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Abstract

Mathematical modelling languages such as AMPL, GAMS, and Xpress-MP en-
able mathematical models such as mixed-integer linear programmes (MILPs) to
be expressed clearly for solution in solvers such as CPLEX, MINOS and Gurobi.
However, some models are sufficiently difficult that they cannot be solved using
“out-of-the-box” solvers, and customisation of the solver framework to exploit
model-specific structure is required. Many solvers, including CPLEX, Symphony
and DIP, enable this customisation by providing “callback functions” that are
called at key steps in the solution of a model. This approach traditionally involves
either expressing the mathematical formulation in a low-level language, such as
C++ or Java, or implementing a complicated indexing scheme to be able to track
model components, such as variables and constraints, between the mathematical
modelling language and the solver’s callback framework.

In this paper we present Dippy, a combination of the Python-based mathemat-
ical modelling language PuLP and the open source solver DIP. Dippy provides
the power of callback functions, but without sacrificing the usability and flexibil-
ity of modelling languages. We discuss the link between PuLP and DIP and give
examples of how advanced solving techniques can be expressed concisely and
intuitively in Dippy.

∗ Corresponding author.
E-mail address: michael.osullivan@auckland.ac.nz (M. J. O’Sullivan)



1 Introduction

Using a high-level modelling language such as AMPL, GAMS, Xpress-MP or OPL
Studio enables Operations Research practitioners to express complicated mixed-
integer linear programming (MILP) problems quickly and naturally. Once de-
fined in one of these high-level languages, the MILP can be solved using one of
a number of solvers. However these solvers are not effective for all problem in-
stances due to the computational difficulties associated with solving MILPs (an
NP-Hard class of problems). Despite steadily increasing computing power and
algorithmic improvements for the solution of MILPs in general, in many cases
problem-specific techniques need to be included in the solution process to solve
problems of a useful size in any reasonable time.

Both commercial solvers – such as CPLEX and Gurobi – and open source
solvers – such as CBC, Symphony and DIP (all from the COIN-OR repository
[2]) – provide callback functions that allow user-defined routines to be included
in the solution framework. To make use of these callback functions the user must
first create their MILP problem in a low-level computer programming language
(C, C++ or Java for CPLEX; C, C++, C#, Java or Python for Gurobi; C or C++
for CBC, Symphony or DIP). As part of the problem definition, it is necessary to
create structures to keep track of the constraints and/or variables. Problem defi-
nition in C/C++/Java for a MILP problem of any reasonable size and complexity
is a major undertaking and thus a major barrier to the development of customised
MILP frameworks by both practitioners and researchers.

Given the difficulty in defining a MILP problem in a low-level language, an-
other alternative for problem formulation is to use a high-level mathematical
modelling language. By carefully constructing an indexing scheme, constraints
and/or variables in the high-level language can be identified in the low-level call-
back functions. However implementing the indexing scheme can be as difficult
as using the low-level language to define the problem in the first place and does
little to remove the barrier to solution development.

The purpose of the research presented here is to demonstrate a tool, Dippy,
that supports easy experimentation with and customisation of advanced MILP
solution frameworks. To achieve this aim we needed to:

1. provide a modern high-level modelling system that enables users to quickly
and easily describe their MILP problems;

2. enable simple identification of constraints and variables in user-defined rou-
tines within the solution framework.

The first requirement is satisfied by the modelling language PuLP [3]. Dippy ex-
tends PuLP to use the Decomposition for Integer Programming (DIP) solver, and
enables user-defined routines, implemented using Python and PuLP, to be ac-
cessed by the DIP callback functions. This approach enables constraints or vari-
ables defined in the MILP model to be easily accessed using PuLP in the user-
defined routines. In addition to this, DIP is implemented so that the MILP prob-
lem is defined the same way whether branch-and-cut or branch-price-and-cut is
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being used – it hides the implementation of the master problem and subprob-
lems. This makes it very easy to switch between the two approaches when ex-
perimenting with solution methods. All this functionality combines to overcome
the barrier described previously and provides researchers, practitioners and stu-
dents with a simple and integrated way of describing problems and customising
the solution framework.

The rest of this article is structured as follows. In section 2 we provide an
overview of the interface between PuLP and DIP, including a description of the
callback functions available in Python from DIP, followed by a guide of how to
get started with Dippy in section 3. Then, section 4 contains descriptions and
model definitions of the case studies we will use to demonstrate the effectiveness
of Dippy. In section 5 we describe how Dippy enables experimentation with ad-
vanced techniques within DIP’s MILP solution framework to improve solution
times. We demonstrate these techniques using example code for the case stud-
ies from section 4. We conclude in section 6 where we discuss how this project
enhances the ability of researchers to experiment with approaches for solving dif-
ficult MILP problems. We also demonstrate that DIP (via PuLP and Dippy) is
competitive with leading commercial (Gurobi) and open source (CBC) solvers.

2 Combining DIP and PuLP

Dippy is the primarily the “glue” between two different technologies: PuLP and
DIP.

PuLP [3] is a mathematical modelling language and toolkit that uses Python.
Users can define MILP problems and solve them using a variety of solvers includ-
ing CPLEX, Gurobi and CBC. PuLP’s solver interface is modular and thus can be
easily extended to use other solvers such as DIP. For more details on PuLP see the
PuLP project in the COIN-OR repository [2].

Decomposition for Integer Programming (DIP) [5] provides a framework for
solving MILP problems using 3 different methods1:

1. “branch-and-cut”,

2. “branch-price-and-cut”,

3. “decompose-and-cut”.

In this paper we will restrict our attention to branch-and-cut and branch-price-
and-cut.

Branch-and-cut uses the classic branch-and-bound approach for solving MILPs
combined with the cutting plane method for removing fractionality encountered
at the branch-and-bound nodes. This framework is the basis of many state-of-
the-art MILP solvers including Gurobi and CBC. DIP provides callback functions
that allow users to customise the solution process by adding their own cuts and
running heuristics at each node.

1The skeleton for a fourth method (branch, relax and cut) exists in DIP, but this method is not
yet implemented.
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Branch-price-and-cut uses Dantzig-Wolfe decomposition to split a large MILP
problem into a master problem and one or more subproblems. The subproblems
solve a pricing problem, defined using the master problem dual values, to add
new variables to the master problem. Branch-and-cut is then used on the master
problem.

The cut generation and heuristic callback functions mentioned previously can
also be used for branch-price-and-cut. Extra callback functions enable the user
to define their own routines for finding initial variables to include in the master
problem and for solving the subproblems to generate new master problem vari-
ables. For details on the methods and callback functions provided by DIP see [5].

In addition to the DIP callback functions (see §2.1), we modified DIP to add
another callback function that enables user-defined branching in DIP and so can
be used in any of the solution methods within DIP.

2.1 Callback Functions

Advanced Branching We replaced chooseBranchVar in the DIP source with a
new function chooseBranchSet . This is a significant change to branching in DIP
that makes it possible for the user to define:

• a down set of variables with (lower and upper) bounds that will be enforced
in the down node of the branch; and,

• an up set of variables with bounds that will be enforced in the up node of
the branch.

A typical variable branch on an integer variable x with integer bounds l and u
and fractional value α can be implemented by:

1. choosing the down set to be {x} with bounds l and ⌊α⌋;

2. choosing the up set to be {x} with bounds of ⌈α⌉ and u.

However, other branching methods may use advanced branching techniques
such as the one demonstrated in §5.1. From DIP, chooseBranchSet calls
branch_method in Dippy.

Customised Cuts We modified generateCuts (in the DIP source) to call
generate_cuts in Dippy. This enables the user to examine a solution and gen-
erate any customised cuts as necessary. We also modified APPisUserFeasible to
call is_solution_feasible in Dippy, enabling users to check solutions for feasi-
bility with respect to customised cuts.

Customised Columns (Solutions to Subproblems) We modified the DIP func-
tion solveRelaxed to call relaxed_solver in Dippy. This enables the user to utilise
the master problem dual variables to produce solutions to subproblems (and so
add columns to the master problem) using customised methods. We also modi-
fied generateInitVars to call init_vars in Dippy, enabling users to customise the
generation of initial columns for the master problem.
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Heuristics We modified APPheuristics (DIP) to call heuristics (Dippy). This
enables the user to define customised heuristics at each node in the branch-and-
bound tree (including the root node).

