
BAC : A BCP based Branch-and-Cut Example

François Margot1

May 2003, Updated January 2010

Abstract

This paper is an introduction to the Branch-and-Cut-and-Price (BCP)
software from the user perspective. It focuses on a simple example
illustrating the basic operations used in a Branch-and-Cut: cuts and
heuristic solutions generation, and customized branching.

1Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213-3890,
U.S.A. Email: fmargot@andrew.cmu.edu .
Work initiated in 2003 while visiting the Department of Mathematical Sciences, IBM T.J.
Watson Research Center, Yorktown Heights, NY 10598.

Contents

1 Introduction 3

2 BCP Download and Installation 4

3 Documentation 6

4 Custom Configuration 6
4.1 Using Lapack and Blas . 7
4.2 Using Cplex . 8
4.3 Using the Debugger . 9
4.4 Compiling and Installing . 9

5 Re-configuring 10

6 Overview of BCP 10

7 BAC Compilation and Execution 11

8 Data Structures 12

9 The Problem 14

10 Types of Constraints and Variables 14

11 Main Classes: BB prob, BB tm, BB lp and BB packer 16
11.1 Class BB tm . 16
11.2 Class BB lp . 18
11.3 Class BB packer . 22

12 Initialization of User Classes and Class BB init 22

13 User Data 23

14 Output 24

15 Parameters 27

2

1 Introduction

This paper is an introduction to the branch-and-cut-and-price (BCP) software
available in the COIN-OR repository [1]. Its scope is rather limited as its
goal is to allow a new user to develop quickly his first application. The
perspective is from a user point of view, skipping implementation details
and options that are irrelevant for developing a simple application (i.e. “the
less I know about BCP, the better”). In particular, it focuses only on setting
up a branch-and-cut algorithm, as adding the column generation process
should not be too difficult once the branch-and-cut part is understood and
set up.

All parts of the example were written for illustration purposes and were
chosen to be mathematically as simple as possible. No claim is made re-
garding the efficiency or style of the code of the examples. Some operations
could be done more efficiently by using additional features of BCP, at the
cost of clarity. Learning how to use additional features and facilities of BCP
can be done later on.

The reader is assumed to be familiar with the branch-and-cut process
and its standard terminology. (An excellent introduction can be found in
[10, 13, 15, 17].) Basic knowledge of C++ is also required.

The code of the example BAC is based on the example BranchAndCut
written by L. Ladányi that was available in the COIN-OR repository. Ad-
ditional introductory material for BCP and COIN-OR in general is available
from [14]. In particular, it provides the SHELL example that can be used as
template for developing a new application.

Three other examples for column generation with BCP are available in
the directory Bcp/examples of the BCP package: MCF-1, MCF-2, and MCF-3.
Limited documentation for these three examples can be found in their re-
spective directories. More involved codes based on BCP can be found in the
Applications directory in the root directory of the BCP package: MaxCut
(an efficient branch-and-cut code for solving Maximum Cut problems) [9],
Csp (a branch-and-cut-and-price code for solving cutting stock problems)
[12], and Mkc (a branch-and-cut-and-price code for solving Multiple Knap-
sack with Color problems) [11].

This document can be read without knowledge of the BAC code itself,
but it is probably better to have access to the code while reading.

Section 2 covers the installation of the COIN-OR package BCP and Sec-
tion 3 the generation of its html documentation, including the documenta-
tion of the BAC example. Sections 4 and 5 explain how to customize the
installation of BCP by adding support for the debugger, and Cplex. Sec-

3

tion 6 gives a general overview of BCP and other packages. Section 7 covers
the installation and compilation flags of the BAC example. Section 8 lists
two data structures defined in BCP that are used in the example: vectors
and matrices. Section 9 describes the integer linear problem solved in the
BAC example. Section 10 describes the three types of BCP variables and
constraints. Section 11 covers the three main classes of the example: the
class BB prob (description of the problem), BB TM (tree manager) and BB LP
(operations at the nodes of the tree). Section 13 describes how the user
can define objects associated with the nodes of the enumeration tree that
depend on the parent node. Finally, Section 14 explains the cryptic part of
the output and Section 15 discusses briefly the parameter file for BCP.

The description in this paper corresponds to the code in the tar ball
Bcp-1.2.3.tgz. Questions or bugs related to BCP, BAC or COIN-OR in gen-
eral should be directed to the bugs reporting sites of the COIN-OR reposi-
tory and other mailing lists and Trac pages available there [1, 2, 3, 6].

2 BCP Download and Installation

This section covers the installation of the software BCP on a machine run-
ning Linux Fedora 12 with the tc shell and having the commercial software
Cplex installed. If Cplex is unavailable, simply skip the corresponding in-
stallation steps. If you run another shell or use another Linux distribution,
some of the Linux commands might be slightly different. Note that this
project can also be compiled under Cygwin on Windows machines.

Below, the symbol “%” replaces the Linux prompt.
There are more than one way to get code from COIN-OR. Besides the

use of tar balls described below, it is also possible to use the Subversion
versioning software (svn) [16]. While using svn is more flexible, it is also
more complex. For more information about using svn go to the COIN-OR
help pages [4].

1. Go in your main directory.

2. Download the BCP package tar ball: Using a web browser, go to the
COIN-OR download site [7], click on BCP and download the most recent
tar ball of BCP. At the time of this writing, this is Bcp-1.2.3.tgz.

3. Decompress the tar ball

% tar -xvf Bcp-1.2.3.tgz

4

4. Go in the newly created directory Bcp-1.2.3:

% cd Bcp-1.2.3

5. Create a build directory build and go there:

% mkdir build

% cd build

6. Configure the package according to your system and install the exam-
ple codes in Bcp-1.2.3/build/Bcp/examples:

% ../configure -C >& last configure.txt

If the last few lines of the file last configure.txt do not contain:

configure: Main configuration of Bcp successful

then the configuration failed and you might need to provide informa-
tion to the configuration script. The Trac pages [4, 5] might help you
figure out what is wrong.

