L (or
even just those that describe the convex hull near the optimal corner) or we could simply
solve the problem using linear programming.

The set of incidence vectors corresponding to the members of F is sometimes approximated
as the set of all incidence vectors obeying a (relatively) small set of inequalities (these
inequalities are typically the ones used in the initial LP relaxation). Then in each node of
the search tree globally valid inequalities are generated (the best such inequalities are in L)
using separation algorithms and heuristics. One could say that the inequalities describing
P are defined implicitely and generated as they are needed.

This way the relaxation is tightened thus the bounding step has a better chance to fathom
the node based on the objective value. In Figure 1.1, we describe more precisely how cut
generation is employed within the bounding operation of the branch and cut technique.

Once we have failed to generate cuts and the subproblem still cannot be pruned based on
the objective value, we are forced to branch. The branching operation is accomplished by
specifying a set of hyperplanes which divide the current subproblem in such a way that
the current solution is not feasible for the LP relaxation of any of the new subproblems.
For example, in a combinatorial optimization problem, branching could be accomplished
simply by fixing a variable whose current value is fractional to 0 in one branch and 1 in the
other. The procedure is described more formally in Figure 1.2. Figure 1.3 gives a high level
description of the generic branch and cut algorithm.

Note that adding cutting planes only increases the lower bound at a search tree node hence
as soon as the lower bound on a node exceeds the value of the best known solution the
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Bounding Operation
Input: A subproblem S, described in terms of a “small” set of inequalities L′
such that S = {xs : s ∈ F and axs ≤ β ∀ (a, β) ∈ L′} and α, an upper bound
on the global optimal value.
Output: Either (1) an optimal solution s∗ ∈ S to the subproblem, (2) a lower
bound on the optimal value of the subproblem, or (3) a message pruned indi-
cating that the subproblem should not be considered further.
Step 1. Set C ← L′.
Step 2. Solve the LP min{cx : ax ≤ β ∀ (a, β) ∈ C}.
Step 3. If the LP has a feasible solution x̂, then go to Step 4. Otherwise, STOP
and output pruned. This subproblem has no feasible solutions.
Step 4. If cx̂ < α, then go to Step 5. Otherwise, STOP and output pruned.
This subproblem cannot produce a solution of value better than α.
Step 5. If x̂ is the incidence vector of some ŝ ∈ S, then ŝ is the optimal solution
to this subproblem. STOP and output ŝ as s∗. Otherwise, apply separation
algorithms and heuristics to x̂ to get a set of violated inequalities C′. If C′ = ∅,
then cx̂ is a lower bound on the value of an optimal element of S. STOP and
return x̂ and the lower bound cx̂. Otherwise, set C ← C ∪ C′ and go to Step 2.

Figure 1.1: Bounding in the branch and cut algorithm

Branching Operation
Input: A subproblem S and x̂, the LP solution yielding the lower bound.
Output: S1, . . . , Sp such that S = ∪p

i=1Si.
Step 1. Determine sets L1, . . . ,Lp of inequalities such that S = ∪n

i=1{x ∈ S :
ax ≤ β ∀ (a, β) ∈ Li} and x̂ /∈ ∪n

i=1Si.
Step 2. Set Si = {x ∈ S : ax ≤ β ∀ (a, β) ∈ Li ∪ L′} where L′ is the set of
inequalities used to describe S.

Figure 1.2: Branching in the branch and cut algorithm
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Generic Branch and Cut Algorithm
Input: A data array specifying the problem instance.
Output: The global optimal solution s∗ to the problem instance.
Step 1. Generate a “good” feasible solution ŝ using heuristics. Set α ← c(ŝ).
Step 2. Generate the first subproblem SI by constructing a small set L′ of
inequalities valid for P. Set A ← {SI}.
Step 3. If A = ∅, STOP and output ŝ as the global optimum s∗. Otherwise,
choose some S ∈ A. Set A ← A \ {S}. Process S.
Step 4. If the result of Step 3 is a feasible solution s, then cs < cŝ. Set ŝ ← s
and α ← c(s) and go to Step 3. If the subproblem was pruned, go to Step 3.
Otherwise, go to Step 5.
Step 5. Perform the branching operation. Add the set of subproblems generated
to A and go to Step 3.

Figure 1.3: Description of the generic branch and cut algorithm

search tree node can be fathomed.

1.4.3 Branch and Price

As with cutting planes, the columns of A can also be defined implicitly if n is large. If
column i is not present in the current matrix, then variable xi is implicitly taken to have
value zero. The process of dynamically generating variables is called pricing in the jargon
of linear programming. The term originates from computing the reduced cost of the column
and adding the column to the formulation if it has a negative reduced cost. This procedure
can also be viewed as that of generating cutting planes for the dual of the current LP relax-
ation. Hence, LP-based branch and bound algorithms in which the variables are generated
dynamically when needed are known as branch and price algorithms. Savelsbergh, et al. [?]
provide a thorough review of these methods.

Although “branch and cut” and “branch and price” look very symmetric there is a very
significant difference. When cuts are introduced the lower bound on the relaxation can
only increase while introducing new columns can lower the lower bound. Therefore a search
tree node cannot be fathomed until all variables are priced out and the lower bound is
higher than the best known solution value. For this reason frequently the price and branch
algorithm is executed, that is first we price, then we do plain branch and bound. Obviously,
this will most likely result in a suboptimal solution, but for practical purposes this is usually
sufficient.
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1.4.4 Branch, Cut and Price

Finally, when both variables and cutting planes are generated dynamically during LP-based
branch and bound, the technique becomes known as branch, cut and price (BCP). In such a
scheme, there is a pleasing symmetry between the treatment of cuts and variables. However,
it is important to note that while branch, cut and price does combine ideas from both branch
and cut and branch and price (which are very similar to each other anyway), combining the
two techniques requires much more sophisticated methods than either one requires on its
own. The effects of this observation are noticable throughout the design of COIN/BCP
(see, in particular, Section 1.5.2).

1.5 Design of COIN/BCP

COIN/BCP was designed with three major goals in mind – portability, efficiency and ease
of use. With respect to ease of use, we aimed for a “black box” design, whereby the user
would not be required to know anything about the implementation of the library, but only
about the user interface. With respect to portability, we aimed not only for it to be possible
to use the framework in a wide variety of settings and on a wide variety of hardware, but
also for it to perform effectively in all these settings. Our primary measure of effectiveness is
how well the framework performs in comparison to problem-specific (or hardware-specific)
implementation written “from scratch.”

It is important to point out that achieving such design goals involves a number of very
difficult tradeoffs, which we will highlight throughout the rest of the manual. For instance,
ease of use is quite often at odds with efficiency. In several instances, we had to give up
some efficiency to make the code easy to work with and to maintain a true black box
implementation. Maintaining portability across a wide variety of hardware, both sequential
and parallel, also required some difficult choices. For example, solving large-scale problems
on sequential platforms requires extremely memory-efficient data structures in order to
maintain the very large search trees that can be generated. However, these storage schemes
are highly centralized and do not scale well to large numbers of processors.

1.5.1 An Object-oriented Approach

Applying BCP to large-scale problems presents several difficult challenges. First and fore-
most is designing methods and data structures capable of handling the potentially huge
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number of global cuts and variables that need to be accounted for during the solution pro-
cess. A second challenge, which is closely related to the first, is effectively dealing with
the very large search trees that can be generated for difficult problem instances. A third
challenge is to deal with these issues using a problem-independent approach.

Describing a node in the search tree consists of, among other things, specifying which cuts
and variables are initially active in the subproblem. Hence, the central “objects” in our
framework are the cuts and variables. From the user’s perspective, implementing a BCP
algorithm using COIN/BCP consists primarily of specifying various properties of objects,
such as how they are generated, how they are represented, and how they should be realized
within the context of a particular subproblem. This is achieved using class derivation and
virtual methods. There are a few base classes defined in COIN/BCP that the user can
derive classes from and then she can override the virtual methods hence modifying the
behavior of the code. Some methods she must override, and for some she can just let the
method in the base class executed thus selecting the default behavior. In Sections 3.2 and
3.4 a more detailed description is given about the classes the user can derive new object
types from.

1.5.2 Data Structures and Storage

Both the memory required to store the search tree and the time required to process a node
are largely dependent on the number of objects (cuts and variables) that are active in each
subproblem. Keeping this active set as small as possible is one of the keys to efficiently
implementing BCP. For this reason, we chose data structures that enhance our ability to
efficiently move objects in and out of the active set. Allowing sets of cuts and variables
to move in and out of the linear programs simultaneously is one of the most significant
challenges of BCP. We do this by maintaining an abstract representation of each global
object that contains information about how to add it to a particular LP relaxation.

In the literature on linear and integer programming, the terms cut and row are typically
used interchangeably. Similarly, variable and column are often used with similar mean-
ings. In many situations, this is appropriate and does not cause confusion. However, in
object-oriented BCP frameworks, such as COIN/BCP or ABACUS, a cut and a row are
fundamentally different objects. A cut (also referred to as a constraint) is a user-defined
representation of an abstract object which can only be realized as a row in an LP matrix
with respect to a particular set of active variables. Similarly, a variable is a rep-
resentation which can only be realized as a column of an LP matrix with respect to a
particular set of cuts. This distinction between the representation and the realization of
objects is a crucial design element and is what allows us to effectively address some of the



16 CHAPTER 1. INTRODUCTION

challenges inherent in BCP. In the remainder of this section, we will further discuss this
distinction and the details of how it is implemented.

Variables and Cuts

Although their algorithmic roles are different, variables and cuts as objects are treated
identically in COIN/BCP. We will describe the various types of variables.

The variables are divided into two main groups, core variables and extra variables. The
core variables are active in all subproblems, whereas the extra variables can be added and
removed. There is no theoretical difference between core and extra variables; however,
designating a well-chosen set of core variables can significantly increase efficiency. Because
they can move in and out of the problem, maintaining extra variables requires additional
bookkeeping and computation. If the user has reason to believe a priori that a variable is
“good” or has a high probability of having a non-zero value in some optimal solution to the
problem, then that variable should be designated as a core variable. It is up to the user
to designate which variables should be active in the root subproblem. Typically, only core
variables are active, but there are times when extra variables are also included. Note that
using extra variables is only necessary if the user wishes to take advantage of the column-
generation features of the framework. For problems with a moderate number of variables,
it is probably more efficient to designate every variable as core variable.

The extra variables are also subdivided into two category. First, there are the indexed
variables which are represented by a unique global user index which is (as the name suggests)
assigned to these variables by the user. This index represents each variable’s position in a
“virtual” global list known only to the user. The main requirement of this indexing scheme
is that, given an index and a list of active cuts, the user must be able to generate the
corresponding column to be added to the matrix. For example, in problems where the
variables correspond to the edges of an underlying graph, the index could be derived from
a lexicographic ordering of the edges.

The indexing scheme provides a very compact representation, as well as a simple and ef-
fective means of moving variables in and out of the active set. However, it means that the
user must have a priori knowledge of all problem variables and a method for indexing them.
For combinatorial models such as the Traveling Salesman Problem, this usually does not
present a problem. However, for airline schedule planning models, for instance, the number
of columns (each one corresponds to a possible plane route) is not known in advance. In such
cases the user may use algorithmic variables. For algorithmic variables there must exists
an algorithm that, given the set of active constraints, can create the column corresponding
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to the variable. Using the schedule planning example, the compact representation may be
the information which flight legs a particular plane is going to fly. From this information
it’s easy to derive when the plane is on the ground and hence it is easy to compute the
coefficients of the column for constraints that, say, specify that at a given time at a given
airport only so many planes can be on the ground.