2.2 Interface

The interface between Dippy (in Python) and DIP (in C++) is summarised in fig-
ure 1.

Dippy (Python) DIP (C++)

Solve(prob)

Solve

  DippyDecompAlgo

    DippyDecompApp

prob = DipProblem()

branch_method
DippyDecompAlgo::chooseBranchSet

chooseBranchSet(xhat)

prob

xhat

downLB, downUB, upLB, upUB

generate_cuts
DippyDecompAlgo::generateCuts

generateCuts(node)

node

cuts

relaxed_solver
DippyDecompAlgo::solveRelaxed

solve_relaxed(prob,key,

              redCostX,target)solutions

prob,key,redCostX,

target

heuristics
DippyDecompAlgo::APPheuristics

APPheuristics(prob,xhat,costs)

solutions

prob,xhat,costs

Figure 1: Key components of interface between Dippy and DIP.

The MILP is defined as a DipProblem and then solved using the Solve

command in Dippy, that passes the Python DipProblem object, prob , to
DIP in C++. DIP Solve creates a DippyDecompAlgo object that contains a
DippyDecompApp object, both of which are populated by data from prob . As
DIP Solve proceeds branches are created by the DippyDecompAlgo object us-
ing chooseBranchSet which passes the current node’s fractional solution xhat

back to the branch_method function in the DipProblem object prob . This func-
tion generates lower and upper bounds for the “down” and “up” branches
and returns to DippyDecompAlgo::chooseBranchSet . When DIP generates cuts,
it uses the DippyDecompApp object’s generateCuts function which passes the
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current node node to the DipProblem object’s generate_cuts function. This
function generates any customised cuts and returns a list, cuts , back to
DippyDecompApp::generateCuts . These interfaces are replicated for the other call-
back functions provided by Dippy.

3 Getting Started with Dippy

*** Put citation info for DIP and Dippy here, make it easy to get 4 citations: DIP
paper, DIP software, Dippy paper (this one until journal article is “born” and
Dippy software ***

3.1 Installing Dippy

3.2 Visualising Search Trees

4 Case Studies

In this section we consider the case studies used to demonstrate the use of Dippy.
The case studies are:

1. the bin packing problem;

2. the coke supply chain problem (a capacitated facility location problem within
a transshipment problem);

3. the travelling salesperson problem;

4. the cutting stock problem;

5. the wedding planner problem (a set partitioning problem)

We will define the case studies in PuLP and demonstrate their solution in DIP
without any customisation. We used DIP version 0.9.9 and Dippy version 1.9.9.

4.1 The Bin Packing Problem (bin pack func.py and bin pack instance.py)

The solution of the bin packing problem determines where, amongst m “bins”, to
place n “items” of various “volumes” in a way that (in this case study) minimises
the wasted “capacity” of the bins. Each product j = 1, . . . , n has a volume vj
and each bin has capacity C. Extensions of this problem arise often in MILP in
problems including network design and rostering.
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The MILP formulation of the bin packing problem is straightforward. The
decision variables are

xij =

{

1 if item j is placed in bin i

0 otherwise

yi =

{

1 if a facility is located at location i

0 otherwise

wi = “wasted” capacity at location i

and the formulation is

min

m
∑

i=1

wi

s.t.
m
∑

i=1

xij = 1, j = 1, . . . , n (each product produced)

n
∑

j=1

vjxij + wi = Cyi, i = 1, . . . , m (aggregate capacity at location i)

xij ≤ yi, i = 1, . . . , m, j = 1, . . . , n (disaggregate capacity at location i)

xij ∈ {0, 1}, wi ≥ 0, yi ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n

Note that the disaggregate capacity constraints are not necessary for defining
the solution, but tighten the MILP formulation (i.e., remove factional solutions
from the solution space). Using PuLP we can easily define and solve this MILP
problem in Dippy. The formulation and solution functions from bin pack func.py
are given below with a summary for each fragment.

1. Load PuLP and Dippy;

12 # Import classes and functions from PuLP
13 from pulp import LpVariable, lpSum, LpBinary, LpStatusOptimal

15 # Import any customised paths
16 try:
17 import path
18 except ImportError:
19 pass

21 # Import dippy (local copy first,
22 # then a development copy - if python setup.py develop used,
23 # then the coinor.dippy package
24 try:
25 import dippy
26 except ImportError:
27 try:
28 import src.dippy as dippy
29 except ImportError:
30 import coinor.dippy as dippy
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2. Define BinPackProb , a class that describes a bin packing problem;

34 class BinPackProb:
35 def __init__( self , ITEMS, volume, capacity):
36 self .ITEMS = ITEMS
37 self .volume = volume
38 self .BINS = range( len(ITEMS)) # Create 1 bin for each
39 # item, indices start at 0
40 self .capacity = capacity

3. Define the formulate function, with a bin packing problem object as input;

(a) Create a DipProblem (with some display options defined);

42 def formulate(bpp):
43 prob = dippy.DipProblem( "Bin Packing" ,
44 display_mode = 'xdot' ,
45 # layout = 'bak',
46 display_interval = None,
47 )

(b) Using the bin packing problem object’s data (i.e., the data defined within bpp ),
create the decision variables;

49 assign_vars = LpVariable.dicts( "x" ,
50 [(i, j) for i in bpp.BINS
51 for j in bpp.ITEMS],
52 cat=LpBinary)
53 use_vars = LpVariable.dicts( "y" , bpp.BINS, cat=LpBinary)
54 waste_vars = LpVariable.dicts( "w" , bpp.BINS, 0, None)

(c) and the objective function;

56 prob += lpSum(waste_vars[i] for i in bpp.BINS), "min_waste"

(d) and constraints;

58 for i in bpp.BINS:
59 prob += lpSum(bpp.volume[j] * assign_vars[i, j]
60 for j in bpp.ITEMS) + waste_vars[i] \
61 == bpp.capacity * use_vars[i]

63 for j in bpp.ITEMS:
64 prob += lpSum(assign_vars[i, j] for i in bpp.BINS) == 1

66 for i in bpp.BINS:
67 for j in bpp.ITEMS:
68 prob += assign_vars[i, j] <= use_vars[i]

(e) Finally, the bin packing problem object and the decision variables are all “em-
bedded” within the DipProblem object, prob , and this object is returned (note that
the objective function and constraints could also be similarly embedded).
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82 # Attach the problem data and variable dictionaries
83 # to the DipProblem
84 prob.bpp = bpp
85 prob.assign_vars = assign_vars
86 prob.use_vars = use_vars
87 prob.waste_vars = waste_vars

89 return prob

4. Define the solve function that only requires a DipProblem object, prob , (note
that no dippyOpts are specified, so the Dippy defaults are used).

123 def solve(prob):
124 dippyOpts = {}
125 status, message, primals, duals = dippy.Solve(prob, dippy Opts)

127 if status == LpStatusOptimal:
128 return dict((var, var.value()) for var in prob.variables())
129 else:
130 return None

To solve an instance of the bin packing problem, the data needs to be spec-
ified and then the problem formulated and solved as demonstrated in the file
bin pack instance.py.

3 # bin_pack_instance.py
4 from bin_pack_func import BinPackProb, formulate, solve

6 if __name__ == '__main__' :
7 # Python starts here
8 bpp = BinPackProb(ITEMS = [1, 2, 3, 4, 5],
9 volume = { 1: 2, 2: 5, 3: 3, 4: 7, 5: 2 } ,

10 capacity = 8)

12 prob = formulate(bpp)

14 # Set a zero tolerance (Mike Saunders' "magic number")
15 prob.tol = pow( pow(2, -24), 2.0 / 3.0)
16 xopt = solve(prob)

18 if xopt is not None:
19 for var in prob.variables():
20 print var.name, "=" , xopt[var]
21 else:
22 print "Dippy could not find and optimal solution"

Solving this bin packing problem instance in Dippy gives the branch-and-
bound tree shown in figure 2 (note that the integer solution found – indicated
in blue S: 5.0 – bounds all other nodes in the tree) with the final solution packing
items 1 and 2 into bin 0 (for a waste of 1), items 3 and 5 into bin 1 (for a waste of
3) and item 4 into bin 3 (for a waste of 1).
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Figure 2: Branch-and-bound tree for bin packing problem instance.
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Note that DIP uses cuts from the Cut Generator Library (CGL) [2] by default.
We can turn CGL cuts off by setting the CutCGL flag in the dippyOpts to '0' .