7. Compile the code:

% make

8. To install header files in the directory Bcp-1.2.3/build/include/coin,
the libraries in the directory Bcp-1.2.3/build/lib, and the executa-
bles in the directory Bcp-1.2.3/build/bin use:

% make install

Note that the use of the directory Bcp-1.2.3/build is not absolutely
necessary and it is possible to build the code from Bcp-1.2.3 or from any
other directory of your choosing. The only difference is that Step 6 must then
be replaced with the appropriate command launching the configure script
located in Bcp-1.2.3. The advantage of using a separate build directory
instead of using Bcp-1.2.3 is that it is then easy to have several versions
of the code simultaneously by creating separate build directories for each
version, as we will see below. It makes it also easy to just delete the build
directory to start configuration from scratch, as a last resort.

If you have trouble compiling, installing or linking your code, you might
need to follow the steps listed in Section 5. Note that when linking your
own code with libraries located in directory Bcp-1.2.3/build/lib, you
should always use the header files in Bcp-1.2.3/build/include/coin, not
the header files that you can find in other subdirectories of Bcp-1.2.3.

5

3 Documentation

The Trac page for Bcp is located at [3]. Additional information, access to
mailing lists, and instructions for reporting bugs can be found there.

If you have Doxygen [8] available on your machine, you can build the
html documentation by typing, in the directory Bcp-1.2.3/build:

% make doxydoc

Then open the file Bcp-1.2.3/doxydoc/html/index.html with a browser
and click on the link Classes on top of the page. In your browser, make a
bookmark reference to that page. This page will be referred to as DocBcp
in the future.

Note that the above command creates the documentation for all the
projects in the BCP package. If you prefer to generate the documentation only
for a subset of these projects, you can skip some directories by editing the
file Bcp-1.2.3/doxydoc/doxygen.conf (by setting the value of the EXCLUDE
variable, for example) and reissuing the above command.

If Doxygen is not available on your machine, the documentation is avail-
able in the Bcp subdirectory of [7].

4 Custom Configuration

Assuming that you were successful in installing the code, following the in-
structions above, we can now start from scratch and add customization. For
example, we want to compile everything with the debugger option and add
access to Cplex. If you do not have Cplex, skip the part of the text related
to it.

To be able to use Cplex, its location on the system should be given to
the configure script. For simplicity, we use environment variables for this.

The configure script can be customized using a list of parameters. To
see a short list, type in Bcp-1.2.3/build:

% ../configure --help

To see the full list, type:

% ../configure --help=recursive

The parameters to the script can be passed either through the command
line, or with a configuration file. We use the latter in this document. For

6

more information about configuration options or use of the command line
see [4].

1. Go to Bcp-1.2.3, create subdirectories buildg, create a share direc-
tory with a configuration file config.site and go to buildg:

% cd ∼/Bcp-1.2.3
% mkdir buildg

% cd buildg

% cp -r ../BuildTools/share .

2. Open the file Bcp-1.2.3/buildg/share/config.site with your fa-
vorite editor.

In the remainder of this document, any mention of config.site refers
to the file opened in Step 2 above and we use buildg as a shorthand for
Bcp-1.2.3/buildg.

4.1 Using Lapack and Blas

For better numerical stability of the LP solver, it is possible to compile
packages with the Lapack and Blas libraries. The configure script installing
a COIN-OR package does its best to find Lapack and Blas libraries on
your system. These are usually, but not always, located in /usr/lib or
/usr/lib64. To check if the configure script was successful in finding these
libraries, use from buildg:

% grep lapack ../build/last configure.txt

If you get a line like:

checking whether -llapack has LAPACK... no

then configure was not able to find the Lapack library and you need to add
it manually. If the last word on the line is yes, then Lapack was found and
you can skip the remainder of this Section.

Define the environment variables ENV LAPACK LIB and ENV LAPACK LIB NAME
and set them the directory containing the Lapack library and to its exact
name respectively. For example, on my machine:

% setenv ENV LAPACK LIB /usr/lib

% setenv ENV LAPACK LIB NAME liblapack.so.3

7

Define the environment variables ENV BLAS LIB and ENV BLAS LIB NAME
and set them the directory containing the Blas library and to its exact name
respectively. For example, on my machine:

% setenv ENV BLAS LIB /usr/lib

% setenv ENV BLAS LIB NAME libblas.so.3

Define the environment variables ENV GFORT LIB and ENV GFORT LIB NAME
and set them the directory containing the gfortran library and to its exact
name respectively. For example, on my machine:

% setenv ENV GFORT LIB /usr/lib

% setenv ENV GFORT LIB NAME libgfortran.so.3

Note that these six commands need to be issued at the beginning of each
session. You might want to put them in your .tcshrc file so that they are
automatically executed when you log in.

Finally add the following lines in config.site. Make sure to type them
without extra space and with the quotation signs.

with lapack=”$ENV LAPACK LIB/$ENV LAPACK LIB NAME”

with blas=”$ENV BLAS LIB/$ENV BLAS LIB NAME”

CXXLIBS=”$ENV GFORT LIB/$ENV GFORT LIB NAME”

4.2 Using Cplex

Define the environment variable ENV CPLEX LIB and set it to point to the
directory containing the Cplex library. It is assumed that its name is either
libcplex.a or libcplex.so. Define the environment variable ENV CPLEX H
and set it to point to the directory containing the Cplex header file (its
name should be cplex.h).

For example, on my machine:

% setenv ENV CPLEX LIB \
/usr/ilog/cplex121/lib/x86 debian4.0 4.1/static pic/

% setenv ENV CPLEX H /usr/ilog/cplex121/include/ilcplex

8

Note that these two commands need to be issued at the beginning of
each session. You might want to put them in your .tcshrc file so that they
are automatically executed when you log in.