To summarize the advantages and disadvantages of the various variable types:

• core variable: always stay in the formulation which is both good (no bookkeeping
required and decreases communication) and bad (the LP relaxation will always have
at least those variables in the formulation);

• indexed variables: they can leave the formulation (good) but there are some book-
keeping involved and all must be accounted for in advance (bad); and

• algorithmic variables: gives absolute freedom, there can be as many as the user wants
(good) but there is fair amount of bookkeeping involved (bad).

Now we give examples for indexed and algorithmic cuts. The already mentioned “gate
constraints” for the schedule planning problem are typical indexed cuts. There is one for
every airport for every minute during the day. Most likely very few of them would ever be
violated, but they must be satisfied. Including all as core cuts would increase the problem
size enormously. Therefore they better be generated on the fly, and since we can enumerate
them in advance, i.e., we can assign an index to each of them, they can be indexed cuts.
An algorithmic cut is, for example, a subtour elimination constraint for the TSP. These
constraint express that a tour must cross every cut at least twice. There are so many
of them (2n − 2 for a problem with n nodes) that we cannot enumerate all of them and
assign indeces to them. Thus we need a representation and an algorithm that computes the
coefficients for every active variable. A compact representation could be the list of graph
nodes on the smaller side of the cut. From this it is easy to deduce which variables (edges)
are in the cut, i.e., we can compute the coefficients.

Search Tree

Having described the basics of how objects are represented, we now describe the represen-
tation of search tree nodes. Since the core constraints and variables are present in every
subproblem, only the indices of the extra constraints and variables are stored in each node’s
description. Also warm starting information is maintained at the search tree nodes to speed
up solving the LP relaxation when the processing of a search tree node begins. This warm
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start information is either inherited from the parent or comes from earlier partial processing
of the node itself (see Section 1.6.1). Along with the set of active objects, we must also store
the branching information that was used to generate the node. The branching operation is
described in Section 1.6.2.

Because the set of active objects and the LP solution (hence the warm starting information)
do not tend to change much from parent to child, all of these data are stored as differences
with respect to the parent when that description is smaller than the explicit one. This
method of storing the entire tree is highly memory-efficient. The list of nodes that are
candidates for processing is stored in a heap ordered by a comparison function defined
by the search strategy (see 1.6.1). This allows efficient generation of the next node to be
processed.

1.5.3 Modular Implementation

COIN/BCP’s functions are currently grouped into four independent computational mod-
ules. This modular implementation not only facilitates code maintenance, but also allows
easy and highly configurable parallelization. All modules are present in the executable
file but depending on the computational setting, either they run alternating thus execut-
ing the algorithm as a serial process or in each process only one module will be running
thus executing the algorithm in parallel over a network. The modules pass data through a
message-passing protocol defined in a separate communications API. In the remainder of
the section, we describe the modularization scheme and the implementation of each mod-
ule in a sequential environment. We will defer serious discussion of the issues involved in
parallel execution of the code until Section ??.

The Tree Manager Module

The tree manager module (TM) first performs problem initialization and I/O and then
becomes the master process controlling the overall execution of the algorithm. It tracks the
status of all processes, as well as that of the search tree, and distributes the subproblems
to be processed to the LP module(s). Specific functions performed by the tree manager
module are:

• Read in the parameters from a data file.

• Read in the data for the problem instance.
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• Compute an initial upper bound using heuristics.

• Perform problem preprocessing.

• Initialize the BCP algorithm by constructing the root node.

• Initialize output devices and act as a central repository for output.

• Process requests for problem data.

• Receive new solutions and store the best one.

• Receive data for subproblems to be held for later processing.

• Handle requests from linear programming modules to release a subproblem for pro-
cessing.

• Receive branching object information, set up data structures for the children, and add
them to the list of candidate subproblems.

• Keep track of the global upper bound and notify all LP processes when it changes.

• Write current state information out to disk periodically to allow a warm restart in the
event of a system crash.

• Receive the message that the algorithm is finished and print out run data.

The Linear Programming Module

The linear programming (LP) module is the most complex and computationally intensive
of the four processes. Its job is to perform the bounding and branching operations. These
operations are, of course, central to the performance of the algorithm. Functions performed
by the LP module are:

• Inform the tree manager when a new subproblem is needed.

• Receive a subproblem. Process the subproblem in conjunction with the cut generator.

• If necessary, choose a branching object and send its description back to the tree
manager.
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The Cut Generator Module

The cut generator performs only one function – generating valid inequalities violated by the
current fractional solution and sending them back to the requesting LP process. Here are
the functions performed by the cut generator module:

• Receive an LP solution and attempt to separate it from the convex hull of all solutions.

• Send generated valid inequalities back to the LP solver.

• When finished processing a solution vector, inform the LP not to expect any more
cuts in case it is still waiting.

The Variable Generator Module

The function of the variable generator (VG) is dual to that of the cut generator. Given a
dual solution vector, the variable generator attempts to generate variables with negative
reduced cost and sends them back to the requesting LP process if any are found. Here are
the functions performed by the variable generator module:

• Receive a set of dual values and attempt to generate variables with negative reduced
cost.

• Send generated variables back to the LP solver.

• When finished processing a dual solution vector, inform the LP not to expect any
more variables in case it is still waiting.

1.5.4 COIN/BCP Overview

Currently, COIN/BCP is what is known as a single-pool BCP algorithm. The term single-
pool refers to the fact that there is a single central list of candidate subproblems to be
processed, which is maintained by the tree manager. Most sequential implementations use
such a single-pool scheme. However, other schemes may be used in parallel implementations.
For a description of various types of parallel branch and bound, see [11].

The tree manager module begins by reading in the parameters and problem data. After
initial I/O is completed, subroutines for finding an initial upper bound and constructing
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the root node are executed. During construction of the root node, the user must designate
the initial set of active cuts and variables, after which the data for the root node are used to
initialize the list of candidate nodes. The tree manager then sets up the cut pool module(s),
the linear programming module(s), and the cut generator module(s). All LP modules are
marked as idle. The algorithm is now ready for execution.

In the steady state, the tree manager controls the execution by maintaining the list of
candidate subproblems and sending them to the LP modules as they become idle. The
LP modules receive nodes from the tree manager, process them, branch (if required), and
send back the identity of the chosen branching object to the tree manager, which in turn
generates the children and places them on the list of candidates to be processed.

The preference ordering for processing nodes is a run-time parameter (or can be controlled
by a user-defined method). Typically, the node with the smallest lower bound is chosen to
be processed next since this strategy minimizes the overall size of the search tree. However,
at times, it will be advantageous to dive down in the tree. The concepts of diving and search
chains, introduced in Section 1.6.1, extend the basic “best-first” approach.

1.6 Details of the Implementation

1.6.1 The Tree Manager Module

The primary functions performed by the tree manager were listed in Section 1.5.3. During
initialization, the user can provide a routine to read problem-specific parameters in from
the parameter file. She can also provide a subroutine for upper bounding if desired, though
upper bounds can also be provided explicitly. A good initial upper bound can dramatically
decrease the solution time by allowing more variable-fixing and earlier pruning of search
tree nodes. If no upper bounding subroutine is available, then the two-phase algorithm, in
which a good upper bound is found quickly in the first phase using a reduced set of variables
can be advantageous. See Section 1.6.1 for details. The user’s only unavoidable obligation
during preprocessing is to specify the core of the problem, that is, the list of core variables
and cuts as well as the corresponding matrix. If desired, a list of extra variables and cuts
that are to be active in the root node can be specified. Again, we point out that selecting a
good set of core variables can make a marked difference in solution speed, especially using
the two-phase algorithm.
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Search Chains and Diving

Once execution of the algorithm begins, the tree manager’s primary job is to guide the
search by deciding which candidate node should be chosen as the next to be processed.
This is done using either one of the several built-in rules or a user-specified method. As
mentioned earlier, we typically choose the node with the smallest lower bound because this
rule minimizes the size of the search tree. However, there are several reasons why we might
want to deviate from this rule.

One reason for not strictly enforcing the search order is because it is somewhat expensive
to construct a search node, send it to the LP solver and set it up for processing. If, after
branching, we choose to continue processing one of the children of the current subproblem,
we avoid the set-up cost, as well as the cost of communicating the node description of the
retained child subproblem back to the tree manager. This is called diving and the resulting
chain of nodes is called a search chain. There are a number of rules for deciding when an
LP process should be allowed to dive. One such rule is to look at the number of variables
in the current LP solution that have fractional values (i.e., are causing infeasibility). When
this number is low, there is a good chance of finding a feasible integer solution quickly by
diving. This rule has the advantage of not requiring any global information.

We also dive if one of the children is “close” to being the best node, where “close” is defined
by a chosen parameter. In addition to the time saved by avoiding reconstruction of the
LP in the child, diving has the apparent advantage of quickly leading to the discovery of
feasible solutions and hence better upper bounds. Since every feasible solution lies at the
end of a search chain, it is reasonable to dive periodically if there is reason to believe the
current upper bound is not very good. Therefore, random diving also takes place according
to a specified parameter.

The Two-Phase Algorithm

As in branch and bound, finding good feasible solutions quickly is critical to the efficiency
of the algorithm. Good feasible solutions provide upper bounds, which in turn allow us
to prune unpromising nodes and process other nodes more efficiently. There are several
ways in which feasible solutions can be found. First, the user can provide a subroutine that
derives an upper bound through heuristic techniques that will be run before beginning to
explore the branch and cut tree. Providing a good initial upper bound can dramatically
decrease the overall solution time. Another way of finding feasible solutions is to discover
them while exploring the search tree, as discussed above.
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If no upper bounding subroutine is available, then a unique two-phase algorithm can also be
invoked. In the two-phase method, the algorithm is first run to completion on the specified
set of core variables. Any node that would have been pruned in the first phase is sent to
a pool of candidates for the second phase instead. If the set of core variables is small, but
well-chosen, this first phase should be quick and should result in a near-optimal solution,
and hence a good upper bound. In addition, the first phase will produce a list of useful cuts.
Using the upper bound and the list of cuts from the first phase, the root node is repriced –
that is, it is reprocessed with the full set of variables and cuts, the hope being that most or
all of the variables not included in the first phase will be priced out of the problem in the new
root node. Any variable so priced out can be eliminated from the problem globally. If we
are successful at pricing out all the inactive variables, we have shown that the solution from
the first phase was, in fact, optimal. If not, we must go back and price out the (reduced)
set of extra variables in each one of the leaves of the search tree produced during the first
phase. We then continue processing any node in which we fail to price out all the variables.

In order to avoid pricing variables in every leaf of the tree, we can trim the tree before the
start of the second phase. Trimming the tree consists of eliminating the children of any
node whose aforementioned children all have lower bounds above the current upper bound.
We then reprocess the parent node itself. This is typically more efficient since there is a
high probability that, given the new upper bound and cuts, we will be able to prune the
parent node and save the work of processing each child individually.

1.6.2 The LP Module

The LP Engine

COIN/BCP requires the use of a third-party callable library (referred to as the LP engine
or LP library) to solve the LP relaxations once they are formulated. COIN/BCP commu-
nicates with the LP engine through the Open Solver Interface (OSI) an API that provides
a uniform API to various LP solvers. Therefore COIN/BCP is able to work with any LP
engine that has an OSI interface (currently OSL, CPLEX, XPRESS-MP and the Volume
Algorithm has OSI interfaces). OSI is also part of the COIN [6] project.

Managing the LP Relaxation

The majority of the computational effort of branch and cut is spent solving LPs and hence
a major emphasis in the development was to make this process as efficient as possible.
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Besides using a good LP engine, the primary way in which this is done is by controlling the
size of each relaxation, both in terms of number of active variables and number of active
constraints.