134 if not CGL_cuts:
135 dippyOpts[ 'CutCGL' ] = '0'

137 status, message, primals, duals = dippy.Solve(prob, dippy Opts)

The size of the branch-and-bound tree increases significantly as shown in figure
6.

Figure 3: Branch-and-bound tree for bin packing problem instance without CGL
cuts.

4.2 The Coke Supply Chain Problem (coke func.py and

coke instance.py)

This case study is sourced from the Operations Research Web in the Department
of Engineering Science TWiki [7] (and was originally adapted from Leyland et al.
[1]). There are 6 coal mines that produce coal. The coal is transported from the
6 mines to a coke-making plant where it is converted to coke using “thermal de-
composition”. Every tonne of coke produced by thermal decomposition requires
1.3 tonnes of coal. From the coke-making plants the coke is transported to one of
6 customers. There are 6 locations where coke-making plants can be constructed.
There are 6 different size plants that can be constructed at each location.

The size of a plant determines the coke processing level in kilotonnes/year the
plant can produce. Table 1 shows the different plant sizes with their correspond-
ing processing levels and construction cost in million RMB.

To get this problem into Dippy we use the PuLP modelling language. The
formulation and solution functions from coke func.py are given below with a
summary for each fragment.

1. PuLP and Dippy are loaded in an identical way to bin pack func.py (see sec-
tion 4.1);

2. Define CokeProb , a class that describes a coal-to-coke conversion and trans-
portation problem;

26 class CokeProb:
27 def __init__( self , supply, demand, LOCATIONS, build_costs,
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Plant Size
Processing Level Cost

(kT/year) (MRMB)

1 75 4.4
2 150 7.4
3 225 10.5
4 300 13.5
5 375 16.5
6 450 19.6

Table 1: Possible plant sizes

28 conversion_factor, transport_costs):
29 self .MINES = supply.keys()
30 self .MINES.sort()
31 self .CUSTOMERS = demand.keys()
32 self .CUSTOMERS.sort()
33 self .LOCATIONS = LOCATIONS
34 self .SIZES = build_costs.keys()
35 self .SIZES.sort()
36 self .ARCS = transport_costs.keys()
37 self .conversion_factor = conversion_factor
38 self .supply = supply
39 self .demand = demand
40 self .build_costs = build_costs
41 self .transport_costs = transport_costs

3. Define the formulate function, with a coke problem object as input;

(a) Create a DipProblem (with some display options defined);

43 def formulate(cp):

45 prob = dippy.DipProblem( "Coke" ,
46 display_mode = 'xdot' ,
47 # layout = 'bak',
48 display_interval = None,
49 )

(b) Add binary variables that determine the plant sizes at each location and (non-
negative) integer variables that determine the flow (in coal from the mines to
the plants and coke from the plants to the customers) transported through the
network;

51 # create variables
52 LOC_SIZES = [(l, s) for l in cp.LOCATIONS
53 for s in cp.SIZES]
54 buildVars = LpVariable.dicts( "Build" , LOC_SIZES, cat=LpBinary)

56 # create arcs
57 BIG_M = max( sum(cp.supply.values()), sum(cp.demand.values()))
58 flowVars = LpVariable.dicts( "Arcs" , cp.ARCS, 0, BIG_M)
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(c) Add the objective of minimising total cost = building costs (converted from
MRMB to RMB) + transportation costs;

60 # objective
61 prob += 1e6 * lpSum(buildVars[(l, s)] * cp.build_costs[s] \
62 for (l, s) in LOC_SIZES) + \
63 lpSum(flowVars[(s, d)] * cp.transport_costs[(s, d)] \
64 for (s, d) in cp.ARCS), "min"

(d) Add constraints that limit the flow of coke out of a coke-making plant de-
pending on the capacity of the plant constructed;

66 # plant availability - assumes that SIZES are numeric,
67 # which they should be
68 for loc in cp.LOCATIONS:
69 prob += lpSum(flowVars[(loc, i)] for i in cp.CUSTOMERS) \
70 <= lpSum(buildVars[(loc, s)] * s for s in cp.SIZES)

(e) Add constraints that limit the number of coke-making plants built at any sin-
gle location to be one (Note. there is a size with capacity 0 if no plant will be
built);

72 # one size
73 for loc in cp.LOCATIONS:
74 prob += lpSum(buildVars[(loc, s)] for s in cp.SIZES) == 1

(f) Add constraints to conserve flow at the mines (≤ supply), coke-making plants
(flow in ≥ coke-from-coal conversion rate × flow out) and customers (≥ demand);

76 # conserve flow (mines)
77 # flows are in terms of tonnes of coal
78 for m in cp.MINES:
79 prob += lpSum(flowVars[(m, j)] for j in cp.LOCATIONS) \
80 <= cp.supply[m]

82 # conserve flow (locations)
83 # convert from coal to coke
84 for loc in cp.LOCATIONS:
85 prob += lpSum(flowVars[(m, loc)] for m in cp.MINES) - \
86 cp.conversion_factor * \
87 lpSum(flowVars[(loc, c)] for c in cp.CUSTOMERS) \
88 >= 0

90 # conserve flow (customers)
91 # flows are in terms of tonnes of coke
92 for c in cp.CUSTOMERS:
93 prob += lpSum(flowVars[(loc, c)] for loc in cp.LOCATIONS) \
94 >= cp.demand[c]

4. Define the solve function as in bin pack func.py (see section 4.1).

133 def solve(prob):
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135 status, message, primals, duals = dippy.Solve(prob, dippy Opts)

137 if status == LpStatusOptimal:
138 return dict((var, var.value()) for var in prob.variables())
139 else:
140 return None

To solve an instance of the coke problem, the data needs to be specified and
then the problem formulated and solved as demonstrated in the file coke instance.py.

1. Load the requisite class and functions and define the entry point for Python;

1 from coke_func import CokeProb, read_table, formulate, solve, \
2 print_table, print_var_table

4 if __name__ == '__main__' :
5 # Python starts here

2. Define the coke-from-coal conversion rate;

6 convert = 1.3

3. Define the supply of coal at the mines, the possible locations and construction
costs of the coke-making plants and the demand for coke from the customers.

8 mine_supply = {
9 "M1" : 25.8,

10 "M2" : 728,
11 "M3" : 1456,
12 "M4" : 49,
13 "M5" : 36.9,
14 "M6" : 1100,
15 }

17 LOCATIONS = ["L1" , "L2" , "L3" , "L4" , "L5" , "L6" ]

19 build_costs = {
20 0: 0,
21 75: 4.4,
22 150: 7.4,
23 225: 10.5,
24 300: 13.5,
25 375: 16.5,
26 450: 19.6,
27 }

29 customer_demand = {
30 "C1" : 83,
31 "C2" : 5.5,
32 "C3" : 6.975,
33 "C4" : 5.5,
34 "C5" : 720.75,
35 "C6" : 5.5,
36 }
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4. Define the transportation costs from the mines to the coke-making plants
and the coke-making plants to the customers in two tables and use the function
read_table (defined in coke func.py – but omitted for brevity) to read these ta-
bles;

38 mine_trans_data = """
39 L1 L2 L3 L4 L5 L6
40 M1 231737 46813 79337 195845 103445 45186
41 M2 179622 267996 117602 200298 128184 49046
42 M3 45170 93159 156241 218655 103802 119616
43 M4 149925 254305 76423 123534 151784 104081
44 M5 152301 205126 24321 66187 195559 88979
45 M6 223934 132391 51004 122329 222927 54357
46 """

48 cust_trans_data = """
49 L1 L2 L3 L4 L5 L6
50 C1 6736 42658 70414 45170 184679 111569
51 C2 217266 227190 249640 203029 153531 117487
52 C3 35936 28768 126316 2498 130317 74034
53 C4 73446 52077 108368 75011 49827 62850
54 C5 174664 177461 151589 153300 59916 135162
55 C6 186302 189099 147026 164938 149836 286307
56 """

58 mine_trans = read_table(mine_trans_data, int)

60 cust_trans = read_table(cust_trans_data, int,
61 transpose= True)

5. Define the transportation costs from the mine → plant and plant → customer
costs;

63 transport_costs = dict(mine_trans)
64 transport_costs.update(cust_trans)

6. Create, formulate and solve this instance of the coke problem, then observe
the solution (using the function print_var_table – defined in coke func.py – but
omitted for brevity).