Finally add the following lines in config.site. Make sure to type them
without extra space and with the quotation signs.

with cplex lib=“-L$ENV CPLEX LIB -lcplex -lpthread”

with cplex incdir=$ENV CPLEX H

Once the code is compiled and installed (see Section 4.4 below), you can
switch to using Cplex by replacing all occurrences of

OsiClpSolverInterface by OsiCpxSolverInterface

in the file LP/BB lp.cpp and by commenting out the line

clp->getModelPtr()->messageHandler()->setLogLevel(0);

in the method BB lp::initialize solver interface().

4.3 Using the Debugger

Remove the leading “#” on line 195 of config.site. This activate the
instruction “enable debug=yes” and the whole package will be compiled
for use with a debugger.

4.4 Compiling and Installing

It remains to configure, compile and install the code in buildg. This is done
by following steps 6 to 8 of Section 2 from the directory buildg.

To check if the additional libraries were found, use:

% grep lapack last configure.txt

% grep blas last configure.txt

% grep cplex last configure.txt

and you should get:

checking whether user supplied LAPACKLIB="/usr/lib/liblapack.so.3"
works... yes

checking whether user supplied BLASLIB="/usr/lib/libblas.so.3"
works... yes

checking if user provides library for Cplex... yes

9

5 Re-configuring

If you want to recompile a package after changing options of the configure
script (i.e. modifying config.site), you must use in the corresponding
build directory the five commands:

% make uninstall

% make distclean

% ../configure -C >& last configure.txt

% make

% make install

The first command erases the installed libraries and header files. The
second command erases all makefiles, object files and any information cre-
ated by the original configure script. These two commands then essentially
resets the package to its initial state. If you only want to recompile the code
without reconfiguring, there is no need to use the first command and you
may use make clean instead of make distclean. If all else fails, erase the
directory Bcp-1.2.3/buildg and continue with steps 5 to 8 of Section 2.

6 Overview of BCP

BCP is a collection of classes and methods handling the enumeration tree,
constraints, and variables. It needs an LP solver, but the LP solver is not
part of BCP. The interface between BCP and the solver is handled by the
COIN-OR Osi (Open Solver Interface) library. The advantage of using Osi
is that replacing an LP solver by another one requires only small (ideally
zero) changes in the code. The example is written to run with the LP solver
named Clp. All the code that you need is included when you download the
code from the COIN-OR repository [1].

BCP handles only minimization problems.
BCP can be used for developing applications running on parallel machines.

This comes with an additional cost for dealing with the passing of messages
between processors (the “packing” and “unpacking” procedures present in
many BCP classes). Since different processors are not assumed to share
memory, it is impossible to use pointers to pass information between them.
However, if the application runs only on a non parallel machine, the code can

10

be simplified by the use of pointers in the packing and unpacking procedures.
This is what is done in this example, and thus the example will not run on
parallel machines. See other examples (MCF-1, MCF-2, MCF-3 for proper
“parallel” packing and unpacking procedures.

Four examples are installed in Bcp-1.2.3/buildg/Bcp/examples: MCF-1,
MCF-2, MCF-3 and BAC. The MCF examples are multicommodity flow ex-
amples using column generation, while BAC is an example for branch-and-
cut. In the reminder of this document, we use BAC as a shorthand for
Bcp-1.2.3/buildg/Bcp/examples/BAC. The source files of the BAC exam-
ple are split into a number of subdirectories:

• BAC/include contains all of the header files.

• BAC/TM contains the code for the tree manager (BB tm.cpp); it also
contains the body of the main() procedure.

• BAC/LP contains the code for the operations at the node level (BB lp.cpp).

• BAC/Member contains the code for classes in between TM and LP. In
the example, it contains the code for handling cuts (BB cuts.cpp),
user data (BB user data.cpp) (see Section 13), packing and unpack-
ing methods (BB packer.cpp) and the initialization of the process
(BB.cpp, BB init.cpp).

7 BAC Compilation and Execution

Normally, typing make in the BAC directory is all that is needed to install
the package, provided that the gnu make is available through that command
and that the COIN-OR package BCP has been installed in the directory
∼/Bcp-1.2.3/buildg. If this is not the case, some modifications might be
required, see the file INSTALL in the directory BAC. (When the location of
files is mentioned below, the given path always starts implicitly from the
directory BAC for files specific to the example or it starts with Bcp-1.2.3 or
build for files related to BCP or other COIN-OR projects.)

The file Makefile has a line starting with “USER DEFINES = ”. Three
flags can be put on this line :

• -DHEUR SOL : Generate heuristic solutions (by simple rounding of the
LP solution).

11

• -DCUSTOM BRANCH : Use a customized branching strategy (branching
on the first non-integer variable). If this flag is not set, the code uses
the default branching of BCP (strong branching).

• -DUSER DATA : The code associates with each node of the branch-and-
cut tree a vector containing the indices of the variables set to 0 by
branching decisions leading to the node. To avoid cluttering the pre-
sentation of the basic features with details related to user data, the
reader interested in using user data will find all the relevant material
in Section 13.

The executable (bac) is created in the directory BAC. If the flag(s) used
are modified in the file Makefile, make sure to use make clean before
issuing the make command. (The first line of the output gives the flags
that were used when compiling Member/BB init.)

Once the program is compiled, it can be run from the BAC directory
by typing either ./bac or ./bac bb.par. If the last lines of the output
obtained from using ./bac do not contain:

TM: Default BCP tm user::display feasible solution() executed.
then something is wrong. See the Trac pages [2, 3, 4, 5] for help.
The second command makes the code read the parameter file bb.par.

(Parameters are discussed below in Section 15.) The obvious difference
between the two commands is in the amount of output that is produced.
The first command yields a detailed output. The second command prevents
the code of diving and uses Depth-First-Search instead of Best-Bound in the
selection of the next node to process.

If the LP file bac.lp is in the directory from which bac is run, that
file is used as input file. Otherwise, the problem is constructed in memory.
Comments in the code1 show how to use MPS files instead of LP files.

Do not run the code with an LP file other than bac.lp, as the code
likely will crash. To develop a new application, use the SHELL example from
[14].

