Using the CoinAll Binaries and Libraries

Horand Gassmann, Jun Ma, Kipp Martin
October 17, 2013

Abstract

This document describes how to obtain and use the binary distribution of the CoinAll soft-
ware, which consists of several executables and numerous solver libraries. It explains how the
CoinAll binaries can be used in stand-alone mode and also how the solver libraries can be linked
against user-written code.

Contents

1 The CoinEasy Project and CoinAll
2 Quick Roadmap

3 Downloading the CoinAll Binaries

4 The OSSolverService
4.1 OSSolverService Input Parameters oL
4.2 The Command Line Parser
4.3 Solving Problems Locally
4.4 Solving Problems Remotely with Web Services
4.4.1 The solve Service Method
4.4.2 The send Service Method,
4.4.3 The retrieve Service Method 0.
4.4.4 The getJobID Service Method
4.4.5 The knock Service Method oo
4.4.6 The kill Service Method,
4.4.7 Summary and description of the APT
4.5 Passing Options to Solvers L

5 OS Support for AMPL and GAMS
5.1 AMPL Client: Hooking AMPL to Solvers
5.1.1 Using OSAmplClient for a Local Solver
5.1.2 Using OSAmplClient to Invoke an OS Solver Server remotely
5.1.3 AMPL Summary
5.2 GAMS and Optimization Services i
5.2.1 Using GAMS to Invoke a Remote OS Solver Service
5.2.2 GAMS Summary:
5.3 MATLAB: Using MATLAB to Build and Run OSil. Model Instances

6 File Upload: Using a File Upload Package

7 OS Protocols
7.1 OSiL (Optimization Services instance Language)
7.2 OSnL (Optimization Services nonlinear Language)
7.3 OSrL (Optimization Services result Language)
7.4 OSoL (Optimization Services option Language)
7.5 OSpL (Optimization Services process Language)

8 The OSInstance API
8.1 Get Methods e
8.2 Set Methods e
8.3 Calculate Methods
8.4 Modifying an 0SInstance Object
8.5 Printing a Model for Debugging o o

10
11
12
12
14
16
16
17
18
19
20

23
23
24
24
26
26
26
30
31

36

37
38
39
40
42
42

9 Code samples to illustrate the OS Project

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Algorithmic Differentiation: Using the OS Algorithmic Differentiation Methods . . .
Instance Generator: Using the OSInstance API to Generate Instances
branchCutPrice: Using Bep o o o
OSModificationDemo: Modifying an In-Memory 0SInstance Object
OSSolverDemo: Building In-Memory Solver and Option Objects
OSResultDemo: Building In-Memory Result Object to Display Solver Result
OSCglCuts: Using the OSInstance API to Generate Cutting Planes
OSRemoteTest: Calling a Remote Server
OSJavalnstanceDemo: Building an OSiL Instance in Java

10 Using Dip (Decomposition In Integer Programming)

10.1
10.2
10.3
104
10.5
10.6
10.7
10.8
10.9

11 The
11.1
11.2

11.3

11.4
11.5
11.6

12 The
12.1
12.2

12.3

Building and Testing the OS-Dip Example
The OS Dip Solver — Code Description and Key Classes
User Requirements L e
Simple Plant/Lockbox Location Example
Generalized Assignment Problem Example
Defining the Problem Instance and Blocks
The Dip Parameter File o
Issues to Fix e
Miscellaneous Issues o . oL L e

OS Library Components

OSAgent e
OSCommonlnterfaces
11.2.1 The OSInstance Class o i i i it e e e e e e
11.2.2 Creating an 0SInstance Object
11.2.3 Mapping Rules
11.2.4 The OSExpressionTree OSnLNode Classes
11.2.5 The OSOption Class o oottt
11.2.6 The OSResult Class e
OSModellnterfaces e
11.3.1 Converting MPS Files
11.3.2 Converting AMPL nl Files.
OSPAarsers o o o e e e e e e e
OSSolverInterfaces
OSULIS . . . o e

OS Algorithmic Differentiation Implementation

Algorithmic Differentiation: Brief Review
Using OSInstance Methods: Low Level Calls,
12.2.1 First Derivative Reverse Sweep Calculations
12.2.2 Second Derivative Reverse Sweep Calculations
Using OSlInstance Methods: High Level Calls
12.3.1 Sparsity Methods
12.3.2 Function Evaluation Methods
12.3.3 Gradient Evaluation Methods
12.3.4 Hessian Evaluation Methods