66 cp = CokeProb(supply = mine_supply, demand = customer_dema nd,
67 LOCATIONS = LOCATIONS, build_costs = build_costs,
68 conversion_factor = convert,
69 transport_costs = transport_costs)

71 prob = formulate(cp)

73 # Set a zero tolerance (Mike Saunders' "magic number")
74 prob.tol = pow( pow(2, -24), 2.0 / 3.0)

76 xopt = solve(prob)

78 for l in cp.LOCATIONS:
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79 for s in cp.SIZES:
80 if xopt[prob.buildVars[(l,s)]] > 0:
81 print "Build %s %s (%s)" % \
82 (l, s, xopt[prob.buildVars[(l,s)]])
83 print

85 print_var_table(cp.MINES, LOCATIONS, prob.flowVars)
86 print
87 print_var_table(cp.LOCATIONS, cp.CUSTOMERS, prob.flow Vars)

The solution defines plants to be built at locations 1, 5 and 6 and also defines
shipments of coal and coke between the mines, plants and customers (note that
the output shown following has been edited a little to line up nicely):

Build L1 150 (1.0)
Build L2 0 (1.0)
Build L3 0 (1.0)
Build L4 0 (1.0)
Build L5 450 (1.0)
Build L6 300 (1.0)

L1 L2 L3 L4 L5 L6
M1 0.0 0.0 0.0 0.0 0.0 25.8
M2 0.0 0.0 0.0 0.0 0.0 340.475
M3 124.1175 0.0 0.0 0.0 585.0 0.0
M4 0.0 0.0 0.0 0.0 0.0 0.0
M5 0.0 0.0 0.0 0.0 0.0 0.0
M6 0.0 0.0 0.0 0.0 0.0 0.0

C1 C2 C3 C4 C5 C6
L1 83.0 0.0 6.975 0.0 0.0 5.5
L2 0.0 0.0 0.0 0.0 0.0 0.0
L3 0.0 0.0 0.0 0.0 0.0 0.0
L4 0.0 0.0 0.0 0.0 0.0 0.0
L5 0.0 0.0 0.0 0.0 450.0 0.0
L6 0.0 5.5 0.0 5.5 270.75 0.0

4.3 The Travelling Salesperson Problem (tsp.py)

This case study is a small travelling salesperson (TSP) example. This problem
differs from the previous case studies (§?? and §4.2) in that it can’t be expressed
explicitly for any reasonable size problem. To completely define the travelling
salesperson (TSP) problem requires a number of subtour elimination constraints
that is O(2n) where n = |N | is the number of locations the salesperson must visit
in their tour. The standard way to solve TSP problems is to use a formulation
without any subtour elimination constraints and dynamically add only the sub-
tour elimination constraints needed to define an optimal tour. Here we will use
PuLP to define the MILP formulation without subtour elimination constraints.
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1. Load PuLP, Dippy and the square root function from the math module;

1 from pulp import *
2 import dippy
3 from math import sqrt
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2. Define the cities and their locations in the xy-plane. Also, define empty
structures for arcs between each pair of cities and int/out of cities;

7 # x,y coords of cities
8 CITY_LOCS = [(0, 2), (0, 4), (1, 2), (1, 4), \
9 (4, 1), (4, 4), (4, 5), (5, 0), \

10 (5, 2), (5, 5)]
11 CITIES = range( len(CITY_LOCS))

13 ARCS = [] # list of arcs (no duplicates)
14 ARC_COSTS ={} # distance

16 # for each city, list of arcs into/out of
17 CITY_ARCS = [[] for i in CITIES]

3. Define the Euclidean distance using sqrt ;

19 # use 2d euclidean distance
20 def dist(x1, y1, x2, y2):
21 return sqrt((x1-x2) ** 2 + (y1-y2) ** 2)

4. Define the arcs between cities, the arcs in/out of a city and the cost of the
arcs as the distance between cities;

21 # construct list of arcs
22 for i in CITIES:
23 i_x, i_y = CITY_LOCS[i]
24 for j in CITIES[i+1:]:
25 j_x, j_y = CITY_LOCS[j]
26 ARC_COSTS[(i,j)] = dist(i_x, i_y, j_x, j_y)
27 ARCS.append((i, j))
28 CITY_ARCS[i].append((i, j))
29 CITY_ARCS[j].append((i, j))

5. Use the standard TSP MILP formulation without any subtour constraints.
The standard formulation is:

min
∑

(i,j)∈A

cijxij

∑

(i,j)∈A

i=k or j=k

xij = 2, k ∈ N.

33 prob = dippy.DipProblem()

35 arc_vars = LpVariable.dicts( "UseArc" , ARCS, 0, 1, LpBinary)

37 # objective
38 prob += lpSum(ARC_COSTS[x] * arc_vars[x] for x in ARCS)
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40 # degree constraints
41 for city in CITIES:
42 prob += lpSum(arc_vars[x] for x in CITY_ARCS[city]) \

6. Solve the TSP using DIP and display the minimum cost tour;

Solving the TSP using DIP takes 0.13s of CPU time and gives the following
solution:

(5, 9) 1.0
(4, 7) 1.0
(1, 3) 1.0
(4, 8) 1.0
(5, 6) 1.0
(6, 9) 1.0
(2, 3) 1.0
(0, 1) 1.0
(7, 8) 1.0
(0, 2) 1.0

with 3 subtours:

1. 0 → 1 → 3 → 2 → 0;

2. 4 → 7 → 8 → 4;

3. 5 → 6 → 9 → 5.

The optimal TSP solution can only be found by adding user-defined cuts that
remove subtours. Section ?? describes how to implement these user-defined cuts
in Dippy and shows how these cuts combine with the CGL cuts to efficiently solve
this TSP.

4.4 The Cutting Stock Problem (cutting stock.py)

This case study also come from the Operations Research Web in the Department
of Engineering Science TWiki [4]. The solution of this problem defines cutting
patterns to produce the required demand for items from standard items. In this
case study the demand is for variable length sponge rolls to be cut from stan-
dard length rolls. The entire input file is given below with a summary for each
fragment.

1. Load PuLP and Dippy;

1 from pulp import *
2 import dippy
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2. Define the length of sponge rolls required and the demand for each length
of sponge roll (note, some variations of demand are shown but have been
commented out);

4 length = {
5 "9cm" : 9,
6 "7cm" : 7,
7 "5cm" : 5
8 }

10 ITEMS = length.keys()

12 demand = {
13 "9cm" : 3,
14 "7cm" : 2,
15 "5cm" : 2
16 }

18 total_patterns = sum(demand[i] for i in ITEMS)

20 total_length = {}
21 for p in range(total_patterns):
22 total_length[p] = 20

3. Define the maximum number of possible patterns used for cutting the stan-
dard rolls (at most one standard roll for each sponge roll needed) and the
length of the standard rolls;

25 def cross(i1, i2):
26 r = []
27 for a in i1:
28 for b in i2:
29 r.append((a, b))

4. Define a two dimensional set of items cut from patterns (cf. ?? from §4.2);

32 CUTS = cross(PATTERNS, ITEMS)
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5. Create a DipProblem . Add binary variables that determine if each pat-
tern is used and (non-negative, bounded) integer variables that define the
number of sponge rolls of each length cut from a particular pattern.