8 Data Structures

A few data structures are available within BCP and COIN-OR. Two of them
will appear in the example: a class implementing vectors and a class imple-
menting matrices.

1TM/BB tm.cpp in method BB tm::readInput().

12

The class BCP vec is an implementation of an array with elements of
generic type T with facilities for resizing. If V is a BCP vec<T>, the following
methods are used:

• BCP vec<T> V(k) : creates a vector with k entries of type <T>.

• V.size() : returns the number of elements stored in V.

• V[i] : access the element stored at position i.

• V.push back(x) : inserts element x to the end of the vector; if the
space allocated to V is filled, then V is resized before inserting x.

• V.clear() : removes all entries in V.

• CoinFillN(V, n, elem) : put elem in the first n entries of V.

See the documentation DocBcp->BCP vec for the full description of this
class.

The class CoinPackedMatrix implements a two dimensional matrix stored
either by rows or by columns. For a CoinPackedMatrix M stored by rows,
the following methods are used in the examples:

• M = new CoinPackedMatrix(false, a, b) : creates a matrix stored
by rows (first Boolean parameter false). Roughly speaking, the pa-
rameter 0 ≤ a ≤ 1 is a percentage of extra space to be allocated when
a reallocation of the matrix occur: When trying to insert k new rows in
a matrix having m rows and allocated space for p rows, with k+m > p,
the matrix will be reallocated to store (k+m)(1+a) rows. The parame-
ter b is similar, for reallocation when columns are added. Note that if a
matrix stored by columns is created using CoinPackedMatrix(true,
a, b), then a is used for the reallocation of columns and b for the
reallocation of rows.

• submatrixOf(M, nb ind, v ind) : extracts from M the submatrix
formed by the rows of M with indices in the vector v ind (having nb ind
entries).

• M.times(v, v res) : Computes the matrix-vector product (M v) and
puts the result in v res.

See the documentation DocCoin->CoinPackedMatrix for the full de-
scription of this class.

13

9 The Problem

The example solves the following integer linear program with ten binary
variables x0, . . . , x9 (indices taken modulo 10):

Minimize
9∑

i=0

−xi

s.t. xi + xi+1 + xi+2 ≤ 1, for i = 0, . . . , 9,

x0 + x1 = 1

xi + xi+1 ≤ 1, for i = 1, . . . , 9,

x1 + x3 + x9 ≤ 1

x0 + x2 + x4 ≤ 1

x0 + x3 + x7 ≤ 1

x1 + x4 + x5 ≤ 1

x5 + x6 + x7 ≤ 1

x0 + x6 + x8 ≤ 1

xi ∈ {0, 1} for i = 0, . . . , 9.

The formulation is a little bit silly, as constraints xi + xi+1 ≤ 1 are
implied by xi + xi+1 + xi+2 ≤ 1 and could thus be removed. However, since
the purpose of this example is more to illustrate a few features of BCP than
solving a mathematically interesting problem, this should be good enough.

Despite the apparent triviality of this integer linear program, the output
of the code depends on the compilation flags in use (see Section 7 for the
possible compilation flags).

10 Types of Constraints and Variables

BCP has two types of constraints (or cuts):

• Core constraints come from the initial LP formulation and are present
in the LP at every node of the tree.

• Algorithmic constraints are cuts given implicitly by a separation al-
gorithm. Algorithmic constraints, unlike core constraints, might be
added or removed from the node LP. The user controls which cuts

14

are added, but cut removal is done by BCP based on a value called
“row effectiveness” (number of consecutive iterations for which the
corresponding slack variable is zero, for example). Limited user input
(through the parameter file discussed in Section 15) is used for the
definition of row effectiveness.

In the example, a third type of constraints, indexed constraints, is used.
Indexed constraints are constraints in bijection with a set of integers, such
that (user defined) methods to generate the constraint from the correspond-
ing integer and vice-versa are available. Indexed constraints are imple-
mented as a special type of algorithmic cuts.

A typical use of indexed constraints is in the situation where some of
the constraints of the initial formulation are more important than others
and the initial formulation has a large number of constraints: Important
constraints will become core constraints and the remaining ones will be
indexed constraints, stored in an (indexed) array of constraints.

When developing a new application, the first decision to make is how to
partition the constraints into the three classes.

Example: For the example described in Section 9, the core constraints
are chosen as:

x0 + x1 = 1

xi + xi+1 ≤ 1, for i = 1, . . . , 9.

The indexed constraints are chosen as:

x1 + x3 + x9 ≤ 1

x0 + x2 + x4 ≤ 1

x0 + x3 + x7 ≤ 1

x1 + x4 + x5 ≤ 1

x5 + x6 + x7 ≤ 1

x0 + x6 + x8 ≤ 1.

Finally, the algorithmic constraints are chosen as:

xi + xi+1 + xi+2 ≤ 1, for i = 0, . . . , 9.

�
Instead of storing the sense (“≥”, “≤”, or “=”) and right hand side of an

inequality, BCP stores a lower bound and an upper bound for each inequality

15

(“ranged” constraints). Setting one of the bounds to ±∞, or setting both
bounds to the same value allows for the three possible senses.

BCP does not have have (yet) the possibility of using global cuts: all cuts
passed to BCP are handled as local cuts, valid only in the subtree rooted
at the node where the constraint is generated. The user may of course
implement pools for holding global cuts, but he will then be responsible for
the management of those cuts. While this might be done relatively easily
for a non-parallel implementation, this becomes trickier when parallelism is
involved.

In the example, coefficients of core and indexed constraints are stored in
CoinPackedMatrix objects in the class BB prob. To store algorithmic cuts,
the class BB cut2 is used. It implements in a standard way a representation
of a cut as its set of nonzero coefficients. The class BB indexed cut3 is used
to handle indexed cuts

The variables in BCP may also be of one of two types: core, or algorith-
mic. Since we focus here on a branch-and-cut, all variables are core variables.
Each variable has an upper and a lower bound, possibly ±∞. In addition,
each variable is labeled as integer, binary or continuous. Variables are inter-
nally numbered with integers, starting at 0. When BCP reports information
related to variables, it is with respect to its internal numbering.