45
46
46
47
47
48
52
52
52
52

53
o4
95
56
o7
99
60
63
64
64

65
65
66
66
66
66
69
71
71
71
71
71
72
73
74

13 Appendix — Sample OSiL files 85

13.1 OSiL representation for problem given in (7)—(10) (p.38) 85
13.2 OSIiL representation for problem given in (34)—(37) (p.76) 87
Bibliography 88

List of Figures

1 Alocal call to solve.. e 11
2 A remote call to solve. 13
3 Downloading the instance from a remote source. 15
4 The OS Communication Methods 20
5 The <variables> element for the example (1)—(4). 38
6 The Variables complexType in the OSiLL schema. 39
7 The Variable complexType in the OSiL schema. 39
8 The <linearConstraintCoefficients> element for constraints (8) and (9). 40
9 The <quadraticCoefficients> element for constraint (8). 40
10 The <nl> element for the nonlinear part of the objective (7). 41
11 A sample OSoL file — SPLl.osol 61
12 A sample OSoL file — SPLl.osol (Continued) 62
13 Creating an 0SInstance Object 66
14 The 0SInstance class i i i e e 67
15 The InstanceDataclass e 67
16 The <variables> element as an 0SInstance object 68
17 Conceptual expression tree for the nonlinear part of the objective (7). 69
18 The function calculation method for the plus node class with polymorphism 69

List of Tables

1 Default solvers e 8
2 Data for a 3 plant, 5 customer problem 0. 58
3 Data for a three plant, three customer problem 59

1 The CoinEasy Project and CoinAll

(Much of the material in this section is taken from the CoinEasy web page at
http://projects.coin-or.org/CoinEasy.)

As the name implies, the CoinEasy project is designed to make it easy to use COIN-OR, projects.
It addresses the needs of two groups of users:

1. Users who want to access COIN-OR solvers to solve optimization problems without having
to compile code.

2. Users who want to write applications that use pre-built COIN-OR libraries.

Users who want to build COIN-OR projects from source code are directed to the home pages
of the respective projects for more information.

This document addresses the need of both groups of users. A slimmed-down version that does
not include material on the CoinAll libraries can be found at
https://projects.coin-or.org/svn/0S/trunk/0S/doc/UsingCoinAllBinary.pdf.

In the information below, we mention the CoinAll and CoinBinary projects. CoinAll is a meta
project that consists of most of the solver and utility projects in COIN-OR. As such it currently does
not have its own web page. CoinBinary is a project that provides compiled executable programs
and libraries for the projects in CoinAll as well as some other COIN-OR projects. Its web page is at
http://projects.coin-or.org/CoinBinary. The binary distribution of the CoinAll executables
and libraries can be found at http://www.coin-or.org/download/binary/CoinAll/.

Like other COIN-OR projects, CoinAll has a versioning system that ensures end users some
degree of stability and a stable upgrade path as project development continues. The current version
of the CoinAll binaries is 1.6.2.

The CoinAll binary distribution includes the following projects

e clp - an open-source linear programming solver written in C++.
e cbc - an open-source mixed integer programming solver written in C++.
e symphony - an open-source solver for mixed-integer linear programs (MILPs) written in C.

It supports parallel computations.

e ipopt - a software package designed to find (local) solutions for large-scale nonlinear opti-
mization problems.

e bonmin - an experimental open-source C++ code for solving general MINLP (Mixed Integer
NonLinear Programming) problems.

e couenne - an exact solver for nonconvex MINLPs.
e blis - ahigh-performance parallel search implementation for mixed integer linear programs.

e (0SSolverService - an integrative framework that allows the other solvers to be called both
locally and remotely.

OSSolverService is a harness around the other programs, calling any one of them as directed
by the user, or as determined by characteristics of the problem. This document is written mostly
from the point of view of explaining and supporting OSSolverService; for information on using the
individual solvers in stand-alone form, consult their respective wiki pages.

2 Quick Roadmap
If you want to:

e Download the binaries (executables and libraries) — see Section 3.

e Use the OSSolverService to read files in nl, OSiL, or MPS format and call a solver locally or
remotely — see Section 4.

e Use modeling languages to generate model instances in OSiL format — see Section 5.

e Use AMPL to solve problems either locally or remotely with a COIN-OR solver, Cplex,
GLPK, or LINDO — see Section 5.1.

e Use GAMS to solve problems either locally or remotely — see Section 5.2.

e Use MATLAB to generate problem instances in OSiL format and call a solver either remotely
or locally — see Section 5.3.

e Create your own applications by linking against the binaries — see Sections 9 and 10.
e Use the OS library to build model instances or use solver APIs — see Sections 11.3, 11.5 and 8.

e Use the OS library for algorithmic differentiation (in conjunction with COIN-OR CppAD) —
see Section 12.