34 prob = dippy.DipProblem( "Python" , LpMinimize)

36 # create variables

38 useVars = LpVariable.dicts( "Use" , PATTERNS, 0, 1, LpBinary)
39 prob.useVars = useVars

Note that normally we would define an integer variable that defines how
many times a pattern is used and, thus, need less patterns. However, DIP
does not (yet) solve identical subproblems simultaneously, so we need one
subproblem for each pattern cut;

6. We want to minimise the total number of standard rolls used;

42 prob.cutVars = cutVars

7. We want to meet demand for sponge rolls;

45 prob += lpSum(useVars[p] for p in PATTERNS), "min"

47 # Meet demand
48 for i in ITEMS:

8. Add constraints that make sure patterns are used “in order” (these con-
straints are not strictly necessary but remove symmetry in the solution space);

50 >= demand[i]

52 # Ordering patterns
53 for i, p in enumerate(PATTERNS):

9. Create one subproblem for each pattern that makes sure the sponge rolls cut
from the standard roll in the pattern do not exceed the length of the standard
roll. Note the relaxation[p] on line 57. This adds the constraint to the
Dantzig-Wolfe subproblem if branch, price and cut is used (for more details
see section ??);

55 prob += useVars[p] >= useVars[PATTERNS[i+1]]

57 for p in PATTERNS:
58 prob.relaxation[p] += \
59 lpSum(length[i] * cutVars[(p, i)] for i in ITEMS) \

10. Solve the Sponge Roll Production Problem using branch, price and cut. Dis-
play the patterns used and the sponge rolls cut from those patterns. Note
that the doPriceCut options is turned on (set to 1). This means that DIP
will use branch, price and cut instead of branch and cut;
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This problem takes 33.31s of CPU time and requires 175 nodes in the branch-
and-bound tree for the master problem. The solution uses 2 standard rolls cut as
follows:

• Standard roll 0: 2 × 5cm rolls and 1 × 9cm roll = 19cm used (1cm wasted);

• Standard roll 1: 2 × 5cm rolls and 1 × 7cm roll = 17cm used (3cm wasted).

4.5 The Wedding Planner Problem (wedding.py)

This case study is taken from the PuLP documentation [3]. Given a list of wed-
ding attendees, a wedding planner must come up with a seating plan to minimise
the unhappiness of all of the guests. The unhappiness of guest is defined as their
maximum unhappiness at being seated with each of the other guests at their ta-
ble, i.e., it is a pairwise function. The unhappiness of a table is the maximum
unhappiness of all the guests at the table. All guests must be seated and there is
a limited number of seats at each table.

The wedding planner problem is a set partitioning problem. The set of guests
G must be partitioned into multiple subsets, with each subset seated at the same
table. The cardinality of the subsets is determined by the number of seats at a
table and the unhappiness of a table can be determined by the subset. The MILP
formulation is:

xgt =

{

1 if guest g sits at table t

0 otherwise

ut = unhappiness of table t
S = number of seats at a table

U(g, h) = unhappiness of guests g and h if they are seated at the same table

min
∑

t∈T

ut (total unhappiness of the tables)

∑

g∈G

xgt ≤ S, t ∈ T

∑

t∈T

xgt = 1, g ∈ G

ut ≥ U(g, h)(xgt + xht − 1), t ∈ T, g < h ∈ G

To get this problem into Dippy we use the PuLP modelling language. The
entire model follows with a summary for each fragment:

1. Load PuLP and Dippy;

8 try:
9 import path
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2. Define the unhappiness function for the guests (in this case we use letters in
the alphabet as guests and the “distance” between two letters in the guest
list as their unhappiness at being seated together);

15 except ImportError:
16 try:
17 import src.dippy as dippy
18 except ImportError:
19 import coinor.dippy as dippy

3. Get the problem data from an external program (this is used to test various
inputs to the MILP formulation);

22 max_table_size = 4

4. Create a the DipProblem for Dippy;

26 """
27 Return the happiness (0 is the best) of allocating two

5. Create a set for the tables and also for all possible seatings, i.e., pairs g ∈
G, t ∈ T ;

29 """
30 return abs(ord(guest_a) - ord(guest_b))

32 #create the set of possible tables
33 tables = range(max_tables)
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6. Create the seating variables xgt, g ∈ G, t ∈ T ;

36 for t in tables]

38 #create a binary variable to model if a guest sits at a particu lar table
39 x = pulp.LpVariable.dicts( 'possible_seatings' , possible_seatings,
40 lowBound = 0,
41 upBound = 1,
42 cat = pulp.LpInteger)

7. Create the table unhappiness variables ut, t ∈ T ;

44 seating_model = dippy.DipProblem( "Wedding Seating Model (DIP)" , pulp.LpMinimize,
45 display_mode = 'xdot' , display_interval = 0)

47 #specify the maximum number of guests per table
48 for table in tables:

8. Create the objective that minimises the total unhappiness of the tables;

50 for guest in guests]) <= \
51 max_table_size, \

9. Create the constraints for: 1) the number of seats at a table; 2) ensuring each
guest is seated; and 3) defining table unhappiness;

54 #A guest must seated at one and only one table
55 for guest in guests:
56 seating_model += ( sum([x[(guest, table)] for table in tables]) == 1,
57 "Must_seat_%s" %guest)

59 #create a set of variables to model the objective function
60 possible_pairs = [(a, b) for a in guests for b in guests if ord(a) < ord(b)]
61 happy = pulp.LpVariable.dicts( 'table_happiness' , tables,
62 lowBound = 0,
63 upBound = None,
64 cat = pulp.LpContinuous)

66 seating_model += sum([happy[table] for table in tables])

68 #create constraints for each possible pair
69 for table in tables:
70 for (a, b) in possible_pairs:
71 seating_model.relaxation[table] += \
72 happy[table] >= (happiness(a, b) * (x[(a, table)] +
73 x[(b, table)] - 1))

75 def relaxed_solver(prob, table, redCosts):
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10. Solve the problem using branch, price and cut;

Note the relaxation[table] syntax on lines 55 and 72. This defines a
separate subproblem for each table that contains the constraint for the number
of seats at a table and the constraints defining table unhappiness. These table
subproblems are used in branch, price and cut.

For a simple example, where the wedding guests are { A, B, C, D, E, F, G, H, I,
J, K }, the solution time is 1.28s of CPU time and the tree consists of 1395 nodes.
The solution is

Table 0 = [’D’, ’E’, ’F’, ’G’]
Table 1 = [’A’, ’B’, ’C’]
Table 2 = [’H’, ’I’, ’J’, ’K’]

5 Dippy in Practice

5.1 Adding Customised Branching

In §2.1 we explained the modifications made to DIP and how a simple variable
branch would be implemented. The DIP function chooseBranchSet calls Dippy’s
branch_method at fractional nodes. The function branch_method has two inputs
supplied by DIP:

1. prob – the DipProblem being solved;

2. sol – an indexable object representing the solution at the current node.

We define branch_method using these inputs and the same PuLP structures used
to defined the model, allowing Dippy to access the variables from the original
formulation and eliminating any need for complicated indexing.

We can explore custom branching rules that leverage constraints to reduce
the symmetry in the solution space of the bin packing problem. Inefficiencies
arise from solvers considering multiple equivalent solutions that have identical
objective function values and differ only in the subset of the identical bins used.
One way to address this is to add a constraint that determines the order in which
the bins can be considered:

yi ≥ yi+1, i = 1, . . . , m− 1

61 == bpp.capacity * use_vars[i]

This change results in a smaller branch-and-bound tree (see figure 4) that pro-
vides the same solution but with bin 0 used in place of bin 3, i.e., a symmetric
solution, but with the bins now used “in order”.

These ordering constraints also introduce the opportunity to implement an
effective branch on the number of facilities:

If
m
∑

i=1

yi = α /∈ Z, then:
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Figure 4: Branch-and-bound tree for bin packing problem instance with anti-
symmetry constraints.

the branch down restricts the branch up restricts
m
∑

i=1

yi ≤ ⌊α⌋
m
∑

i=1

yi ≥ ⌈α⌉

and the ordering means that and the ordering means that
yi = 0, i = ⌈α⌉, . . . , m yi = 1, i = 1, . . . , ⌈α⌉

We can implement this branch in Dippy by writing a definition for the
branch_method .