The number of constraints is controlled through use of a local cut pool and through purging
of ineffective constraints. When a cut is generated by the cut generator, it is first sent to the
local cut pool. In each iteration, up to a specified number of the strongest cuts (measured
by degree of violation) from the local pool are added to the problem. Cuts that are not
strong enough to be added to the relaxation are eventually purged from the list. In addition,
cuts are purged from the LP itself when they have been deemed ineffective for more than
a specified number of iterations and the lower bound on the LP relaxation has increased
since the cut was added to the formulation. The meaning of the term “ineffective” can be
specified by a parameter and it is defined as either (1) the corresponding slack variable is
positive or (3) the dual value corresponding to the row is zero. The second condition for
purging a cut is necessary to avoid cycling.

The number of variables (columns) in the relaxation is controlled through reduced cost fixing
and dynamic column generation. Periodically, each active variable is priced to see if it can
be tightened based on their reduced cost. Note that a variable can be tightened by reduced
cost fixing only if every extra variable is known to price out (has non-negative reduced cost).
Also, in every iteration the user is given the opportunity to tighten bounds on any variable.

FIXME: ... Must write some more about dynamic column generation ...

Branching

Branching takes place whenever either (1) both cut generation and column generation (if it
is performed) have failed; (2) “tailing off” in the objective function value has been detected
(if this option is selected); or (3) the user chooses to force branching. A general branching
object specifies new bounds for a set of variables and/or cuts in every children. The well-
known branching variable is a special case: a fractional variable is selected and two children
are created as usual. Selecting a branching object can be fully automated (in which case
branching variables are selected) or fully controlled by the user, as desired. Branching can
result in as many children as the user desires though two is typical. Once it is decided that
branching will occur, the user must either select the list of candidates for strong branching
(see below for the procedure) or allow COIN/BCP to do so automatically by using one of
several built-in strategies, such as branching on the variable whose value is farthest from
integrality. The number of candidates can depend on the level of the current node in the
tree. For instance, it is usually best to expend more effort on branching near the top of the
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tree where it is more “important”.

After the list of candidates is selected, each candidate is presolved, i.e., a quick near-
optimization is done (like performing a specified number of iterations of the dual simplex
algorithm) in each of the resulting subproblems. Based on the objective function values ob-
tained in each of the potential children, the final branching object is selected, again either
by the user or by built-in rule. When the branching object has been selected, the LP process
sends a description of that object to the tree manager, which then creates the children and
adds them to the list of candidate nodes. It is then up to the tree manager to specify which
node the now-idle LP process should process next. That issue will be addressed in Section
1.6.1 below.

1.6.3 The Cut Generator Module

To implement the cut generator process, the user must provide a method that accepts
an LP solution and returns cuts violated by that solution to the LP module. In parallel
configurations, each cut is returned immediately to the LP module, rather than being passed
back as a group once the function exits. This allows the LP to begin adding cuts and solving
the current relaxation before the cut generator is finished if desired. Parameters controlling
if and when the LP should begin solving the relaxation before the cut generator is finished
can be set by the user.

1.6.4 The Variable Generator Module

The variable generator functions very similarly to the cut generator. To implement the
variable generator process, the user must provide a method that accepts a dual solution
vector and returns variables with negative reduced cost. As with the cut generator, in
parallel configurations, each variable is returned immediately to the LP module, rather
than being passed back as a group once the function exits. This allows the LP to begin
adding variables and solving the current relaxation before the variable generator is finished
if desired. Parameters controlling if and when the LP should begin solving the relaxation
before the variable generator is finished can be set by the user.



26 CHAPTER 1. INTRODUCTION

1.7 Parallelizing COIN/BCP

Because of the clear partitioning of work that occurs when the branching operation generates
new subproblems, branch and bound algorithms lend themselves well to parallelization. As
a result, there is already a significant body of research on performing branch and bound
in parallel environments. We again point the reader to the survey of parallel branch and
bound algorithms by Gendron and Crainic [11].

In parallel BCP, as in general branch and bound, there are two major sources of parallelism.
First, it is clear that any number of subproblems on the current candidate list can be
processed simultaneously. Once a subproblem has been added to the list, it can be properly
processed before, during, or after the processing of any other subproblem. This is not to
say that processing a particular node at a different point in the algorithm won’t produce
different results – it most certainly will – but the algorithm will terminate correctly in any
case. The second major source of parallelism is to parallelize the processing of individual
subproblems. By allowing separation to be performed in parallel with the solution of the
linear programs, we can theoretically process a node in little more than the amount of time
it takes to solve the sequence of LP relaxations. Both of these sources of parallelism can be
easily exploited using the COIN/BCP framework.

The most straightforward parallel implementation, which is the one we currently employ, is
a master-slave model, in which there is a central manager responsible for partitioning the
work and parceling it out to the various slave processes that perform the actual computation.
The reason we chose this approach is because it allows memory-efficient data structures for
sequential computation and yet is conceptually easy to parallelized. This approach has
limited scalability, but given the tradeoffs, we decided to accept that for the time-being. In
future versions of the software, we hope to “decentralize” the implementation in order to
allow better scalability. see [18] for an idea of how this could be done.

1.7.1 Parallel Execution and Inter-process Communication

COIN/BCP supports both a sequential and a parallel, distributed execution. All the user
has to specify is the message passing protocol to be used. At the moment COIN/BCP has
interfaces to the Parallel Virtual Machine (PVM) [21] protocol and to a single process pro-
tocol that is used to execute the algorithm sequentially. This latter protocol emulates being
parallel thus there is no need to change anything in COIN/BCP or in the user code to do
serial execution. (Granted, because of the emulation the serial code at the moment has sig-
nificant overheads.) Theoretically COIN/BCP can utilize any third-party communication
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protocol supporting dynamic spawning of processes and basic message-passing functions.
All communication subroutines interface with COIN/BCP through a separate communi-
cations API. As mentioned above, currently PVM is the only message-passing protocol
supported, but interfacing with another protocol is a straightforward exercise.

1.7.2 Fault Tolerance

Fault tolerance is an important consideration for solving large problems on networks whose
nodes may fail unpredictably. The tree manager tracks the status of all processes and can
restart them as necessary. It doesn’t matter (too much) if a slave process is killed, the most
that can be lost is the work that had been completed on that particular search tree node.
Furthermore, new processors can be added to the parallel configuration on the fly and the
TM process can spawn new slaves on those processes.



Chapter 2

Getting Started: Sample
Compiling

Having familiarized yourself with the overall design of COIN/BCP in Chapter 1, you are
now ready to get started with using COIN/BCP to develop applications of your own. The
remainder of this manual is contains the technical details you need to successfully undertake
this task. This chapter provides a description of how to get started with COIN/BCP.
This is basically the same information contained in the README file that comes with the
distribution.

Although COIN/BCP is inherently intended to be compiled and run on multiple architec-
tures and across distributed networks, for now we do not use GNU’s autoconf. The make
files are designed to conveniently allow builds for multiple architectures within a single di-
rectory tree. This means that there may be a little hand configuring to do and you might
need to know a little about your computing environment in order to make COIN/BCP
compile. This should be limited to editing the make files and providing some path names.
You may also have to live with some complaints from the compiler because of missing
function prototypes, etc.

2.1 System Requirements

Currently, to obtain and compile COIN/BCP, you need to be running some version of Unix,
preferably with the gcc/g++ compiler installed. Before you try to compile COIN/BCP,

28



2.2. OBTAINING THE SOURCE CODE 29

you should first ensure that the version of gcc/g++ you are using is at least 2.95.1 by
typing gcc -v on the command line. If you have an earlier version, COIN/BCP may not
compile correctly – ask your sysadmin for an upgrade. If you’re lucky enough to be your
own sysadmin, then you’re probably running Linux. The default version that comes with
some Linux distributions, such as Redhat 6.2, is earlier than 2.95.1 so you should download
and install a later version. This may also involve upgrading some other packages on which
gcc depends.

There are a few auxiliary applications that you might also want to have installed. If you
want to use CVS to download the code and update it automatically (highly recommended),
then you should also install or ask for CVS to be installed. If you are unsure of what CVS
is, please visit www.cvs.org. If you choose not to use CVS, then you can download the
code as a tar file. The applications tkcvs and tkdiff provide a nice graphical interface to
cvs. Finally, if you download doxygen (www.doxygen.org) and qt (www.trolltech.com),
you will be able to automatically generate very nice documentation from the Bcp source
code in an HTML format.

2.2 Obtaining the Source Code

2.2.1 Using CVS

To obtain the source code using CVS:

• Set the CVSROOT environment variable to be
:pserver:anonymous@oss.software.ibm.com:/usr/cvs/coin

• Issue cvs login command with password anonymous

• Issue cvs checkout MODULE where MODULE is one of

– Bcp: branch, cut, and price framework,

– Bcp-all: BCP framework plus Osi and Vol

– Mkc: multiple knapsack with color constraints (application),

– MaxCut: Maximum weighted cut (application),

– mkc7: large sample mps file for Mkc,

– Vol: volume algorithm,

– Cgl: cut generator library,
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– Osi: open solver interface,

– Dfo: derivative free optimization,

– COIN: to get all modules,

If you are just starting with Bcp, get the module Bcp-all. It will automatically get the
two sample applications (Mkc and MaxCut), as well as the other necessary modules (Osi and
Vol). Note that the directory COIN/ will be installed as a subdirectory of whatever directory
you issue the CVS commands from. The simplest thing to do is to issue the commands
from your home directory and then enter the subdirectory COIN/ to work with the source
files.

2.2.2 Downloading a tar File

The tar files can be obtained from www.coin-or.org. Simply download the latest files and
unpack them in your home directory. This will create a COIN/ subdirectory, if one does not
already exist, and place the source files in subdirectories of this directory. These files follow
the same naming scheme as the CVS modules.

Note that the files in the repository have .tar.gz extension indicating that the archive file
has been compressed using gzip. On U*ix systems use gunzip to uncompress them first,
on Windows Winzip can uncompress and unpack the archive.

2.3 Initial compilation and testing

Since the whole project lives in the COIN directory in the rest of this section every path
specified is relative to this directory.

• First, edit the file Makefile.coin. This is the global make file with settings used
by all the software in the repository. It contains primarily pathnames and compiler
settings. Uncomment the appropriate lines for whichever LP solvers you want to link
in, and set the following variables as needed:

– Uncomment whichever LP solver you want to use

– COINDIR: the path to the COIN/ directory



2.3. INITIAL COMPILATION AND TESTING 31

– OSLDIR: the directory where OSL library is installed (if using OSL). Later on the
Makefile makes the assumption that standard installation procedure was followed
for OSL, i.e., the include files of OSL are in $(OSLDIR)/includes and the library
is in $(OSLDIR)/program.

– XPRDIR: same for XPRESS-MP.

– CPXDIR: same for CPLEX

• You should not need to make any modifications to Bcp/Makefile.

• Now, edit the application specific make file. This is Bcp/MaxCut/Makefile for the
MaxCut example. Here are the variables that you can set:

– USER OPT: options the compiler should use for compiling the user’s code.

– COMM PROTOCOL: which message-passing protocol to use. Currently the options
are PVM and NONE (compile as a serial application).

– USER SRC PATH: a list of directories (besides TM, LP, etc. – see Section ?? for the
directory structure) the user has source codes in.

• In addition, you will see that there are some other variables to set once you have
written your own application. These include paths to your source files and the names
of your source files. We will discuss how to construct this make file in more detail
later in the manual.

2.3.1 Compiling for serial execution

As mentioned above, COMM PROTOCOL must be set to NONE in the user application Makefile.

• First you have to create the volume library (if you plan to use the volume algorithm
as your LP engine):

– Change directory into Faa/Vol and type make

• Create the Osi library:

– Change directory into Osi and type make

• Type “make” in the application directory. To start out, we recommend that you try
to compile the MaxCut application in the directory Bcp/MaxCut application module.
Dependency files will be created in Bcp/Bcp-common/dep and in Bcp/MaxCut/dep.
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Object files will be placed in Bcp/Bcp-common/$(ARCH) and in Bcp/MaxCut/$(ARCH),
where $(ARCH) is the platform you run on combined with the optimization level (e.g,
Linux-g or AIX-4.3-O). This latter directory also contains the executable named bcps
(the “s” stands for being serial).