3 Downloading the CoinAll Binaries

The CoinAll project is actually a meta-project consisting of most of the COIN-OR solvers and
supporting utility projects. We describe how to download this project.

Most users will only be interested in obtaining the binaries, which we describe next. It is also
possible to obtain the source code for the projects, which will be of interest mostly to developers.
If binaries are not provided for a particular operating system, it may be possible to build them
from the source. For details it is best to start reading the wiki page for the individual project or
projects of interest.

The repository of the binaries is at http://www.coin-or.org/download/binary/CoinAll/.

The binary distribution for the CoinAll library and executables follows the following naming
convention:

CoinAll-version_number-platform-compiler-build_options.tgz (zip)

For example, CoinAll Release 1.6.0 compiled with the Intel 11.1 compiler on a 64 bit Windows
system is:

CoinAll-1.6.0-win64-intelll.1.zip

For more detail on the naming convention and examples see:
https://projects.coin-or.org/CoinBinary/wiki/ArchiveNamingConventions

After unpacking the tgz or zip archives, the following folders are available.

bin — this directory contains all the executables.

examples — this directory contains several examples that illustrate working with the libraries.
Some data files for working with the examples are also included.

include — the header files that are necessary in order to link against the various libraries.
lib — the libraries that are necessary for creating applications that use the libraries.

share — license and author information for all the projects used by the CoinAll project as
well as a number of further data files of linear and integer programming problems.

4 The OSSolverService

The 0SSolverService is a command line executable designed to pass problem instances in either
OSiL, AMPL nl, or MPS format to solvers and get the optimization result back to be displayed
either to standard output or a specified browser. The 0SSolverService can be used to invoke a
solver locally or on a remote server. It can communicate with a remote solver both synchronously
and asynchronously. At present six service methods are implemented, solve, send, retrieve,
getJobID, knock and kill. These methods are explained in more detail in Section 4.4. Only the
solve method is available locally.

There are two ways to use the 0SSolverService executable. The first way is to use the
interactive shell. The interactive shell is invoked by either double clicking on the icon for the
0SSolverService executable, or by opening a command window, connecting to the directory hold-
ing the executable, and then typing in 0SSolverService with no arguments. Using the interactive
shell is fairly intuitive and we do not discuss in detail. The second way to use the 0SSolverService
executable is to provide arguments at the command line. This is discussed next. The command
line arguments are also valid for the interactive shell.

4.1 OSSolverService Input Parameters

At present, the 0SSolverService takes the following parameters. The order of the parameters is
irrelevant, and not all the parameters are required.

0sil xxx.osil This is the path information and name of the file that contains the opti-
mization instance in OSiLL format. It is assumed that this file is available on the machine
that is running 0SSolverService. This parameter can be omitted, as there are other ways
to specify an optimization instance. Although we endorse the convention that OSiL. schema
files have the extension .osil, OSoL files have the extension .osol, etc., it is not required.
Any other path and file name could be substituted for xxx.osil.

osol xxx.osol This is the path information and name of the file that contains the solver op-
tions. It is assumed that this file is available on the machine that is running 0SSolverService.
It is not necessary to specify this parameter.

osrl xxx.osrl This is the path information and name of the file to which the solver solution
will be written upon return. A valid file path must be given on the machine that is running
0SSolverService. It is not necessary to specify this parameter. If this parameter is not
specified, then the solver solution is displayed to the screen.

osplInput xxx.ospl The name of an input file in the OS Process Language (OSpL); this
is used as input to the knock method. If serviceMethod knock is specified, this parameter
must also be present.