74 if Item_antisymmetry:
75 for m in range(0, len(bpp.BINS)):
76 # Attach the problem data and variable dictionaries
77 # to the DipProblem

182 assign_vars = prob.assign_vars
183 tol = prob.tol

185 most = float( '-inf' )
186 assign = None
187 for i in bpp.ITEMS:
188 for j in bpp.BINS:
189 down = floor(sol[assign_vars[i, j]]) # Round down
190 frac = min(up - sol[assign_vars[i, j]], sol[assign_vars[i, j]] - dow n)
191 if frac > tol: # Is fractional?
192 if frac > most:
193 assign = (i, j)

195 down_lbs = {}
196 down_ubs = {}
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197 up_lbs = {}
198 up_ubs = {}
199 if assign is not None:
200 down_ubs[assign_vars[assign]] = 0.0
201 up_lbs[assign_vars[assign]] = 1.0
202 return down_lbs, down_ubs, up_lbs, up_ubs

The advanced branching decreases the size of the branch-and-bound tree fur-
ther (see figure 5) and provides another symmetric solution with the bins used in
order.

Figure 5: Branch-and-bound tree for bin packing problem instance with anti-
symmetry constraints and advanced branching.

5.2 Adding Customised Cut Generation

By default DIP uses the CGL to add cuts. We can use dippyOpts to turn off CGL
cuts and observe how effective the CGL are

74 def my_heuristics(prob, xhat, cost):
75 sol = None
76 sol = first_fit(prob)
77 else:
78 if prob.node_heuristic:

The branch-and-bound tree is significantly larger (see figure 6) than the original
branch-and-bound tree that only used CGL cuts (see figure 2).

To add user-defined cuts in Dippy, we first define a new procedure for
generating cuts and (if necessary) a procedure for determining a feasible so-
lution. Within Dippy, this requires two new functions, generate_cuts and
is_solution_feasible . As in §5.1, the embedded bin packing problem and deci-
sions variables make it easy to access the solution values of variables in the bin
packing problem. The inputs to is_solution_feasible are:

1. prob – the DipProblem being solved;
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Figure 6: Branch-and-bound tree for bin packing problem instance without CGL
cuts.

2. sol – an indexable object representing the solution at the current node;

3. tol – the zero tolerance value.

and the inputs to generate_cuts are:

1. prob – the DipProblem being solved;

2. node – various properties of the current node, including the solution.

If a solution is determined to be infeasible either by DIP (for example some
integer variables are fractional) or by is_solution_feasible (which is useful for
solving problems like the travelling salesman problem with cutting plane meth-
ods), cuts will be generated by generate_cuts and the in-built CGL (if enabled).

5.3 Adding Customised Column Generation

Using Dippy it is easy to transform a problem into a form that can be solved
by either branch-and-cut or branch-price-and-cut. Branch-price-and-cut decom-
poses a problem into a master problem and a number of distinct subproblems.
We can identify subproblems using the relaxation member of the DipProblem

class. Once the subproblems have been identified, then they can either be ignored
(when using branch-and-cut – the default method for DIP) or utilised (when us-
ing branch-price-and-cut – specified by turning on the doPriceCut option).

In branch-price-and-cut, the original problem is decomposed into a master
problem and multiple subproblems [6]:

min c⊤1 x1 + c⊤2 x2 + · · · + c⊤KxK

subject to A1x1 + A2x2 + · · · + AKxK = b
F2x2 = f2

. . .
...

FKxK = fK
x1 ∈ Z

+
n1

, x2 ∈ Z
+
n2

, . . . , xK ∈ Z
+
nK

(1)

In (1), there are K − 1 subproblems defined by the constraints Fkxk = fk, k ∈
2, . . . , K. The constraints A1x1 + A2x2 + · · · + AKxK = b are known as linking
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constraints. Instead of solving (1) directly, column generation uses a convex com-
bination of solutions yk to each subproblem j to define the subproblem variables:

xk =

Lk
∑

lk=1

λk
lk
yklk (2)

where 0 ≤ λk
lk

≤ 1 and
∑Lk

lk=1 λ
k
lk

= 1. By substituting (2) into the linking con-

straints and recognising that each yklk satisfies Fkxk = fk, xk ∈ Z
+
nk

(as it is a solu-
tion of this subproblem), we can form the restricted master problem (RMP) with
corresponding duals (π, γ1, . . . , γK):

min c⊤1 x1 +

L2
∑

l2=1

(

c⊤2 y
2
l2

)

λ2
l2

+ · · · +

LK
∑

lK=1

(

c⊤Ky
K
lK

)

λK
lK

subject to A1x1 +

L2
∑

l2=1

(

A2y
2
l2

)

λ2
l2

+ · · · +

LK
∑

lK=1

(

AKy
K
lK

)

λK
lK

= b : π

L2
∑

l2=1

λ2
l2

= 1 : γ1

. . .
...

LK
∑

lK=1

λK
lK

= 1 : γK

L2
∑

l2=1

y2l2λ
2
l2

∈ Z
+
n2

. . .
...

LK
∑

lK=1

yKlKλ
K
lK

∈ Z
+
nK

x1 ∈ Z
+
n1
, λ2 ∈ [0, 1]L2

, . . . , λK ∈ [0, 1]LK

(3)

The RMP provides the optimal solution x∗
1, x

∗
2, . . . , x

∗
K to the original problem (1)

if the necessary subproblem solutions are present in the RMP. That is, if yk,∗lk
, lk =

1, . . . , Lk, k = 2, . . .K such that x∗
k =

∑Lk

lk=1 λ
k
lk
yk,∗lk

, k = 2, . . . , K have been in-
cluded.

Given that x∗
k, k = 1, . . . , K are not known a priori, column generation starts

with an initial solution consisting of x1 and initial sets of subproblem solutions.
“Useful” subproblem solutions, that form columns for the RMP, are found by
looking for subproblem solutions that provide columns with negative reduced
cost. The reduced cost of a solution yklk ’s column, i.e., the reduced cost for λk

lk
, is

given by c⊤k y
k
lk
− π⊤Aky

k
lk
− γk. To find a solution with minimum reduced cost we

can solve:

Sk : min (ck − π⊤Ak)
⊤ xk − γk (reduced cost for corresponding λk)

subject to Fk xk = fk (ensures that yk solves subproblem k)
xk ∈ Z

+
nk

(4)
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If the objective value of Sk is less than 0, then the solution yk will form a column
in the RMP whose inclusion in the basis would improve the objective value of the
RMP. The solution yk is added to the set of solution used in the RMP. There are
other mechanisms for managing the sets of solutions present in DIP, but they are
beyond the scope of this paper.

Within DIP, hence Dippy, the RMP and relaxed problems Sk, k = 2, . . . , K are
not specified explicitly. Rather, the constraints for each subproblem Fkxk = fk are
specified by using the .relaxation[j] syntax. DIP then automatically constructs
the RMP and the relaxed problems Sk, k = 2, . . . , K. The relaxed subproblems
Sk, k = 2, . . . , K can either be solved using the default MILP solver (CBC) or a
customised solver. A customised solver can be defined by the relaxed_solver

function. This function has 4 inputs:

1. prob – the DipProblem being solved;

2. index – the index k of the subproblem being solved;

3. redCosts – the reduced costs for the xk variables ck − π⊤Ak;

4. convexDual – the dual value for the convexity constraint for this subproblem
γk.

In addition to subproblem solutions generated using RMP dual values, initial
columns for subproblems can also be generated either automatically using CBC
or using a customised approach. A customised approach to initial variable gen-
eration can be defined by the init_vars function. This function has only 1 input,
prob , the DipProblem being solved.

Starting from the original capacitated facility location problem from section 5:

min

m
∑

i=1

wi

s.t.
m
∑

i=1

xij = 1, j = 1, . . . , n (each product produced)

n
∑

j=1

rjxij + wi = Cyi, i = 1, . . . , m (aggregate capacity at location i)

xij ≤ yi, i = 1, . . . , m, j = 1, . . . , n (disaggregate capacity at location i)

xij ∈ {0, 1}, wi ≥ 0, yi ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n

we can decompose this formulation:

min 1w2 · · · +1wm

s.t. Ix2 · · · +Ixm = 1 (each product produced)
r⊤x2 −Cy2 +1w2 = 0 (aggregate cap. at loc. 2)
Ix2 −ey2 ≤ 0 (disaggregate cap. at loc. 2)

. . .

r⊤xm −Cym + 1wm = 0 (aggregate cap. at loc. K)
+Ixm −eym ≤ 0 (disaggregate cap. at loc. K)
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where

xi =







xi1
...

xin






, r =







r1
...
rn






and e =







1
...
1






.