• To test the sample program type $(ARCH)/bcps sample.par on the command line.
The sample parameter file and sample data file are included in the distribution.

2.3.2 Compiling for distributed networks

To use COIN/BCP on a network of computers fist a message passing library must be
installed. At the moment COIN/BCP has an interface to the Parallel Virtual Machine
(PVM) software only (an MPI interface is planned). The current version of PVM can be
obtained at www.ccs.ornl.gov/pvm. It should compile and install without any problem.
The user will have to set a few environment variable (such as PVM ROOT), but this is all
explained clearly in the PVM documentation. Note that there must be a link to the compiled
executable from the $PVM ROOT/bin/$PVM ARCH directory in order for parallel processes to
be spawned correctly.

The compilation procedure for COIN/BCP and the location of the files are almost identical
to what’s described in the previous subsection with the following differences:

• Set COMM PROTOCOL to PVM in the user application Makefile.

• The executable name will be bcpp.

• Make a symbolic link from the $(PVM ROOT)/bin/$(PVM ARCH)/ directory to the ex-
ecutable. This is required by PVM unless you override the default directory in your
PVM hostfile.

• Start the PVM daemon by typing “pvm” on the command line and then typing “quit”.

• To test the sample program first start up the pvm daemon on each of the machines
you plan to use in the computation (how to do this is also explained in the PVM doc-
umentation) and then start COIN/BCP by issuing the $(ARCH)/bcpp sample.par
command. The sample parameter file and sample data file are included in the distri-
bution.

Now you should have successfully compile and execute the sample application. Once you
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have accomplished this much, you are well on your way to having an application of your
own.



Chapter 3

Developing Applications with
COIN/BCP

3.1 Directory Layout (location of the source files)

The easiest way to get oriented is to examine the organization of the source files. Once
you install the COIN/BCP distribution and enter the Bcp directory, you will see several
subdirectories, including one called Bcp-common/. Bcp-common/ contains the source files for
the internal framework. Users should not have to modify these files, but should be familiar
with their organization. The other directories contain the source code for applications.
There are two samples available, a Max Cut solver (MaxCut/) and a solver for the Multiple
Knapsack Problem with Color Constraints (Mkc/). First let’s explore the Bcp-common
directory.

Within Bcp-common/, there are directories associated with each of the modules, a directory
called Member/ and a directory (include/) for the header files. The source files in Member/
contain the implementation of methods of classes that are used in multiple modules (like
cuts and variables), while the module directories contain module specific class methods and
module specific functions.

The same directory hierarchy is used in the directories of the sample applications and it is
recommended that the user adheres to this convention simply because the Bcp/Makefile
automatically looks for user source files in these directories. If the user places her files in
different directories then she must specify those directories in USER SRC PATH.

34
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3.2 Overview of the Class Hierarchy

We now briefly describe the class hierarchy from the user’s point of view. Our aim here
is not to describe the full class structure, but just those parts that the user needs to be
familiar with in order to derive new user classes and override the appropriate methods.
As we discussed in Chapter 1, we have taken an object-oriented approach with the main
objects being the cuts and variables. As such, there are three main “object” classes from
which the user may want to derive new problem-specific descendents. These are:

• BCP cut: This class is used for describing cuts. There are three child classes derived
from this one which implement the three different types of cuts—core, indexed, and
algorithmic.

• BCP var: This class is used for describing variables. Again, there are three derived
classes which implement the three different types of variables—core, indexed, and
algorithmic.

• BCP solution: This class is used for describing feasible solutions to the full problem.
This description may be implemented simply as a list of the nonzero variables and their
corresponding values or can be a user-defined representation of a more combinatorial
nature. For instance, in the Traveling Salesman Problem, the user may wish to store
feasible solutions directly as permutations of the nodes instead of just as a list of edge
variable indices and values.

Ideally, these would be the only classes the user would need to worry about. However, in
order to modularize the code and support parallelism, we have deviated from an idealized,
object-oriented design and defined some module-oriented “interface” classes as well. These
classes do not contain any data elements, but instead contain methods which are unique to
a particular module and cannot be contained in one of our primary object classes. They
also contain methods which work on sets of objects—these cannot be implemented in the
standard, object-oriented fashion. As an example, all the subroutines for communicating
data between the modules. The interface classes are:

• BCP xx user: Here, “xx” is the name of a particular module. The user must derive a
new class for each module in which she wants to override a default method. Note that
although these base classes exist primarily as containers for module-specific methods,
the user can also use his derived classes to store the problem data needed for perform-
ing the user-defined methods in that module. Alternatively, these data structures
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could be defined in a separate base class and then, using multiple inheritance, derived
into a common child class.

• USER initialize: This class contains subroutines for generating objects from the
derived interface classes. This is also where the messaging environment and LP solver
environment objects are created.

In addition to deriving from these classes as appropriate, the user must also provide the def-
inition of the function called BCP user init() which returns an object of the class derived
from USER initialize.

3.3 The Flow of the Algorithm

Keeping in mind this basic class structure, we now describe again, as in Chapter 1, the
overall flow of the BCP algorithm, but this time with more detail and an emphasis on
how the interface routines defined in the BCP xx user classes fit into this flow. In some
cases, it may be important to know the specific order in which the interface routines are
called since procedures performed in one subroutine could depend on data generated in a
previous subroutine. This applies mainly to the LP module, which has the largest number
of associated interface routines.

In Figures 3.1 and 3.2, the arrows between boxes indicate the flow of the algorithm. Keep
in mind that these charts merely give a high-level description of the algorithm. Section 3.4
and the HTML documentation contain a full and detailed description of the API. Figure
3.1 indicates how the solver is initialized and lists the interface routines used by the tree
manager, the cut generator, and the variable generator. First, the solver environment is
initialized (see Section 3.4.1), then the module-specific user classes are created. Afterwards,
the user specifies the initial set of core and extra variables and packs the problem data to
be sent to the other modules. Initialization of each of the slave processes begins with the
unpacking of these data at their destinations.

Once the solver is initialized, the TM module utilizes only three interface methods. The first
one initializes a new phase (see Section 1.6.1), the second receives a new feasible solution,
while the third compares two search tree nodes. This comparison function is used to insert
new candidate nodes into a priority queue. The top element of the queue will be selected
for processing when an LP process becomes available. Similarly, the CG and VG modules
also call relatively few interface routines. Their only job is to wait for a primal (dual)
solution from which they try to generate violated valid inequalities (improving columns).
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The generated objects are sent back to the LP process.Figure (3.2) describes the flow of the
LP solver loop, from where the majority of the interface routines are called. These routines
will be described below.

3.3.1 Fathoming procedure

Fathoming, which is very simple in a regular branch and cut algorithm is much more involved
when pricing is present. The reason is that introducing new columns can push the lower
bound below the global upper bound or can restore feasibility if the LP relaxation was found
infeasible. If a true optimal solution is desired in a BCP algorithm, then a search tree node
can be fathomed if and only if there are no columns that can restore feasibility and there is
no column with negative reduced cost. Of these two conditions the first one is the “worse”.
Almost always there are variables that can be introduced to restore feasibility, but usually
that pushes the lower bound too high. However, we must restore feasibility, because there
can be columns with negative reduced cost afterwards that could bring down the objective
value. On the other hand, when fathoming would happen because of too high lower bound,
all we got to look for are columns with negative reduced cost. Frequently none are found
(especially if the global upper bound is really good) so the node can really be fathomed.
For this reason it is recommended that users wanting to generate variables on the fly set
up their model in a way that ensures primal feasibility at all times. (Not to mention that
then she doesn’t have to override the feasibility restoration methods.)

For each search tree node COIN/BCP maintains a state, that is, whether there are in-
dexed or algorithmic variables not in the formulation. Furthermore, for indexed variables
COIN/BCP can maintain a list about which ones have been permanently priced out (ex-
cluded from any solution in the subtree). To utilize this ability of COIN/BCP, only two
very simple methods must be overridden: next indexed var() and create indexed var().
The first method is used to enumerate the indices of the indexed variables one by one, the
second method is used to actually create the indexed variables.

Now if fathoming would happen because the lower bound exceeds the upper bound then, if
COIN/BCP is instructed to maintain the above mentioned list, first the not-yet-priced-out
indexed variables are tested then the generate vars in lp() method is invoked for finding
algorithmic variables with negative reduced cost.

If fathoming would happen because of infeasibility then again first the indexed variables
tested whether any of them destroys the proof of infeasibility (i.e., whether it has a negative
inner product with the specified dual ray) then the restore feasibility() method is
invoked so that the user can test the algorithmic variables.
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3.4 Details of the Interface

As mentioned earlier in our overview of the class hierarchy (Section 3.2), the user can
modify the behavior of the framework by overriding the default methods. To override the
methods in a particular module, she simply derives a new child class from the corresponding
BCP xx user base class and overrides the appropriate methods. If not overridden, the default
method will be invoked by the framework. Whenever possible, methods have default which
will work for the most common problem settings. In some cases, there are several default
implementations from which the user can choose by setting a parameter. Alternatively,
these methods can be invoked directly by the user as desired, allowing for the use of different
methods in different situations. In the remainder of this section, we describe in more detail
the virtual methods of the interface classes. These descriptions are at a high level—for the
exact specification, see the HTML manual pages included with the distribution [?].

3.4.1 The USER initialize class

The user must communicate the existence of the objects she designed to COIN/BCP. For
example, for all processes she intends to use she must have derived something from the
BCP xx user classes. Since COIN/BCP contains the main() function there are two ways
to achieve this. The “C” style solution is to have a functions declared in COIN/BCP but
not defined. These functions must be defined by the user and return pointers to objects
defined by her. The disadvantage of this solution is that the user has to define all of these
functions, even if she doesn’t intend to create some type of objects. Furthermore, if there
are possible defaults she must indicate somehow to the calling function that a default should
be executed.

COIN/BCP employs a C++ style coding here. Only one function is declared that the user
must define, BCP user init(). This function must return an object of a type she derived
from USER initialize and in which she overrode some methods. This way the user is
forced to define only one function, and she can choose the default behavior (like initializing
the LP engine class) by simply not overriding a method.

When COIN/BCP will be converted into a library there will be no need for this class.

• msgenv init(): return the message passing environment to be used. The user prob-
ably doesn’t want to override this method, as the default COIN/BCP uses will be
determined by the value of COMM PROTOCOL in the application Makefile.
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• tm init(): return the object the user has derived from BCP tm user. Note that this
method should also take care of reading the parameter file and the problem data and
whatever initialization the user wants to do. The user must override this method,
there must be a user derived tree manager class.

• lp init(): return the object the user has derived from BCP lp user. The user must
override this method, there must be a user derived LP class.

• cg init() and vg init(): return the object the user has derived from the classes
BCP cg user and BCP vg user. The user must override these if and only if she wants
to generate cuts / variables.

3.4.2 The BCP tm user class

• pack module data(): in this method the user must pack the data that will be needed
to perform computations in other modules. By default this method is empty and it
is very likely that the user wants to override it.

Note that this method should be overridden if and only if the unpack module data()
methods of any other process is overridden.

• unpack feasible solution(): unpack a solution that is feasible to the problem.
Not really necessary to override, it should only be done if the default generic solution
(BCP solution generic) format is not good for the user for some reason. That format
contains the description and value of all variables that are at nonzero level in the
solution. The user may have a much more compact and intuitive representation of
the solution, in which case she would override this method.

By default a BCP solution generic object is unpacked.