Table 1: Default solvers

Problem type Default solver
Linear, continuous Clp
Linear, integer Chc
Nonlinear, continuous Ipopt
Nonlinear, integer Bonmin

osplOutput xxx.ospl The name of an output file in the OS Process Language (OSpL); this
is the output string from the knock and kill method. If not present, the output is displayed
to the terminal screen.

serviceLocation url This is the URL of the solver service. It is not required, and if not
specified it is assumed that the problem is solved locally.

serviceMethod methodName This is the service method to be invoked. The options are
solve, send, kill, knock, getJobID, and retrieve. The use of these options is illustrated
in the examples below. This parameter is not required, and it has no effect for problems
solved locally. The default value is solve.

jobID string In order to use the asynchronous methods send (Section 4.4.2), retrieve
(Section 4.4.3) and kill (Section ??) it is essential to identify the relevant job by a unique
jobID. (See also Section ?7.)

mps xxx.mps This is the path information and name of the MPS file if the problem instance
is in MPS format. It is assumed that this file is available on the machine that is running
0SSolverService. The default file format is OSiL so this option is not required.

nl xxx.nl This is the path information and name of the AMPL nl file if the problem instance
is in AMPL nl format. It is assumed that this file is available on the machine that is running
0SSolverService. The default file format is OSiLL so this option is not required.

solver solverName Possible values of this parameter depend on the installation. The OS
executable in the CoinAll binary collection supports the following solvers: Clp, Cbc, DyLP,
SYMPHONY, Ipopt, Bonmin, Couenne. If no value is specified for this parameter, then a default
solver is used for the (local) solve method. The default solver depends on the problem type
and can be read off from table 1. Note that this option only has effect for local calls.
For a remote solve or send, put the solver name into the field <solverToInvoke> in an OSoL
file and specify this file with osol xxx.osol.

printLevel nnn This parameter controls the amount of output generated by the OSSol-
verService. Currently the integer nnn can be any number between 0 and 8 inclusive, with
higher numbers corresponding to more voluminous output. The three highest output levels
are available only if the executable was compiled in debug mode; they are mainly useful as a
debugging tool.

logFile xxx This parameter specifies a secondary output device to which output can be
directed in addition to stdout.

filePrintLevel nnn This parameter controls the amount of output sent to the secondary
output device selected by logFile. In conjunction these three command line parameters are

extremely useful to manage large jobs. For instance, minimal output can be sent to stdout
(i.e., the terminal screen), mainly to assure the user that the job is still running as intended.
A higher output level can be used to send additional information to a file, to be analyzed
once the job has finished.

browser browserName This parameter is a path to the browser on the local machine. If
this optional parameter is specified then the solver result in OSrL format is transformed
into HTML using a stylesheet in XSLT format and is then displayed in the browser. This
parameter can only be used in conjunction with the osrl parameter. In addition, some
browsers require that the stylesheet OSrL.xslt is found in the same directory as the result file.
If necessary, this stylesheet must be moved or copied prior to starting up the OSSolverService
executable.

config xxx.config This optional parameter specifies a path on the local machine to a text
file containing values for the input parameters. This is convenient for the user not wishing
to constantly retype parameter values. A config file can be used instead of or in conjunction
with command line options. In case of conflicting information, command line options take
precedence over entries in the config file.

--help This parameter prints out the list of available options (in essence, this list). Synonyms
for --help are -h and -7.

--version This parameter prints version and licence information. -v is an acceptable syn-
onym.

The input parameters to the 0SSolverService may be given entirely in the command line or
in a configuration file. We first illustrate giving all the parameters in the command line.

Remark. When invoking the commands below involving 0SSolverService we assume that the
user is connected to the directory where the 0SSolverService executable is located. If the binary
download was successful, the 0SSolverService is in the bin directory, and the relative path to
the data directory is ../examples/data. There are several subdirectories corresponding to dif-
ferent file types used and illustrated in the following examples. The user may wish to execute
0SSolverService from the bin directory so that all that follows is correct in terms of path defini-
tions.

The following command will invoke the Clp solver on the local machine to solve the problem
instance parincLinear.osil.

./08SolverService solver clp osil ../examples/data/osilFiles/parincLinear.osil

Windows users should note that the folder separator is always the forward slash (‘/’) instead
of the customary backslash (‘\’).

Alternatively, these parameters can be put into a configuration file. Assume that the configu-
ration file of interest is testlocalclp.config. It would contain the two lines of information

osil ../examples/data/osilFiles/parincLinear.osil
solver clp

Then the command line is

./0SSolverService config ../examples/data/configFiles/testlocalclp.config

Parameters specified in the configure file can be overridden by parameters specified at the
command line. This is convenient if a user has a base configure file and wishes to override only a
few options. For example,

./0SSolverService config ../examples/data/configFiles/testlocalclp.config solver dylp
or
./0SSolverService solver dylp config ../examples/data/configFiles/testlocalclp.config

will result in the DyLP solver being used to solve the problem parincLinear.osil even though
Clp is specified in the testlocalclp configure file.
Some things to note:

1. The default serviceMethod is solve if another service method is not specified. The service
method cannot be specified in the OSoL options file.