Now the subproblems Fkxk = fk, k = 2, . . . , K are

[

r⊤ −C 1
I e

]





xi

yi
wi





=
≤

[

0
0

]

,

c⊤k =
[

0 0 1
]

, Ak =
[

I 0 0
]

,

so Sk becomes

Si : min
∑n

j=1−πjxij +1wi −γi
subject to

∑n

j=1 rjxij −Cyi +1wi = 0

xij −yi ≤ 0, j = 1, . . . , n
xij , yi, ∈ {0, 1}, j = 1, . . . , n, wi ≥ 0

where πj is the dual variable for the assignment constraint for product j in the
RMP.

In Dippy, we define subproblems for each facility location using the
.relaxation syntax for the aggregate and disaggregate capacity constraints:

32 # Aggregate capacity constraints
33 for i in LOCATIONS:
34 prob.relaxation[i] += lpSum(assign_vars[(i, j)] * REQUIREMENT[j]
35 for j in PRODUCTS) + waste_vars[i] \
36 == CAPACITY * use_vars[i]

38 # Disaggregate capacity constraints
39 for i in LOCATIONS:
40 for j in PRODUCTS:
41 prob.relaxation[i] += assign_vars[(i, j)] <= use_vars[i]

All remaining constraints (the assignment constraints that ensure each prod-
uct is assigned to a facility) form the master problem when using branch-price-
and-cut. To use branch-price-and-cut we turn on the doPriceCut option:

206 'TolZero' : '%s' % tol,
207 'doPriceCut' : '1' ,
208 'generateInitVars' : '1' , } )

Note that symmetry is also present in the decomposed problem, so we add
ordering constraints (described in §5.1) to the RMP :

43 # Ordering constraints
44 for index, location in enumerate(LOCATIONS):
45 if index > 0:
46 prob += use_vars[LOCATIONS[index-1]] >= use_vars[locati on]
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Using branch-price-and-cut, the RMP takes about ten times as long to solve
as the original formulation, and has a search tree size of 37 nodes. The
generateInitVars option uses CBC by default to find initial columns for the RMP
and then uses CBC to solve the relaxed problems. Dippy lets us provide our
own approaches to solving the relaxed problems and generating initial variables,
which may be able to speed up the overall solution process.

In the relaxed problem for location i, the objective simplified to min
∑n

j=1−πjxij+
1wi − γi. However, the addition of the ordering constraints and the possibility
of a Phase I/Phase II approach in the MILP solution process to find initial vari-
ables mean that our method must work for any reduced costs, i.e., the objective
becomes min

∑n

j=1 djxij + fyi+ gwi−γi. Although the objective changes, the con-
straints remain the same. If we choose not to use a location, then xij = yi = wi = 0
for j = 1, . . . , n and the objective is −γi. Otherwise, we use the location and yi = 1
and add f to the objective. The relaxed problem reduces to:

min
∑n

j=1 djxij +gwi −γi
subject to

∑n

j=1 rjxij +1wi = C

xij , wi ∈ {0, 1}, j = 1, . . . , n

However, the constraint ensures wi = C −
∑n

j=1 rjxij , so we can reformulate as:

min
∑n

j=1(dj − grj)xij +fC − γi
subject to C −

∑n

j=1 rjxij ≥ 0 ⇒
∑n

j=1 rjxij ≤ C

xij , ∈ {0, 1}, j = 1, . . . , n

This is a 0-1 knapsack problem with “effective costs” costs for each product j of
dj − grj. We can use dynamic programming to find the optimal solution.

In Dippy, we can access the problem data, variables and their reduced costs,
so the 0-1 knapsack dynamic programming solution is straightforward to imple-
ment and use:

66 def solve_subproblem(prob, index, redCosts, convexDual):
67 loc = index

69 # Calculate effective objective coefficient of products
70 effs = {}
71 for j in PRODUCTS:
72 effs[j] = redCosts[assign_vars[(loc, j)]] \
73 - redCosts[waste_vars[loc]] * REQUIREMENT[j]

75 avars = [assign_vars[(loc, j)] for j in PRODUCTS]
76 obj = [-effs[j] for j in PRODUCTS]
77 weights = [REQUIREMENT[j] for j in PRODUCTS]

79 # Use 0-1 KP to max. total effective value of products at locat ion
80 z, solution = knapsack01(obj, weights, CAPACITY)

...
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83 rc = redCosts[use_vars[loc]] -z + \
84 redCosts[waste_vars[loc]] * CAPACITY
85 waste = CAPACITY - sum(weights[i] for i in solution)
86 rc += redCosts[waste_vars[loc]] * waste

88 # Return the solution if the reduced cost is low enough
89 if rc < -tol: # The location is used and "useful"
90 if rc - convexDual < -tol:
91 var_values = [(avars[i], 1) for i in solution]
92 var_values.append((use_vars[loc], 1))
93 var_values.append((waste_vars[loc], waste))

95 dv = dippy.DecompVar(var_values, rc - convexDual, waste)
96 return [dv]

98 elif -convexDual < -tol: # An empty location is "useful"
99 var_values = []

101 dv = dippy.DecompVar(var_values, -convexDual, 0.0)
102 return [dv]

104 return []

Adding this customised solver reduces the solution time because it has the
benefit of knowing it is solving a knapsack problem rather than a general MILP.

To generate initial facilities (complete with assigned products) we implemented
two approaches. The first approach used a first-fit method and considered the
products in order of decreasing requirement:

146 # Sort the items in descending weight order
147 productReqs = [(REQUIREMENT[j],j) for j in PRODUCTS]
148 productReqs.sort(reverse= True)

150 # Add items to locations, fitting in as much
151 # as possible at each location.
152 allLocations = []
153 while len(productReqs) > 0:
154 waste = CAPACITY
155 currentLocation = []
156 j = 0
157 while j < len(productReqs):
158 # Can we fit this product?
159 if productReqs[j][0] <= waste:
160 currentLocation.append(productReqs[j][1]) # index
161 waste -= productReqs[j][0] # requirement
162 productReqs.pop(j)
163 else:
164 # Try to fit next item
165 j += 1
166 allLocations.append((currentLocation, waste))
167 # Return a list of tuples: ([products],waste)
168 return allLocations
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172 locations = first_fit_heuristic()
173 bvs = []
174 index = 0
175 for loc in locations:
176 i = LOCATIONS[index]
177 var_values = [(assign_vars[(i, j)], 1) for j in loc[0]]
178 var_values.append((use_vars[i], 1))
179 var_values.append((waste_vars[i], loc[1]))
180 dv = dippy.DecompVar(var_values, None, loc[1])
181 bvs.append((i, dv))
182 index += 1
183 return bvs

The second approach simply assigned one product to each facility:

186 bvs = []
187 for index, loc in enumerate(LOCATIONS):
188 lc = [PRODUCTS[index]]
189 waste = CAPACITY - REQUIREMENT[PRODUCTS[index]]
190 var_values = [(assign_vars[(loc, j)], 1) for j in lc]
191 var_values.append((use_vars[loc], 1))
192 var_values.append((waste_vars[loc], waste))

194 dv = dippy.DecompVar(var_values, None, waste)
195 bvs.append((loc, dv))
196 return bvs

Using Dippy we can define both approaches at once and then define which
one to use by setting the init_vars method:

199 ##prob.init_vars = one_each

These approaches define the initial sets of subproblem solutions yklk , lk = 1,
. . . , Lk, k = 1, . . . , K for the initial RMP before the relaxed problems are solved
using the RMP duals.

The effect of the different combinations of column generation, customised sub-
problem solvers and initial variable generation methods, both by themselves and
combined with branching, heuristics, etc are summarised in Table 2. For this size
of problem, column generation does not reduce the solution time significantly (if
at all). However, we show in section 6 that using column branching enables DIP
(via Dippy and PuLP) to be competitive with state-of-the-art solvers.
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5.4 Adding Customised Heuristics

To add user-defined heuristics in Dippy, we first define a new procedure for node
heuristics, heuristics . This function has three inputs:

1. prob – the DipProblem being solved;

2. xhat – an indexable object representing the fraction solution at the current
node;

3. cost – the objective coefficients of the variables.

Multiple heuristics can be executed and all heuristic solutions can be returned to
DIP.