11 Main Classes: BB prob, BB tm, BB lp and BB packer

The main() function is located in the file TM/BB tm.cpp and uses an ob-
ject of class BB init to pass to BCP the user-defined classes as discussed in
Section 12.

The most important classes for the example are BB prob, BB tm, BB lp,
and BB packer. The class BB prob4 is used for the problem description and
contains the definitions for handling core and indexed constraints. This is
the class that the user modifies to store additional information about the
problem.

11.1 Class BB tm

The class BB tm5 (tree manager) contains a single object of type BB prob,
named desc, holding the description of the problem (defined by the user).

2DocBcp->BB cut.
3DocBcp->BB indexed cut.
4include/BB.hpp, Member/BB.cpp or DocBcp->BB prob.
5include/BB tm.hpp, TM/BB tm.cpp or DocBcp->BB tm.

16

The remaining methods are essentially those for setting up the LP at the
root, and for packing initial data.

The class BB tm is derived from the class BCP tm user6. Some of the
data members in BB prob are:

• double EPSILON : value used for numerical precision when comparing
numbers of type double. This value is only for the user calculations,
BCP having its own parameter for numerical precision. (BCP uses the
value set for numerical precision in the LP solver.)

• bool *integer : integer[j] = true if and only if variable j is an
integer variable;

• double *clb, *cub : clb[j] = lower bound on variable j. cub[i]:
upper bound on variable j. (Use ±BCP DBL MAX7 for unbounded
variables.)

• double *obj : obj[j] = objective function coefficient of variable j.

• double *rlb core, *rub core : rlb core[i] = lower bound for core
constraint i. rlb core[i] = upper bound for core constraint i.

• double *rlb indexed, *rub indexed : rlb indexed[i] = lower bound
for indexed constraint i. rlb indexed[i] = upper bound for indexed
constraint i.

• CoinPackedMatrix *core, *indexed : matrices holding the coeffi-
cients of the core and indexed constraints. Core constraints will be
transmitted to BCP through the method initialize core() and BCP
will manage them. Indexed constraints are managed by the user who
decides which of them should be added to the formulation at the node
level. Once an indexed constraint (or algorithmic cut) is added to the
formulation at node S, it will remain in the formulation of all children
of S, until deleted by BCP (based on row effectiveness).

Prominent methods in BB tm are:

• readInput() : reads input data.

• pack module data() : packs the data stored in BB prob that the user
wants to be available at the nodes of the tree. The corresponding un-
packing method unpack module data() is in the class BB lp8. In the

6DocBcp->BCP tm user.
7buildg/include/BCP math.hpp.
8DocBcp->BB lp.

17

example, this method is quite simple, as it simply writes the address
of the object desc of class BB prob. (This is the type of packing that
is impossible to use to run the program on parallel machines).

• initialize core() : Transmits core constraints and core variables to
BCP.

• create root : set up the data at the root node. In this example, this
method is really used only when the flag -DUSER DATA is set.

• display feasible solution() : self explanatory.

11.2 Class BB lp

The class BB lp contains the methods operating at the nodes of the tree:
cut generation, branching selection, and heuristic solution generation among
others. The main loop (exited by fathoming or branching decision) performs
the steps in the following order (steps followed by a “(u)” indicate that the
user has an entry point for that step):

1. Initialize the new node (u).

2. Solve the node LP.

3. Test the feasibility of the node LP solution (u).

4. Update the lower bound for the node LP.

5. Fathom the node (if possible).

6. Perform (logical, reduced cost) fixing on the variables (u).

7. Update the row effectiveness records.

8. Generate cuts (u).

9. Generate a heuristic solution (u).

10. Fathom the node (if possible).

11. Decide to branch, fathom, or repeat the loop (u).

12. Add to the node LP the cuts generated during the iteration, if the
loop is repeated.

13. Purge the constraint pool.

18

Note that if, in an iteration, cuts are generated but the decision to branch
is taken, then the cuts are discarded unless the next node to be processed is
one of the sons of the current node. Also, if variables are successfully fixed
in Step 6 and primal feasibility is lost, the control returns to Step 2.

It is important to realize that BCP creates a single object of type BB lp for
the whole enumeration, instead of creating one per node of the enumeration
tree. (This holds for a non-parallel execution; in the parallel case, BCP creates
one such object per processor used to process nodes.) The data members
are of course updated at each node of the tree, but the same object is
used throughout the enumeration. This might be counter-intuitive if one
sees (incorrectly) a BB lp object as an object used for solving a node LP.
The proper way to see such an object is as a generic solver for nodes LP,
used to solve node LPs upon request. A BB lp object is thus created once
during the solution process. This is motivated by efficiency reasons as the
amount of data that the user needs when processing a node might be quite
large. Copying and sending it for each node would be rather inefficient. This
implies that variables that the user adds to the description of the class might
need to be initialized somewhere else than in the constructor of BB lp. The
method initialize new search tree node() described below is available
for this.

Some of the data members in class BB lp are:

• BB prob *p desc : pointer to the object desc of class BB tm.

• MY user data *p ud : pointer to the object p ud of class MY user data
associated with the node. See Section 13 for a description of this class.

• int in strong : An integer variable having value 1 while BCP is per-
forming strong branching and zero otherwise. Its use will be explained
below when describing the method test feasibility().

• double EPS : A double holding the value of EPSILON defined in
BB prob.

• BCP vec<BCP cut*> algo cuts : vector to hold pointers to algorith-
mic cuts generated but not yet transmitted to BCP.

• BCP vec<int> violated cuts : Vector used to store the indices of
the indexed cuts violated by the current LP solution.

After solving the node LP, the following LP termination codes from class
BCP termcode 9 might arise:

9DocBcp->BCP lp result.

19

• BCP Abandoned = 0x01: some unresolved numerical problem happened
in the LP solver and the problem was not solved to optimality.