2. The command line parameters are intended to only influence the behavior of the local
0SSolverService. In particular, only the service method is transmitted to a remote location.
Any communication with a remote solver other than setting the service method must take
place through an OSoL options file.

3. Only the solve() method is available for local calls to 0SSolverService.

4. If the options send, kill, knock, getJobID, or retrieve are specified, a serviceLocation
must be specified.

5. When using the send() or solve() methods a problem instance must be specified.

6. The order in which ambiguities in the instance location are specified is as follows: A .osil file
takes precedence if given. If no osil file is specified, an MPS file, AMPL .nl file, or GAMS
.dat file is selected, in the order given.

4.2 The Command Line Parser

The top layer of the local OSSolverService is a command line parser that parses the command line
and the config file (if one is specified) and passes the information to a local solver or a remote
solver service, depending on whether a serviceLocation was specified. If a servicelLocation is
specified a call is made to a remote solver service, otherwise a local solver is called.

If a local solve is indicated, we pass to a solver in the OSLibrary two things: an OSoL file if
one has been specified and a problem instance. The problem instance is the instance in the OSiL
file specified by the osil option. If there is no OSiL file, then it is the instance specified in the nl
file. If there is no nl file, it is the instance in the mps file. If no OSiL, nl or mps file is specified, an
error is thrown.

The OSoL file is simply passed on to the OSLibrary; it is not parsed at this point. The OSoL
file elements <solverToInvoke> and <instanceLocation> cannot be used for local calls. One can
specify which solver to use in the OSLibrary through the solver option. If this option is empty, a
default solver is selected (see Table 1).

If the serviceLocation parameter is used, a call is placed to the remote solver service specified
in the serviceLocation parameter. Two strings are passed to the remote solver service: a string
which is the OSoL file if one has been specified, or the empty string otherwise, and a string

10

OSSolverService
Solve Method - Local

OSiL & OSol strings

0OSrL string

OSSolverService OS Library

Figure 1: A local call to solve.

containing an instance if one has been specified. The instance can be specified using the osil, nl,
or mps option. If an OSiL file is specified in the osil option, it is used. If there is no OSiL file,
then the instance specified in the nl file is used. If there is no nl file, the mps file is used. If no file
is given, an empty string is sent.

For remote calls, the solver can only be set in the osol file, using the element <solverToInvoke>;
the command line option solver has no effect.

4.3 Solving Problems Locally

When solving a problem locally, the 0SSolverService executable is invoked synchronously and
waits for the solver to return the result. This is illustrated in Figure 1. As illustrated, the
0SSolverService reads a file on the hard drive with the optimization instance, usually in OSiL
format. The optimization instance is parsed into a string which is passed to the 0SLibrary (see the
OS User’s Manual), which is linked with various solvers. Similarly an option file in OSoL format is
parsed into a string and passed to the 0SLibrary. No interpretation of the options is done at this
stage, so that any <solverToInvoke> or <instanceLocation> directives in the OSoL file will be
ignored for local solves. The result of the optimization is passed back to the 0SSolverService as
a string in OSrL format.

Here is an example that uses a configure file, testlocal.config, to invoke Ipopt locally using
the solve command. The example is invoked by specifying

./08SolverService config ../examples/data/configFiles/testLocal.config
where the content of the file testLocal.config is

osil ../examples/data/osilFiles/parincQuadratic.osil

11

solver ipopt
browser /usr/lib/firefox/firefox.sh
osrl /tmp/0S/test.osrl

The first line of testlocal.config gives the location of the OSiL file, parincQuadratic.osil,
that contains the problem instance. The second parameter, solver ipopt, is the solver to be
invoked, in this case COIN-OR Ipopt. The third parameter is the location of the browser on the
local machine. The fourth parameter is osrl. The value of this parameter, /tmp/0S/test.osrl,
specifies the location on the local machine where the OSrL result file will get written.

Due to security concerns when working with stylesheets, some browsers require copying the file
../examples/data/0SrL.xslt into the /tmp/0S directory before invoking 0SSolverService.