Note that this method should be overridden if and only if the corresponding method,
pack feasible solution() in the class BCP lp user is overridden.

• (un)pack warmstart(): (un)pack warmstarting information for a search tree node.
The user probably doesn’t want to override this method, as it should correspond to
the LP solver selected. The default, just like for the LP engine, will be determined
by the defined COIN USE XXX value.

• (un)pack var algo(): (un)pack an algorithmic variable. By default this method
throws an exception since if it is invoked then the user must have generated an algo-
rithmic variable in which case she must override this method.
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• (un)pack cut algo(): (un)pack an algorithmic cut. By default this method throws
an exception since if it is invoked then the user must have generated an algorithmic
cut in which case she must override this method.

• initialize core() and create root(): the first of these two methods sets up the
core of the problem (see Section 1.5.2) while the second specifies what extra cuts and
variables should be present in the root node. By default the first method creates an
empty core and the second method does not list any extra objects. Therefore to get
something into the root node the user must override at least one of them.

• init new phase(): perform any necessary initialization before a new phase starts in
the algorithm. Nothing is done as default. If the user does not do any pricing then the
it is probably fine. Otherwise (since the column generation strategy must be specified
in this method, too) the user must override it.

• compare tree nodes(): compare two search tree nodes. Return true if the first node
should be processed before the second one. The default behavior is controlled by the
TreeSearchStrategy parameter which is set to BCP BestFirstSearch by default.

3.4.3 The BCP lp user class

This is by far the most complex class.

• unpack module data(): unpack the data packed for this process in the TM by the
pack module data() method. By default this method is empty and it is very likely
that the user wants to override it.

Note that if this method is overridden then the TM’s pack module data() method
must be overridden, too.

• (un)pack warmstart(): (un)pack warmstarting information for a search tree node.
The user probably doesn’t want to override this method, as it should correspond to
the LP solver selected. The default, just like for the LP engine, will be determined
by the defined COIN USE XXX value.

• (un)pack var algo(): (un)pack an algorithmic variable. By default this method
throws an exception since if it is invoked then the user must have generated an algo-
rithmic variable in which case she must override this method.

• (un)pack cut algo(): (un)pack an algorithmic cut. By default this method throws
an exception since if it is invoked then the user must have generated an algorithmic
cut in which case she must override this method.
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• initialize solver interface(): return the LP engine. The user probably doesn’t
want to override this method as the default COIN/BCP uses will be determined
by the defined COIN USE XXX value. However, it’s possible that the user wants to
define more than one LP solver and choose one based on a parameter. In this
case she needs to override this method. In this case she should also override the
(un)pack warmstart() methods in the TM and LP user classes as well.

• initialize new search tree node(): do some preprocessing (e.g., logical tightening
of bounds on variables and/or constraints) on the search tree node before it gets
processed. By default this method is empty. A good candidate for overriding in
column generation methods, since there branching information usually encodes some
logic, thus implying significant tightening.

• modify lp parameters(): a chance to modify the parameters of the LP engine. By
default this method is empty. Those experimenting with using different parameters
in “regular” LP optimization and LP optimization in strong branching will want to
override it.

• test feasibility(): test whether the LP solution is feasible for the whole problem.
If it is so then return a BCP solution object. The default just tests whether all
integrality requirements are met. (Actually there are several default options but
they differ in their speed only by exploiting special knowledge, e.g., knowing that all
variable must be binary.) If the user has her own representation of the solution she
definitely wants to override it (the default method creates a BCP solution generic
object). Also, she must override it if cuts are being generated as COIN/BCP has no
way of knowing whether the not yet added cuts are all satisfied.

• generate heuristic solution(): try to come up with a good solution from the
given LP solution. By default this method is empty. If the user has a quick heuristic
it’s worth to add it here since a good solution can drastically cut the size of the search
tree.

• pack feasible solution(): the pair of unpack feasible solution() in the tree
manager. Override neither or both. The default tries to treat and pack the solution
argument as a BCP solution generic object and throws an exception if it is not such
a solution.

• pack primal solution(): pack the information to be sent to the cut generator (this
is usually the primal solution). The default method packs a selected set of variables
along with their values. The selection is parameter driven, it can be everything, the
nonzeros, the fractional values, etc. Override neither or both of this method and its
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pair, unpack primal solution() in the cut generator. There is no reason to override
it if no cut generator processes are started.

• pack dual solution(): pack the information to be sent to the variable generator
(this is usually the dual solution). The default method packs a selected set of cuts
along with their dual values. The selection is parameter driven, it can be everything,
the nonzeros, the fractional values, etc. Override neither or both of this method and
its pair, unpack dual solution() in the variable generator. There is no reason to
override it if no variable generator processes are started.

• display lp solution(): display the result of most recent LP optimization. This
method is invoked every time an LP relaxation is optimized and the user can display
(or not display) it. By default the solution is displayed if the verbosity of COIN/BCP
is high enough.

This method exists mainly for debugging purposes. Few people would ever want to
see all LP solutions. It’s unlikely anyone would override this method.

• next indexed var() and create indexed var(): methods used if COIN/BCP is
to maintain the list of indexed variables that are permanently priced out. The first
method returns the user index of the variable whose index is the next one after the
argument while the second method creates an indexed variable (and the corresponding
column) given the index. By default they all throw exceptions. The user must override
them if they are to be used.

• restore feasibility(): These methods are invoked before fathoming a search tree
node that has been found infeasible. If COIN/BCP maintains the list of indexed
variables that are permanently priced out then by the time this method is invoked
every indexed variable is tested whether it can destroy the proof of infeasibility and
the user should look only for algorithmic variables. Otherwise (i.e., if COIN/BCP
does not maintain the list) it is up to the user to check both indexed and algorithmic
variables whether they “cut off” the dual rays.

• cuts to rows(): create the corresponding rows for a set of cuts with respect to the
currently active variables. By default this method throws an exception (should not
be called if not written). It must be overridden if cuts are generated.

• vars to cols(): create the corresponding columns for a set of variables with respect
to the currently active cuts. By default this method throws an exception (should not
be called if not written). It must be overridden if variables are generated.

• generate cuts in lp(): generate cuts within the LP process. Sometimes too much
information would need to be transmitted for cut generation (e.g., the full tableau for
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Gomory cuts) or the cut generation is so fast that transmitting the info would take
longer than generating the cuts. In such cases it might better to generate the cuts
locally. This routine provides the opportunity. By default this method is empty (will
be interfaced with Cgl).

• generate vars in lp(): generate variables within the LP process. Sometimes too
much information would need to be transmitted for variable generation or the variable
generation is so fast that transmitting the info would take longer than generating the
variables. In such cases it might be better to generate the variables locally. This
routine provides the opportunity. By default this method is empty.

• compare cuts(): compare two generated cuts. Cuts are generated in different iter-
ations, they come from the Cut Pool, etc. There is a very real possibility that the
LP process receives several cuts that are either identical or one of them is better then
another (cuts off everything the other cuts off). This routine is used to decide which
one to keep if not both. By default both cuts are kept. The user should override this
method only if there is a significant chance that cuts will be regenerated.

• compare vars(): compare two generated variables. Variables are generated in differ-
ent iterations, they come from the Variable Pool, etc. There is a very real possibility
that the LP process receives several variables that are either identical or one of them
is better then another (e.g., almost identical but has much lower reduced cost). This
routine is used to decide which one to keep if not both. By default both variables are
kept. The user should override this method only if there is a significant chance that
variables will be regenerated.

• logical fixing(): this method provides an opportunity for the user to tighten the
bounds of variables. The method is invoked after reduced cost fixing. By default this
method is empty. For many problems there are possibilities for tightening the bounds
based on logical inferences. The user should explore this.

• select branching candidates(): decide whether to branch or not and select a set
of branching candidates if branching is decided upon. The return value of the method
indicates what should be done: branching, continuing with the same node or aban-
doning the node completely. The default implementation branches if there are no cuts
or variables waiting to be added to the formulation. In that case it selects variables
for strong branching. A good branching rule can really speed up computation. It’s
probably worth to override this method and experiment.

• compare branching objects(): decide which one of two candidates should be se-
lected for actual branching. The default implementation looks at the presolved ob-
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jective values in the children and makes a decision based on those (the decision is
parameter controlled). Probably the user is best off leaving this method alone.

• set actions for children(): decide what to do with the children of the selected
branching object. By default the possibility of diving is explored and then all or all
but one (in case of diving) children are sent back to the tree manager. Probably the
user is best off leaving this method alone.

• purge slack pool(): selectively purge the list of slack cuts. When a cut becomes
ineffective and is eventually purged from the LP formulation it is moved into a slack
pool. The user might consider these cuts later for branching. This function enables
the user to purge any cut from the slack pool (those she wouldn’t branch on anyway).
Of course, the user is not restricted to these cuts when branching, this is only there to
help to collect slack cuts. There are several default. The user probably doesn’t want
to override this method.

3.4.4 The BCP cg user class

This class is extremely simple. All it does is that it receives primal solutions and generates
cuts from them. If there is no separate cut generator process the user doesn’t need to derive
a class from this one.

• unpack module data(): unpack the data packed for this process in the TM by the
pack module data() method. By default this method is empty and it is very likely
that the user wants to override it.

Note that if this method is overridden then the TM’s pack module data() method
must be overridden, too.

• unpack primal solution(): unpack the information sent from the LP (this is usually
the primal solution). The default method unpacks a set of variables along with their
values. See the pack primal solution() of the LP process. Override neither or both
of this and that method.

• generate cuts(): do the actual cut generation. By default this method is empty.
The user better override it otherwise why have a separate CG process?

• unpack var algo(): unpack an algorithmic variable. By default this method throws
an exception since if it is invoked then the user must have generated an algorithmic
variable in which case she must override this method. Note that in the cut generator
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there is no need to pack algorithmic variables. They are only received with the primal
solution.

• pack cut algo(): pack an algorithmic cut. By default this method throws an ex-
ception since if it is invoked then the user must have generated an algorithmic cut in
which case she must override this method. Note that in the cut generator there is no
need to unpack algorithmic cuts. They are only sent out to the LP process.

3.4.5 The BCP vg user class

This class is extremely simple. All it does is that it receives dual solutions and generates
variables from them. If there is no separate variable generator process the user doesn’t need
to derive a class from this one.

• unpack module data(): unpack the data packed for this process in the TM by the
pack module data() method. By default this method is empty and it is very likely
that the user wants to override it.

Note that if this method is overridden then the TM’s pack module data() method
must be overridden, too.

• unpack primal solution(): unpack the information sent from the LP (this is usually
the dual solution). The default method unpacks a set of cuts along with their values.
See the pack dual solution() of the LP process. Override neither or both of this
and that method.

• generate vars(): do the actual variable generation. By default this method is empty.
The user better override it otherwise why have a separate VG process?

• pack var algo(): pack an algorithmic variable. By default this method throws an
exception since if it is invoked then the user must have generated an algorithmic
variable in which case she must override this method. Note that in the variable
generator there is no need to unpack algorithmic variables. They are only sent out to
the LP process.

• unpack cut algo(): unpack an algorithmic cut. By default this method throws an
exception since if it is invoked then the user must have generated an algorithmic cut
in which case she must override this method. Note that in the variable generator there
is no need to pack algorithmic cut. They are only received with the dual solution.
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3.5 Deriving Problem-specific Classes

In this section, we give a rough explanation of the design decisions that have to be made
and under what conditions the user needs to derive certain types of classes and override
certain methods.