• BCP ProvenOptimal = 0x02: Optimal solution found.

• BCP ProvenPrimalInf = 0x04: Primal infeasible.

• BCP ProvenDualInf = 0x08: Dual infeasible.

• BCP PrimalObjLimReached = 0x10: Not relevant.

• BCP DualObjLimReached = 0x20: Dual bound is higher than the best
known feasible solution value. (Possibly not solved to optimality.)

• BCP IterationLimit = 0x40: Number of iterations in the solver hit
the given limit. (Possibly not solved to optimality.)

• BCP TimeLimit = 0x80: Time limit exceeded. (Possibly not solved to
optimality.)

Note that several return codes can be added together to get the final
return code if more than one applies.

Prominent methods in BB lp are:

• initialize solver interface() : Entry point to communicate with
the LP solver at the beginning of the execution (called only once from
the root node). In the example, this method is used to turn off the
printing of the output of Clp.

• initialize new search tree node() : Entry point at the beginning
of the processing of a node. The associated LP is set up but not yet
solved. Natural place for initializing user defined variables of BB lp.

• modify lp parameters() : Called each time an LP is solved by the LP
solver. Used primarily for changing the maximum number of simplex
iterations to perform while doing strong branching. It is also used to
set the variable in strong to its correct value and to print the current
node LP in the file lpnode.lp (by uncommenting a few lines in the
method, the problem is printed in file lpnode.mps).

• test feasibility() : If the current LP is feasible, the LP solu-
tion satisfies in particular all core constraints, but the user has to
check himself if the indexed and algorithmic cuts not in the current
LP are satisfied too. If some of these cuts are violated, they can

20

be immediately transmitted to BCP through the method parameter
cuts. In the example, an alternative way is used: the two vectors
violated cuts and algo cuts are holding indices or pointers to the
violated cuts and these will be transmitted to BCP in the method
generate cuts in lp(). If all the indexed and algorithmic cuts are
satisfied, the user still has to check if the LP solution satisfies the
integrality conditions. This is done by calling the default method
BCP lp user::test feasibility(). Its return value is either a pointer
to the current LP solution (when it is a feasible solution for the initial
problem too) or the NULL pointer (otherwise).

The method BB lp::test feasibility() is also called while the pro-
cess is solving LPs for selecting the branching variable during strong
branching. This is useful in particular in applications where heuristic
solutions are generated during the feasibility check. In the example,
the method returns immediately when it is called while doing strong
branching (i.e. when called with in strong == 1).

The method is also called when the LP is infeasible and when other
LP termination codes occurred. While this does not make much sense
for a branch-and-cut, it does when column generation is possible. In
the example, the method returns immediately if the last LP was not
solved to optimality.

• logical fixing() : Empty method in the example. Might be useful
for other applications.

• generate cuts in lp() : Transmits to BCP the violated indexed cuts
and generated algorithmic cuts. BCP can easily use the methods defined
in the Cut Generation Library (Cgl) included in COIN. Among others,
Gomory cuts, Knapsack covers, Lift-and-Project, and Odd Hole cuts
are available.

• generate heuristic solution() : self explanatory. The method is
active in the example only if the compilation flag -DHEUR SOL is used.
(See Section 7.) In the example, the solution simply rounds the current
LP solution and checks if this rounded solution is feasible. The code is
of course very similar to the code of the method test feasibility()
since the checking of indexed and algorithmic cuts is done in both
methods. Introducing methods for those tests would certainly make
sense, but this was not done to keep the code as simple as possible. The

21

predefined type BCP solution generic10 derived from BCP solution
is used to encode the solution

• select branching candidates() : The method is active in the ex-
ample only if the compilation flag -DCUSTOM BRANCH is used. (See
Section 7.) In the example, the variables are considered in order and
branching is performed on the first fractional variable.

• cuts to rows() : Required method when algorithmic or indexed cuts
are used. It describes how to get a row of the constraint matrix from
the representation of the cut. If BB cut is used, the two representations
are close and this might seem to be a redundant method. However, for
some problems, it is possible to store a cut in a compact form avoiding
the storage of all its non-zero coefficients. (An extreme example of this
is the case of the indexed cuts.) The method generating the coefficients
from the compact representation is then necessary.

11.3 Class BB packer

The class BB packer11 contains methods to pack and unpack information
sent back and forth between the tree manager and the solver for LP nodes:
warm start information, algorithmic variable, algorithmic cut, and user data.
The channel for the communication is a buffer of characters (BCP buffer12)
equipped with methods for packing and unpacking integers, doubles, and
various kind of arrays. The user data is packed by writing the address of
the user data object, making the code crash if that memory location is not
shared between the tree manager and the node LP solver.

12 Initialization of User Classes and Class BB init

The two main user-defined classes BB tm and BB lp must be passed to BCP,
as well as methods for packing and unpacking user defined objects. This in
done through an additional class, BB init13 that has only three methods:
lp init() returning a pointer on a BCP lp user object (actually a BB lp
object), tm init() returning a pointer on a BCP tm user object (actually a
BB tm object), and packer init() returning a pointer on a BCP user pack
object (actually a BB packer object).

10DocBcp->BCP solution.
11DocBcp->BB packer.
12DocBcp->BCP buffer.
13include/BB init.hpp, Member/BB init.cpp, or DocBcp->BB init.

22

The main() procedure, located in TM/BB tm.cpp, simply calls the method
bcp main() with a BB init object as parameter. Then bcp main() calls
BB init::lp init(), BB init::tm init(), and BB init::packer init()
to get pointers on objects of the corresponding classes.

Note that BB init::tm init() calls BB tm::readInput() where the
problem to be solved is actually set up. If you want readInput() to have
access to additional command line arguments (currently, only the parameter
file, if any is passed), modify that method as well as BB init::tm init()
to pass the wanted arguments.