4.4 Solving Problems Remotely with Web Services

In many cases the client machine may be a “weak client” and using a more powerful machine to
solve a hard optimization instance is required. Indeed, one of the major purposes of Optimization
Services is to facilitate optimization in a distributed environment. We now provide examples that
illustrate using the 0SSolverService executable to call a remote solver service. By remote solver
service we mean a solver service that is called using Web Services. Omne such solver service is
maintained at

http://74.94.100.129:8080/08Server/services/0SSolverService

The implementation of this solver service uses Apache Tomcat. See tomcat.apache.org. The Web
Service running on the server is a Java program based on Apache Axis. See ws.apache.org/axis.
This is described in greater detail in the OS User’s Manual. Other servers may become available,
and there is no requirement to use the Tomcat/Axis combination.

See Figure 2 for an illustration of this process. The client machine uses the 0SSolverService
executable to call one of the six service methods, e.g., solve. The information such as the problem
instance in OSiL format and solver options in OSoL format are packaged into a SOAP envelope
and sent to the server. The server is running the Java Web Service 0SSolverService. jws. This
Java program running in the Tomcat Java Servlet container implements the six service meth-
ods. If a solve or send request is sent to the server from the client, an optimization prob-
lem must be solved. The Java solver service solves the optimization instance by calling the
0SSolverService on the server. So there is an 0SSolverService on the client that calls the
Web Service 0SSolverService.jws that in turn calls the executable 0SSolverService on the
server. The Java solver service passes information to the server’s 0SSolverService in form of two
strings, an osil string representing the optimization instance and an osol string representing the
options (if any).

For remote calls the instance location can be specified either as a command parameter (on the
command line or in a config file), if the instance resides on the client machine, or through the
<instanceLocation> element in the OSoL options file, if it does not. OSiL files specified in the
<instanceLocation> element must be converted to an osil string by the remote solver service. If
two instance files are specified in this way — one through the local command interface, the other
in an options file — the information on the command line takes precedent.

In the following sections we illustrate each of the six service methods.

4.4.1 The solve Service Method

First we illustrate a simple call to 0SSolverService. The call on the client machine is

12

OSSolverService
Solve Method

-

SOAP with
| OSiL & 0Sol |

S—

SOAP with
[O0SrL

—

OSSolverService Tomcat/Axis OSSolverService OSLibrary
0OS5SolverService jws

Figure 2: A remote call to solve.

./0SSolverService config ../examples/data/configFiles/testRemotel.config
where the testRemotel.config file is

osil ../examples/data/osilFiles/parinclLinear.osil
serviceLocation http://74.94.100.129:8080/0SServer/services/0SSolverService
serviceMethod solve

The third parameter serviceMethod solve is not really needed, since the default solver service
is solve. It is included only for illustration.

The only way to specify a solver for the remote call is by using an OSoL file that contains the
element <solverToInvoke>. Since no OSol file was given, the remote 0SSolverService on the
server side will use the Clp solver by default. (The problem parincLinear.osil is a continuous
linear program.)

If, for example, the user wished to solve the problem with the SYMPHONY solver instead, then
this is accomplished by specifying the OSoL file either on the command line or in the config file
using the parameter

osol ../examples/data/osolFiles/remoteSolvel.osol
The content of remoteSolvel.osol is

<?xml version="1.0" encoding="UTF-8"7>

<osol xmlns="os.optimizationservices.org"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org

13

http://www.optimizationservices.org/schemas/2.0/0SoL.xsd">
<general>
<solverToInvoke>symphony</solverToInvoke>
</general>
</osol>

By adding the <instanceLocation> element and setting the locationType attribute to http
we could specify the instance location on yet another machine. The scenario is depicted in Figure 3.
The OSiL string passed from the client to the solver service is empty. However, the text of the
<instanceLocation> element contains the URL of a third machine (the COIN-OR web server at
http://www.coin-or.org), which has the problem instance p0033.0sil. The solver service will
contact the machine with URL http://www.coin-or.org/0S/p0033.0sil and download this test
problem. The command line to accomplish this is

./0SSolverService osol ../examples/data/osolFiles/remoteSolve2.osol \
servicelocation http://74.94.100.129:8080/0SServer/services/0SSolverService

where remoteSolve2.o0sol contains

<?xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/0SiL.xsd">
<general>
<instanceLocation locationType="http">
http://www.coin-or.org/0S/p0033.0sil
</instanceLocation>
<solverToInvoke>symphony</solverToInvoke>
</general>
</osol>

Note: The solve method communicates synchronously with the remote solver service and once
started, these jobs cannot be killed. This may not be desirable for large problems when the user
does not want to wait for a response or when there is a possibility for the solver to enter an infinite
loop. The send service method should be used when asynchronous communication is desired.