3.5.1 Generating cuts

In some cases, such as in pure branch and bound or branch and price, the user will not need
to generate cutting planes dynamically, but for most applications, dynamic cut generation
is critical to the efficiency of the algorithm. Assuming that the user has chosen to perform
dynamic cut generation, he must decide between the two different types of cuts that can be
dynamically generated—indexed, and algorithmic. As we have already discussed, there is no
theoretical difference between these two types, but indexed cuts are more memory efficient
since they do not have to be represented by a (possibly) bulky, abstract data structure. If
it is possible to implement a particular class of cuts using an indexing scheme, this should
generally be done. However, keep in mind that most classes of cuts cannot be implemented
using indexing simply because they are too large to accomodate a workable indexing scheme.

For each class of cuts that the user wants to implement as an algorithmic class, it will
be necessary to derive a new C++ class from BCP cut algo as a container for the data
needed to construct the cut. In addition, the user needs to modify the pack cut algo()
and unpack cut algo() methods in the appropriate BCP xx user classes. For indexed and
core cuts, it is not necessary to derive a new class or implement packing and unpacking
algorithms since all these cuts have a common representation.

With either algorithmic or indexed cuts, the user must also override the cuts to rows()
and compare cuts() methods in the BCP lp user class. The former specifies how to
realize a given set of cuts as matrix rows with respect to the current set of variables while
the latter is a function which determines if two cut objects actually represent the same cut.
Of course, in addition, the user must also override either the generate cuts() method
of the BCP cg user class or the generate cuts in lp() method of the BCP lp user class.
The choice of whether to generate cuts in a separate cut generator or simply as part of the
LP loop depends on the problem setting. In problems where generating cuts is relatively
quick and the LP solver will be sitting idle waiting for the cut generator to return the cuts,
it is easiest to simply generate them in the LP module itself. If cut generation is lengthy or
requires large amounts of memory, then it is better to generate them in a separate generator.
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3.5.2 Generating variables

Generally speaking, dynamic variable generation (often called column generation) is used
less frequently than dynamic cut generation. If it is possible to efficiently generate all
variables explicitly in the root node and there is enough memory to store them, this is
generally the best thing to do. This allows variables to be fixed by reduced cost and nodes
to be fathomed without expensive pricing (see the last paragraph). However, sometimes
this is either not possible or not efficient because (1) there is not enough memory to store
all of the variables in the matrix at once, (2) it is expensive to generate the variables, or (3)
there is an efficient method of pricing large subsets of variables at once. There may also be
other scenarios requiring variable generation.

In most ways, variable generation is similar to cut generation. However, there are some
significant differences. While generating cuts helps tighten the formulation and increase
the lower bound, generating variables has the opposite effect. Therefore, one must be
somewhat careful about when variable generation takes place as it destroys monotonicity of
the objective function, upon which algorithmic performance sometimes depends. In the last
paragraph of this section, we also address the issue of variable generation prior to fathoming
a search nodes, another important consideration.

As with cuts, the user must choose between the two different types of variables—algorithmic,
and indexed. Again, there is no theoretical difference between these two types, but indexed
variables are more memory efficient than algorithmic variables. To utilize algorithmic vari-
ables, the user should should derive a class or classes from BCP var algo, as with cuts.
Also, the corresponding packing and unpacking methods need to be modified appropriately.
For indexed variables, it is not necessary to derive a new class—the BCP var indexed class
is provided for this purpose. In either case, the user must also override the vars to cols()
and compare vars() methods in the BCP lp user class. The former specifies how to re-
alize a given set of variable as matrix columns with respect to the current set of cuts while
the latter is a function which determines if two variable objects actually represent the same
variable. As before, the user must also override either the generate vars() method of the
BCP vg user class or the generate vars in lp() method of the BCP lp user class.

Our final consideration is that of fathoming. Before a node can be properly fathomed in
BCP, it is necessary to ensure that there are no columns whose addition to the problem
could reverse the conditions necessary for fathoming the node in question, i.e., by either
lowering the objective function value back below the current upper bound or by restoring
feasibility. For indexed variables, the framework can automatically keep track of which
variables need to be priced out before the search tree node can be fathomed. In order for
this option to be utilized, the user must provide the methods next indexed var() and
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create indexed var(). If this scheme is not used, or the user is generating algorithmic
variables, then the user’s variable generation method should expend whatever effort is nec-
essary to test whether there is a variable whose addition to the problem would lower the
objective function value, i.e., a variable with negative reduced cost. Any such variable
should be added to the problem before fathoming. In addition, the user should either en-
sure that all LP relaxation encountered are feasible (strongly encouraged) or implement
the restore feasibility() method. This method is when a node would be fathomed be-
cause of infeasibility, and the user is supposed to return new variables whose corresponding
columns destroy the proof of infeasibility (i.e., have negative inner product with the known
dual rays).

3.5.3 Setting the Core and Extra Object Lists

Recall that the core cuts and variables are those that are never removed from the problem.
In some cases, significant savings can be achieved by properly choosing the list of core
and extra objects well. To set the list of core objects, the user is required to override the
initialize core() methods in the BCP tm user class. There are important differences
between the strategy for setting the list of core variables and that for setting the list of core
cuts so we address each of these topics separately in what follows.

In the current implementation, the main advantage of putting a variable into the core is
lower communication overhead and lower overhead for node creation in the tree manager
and node setup in the LP module. Since variables in the core are present in every relaxation,
information about them does not have to be communicated and stored along with each node
description. Therefore, it is best to put into the core any variable that has a high probability
of having a positive value in an optimal solution to the problem.

On the other hand, putting variables into the core that turn out not to be important can
cause the size of the matrices for the subproblems to be bigger than necessary and can
slow down the calaculation in other ways. It is important to realize that, although putting
variables into the core does not prevent them from being fixed to zero by reduced cost
(and in essence removed from the calculation), they must still be maintained as part of
the matrix. In particular, when cuts are put in row form to be added to the matrix, the
coefficients for these columns will have to be calculated, even though they are not part of
the calculation.

For cuts, some of the same factors are at work, but there is more at stake, at least for
simplex-based LP solvers. Although ineffective cuts can similarly be removed from the
problem by changing the right hand side to +∞ or −∞, the number of rows that are
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actually present in the matrix determines the size of the basis for the simplex method.
The size of the basis contributes significantly to the overall running time of the simplex
method. Hence, it is prudent to allow removal of ineffective rows as soon as possible. One
reason for not allowing such removal is that it might be prohibitively difficult or expensive
to regenerate the row if it was ever needed again. It might also be the case that some of
the user’s separation algorithms depend on the fact that the solution already satisfies some
subset of inequalities. In this latter case, the most efficient way to guarantee this might be
to simply leave those cuts in the problem at all times.

We have now seen the rationale for constructing the set of core objects. The user can
also optionally specify that a designated subset of the extra cuts and variables (user in-
dexed and/or algorithmic) should be initially present in the root, but not maintained as
core objects. These variables and cuts are specified in the create root() method of the
BCP tm user class. The primary reason for designating these is that they are not important
enough to become core variables, but would be too expensive to generate later, potentially
over and over in various parts of the tree. With respect to variables, it is usually best to
include as many of them as feasible in the root node. Provided that a good upper bound
exists, they will get priced out of the problem quickly if they are not important. Also, their
presence should not significantly slow down simplex-based LP solvers. The same does not
apply to cuts, however. It is important to consider carefully the cuts that go into the base
since these will determine the starting size of the basis for simplex-based LP solvers.

3.5.4 Branching

Next to effective cut and variables generation, strong branching is the function most critical
to the efficiency of BCP. Fortunately, the framework takes care of most of the details.
Furthermore, the defaults should work fine in most cases. For instance, one of the built-
in defaults is to branch on the variable furthest from being integral (closest to .5 for 0-1
problems. This is an often-used method that will work fine for starting out. To implement
his own branching scheme, the user has only to implement two functions in the BCP lp user
class—select branching candidates() and compare branching candidates(). Based
on knowledge of the problem’s structure, the user must decide which objects (cuts and/or
variables) to branch on. Unfortunately, there are not many rules of thumb here. The only
way to find out what works best in a particular problem setting is trial and error.



52 CHAPTER 3. DEVELOPING APPLICATIONS WITH COIN/BCP

3.5.5 Summary and Optional Methodss

In this subsection a summarized reference is provided for the classes and subroutines that
need to be considered based on various design decisions. For each decision the methods to
be implemented is listed. Optional methods not discussed in this chapter are also included.
For more on those methods, please see the HTML documentation.

Perform cut generation

• Derive a class for each cut type from BCP cut algo.
• Override generate cuts in lp() in BCP lp user class to generate cuts directly in

the LP module.
• Override generate cuts() in BCP cg user to generate cuts in a separate cut gener-

ation module.
• Override cuts to rows() in BCP lp user.
• Override compare cuts() in BCP lp user class.
• Override (un)pack cut algo() in the appropriate BCP xx user classes.

Perform column generation

• Derive a class for each variable type from BCP var algo.
• Override generate vars in lp() in BCP lp user to generate variables directly in

the LP module.
• Override generate vars() in BCP vg user to generate variables in a separate vari-

able generation module.
• Override vars to cols() in BCP lp user.
• Override compare vars() in BCP lp user.
• Override (un)pack var algo() in the appropriate BCP xx user classes.
• To use the built-in mechanism for tracking which indexed variables have been priced

out, override next indexed var() and create indexed var() in BCP lp user.
• Ensure that all LP relaxations remain feasible or override restore feasibility()

in BCP lp user.

Customize strong branching

• Override select branching candidates(), compare branching candidates() and
set actions for children() in BCP lp user.

Set the problem core.

• Override initialize core() in BCP tm user.
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Create the root node.

• Override create root() in BCP tm user.

Modify the LP solver parameters.

• Override modify lp parameters() in BCP lp user.

Define data structure to store and send feasible solutions.

• Derive a new solution class from BCP solution.
• Override (un)pack feasible solution() in the classes BCP lp user (packing) and

BCP tm user (unpacking).

Define data structure to send LP solutions.

• Override (un)pack {primal,dual} solution() in the classes BCP lp user (pack-
ing) and BCP {cg,vg} user (unpacking).

Use a primal heuristic to generate feasible solutions.

• Override generate heuristic solution() in BCP lp user.

Send problem-specific data to the modules.

• Override (un)pack module data() in the appropriate BCP xx user classes.

Display solutions in user-defined format.

• Override display xx solution() in BCP lp user() and/or display solution() in
BCP tm user.

Perform logical fixing of variables.

• Override logical fixing() in BCP LP user.

3.6 Internal Data Structures

With few exceptions, the data structures used internally by COIN/BCP are undocumented
and most users will not need to access them directly. However, if such access is desired,
a pointer to the main data structure used by each of the modules can be obtained simply
by calling the method getXxProblemPointer() of the BCP xx user class where xx is the
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appropriate module. This method will return a pointer to the data structure for the ap-
propriate module. Casual users are advised against modifying COIN/BCP’s internal data
structures directly.

3.7 Inter-process Communication

The implementation of COIN/BCP strives to shield the user from having to know anything
about communications protocols or the specifics of inter-process communication. This is
achieved by creating a BCP buffer object and whenever user data needs to be passed from
one process to another the user is asked to pack the data into this buffer on the sending side
and to unpack the data from another buffer on the receiving side. Sending the data around
and receiving it is entirely internal to COIN/BCP. Note that data must be unpacked in
exactly the same order as it was packed, as data is read linearly into and out of the message
buffer. The easiest way to ensure this is done properly is to simply copy the pack statements
into the unpacking function and change the function names.