13 User Data

The class BCP user data14 is used for handling data that the user wants to
associate with each node of the tree. For some type of data, this can be
done using the class BB lp, but if the data associated with a node depends
on the data of its father, the use of a class MY user data15 derived from
BCP user data is necessary. The user data used in the example consists in:

• is processed : indicator for memory management (see below);

• max card set zero : maximum length of vector set zero;

• set zero : vector of integers holding the indices of variables set to
zero by branching decisions leading to the node;

• card set zero : number of entries stored in set zero.

A sequential view of the operations involving the user data is as follows:
The user data for the initial node is created in BB tm::create root(). Then
the TM sends a node a to LP. The user data of a is packed and sent to LP.
There, it is unpacked, the node a is processed, sons are (possibly) generated
and their user data is set up. Then the user data of a and of its sons is packed
and sent back to the TM. The TM unpacks them, replaces the user data of a
by the (possibly) updated one and creates new nodes with associated user
data for the sons.

In order to avoid the need to update several packing and unpacking meth-
ods when the user data is modified and to allow for the passing of pointer
on the data instead of writing it explicitly, the class MY user data has two

14DocBcp->BCP user data.
15DocBcp->MY user data.

23

fields: the integer is processed set to 1 when the corresponding node is
processed at the LP level and a pointer on an object of type real user data
holding the data defined by the user.

Note that the way the memory management of the user data is set up
implies that the data associated with a node will be destroyed as soon as
the node has been sent back to the TM after processing. Note also that the
passing of pointers makes the code unfit to run on a parallel machine.

To define specific user data, all there is to do is to set the members in
the class real user data16, and modify the constructor, the destructor and
the method print() in file Member/BB user data.cpp.

An additional method is BB lp::set user data for children(). Its
parameters are the selected branching object best as well as its index in
the list of candidate branching objects. This methods has to set up the user
data for the sons that will be generated. Pointers on these objects are stored
in the vector best->user data() having as many entries as the number of
sons generated by the branching object.

Finally, the entry is processed is set to 1 in the method

• BB lp::initialize new search tree node().

14 Output

Running ./bac from BAC gives the following output:

Compilation flags:

Problem read from file bac.lp

readInput(): core size: 10 indexed size: 6

##

TM: Starting phase 0

##

TM: Default init_new_phase() executed.

LP: **** Processing NODE 0 on LEVEL 0 (from TM) ****

LP: Default purge_slack_pool() executed.

LP: *** Starting iteration 1 ***

LP node written in file lpnode.lp

LP: Matrix size: 10 vars x 10 cuts

LP: Solution value: -5.0000 / 2 , 10

LP: Default display_lp_solution() executed.

LP : Displaying LP solution (RelaxedSolution) :

LP : Displaying solution :

Core var (internal index: 1) at 1.0000

16DocBcp->real user data.

24

Core var (internal index: 3) at 1.0000

Core var (internal index: 5) at 1.0000

Core var (internal index: 7) at 1.0000

Core var (internal index: 9) at 1.0000

LP: Row effectiveness: rownum: 10 ineffective: 0

LP: Number of leftover cuts: 0

generate_cuts_in_lp(): found 4 indexed cuts

generate_cuts_in_lp(): found 5 algorithmic cuts

LP: Number of cuts generated in the LP process: 9

LP: Non-violated (hence removed): 0

LP: Number of cuts received from CG: 0

LP: Total number of cuts in local pool: 9

LP: Number of leftover vars: 0

LP: Default generate_vars_in_lp() executed.

LP: Number of vars received from VG: 0

LP: Total number of vars in local pool: 0

LP: In iteration 1 BCP generated 9 cuts , 0 vars before calling branch()

LP: Default select_branching_candidates() executed.

LP: In iteration 1 BCP added 9 cuts, 0 vars.

LP: Default purge_slack_pool() executed.

LP: *** Starting iteration 2 ***

...

LP: Default select_branching_candidates() executed.

LP: Starting strong branching:

LP node written in file lpnode.lp

LP node written in file lpnode.lp

LP: Presolving: (0,0.5000,-1.0000 /) [-2.0000,2,1] [-2.0000,2,1]

LP: Default compare_presolved_branching_objects() executed.

LP: Deleting 9 rows from the matrix.

LP: Default set_actions_for_children() executed.

LP: SB selected candidate 0 out of 1.

LP: The selected object is: (0,0.5000,-1.0000 /) [-2.0000,2,1] [-2.0000,2,1]

LP node written in file lpnode.lp

LP: **** Processing NODE 1 on LEVEL 1 (dived) ****

LP: Default purge_slack_pool() executed.

LP: *** Starting iteration 1 ***

LP node written in file lpnode.lp

LP: Matrix size: 10 vars x 17 cuts

LP: Solution value: -2.0000 / 2 , 1

LP: Default display_lp_solution() executed.

LP : Displaying LP solution (RelaxedSolution) :

LP : Displaying solution :

Core var (internal index: 0) at 1.0000

Core var (internal index: 5) at 1.0000

LP: Default test_feasibility() executed.

LP: Default test_full() executed.

LP: Default pack_feasible_solution() executed.

25

TM: Default unpack_feasible_solution() executed.

TM: Solution found at 0.010 sec.

TM 0.009: Sol from proc: 1 val: -2.000000 (prev best: infinity) tree size/proc

d: 3/1 cand list ins/size: 2/2

LP: Terminating and fathoming due to proven high cost.

TM: Pruning NODE 2 LEVEL 1 instead of sending it.

TM: final statistics:

TM: Running time: 0.009

TM: search tree size: 3 (processed 2) max depth: 1

LP statistics:

time in cut generation : 0.001 sec

time in var generation : 0.000 sec

time in heuristics : -0.000 sec

time in solving LPs : 0.002 sec

time in strong branching: 0.001 sec

TM: The best solution found has value -2.000000

Customized display of the feasible solution:

1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Default BCP display of the feasible solution:

TM: Default BCP_tm_user::display_feasible_solution() executed.