4.4.2 The send Service Method

When the solve service method is used, then the 0SSolverService does not finish execution
until the solution is returned from the remote solver service. When the send method is used, the
instance is communicated to the remote service, and the local 0SSolverService terminates after
submission. An example of this is

./08SolverService config ../examples/data/configFiles/testRemoteSend.config
where the testremoteSend. config file is

nl ../examples/data/amplFiles/hs71.nl
serviceLocation http://74.94.100.129:8080/0SServer/services/0SSolverService
serviceMethod send osol ../examples/osolFiles/sendWithJobID.osol

14

OSSolverService
Solve Method

00 0

Data Server

OSilL file

SOAP with
| OSiL & 0Sol |

S—

SOAP with
[O0SrL

—

OSSolverService Tomcat/Axis OSSolverService OSLibrary
0OS5SolverService jws

Figure 3: Downloading the instance from a remote source.

In this example the COIN-OR Ipopt solver is specified. The input file hs71.nl is in AMPL nl
format. Before sending this to the remote solver service the 0SSolverService executable converts
the nl format into the OSiLL XML format and packages this into the SOAP envelope used by Web
Services.

Since the send method involves asynchronous communication the remote solver service must
keep track of jobs. The send method requires a JobID. In the above example the <jobID> element
in the osol file provides such a job ID:

<?xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/0SoL.xsd">
<general>
<jobID>xyz1234-03Jun13-10AM</jobID>
<contact transportType="smtp">
your .name@address.domain
</contact>
<solverToInvoke>ipopt</solverToInvoke>
</general>
</osol>

The <contact> element can be used to trigger an email message once the job has finished.
Another way to determine the status of a job uses the knock method (see Section 4.4.5.)

Any string can be used as a job ID, but in order to be accepted, the job ID must not have been
used before. If xyz1234-03Jun13-10AM was used earlier on the remote system, either by you or

15

somebody else, the result of the send will be an error condition. When a user creates their own job
ID, there is therefore a danger that it will be rejected by the remote system. It is probably easiest
to request a job ID that is guaranteed to work, by first invoking the getJobID service method to
get a JobID. More information on the getJobID service method is provided in Section 4.4.4.

When no JobID is specified the 0SSolverService method first invokes the getJobID service
method to get a JobID, puts this information into an OSoL file it creates, and sends the information
to the server. The 0SSolverService prints the OSoL file to standard output before termination.
The printout includes the generated job ID, which is essential to retrieve the results of the execution
later (see Section 4.4.3).

Note that in this examples we provided a value for the <solverToInvoke> element. A default
solver is used (see Table 1) if no solver is specified.

4.4.3 The retrieve Service Method

The retrieve method is used to get information about the instance solution. This method has
a single string argument which is an OSoL instance. Here is an example of using the retrieve
method with 0SSolverService.

./0SSolverService config ../examples/data/configFiles/testRemoteRetrieve.config
The testRemoteRetrieve.config file is

serviceLocation http://74.94.100.129:8080/0SServer/services/0SSolverService
osol ../examples/data/osolFiles/retrieve.osol

serviceMethod retrieve

osrl ./test.osrl

and the retrieve.osol file is

<?xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/0SiL.xsd">
<general>
<jobID>xyz1234-03Jun13-10AM</jobID>
</general>
</osol>

The OSoL file retrieve.osol contains a tag <jobID> that is communicated to the remote
service. The remote service locates the result and returns it as a string. The <jobID> should reflect
a <jobID> that was previously submitted using a send() command. The result is returned as a
string in OSrL format. The osrl parameter specifies a location where the result file is stored. By
using the browser parameter one could further display the results in a web browser. If no osrl
parameter is given, the result will be displayed on the screen instead.

4.4.4 The getJobID Service Method

Before submitting a job with the send method a JobID is required. The 0SSolverService can get
a JobID with the following command line options.

16

serviceLocation http://74.94.100.129:8080/0SServer/services/0SSolverService
serviceMethod getJoblID

Note that no OSoL input file is specified. In this case, the 0SSolverService sends an empty string.
A string is sent to the standard output device with the JobID. This JobID can then be put into a
<jobID> element in an OSoL string that would be used by the send method.