3.8 Debugging Your Application

3.8.1 The First Rule

COIN/BCP has many built-in options to make debugging easier. The most important
one, however, is the following rule. It is easier to debug the fully sequential version
than the fully distributed version. Debugging parallel code is not terrible, but it is
more difficult to understand what is going on when you have to look at the interaction of
several different modules running as separate processes. This means multiple debugging
windows which have to be closed and restarted each time the application is re-run. Since
the difference between compiling an application for serial and parallel execution is as little
as changing a definition in the Makefile it is trivial to first compile a serial code, debug it
and then compile for parallel execution. Make sure to set the USER OPT flag to “-g” in the
application Makefile.
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3.8.2 Debugging with PVM

If you wish to venture into debugging your distributed application, then you simply need
to set the parameter DebugXxProcesses, where Xx is the name of the module you wish to
debug, to the value “1” (representing true) in the parameter file. This will tell PVM to
spawn the particular process or processes in question under a debugger. What PVM actually
does in this case is to launch the script $PVM ROOT/lib/debugger. You will undoubtedly
want to modify this script to launch your preferred debugger in the manner you deem fit.
If you have trouble with this, please send e-mail to the mailing list (see Section ??).

It’s a little tricky to debug interacting parallel processes, but you will quickly get the
idea. The main difficulty is in that the order of operations is difficult to control. Random
interactions can occur when processes run in parallel due to varying system loads, process
priorities, etc. Therefore, it may not always be possible to duplicate errors. To force runs
that you should be able to reproduce, make sure to disable timeout during cut generation
which is a major source of randomness. Furthermore, run with only one active node allowed
at a time. This will keep the tree search from becoming random. These two steps should
allow runs to be reproduced. You still have to be careful, but this should make things easier.

3.8.3 Using Electric Fence

The make file is already set up for compiling applications using Electric Fence. Instead
of just typing make type make ebcps. The executable name is the same as described earlier,
but with an “e” in front of it.

3.8.4 Using Purify

The make file is already set up for compiling applications using Purify on platforms where
it is available. Make certain that the purify command is in your path and Instead of just
typing make type make pbcps. The executable name is the same as described earlier, but
with an “p” in front of it.



Chapter 4

Sample Application: The MKC
Problem

In this chapter we describe how the solver for the MKC problem were implemented. This
implementation is a sample for a column generation scheme; no cut generation is done.
Since this problem is not so well known, first we will describe the problem setting then the
implementation details.

4.1 The MKC Problem

MKC stands for Multiple Knapsack problem with Color constraints as it is derived by gen-
eralizing the multiple knapsack problem along two directions: (i) adding assignment re-
strictions on items which can be assigned to a knapsack, (ii) adding a new attribute (called
“color”) to the items and then adding the associated “color” constraints which restrict the
number of distinct colors which can be assigned to a knapsack to two.

This problem is motivated by the surplus inventory matching problem in the steel industry
([?]): before planning production, an attempt is made to satisfy orders using leftover slabs
from surplus inventory. The goal of inventory matching is to maximize the total weight of the
orders satisfied from the leftover and to minimize the leftover weight of each slab used in the
matching. For each order we can identify a set of applicable slabs from the surplus inventory.
These assignment restrictions are based on quality and physical dimension considerations.
For any given order only slabs which are of the same quality or better can be applied. In

56
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addition, the thickness and width requirements for each order need to be compatible with
those of the slab applicable. These considerations restrict the number of applicable slabs
for each order. The color constraints place restrictions on the sets of orders that can be
matched to the same slab in the surplus inventory. Because of processing considerations in
the finishing line of a steel mill not all orders assignable to a slab can be packed together
on the slab. There is a route associated with each order that specifies the set of process
operations that need to be applied in the finishing mill. Orders with different routes require
different process operations and are referred to as being of different types. Slabs packed with
different order types need to be cut before they are processed in the finishing mill. Since
cutting slabs is expensive and often the cutting machine is a bottleneck, strong constraints
are posed in terms of the number of allowed cuts per slab. The simplest and most commonly
used constraint used is to limit the number of required cuts to one; i.e., no more that two
order types are allowed on a slab. In order to describe this constraint formally we associate
a unique color with each route code and restrict the number of colors on a slab to be no
more than two. Notice that this implies that we associate a color with each order based on
its route code. This restricts the number of different order types on a slab to two and the
number of required cuts to be no more than one.

4.2 Natural formulation for MKC

This formulation has three sets of variables and four sets of constraints modeling the various
restrictions.

max
N∑

i=1

∑

j∈N i

wixi
j −

N∑

i=1

(Wj −
∑

j∈N i

wixi
j)zj

∑

i∈Nj

wixi
j ≤ Wjzj 1 ≤ j ≤ M (4.1)

∑

j∈N i

xi
j ≤ 1 1 ≤ i ≤ N (4.2)

∑

c∈Cj

yc
j ≤ 2 1 ≤ j ≤ M (4.3)

xi
j ≤ yci

j 1 ≤ i ≤ N, j ∈ Ni (4.4)

xi
j ∈ {0, 1} 1 ≤ i ≤ N, j ∈ Ni

yc
j ∈ {0, 1} ∀c ∈ Cj , 1 ≤ j ≤ M

zj ∈ {0, 1} 1 ≤ j ≤ M
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Table 4.1: List of notations

N : Total number of orders.
M : Total number of slabs.
N i : Set of slabs incident to order i.
Nj : Set of orders incident to slab j.
wi : Weight of order i.
Wj : Weight of slab j.
Cj : Set of colors incident on slab j.
ci : The color of order i.
xi

j : 1 if order i is assigned to slab j; 0 otherwise.
yc

j : 1 if orders of color c obtain material from slab j; 0 otherwise.
zj : 1 if any order is incident to slab j; 0 otherwise.

The total number of variables in this formulation is
N∑

i=1

|N i|+
M∑

j=1

|Cj |+ M =
M∑

j=1

|Nj |+
M∑

j=1

|Cj |+ M

while the total number of constraints is 2
∑N

i=1 |N i|+ 2M + N .

Constraints (4.1) specify that if a slab is used then the total weight of the orders assigned
to the slab cannot exceed the weight of the slab; Constraint (4.2) describes that each order
will be made at most once; while constraints (4.3) and (4.4) enforce the coloring restriction.

Notice that the objective function is non-linear. However, since zj = 0 forces xi
j to be zero

for all i ∈ Nj and zj = 1 implies xi
jzj = xi

j , for all feasible solutions the objective function
is equivalent to

N∑

i=1

∑

j∈N i

wixi
j −

N∑

i=1

(Wjzj −
∑

j∈N i

wixi
j) =

N∑

i=1

∑

j∈N i

2wixi
j −

N∑

i=1

Wjzj

.

The final observation is that the objective function just combines the two stated goals
(maximizing satisfied orders and minimizing wasted parts of slabs) with equal weights.
This may or may not be the best composite objective, but this is how the creator of the
application specified the problem. Also, all that a different composite weight would change
is the multiplier 2 for wi (the coefficient of xi

j) and the multiplier 1 for Wj (the coefficient
of zj); nothing in the proposed algorithms would need to be changed.



4.3. A FORMULATION SUITABLE FOR COLUMN GENERATION 59

4.3 A formulation suitable for column generation

This new formulation has significantly more columns than the original formulation, on the
other hand it results in a well studied problem, the set packing problem ([?]).

There are two types of constraints in this formulation. The first type corresponds to the slabs
in the problem, the second type to the orders. The variables represent feasible production
patterns, that is, variable u has a 1 in the row corresponding to the slab the production
pattern is to be made of and 1’s in the rows corresponding to the orders in the production
pattern. Each variable is a binary variable indicating whether that production pattern is
chosen in the solution or not. Let us introduce the following notation:

• P is the set of feasible production patterns;

• Pj is the set of set of feasible patterns manufacturable from slab j;

• P i is the set of set of feasible patterns containing order i;

• Rk is the row (constraint) corresponding to the slab the production pattern corre-
sponding to uk is made of; and

• Rk is the set of rows (constraints) corresponding to the orders in the production
pattern corresponding to uk.

Let the cost of variable uk be c̄k =
∑

i∈Rk 2wi −WRk
and create the following set packing

problem:

max
∑

k∈P

c̄kuk

∑

k∈P i

uk ≤ 1 ∀1 ≤ i ≤ N (4.5)

∑

k∈Pj

uk ≤ 1 ∀1 ≤ j ≤ M (4.6)

uk ∈ {0, 1} ∀k ∈ P

It is very easy to see that there is a one to one correspondence between the feasible solutions
of this set packing problem and the feasible solutions of the original formulation. Moreover,
the construction of the c̄ cost vector ensures that the corresponding solutions have identical
objective values. Therefore optimizing this problem is the same as optimizing the original
formulation.
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The obvious problem with this formulation is that the number of feasible production pat-
terns is enormous.

4.3.1 Generating columns with positive reduced costs

To improve the solution evenly, for each slab we generate a production pattern whose
corresponding column has the highest reduced cost, i.e., the most positive if there is one
with positive reduced cost. Finding these columns is again a set of optimization problems,
since for a dual vector π the reduced cost of variable uk whose production pattern is made
of slab j is simply

c̄k − πj −
∑

i∈Rk

πi =
∑

i∈Rk

2wi −Wj − πj −
∑

i∈Rk

πi = −(Wj + πj) +
∑

i∈Rk

(2wi − πi) (4.7)

and we want to maximize this over the set of production patterns that can be manufactured
from slab j. For a fixed j the first term is constant. The feasible production patterns
from slab j are those that satisfy the capacity and color constraints, thus this problem is
equivalent to (using the notation from the original formulation):

max
∑

j

(2wi − πi)xi
j (4.8)

∑

i

wixi
j ≤ Wj (4.9)

∑

i

y
c(i)
j ≤ 2 (4.10)

xi
j ∈ {0, 1} (4.11)

which is a knapsack problem with the side constraint that selected objects must have no
more than two different colors. Moreover, the constant term in the reduced cost implies
that we are only looking for production patterns whose reduced cost exceeds Wj + πj .
Since solving the LP relaxation of the knapsack problem (even with the side constraint) is
rather simple, this required lower bound on the reduced cost can be very helpful in quickly
concluding that there is no improving pattern for a particular slab.

4.3.2 Upper bounding

The previous subsection addresses the issue of how to solve the full LP relaxation by it-
eratively solving smaller LP relaxations and generating columns, but we need something
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more. We need to be able to derive an upper bound on the optimal objective value of the
full LP relaxation in every iteration. There are two reasons for this. The first is that in a
Branch-and-Price algorithm we can fathom a search tree node if the upper bound on the
optimal objective value of the LP relaxation at the node is already lower than the value of a
currently known feasible solution. Since we may not be able to solve the subproblems that
generate the columns (after all, even though the knapsack problem is considered relatively
easy, it is NP-complete) we still want to have an upper bound for fathoming purposes. The
second reason is that without an upper bound on the optimal value of the LP relaxation of
the full problem we couldn’t tell how close we are to optimality, we wouldn’t have a proven
gap.

Fortunately, upper bounding is very easy using Dantzig-Wolfe decomposition [?]. Since the
sum of all variables in Pi is not more than 1, the objective value of the LP relaxation cannot
change more than the highest reduced cost (or an upper bound on that value) as a result
of changing the values of the variables in Pi. To get an upper bound on the reduced cost
we can use the LP relaxation of the subproblem (the side constrained knapsack problem)
which is very easy to solve. Now adding all “per slab” upper bounds to the optimal objective
value of the current LP relaxation yields an upper bound on the optimum of the full LP
relaxation.

4.3.3 Finding integral feasible solutions

Another advantage of the column generation based formulation is that it is very easy to
generate feasible solutions. In each iteration we considered the fractional solution and
started by including every variable above 0.5 in the solution. From the set of remaining
fractional variables we exluded all that intersected the already selected variables. Whatever
remained afterwards was always such a small set that we could solve the set packing problem
on that set by enumeration.

4.4 Implementation details

4.4.1 Cuts, variables and solutions

First of all, we did not have to worry about anything cut generation related, since we were
not generating cuts. Since the number of constraints is not too great (number of orders
+ number of slabs) we decided to treat all of them as core constraints, thus completely
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eliminating the need to bother about cuts.