Core var (internal index: 0) at 1.0000

Core var (internal index: 5) at 1.0000

Most of the output is self-explanatory. The output of the strong branch-
ing operations, however, is somewhat cryptic. The meaning of a line like:

LP: Presolving: (3,0.3333,-1.0000 /) [-2.5000,2,1] [-1.0000,36,6]

is the following:

• 3: index of the variable branched on;

• 0.3333: current value of the variable in the LP solution;

• -1.0 / : coefficient of the variable in the objective function;

• -2.5000 : objective value of LP for the first son;

• 2: LP termination code (see Section 11);

• 1: #iterations for solving the LP of the first son;

• -1.0000 : objective value of LP for the second son;

• 36: LP termination code (see Section 11);

• 6: #iterations for solving the LP of the second son;

26

Note that the output above is obtained using the default settings of
BCP for branching, i.e. three candidates are selected and branched on (if
their pseudo-costs are not yet trusted) before selecting the actual branching
variable. Only the information on the selected branching variable is dis-
played. This is the case unless the candidates are selected by the user in
BB lp::select branching candidates(). In that case, the result of each
strong branching optimization is displayed in the output.

Note that when the selected object is displayed, the line could read:

LP: The selected object is: (3,0.3333,-1.0000 /)
[-2.5000,2,1] [1.000000e+100,36,6]

Note that the objective value (1.000000e+100) for the LP of the second son
has changed. The reason is that these values are changed according to the
LP termination code. The termination code for the second son (36, i.e. 0x20
and 0x04) indicates that the LP was solved to optimality and that the value
is above the best known integer feasible solution. This implies that if branch-
ing on that variable occur, then the second son will be pruned by bound.
Changing the value of the LP to 1.000000e+100 (= BCP DBL MAX) is done
to simplify logical tests later. The method fake objective values()17 is
in charge of these modifications.

If both sons are feasible the line looks like:

LP: Presolving: (0,0.3333,-1.0000 /) [-2.0000,2,2] [-2.0000,2,3]

where the termination code (2, i.e 0x02) indicates that the optimal so-
lution of the LP was found.

15 Parameters

BCP has a large number of parameters that can be modified by the user by
using a parameter file. The file bb.par contains a certain number of them,
hopefully the ones that a user might want to modify. To get the full list
of parameters and their default values, look at DocBcp->BCP tm par and
DocBcp->BCP lp par.

The file bb.par contains succinct explanations for some of the parame-
ters and some default values. For 0/1 parameters, the meaning of only one
of the two values is given, this value being the one set by default.

Some of the parameters conflicts with each other and nothing prevents
the user from setting conflicting values. The result is unpredictable without

17DocBcp->BCP lp brobj.

27

looking at the code in detail. For example, setting the parameters

BCP VerbosityShutUp 1 (to suppress all BCP printed output) and
BCP TmVerb BestFeasibleSolution 1 (to print the best solution found)

results in BCP printing the final solution. Another example is that, assuming
that BCP uses the default branching strategy, setting the parameters

BCP MaxPresolveIter -1 (strong branching should not be used)
BCP StrongBranchNum 3 (default)

implies that more than one candidate variable is chosen (up to 3 can be
selected) and since BCP can not use strong branching to decide on which
variable to branch, it selects the first one and raises an error message.
(To avoid the error message, BCP StrongBranchNum should be set to 1 or
BCP MaxPresolveIter set to a positive number.)

A third example is the use of Breadth-First or Best-Bound enumeration
strategies. Setting

BCP TreeSearchStrategy 0 (Best-Bound is used)

is not enough, since BCP might decide to dive on certain nodes. Setting

BCP UnconditionalDiveProbability -1 (no diving)

is still not enough. In addition,

BCP QualityRatioToAllowDiving HasUB -1 (no diving when an upper bound
is available)
BCP QualityRatioToAllowDiving NoUB -1 (no diving when no upper bound
is available)

must also be set.
It is possible for the user to define new parameters (for example to pass

the name of an input file). Facilities already exist for doing that and the
interested reader can look at the classes BCP tm par18 and BCP lp par19

Acknowledgments
I wish to thank Laszlo Ladányi for patiently answering my questions

while developing this example.
18DocBcp->BCP tm par.
19DocBcp->BCP lp par.

28

References

[1] http://www.coin-or.org

[2] http://www.coin-or.org/projects/Bcp.xml

[3] https://projects.coin-or.org/Bcp

[4] https://projects.coin-or.org/CoinHelp

[5] https://projects.coin-or.org/CoinHelp/wiki/user-troubleshooting

[6] http://www.coin-or.org/faqs.html

[7] http://www.coin-or.org/download/source

[8] http://www.stack.nl/∼dimitri/doxygen/
[9] Barahona F., Ladányi L., “Branch-and-Cut Based on the Volume Al-

gorithm: Steiner Trees in Graphs and Max Cut”, IBM Research report
RC22221 (2001).

[10] Jünger M., Naddef D., eds., Computational Combinatorial Optimiza-
tion, Lecture Notes in Computer Science 2241, Springer (2001).

[11] Ladányi L., Forrest J.J., Kalagnanam J.R., “Column Generation Ap-
proach to the Multiple Problem with Color Constraints”, IBM Research
report RC22013 (2001).

[12] Ladányi L., Lee J., Lougee-Heimer R., “Rapid prototyping of optimiza-
tion algorithms using COIN-OR: A case study involving the cutting-
stock problem.”, Annals of Operations Research 139 (2005), 243-265.

[13] Ladányi L., Ralphs T.K., Trotter L.E., “Branch, Cut, and Price: Se-
quential and Parallel”, in [10], 223-260.

[14] http://wpweb2.tepper.cmu.edu/fmargot/COIN/coin.html

[15] Padberg M.W., Rinaldi G., “A Branch-and-Cut Algorithm for the Reso-
lution of Large Scale Symmetric Travelling Salesman Problems”, SIAM
Review 33 (1991), 60–100.

[16] http://subversion.tigris.org/

[17] Wolsey L.A., Integer Programming, Wiley (1998).

29