4.4.5 The knock Service Method

The OSSolverService terminates after executing the send method. Therefore, it is necessary to
know when the job is completed on the remote server. One way is to include an email address
in the <contact> element with the attribute transportType set to smtp. This was illustrated in
Section 4.4.1. A second way to check on the status of a job is to use the knock service method. For
example, assume a user wants to know if the job with JobID 123456abcd has completed. A user
would make the request

./08SolverService config ../examples/data/configFiles/testRemoteKnock.config
where the testRemoteKnock.config file is

serviceLocation http://74.94.100.129:8080/0SServer/services/0SSolverService
osplInput ../examples/data/osolFiles/knock.ospl

osol ../examples/data/osolFiles/retrieve.osol

serviceMethod knock

the knock.ospl file is

<?xml version="1.0" encoding="UTF-8"7>
<ospl xmlns="os.optimizationservices.org">
<processHeader>
<request action="getAll"/>
</processHeader>
<processData/>
</ospl>

and the retrieve.osol file is as in Section 4.4.3.

The result of this request is a string in OSpL format, with the data contained in its processData
section. The result is displayed on the screen; if the user desires it to be redirected to a file, a
osplOutput command should be added to the testRemoteKnock.config file with a valid path
name on the local system, e.g.,

osplOutput ./result.ospl
Part of the return format is illustrated below.

<?xml version="1.0" encoding="UTF-8"7>
<ospl xmlns="os.optimizationservices.org">
<processHeader>
<serviceURI>http://localhost:8080/0s/ossolver/CGSolverService. jws</serviceURI>
<serviceName>CGSolverService</serviceName>
<time>2006-05-10T15:49:26.7509413-05:00</time>

17

<processHeader>
<processData>
<statistics>
<currentState>idle</currentState>
<availableDiskSpace>23440343040</availableDiskSpace>
<availableMemory>70128</availableMemory>
<currentJobCount>0</currentJobCount>
<totalJobsSoFar>1</totalJobsSoFar>
<timeServiceStarted>2006-05-10T10:49:24.9700000-05:00</timeServiceStarted>
<serviceUtilization>0.1</serviceUtilization>
<jobs>
<job jobID="123456abcd">
<state>finished</state>

<serviceURI>http://kipp.chicagobooth.edu/ipopt/IPOPTSolverService. jws</serviceURI>

<submitTime>2007-06-16T14:57:36.678-05:00</submitTime>
<startTime>2007-06-16T14:57:36.678-05:00</startTime>
<endTime>2007-06-16T14:57:39.404-05:00</endTime>
<duration>2.726</duration>
</job>
</jobs>
</statistics>
</processData>
</ospl>

Notice that the <state> element in <job jobID="123456abcd"> indicates that the job is finished.

When making a knock request, the OSoL string can be empty. In this example, if the OSoL
string had been empty the status of all jobs kept in the file ospl.xml is reported. In our de-
fault solver service implementation, there is a configuration file 0SParameter that has a parameter
MAX_JOBIDS_TO_KEEP . The current default setting is 100. In a large-scale or commercial imple-
mentation it might be wise to keep problem results and statistics in a database. Also, there are
values other than getAll (i.e., get all process information related to the jobs) for the OSpL action
attribute in the <request> tag. For example, the action can be set to a value of ping if the user
just wants to check if the remote solver service is up and running. For details, check the OSpL
schema in the folder 0S/schemas at http://www.coin-or.org/0S/0SpL.html. All schemas can
also be downloaded from http://www.coin-or.org/0S/downloads/0SSchemas-2.0.zip.

4.4.6 The kill Service Method

If the user submits a job that is taking too long or is a mistake, it is possible to kill the job on
the remote server using the kill service method. For example, to kill job 123456abcd, at the
command line type

./0SSolverService config ../examples/data/configFiles/kill.config
where the configure file kill.config is

osol ../examples/data/osolFiles/kill.osol
serviceLocation http://74.94.100.129:8080/0SServer/services/0SSolverService
serviceMethod kill

18

and the kill.osol file is

<7xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/08iL.xsd">
<general>
<jobID>123456abcd</jobID>
</general>
</osol>

The result is returned in OSpL format.

4.4.7 Summary and description of the API

The six service methods just described are also available as callable routines. Below is a summary
of the inputs and outputs of the six methods. See also Figure 4. A test program illustrating the
use of the methods is described in Section 9.8.

e solve(osil, osol):

— Inputs: a string with the instance in OSiL format and a (possibly empty) string with
the solver options in OSoL format

— Returns: a string with the solver solution in OSrL format

— Synchronous call, blocking request/response

e send(osil, osol):

Inputs: a string with the instance in OSiLi format and a string with the solver options
in OSoL format (same as in solve)

Returns: a boolean, true if the problem was successfully submitted, false otherwise

— Asynchronous (server side), non-b