For the variables first we had to decide which ones are going to be core variables and which
ones will be extra variables. Since we had no reason to believe that any one particular
pattern was more likely to be in an optimal solution than some other pattern we decided not
to have core variables at all (this also simplified coding somewhat). Since the variables are
the feasible production patterns, they do not lend themselves to any enumeration scheme, so
we decided not to have indexed variables either. Therefore all our variables are algorithmic
ones. Actually, we had two kind of algorithmic variables, one for the production patterns
and another one for branching, but we will discuss that latter in Section ??. Both types of
variables are derived from BCP var algo and are defined in MKC var.hpp.

We have defined our solution class for two reasons. First, all our pattern variables are
binary variables so there is no reason to include the value of the non-zero ones. Second,
there might be branching variables (not pattern variables) that are at nonzero level as we
go down in the tree, and we didn’t want to include those in a feasible solution. Still, if we
wanted to, we could have used a generic solution type. We just thought that using our own
solution type makes the code clearer.

4.4.2 Branching

The problem with branching when generating columns is that we must be able to generate
columns after branching, too. In other words, every generated column must conform to
whatever branching decisions have been made to that point. That means that branching
on a regular variable is out of question. On one side (when it is fixed to 1) we’d have great
results, it would significantly shrink the search space. However, on the other side (fixing the
variable to 0) the restriction is that we cannot regenerate that variable. But that variable
will almost always “want to be regenerated” (definitely immediately after branching), since
its reduced cost will make it attractive (after all, we have forcibly moved it away from where
it ended up in the LP-optimal solution). So for our problem this would mean that after one
branching we have to check the optimal solution to the knapsack subproblem and if it is
the forbidden variable then we have to find the second best solution. After two branchings
we may have to find the third best solution, etc. This is impossible.

Instead, the following logic is introduced. A branching object will specify whether a par-
ticular order O is manufactured from slab S or not.
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4.4.3 Packing and unpacking

Packing and unpacking of user objects is really straightforward. For example, look at the
MKC var (un)pack() functions. The packing function packs the type of each variable and
invokes the pack member of the variables while the unpacking function unpacks the types
and invokes the appropriate constructor.

In general, when an object is packed it is simply torn down to built-in types and those
are packed. On the other side the date is unpacked in the same order and the appropriate
objects are constructed. In the following subsection we will not mention the (un)packing
member methods.

4.4.4 MKC init

This is the implementation of the intializer class. The TM initializer reads in the problem
and the parameters. Unfortunately this piece is rather complicated since the problem is
specified as an MPS file and we have to extract order and slab information from it. The
problem is loaded into the kss member of the MKC tm class. See the MKC knapsack.hpp file
for data structures. Once the problem is read in a pointer to the MKC tm class is returned.
The LP initializer just returns a pointer to an empty MKC lp object.

4.4.5 MKC tm

There were only four methods (besides the (un)packing ones) we had to deal with. Ini-
tializing the core consisted of simply specifying the core cuts as we had no core variables
(hence no core matrix). Since we had no core variables we had to add some extra variable
in creating the root. There are two options for this, one is to add those variables that were
read in from a file (maybe as a result of a previous run), or we could generate columns for
the all zero dual solution (which is in some sense the optimal solution if we have no vari-
ables...). Displaying the solution has the option to test the solution that it really satisfies
the original formulation (we have used this for debugging purposes) and then the solution
is printed in two different ways. Finally, there will be only one phase and we will generate
columns in it, so we set this in the init new phase() method.

4.4.6 MKC lp



Chapter 5

Sample Application: The
Maximum Cut Problem

In this cahpter, we describe the implementation of a sample application—a solver for the
maximum cut problem. This application is a prototypical example of branch and cut, i.e.,
BCP with a fixed set of variables. No column generation is used in this implementation.
This simplifies many of the basic tasks.

5.1 The Max Cut Problem

Given an undirected graph G = (N,E) with edge weight function ω : E → R, the Maximum
Cut Problem (MCP) is that of partitioning the nodes into two subsets in such a way that
the total weight of the edges in the cut separating the two sets is maximized. This is a well-
known problem—several branch and cut algorithms for dense graphs have been presented in
[2, 8]. In the following description, we consider complete graphs only. For a complete graph
undirected graph with n nodes, a linear relaxation of the integer programming problem is
givem by

min cT x

s.t.
xij + xjk + xik ≤ 2 ∀(i, j, k) ∈ N3 (5.1)
xij − xjk − xik ≤ 0 ∀(i, j, k) ∈ N3 (5.2)

0 ≤ xij ≤ 1 ∀(i, j) ∈ E (5.3)
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(5.4)

Here xij takes value 1 if the edge (i, j) appears in the cut, and 0 otherwise. Constraints
(5.1) - (5.2) are called the triangle inequalities and they define facets of the cut polytope
(see [3]).

Another set of inequalities, which is a superset of (5.1) - (5.2), is the following. Let C be a
cycle and F ⊆ C with |F | = 2k + 1. Then

∑

e∈F

xe −
∑

e∈C\F
xe ≤ |F | − 1 (5.5)

is a valid inequality. This follows from the fact that the intersection of a cycle and a cut has
even cardinality. Note, that although this set of inequalities include those in (5.1) - (5.2),
the polytope defined by these is the same, i.e., these inequalities can be derived from those
in (5.1) - (5.2) (see [3]).

A polynomial time separation algorithm for this class of inequalities has been given in [3].
However we use a faster heuristic as follows. Let x̄ be the fractional solution we want to
separate and define weights

we = ce ·max(x̄e, 1− x̄e). (5.6)

Then find a maximum weighted spanning tree T with weights w. For an edge e ∈ T , if
x̄e ≥ 1− x̄e then the end-nodes of e should be on opposite sides of the cut—we give a label
“A” to this edge. Otherwise, if x̄e < 1− x̄e then the end-nodes should be on the same side
of the cut, and we give the label “B” to this edge. Once every edge in T has been labeled
we have a heuristic cut K. For each edge e /∈ T , we add it to T and look at the cycle C
that is created. If e ∈ K, we test the violation of an inequality (5.5), where the set F is
given by the A-edges. If e /∈ K the set F is given by the A-edges and the edge e. Although,
as we noted above, inequalities (5.5) are implied by (5.1) - (5.2), we use (5.5) because our
simple separation heuristic is faster than enumerating triangles.

5.2 Implementation

Because the size of the problems we can currently solve is small, we can easily include all the
edge variables explicitly. Hence, we do not need to consider dynamiuc column generation.
Hence, we do not need to concern ourselves with the BCP vg user class or the BCP var algo
class. To simplify things further, we decided not to use a separate cut generator either. This
is usually a good approach when cut generation is relatively inexpensive. It is also a good
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idea during initial development since it makes debugging much easier. Because we are not
using a separate cut generator, we do not need to consider the BCP cg user class either.

As with virtually any BCP implementation, we will need to consider the BCP tm user
and BCP lp user classes. Also, because we will be dynamically generating algorithmic
cuts, we will need to derive a new class to represent the cycle cuts (5.5) from the class
BCP cut algo. Finally, we will need to derive a new class for describing the feasible solutions
from BCP solution. In the remainder of the section, we provide a high-level description of
each of these classes. The reader is encouraged to look at the source code and the HTML
documentation for more detail. See Chapter 2 for information on getting and examining
the source code and documentation.

5.2.1 MC tm

This is the class derived from the BCP tm user class. This class is derived for the purpose
of overriding a variety of functions that we need to customize. These consist mainly of
routiines that pass data between the processes during parallel execution and the routines
for describing the problem core and root node. Below, we list each function and describe
how it was re-implemented.

• unpack feasible solution(): This subroutine exists to unpack the user-defined so-
lution class described in Section 5.2.3. The corresponding pack feasible solution()
routine will be described in Section 5.2.2. Also, see Section 5.2.3 for a description of
how the feasible solutions are represented.

• pack module data(): Here, we are packing the data that needs to be sent to the LP
process. This consists of the number of nodes and a list of the edges in the graph.
The corresponding unpack module data() routines is described in Section 5.2.2.

• pack cut algo(): Here, we pack the cycle cuts to be sent to the LP solver. The
corresponding unpack cut algo() routines is described in Section 5.2.2.

• unpack cut algo(): Here, we unpack the cycle cuts that are received from the LP
solver. The corresponding pack cut algo() routines is described in Section 5.2.2.

• initialize core(): Essentially for convenience and ease of implementation, we place
all the variables in the core. This is possible since we are not using column generation,
but may not be the most efficient method. None of the cuts are placed in the core
since we don’t have an inherently important subset that we know should never be
removed from the problem.
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• create root(): To initialize the root node, we use some heuristics to generate an
initial set of cycle cuts. However, as noted before, these are “extra” cuts and do not
get put into the core. They may be removed later in the calculation.

• display feasible solution(): This routine is used essentially to display the solu-
tions in a more “user-friendly” way, instead of simply as a list of variable indices and
values. See Section 5.2.3 for a description of how the feasible solutions are represented.

5.2.2 MC lp

This is the class derived from the BCP lp user class. Again, this class is derived for the
purpose of overriding a variety of functions that we need to customize. These consist not
only of routiines that pass data between the processes, as before, but also routines for
generating cuts and performing strong branching. Below, we list each function and describe
how it was re-implemented.

• unpack module data(): Here, we unpack the data sent from the TM. This data is
stored in a user-defined class called MC problem.

• pack cut algo(): Here, we pack the cycle cuts to be sent to the TM. The cuts are
represented as a list of edges—first the edges in the set F , then the edges not in F .
To contruct the corresponding valid inequality, we need only determine which edges
variables are present in the relaxation. See the description of cuts to rows() below.

• unpack cut algo(): Here, we unpack the cycle cuts that are received from the TM
along with the description of a subproblem.

• modify lp parameters(): Here, we modify the LP parameters before solution of the
relaxation commences.

• test feasibility(): Because integrality of the solution is not enough to imply fea-
sibility, we needed to override this method. If it is found that the solution is integral
but not feasible, then cuts proving the infeasibility are easy to derive and are added
to the LP relaxation, allowing the solution process to continue.

• pack feasible solution(): Here, any feasible solutions that are found are packed
and sent to the TM for storage. See Section 5.2.3 for a description of how the feasible
solutions are represented.
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• cuts to rows(): This subroutine generates the rows of the current LP relaxation
corresponding to the cuts to be added. For cycle cuts, this consists simply of deter-
mining which of the edge variables that have a positive coefficient in the cycle cut, i.e.,
the variables corresponding to the edges of the corresponding cycle, are active in the
current subproblem. For each variable corresponding to an edge that is in the cycle
cut and also active in the subproblem, the corresponding matrix coefficient must be
added to the row description.

• compare cuts(): This routine simply compares two cuts and determines if they are
the same cut. In the case of cycle cuts, this is straightforward.

• generate cut in lp(): This is the subroutine that generates the cuts to be added to
the relaxation. A description of the algorithm for generating the cycle cuts was given
in Section 5.1.

• select branching candidates: Here, we select the edges to be branched on. We
branch basically on edges that are have high cost and are close to value .5.

5.2.3 MC solution

Although feasible solutions to this problem consist of a set of edges, they can be more
compactly represented as simply a list of the nodes contained in either shore of the cut.
This user-defined class is used for representing the solutions in this more compact, intuitive
fashion.

5.2.4 MC cycle cut

This class was derived from BCP cut algo to contain the representation of the cycle cuts
(5.5). They are stored simply as a list of edges in the cycle. The list is in two parts—first,
the edges in the set F are listed and then those not in the set F . Of course, the cardinality
of the set F has to be stored as well.

5.2.5 Other Classes

There are a number of other classes that we have defined to hold data used during the
solution process. Please see the HTML documentation and the source code itself for a list
of these.
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