216 up = int(ceil(alpha)) # Round up to next nearest integer
217 down = int(floor(alpha)) # Round down
218 frac = min(up - alpha, alpha - down)
219 if frac > tol: # Is fractional?
220 # print "Symmetry branch"

222 down_lbs = {}
223 down_ubs = {}
224 up_lbs = {}
225 up_ubs = {}
226 for n in range(up - 1, len(bpp.BINS)):
227 down_ubs[use_vars[bpp.BINS[n]]] = 0.0
228 # print down_ubs
229 for n in range(up): # Same as range(0, up)

A heuristic that solves the original problem may not be as useful when a fractional
solution is available, so we demonstrate two different heuristics here: a “first-fit”
heuristic and a “fractional-fit” heuristic.

In the facility location problem, an initial allocation of production to locations
can be found using the same first-fit heuristic that provided initial solutions for
the column generation approach (see §5.3). The first-fit heuristic iterates through
the items requiring production and the facility locations allocating production at
the first facility that has sufficient capacity to produce the item. This can then be
used to provide an initial, feasible solution at the root node within the customised
heuristics function.
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141 # 'LogDumpModel': 5,

143 status, message, primals, duals = dippy.Solve(prob, dippy Opts)

145 if status == LpStatusOptimal:
146 return dict((var, var.value()) for var in prob.variables())
147 else:
148 return None

150 def most_frac_use(prob, sol):
151 # Get the attached data and variable dicts
152 bpp = prob.bpp
153 use_vars = prob.use_vars
154 tol = prob.tol

156 most = float( '-inf' )
157 bin = None
158 for j in bpp.BINS:
159 alpha = sol[use_vars[j]]
160 up = ceil(alpha) # Round up to next nearest integer
161 down = floor(alpha) # Round down
162 frac = min(up - alpha, alpha - down)
163 if frac > tol: # Is fractional?

At each node in the branch-and-bound tree, the fractional solution (provided
by xhat ) gives an indication of the best allocation of production. One heuristic
approach to “fixing” the fractional solution is to consider each allocation (of an
item’s production to a facility) in order of decreasing fractionality and use a first-
fit approach.
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165 most = frac
166 bin = j

168 down_lbs = {}
169 down_ubs = {}
170 up_lbs = {}
171 up_ubs = {}
172 if bin is not None:
173 # print bin, sol[use_vars[bin]]
174 down_ubs[use_vars[bin]] = 0.0
175 up_lbs[use_vars[bin]] = 1.0

177 return down_lbs, down_ubs, up_lbs, up_ubs

179 def most_frac_assign(prob, sol):
180 # Get the attached data and variable dicts
181 bpp = prob.bpp
182 assign_vars = prob.assign_vars
183 tol = prob.tol

185 most = float( '-inf' )
186 assign = None
187 for i in bpp.ITEMS:
188 for j in bpp.BINS:
189 up = ceil(sol[assign_vars[i, j]]) # Round up to next nearest integer
190 down = floor(sol[assign_vars[i, j]]) # Round down
191 frac = min(up - sol[assign_vars[i, j]], sol[assign_vars[i, j]] - dow n)
192 if frac > tol: # Is fractional?
193 if frac > most:
194 most = frac
195 assign = (i, j)

197 down_lbs = {}
198 down_ubs = {}
199 up_lbs = {}
200 up_ubs = {}
201 if assign is not None:
202 # print assign, sol[assign_vars[assign]]
203 down_ubs[assign_vars[assign]] = 0.0
204 up_lbs[assign_vars[assign]] = 1.0

206 return down_lbs, down_ubs, up_lbs, up_ubs

208 def symmetry(prob, sol):
209 # Get the attached data and variable dicts
210 bpp = prob.bpp
211 use_vars = prob.use_vars
212 tol = prob.tol

214 alpha = sum(sol[use_vars[j]] for j in bpp.BINS)

Running the first-fit heuristic before starting the branching process has little
effect on the solution time and does not reduce the number of nodes. Adding the
first-fit heuristic guided by fractional values increases the solution time slightly
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and the number of nodes remains at 419. The reason this heuristic was not that
helpful for this problem instance is that:

• the optimal solution is found within the first 10 nodes without any heuris-
tics, so the heuristic only provides an improved upper bound for < 10
nodes;

• the extra overhead of the heuristic at each node increases the solution time
more than any decrease from exploring fewer nodes.

5.5 Combining Techniques

The techniques and modifications of the solver framework can be combined to
improve performance further. Table 2 shows that it is possible to quickly and
easily test many approaches for a particular problem, including combinations of
approaches2. Looking at the results shows that the heuristics only help when
the size of the branch-and-bound tree has been reduced with other approaches,
such as ordering constraints and advanced branching. Approaches for solving
this problem that warrant further investigation use column generation, the cus-
tomised solver and either ordering constraints or the first-fit heuristic to gener-
ate initial variables. Tests with different data showed that the solution time for
branch-price-and-cut doesn’t increase with problem size as quickly as for branch-
and-cut, so the column generation approaches are worth considering for larger
problems.

6 Performance and Conclusions

In section 5 we showed how Dippy works in practice by making customisations
to the solver framework for an example problem. We will use the Wedding Plan-
ner problem from the PuLP documentation [3] to compare Dippy to two lead-
ing solvers that utilise branch-and-cut: the open-source CBC and the commercial
Gurobi. This particular problem is useful for comparing performance because it
has a natural column generation formulation and can be scaled-up in a simple
way, unlike the Facility Location problem which is strongly dependent on the
specific instance being tested.

The Wedding Planner problem is as follows: given a list of wedding attendees,
a wedding planner must come up with a seating plan to minimise the unhappi-
ness of all of the guests. The unhappiness of guest is defined as their maximum
unhappiness at being seated with each of the other guests at their table, making it
a pairwise function. The unhappiness of a table is the maximum unhappiness of
all the guests at the table. All guests must be seated and there is a limited number
of seats at each table.

This is a set partitioning problem, as the set of guests G must be partitioned
into multiple subsets, with the members of each subset seated at the same table.

2All tests were run using Python 2.7.1 on a Windows 7 machine with an Intel Core 2 Duo
T9500@2.60GHz CPU.
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The cardinality of the subsets is determined by the number of seats at a table and
the unhappiness of a table can be determined by the subset. The MILP formula-
tion is:

xgt =

{

1 if guest g sits at table t

0 otherwise

ut = unhappiness of table t
S = number of seats at a table

U(g, h) = unhappiness of guests g and h if they are seated at the same table

min
∑

t∈T

ut (total unhappiness of the tables)

∑

g∈G

xgt ≤ S, t ∈ T

∑

t∈T

xgt = 1, g ∈ G

ut ≥ U(g, h)(xgt + xht − 1), t ∈ T, g < h ∈ G

Since DIP, and thus Dippy, doesn’t require a problem to be explicitly formu-
lated as a Dantzig-Wolfe decomposition, a change from DIP to CBC is trivial. The
only differences are that:

1. A LpProblem is created instead of a DipProblem ;

2. No .relaxation statements are used;

3. The LpProblem.solve method uses CBC to solve the problem.

To see if CBC and Gurobi would perform well with a column-based approach, we
also formulated a problem equivalent to the restricted master problem from the
branch-price-and-cut approach and generated and added all possible columns
before the solving the MILP. Finally we used to Dippy to develop a customised
solver and initial variable generation function for the branch-price-and-cut for-
mulation in DIP. In total, six approaches were tested on problem instances of in-
creasing size:

1. CBC called from PuLP;

2. CBC called from PuLP using a columnwise formulation and generating all
columns a priori;

3. Gurobi called from PuLP;

4. Gurobi called from PuLP using a columnwise formulation and generating
all columns a priori;

5. DIP called from Dippy using branch-price-and-cut without customisation;

6. DIP called from Dippy using customised branching, cuts and column gen-
eration callback functions.
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In Table 3 and Figure 7 we see that3:

• Gurobi is fastest for small problems;

• The symmetry present in the problem means the solution time of CBC and
Gurobi for the original problem deteriorate quickly;

• The time taken to solve the columnwise formulation also deteriorates, but
at a lesser rate than when using CBC or Gurobi on the original problem;

• Both DIP and customised DIP solution times grow at a lesser rate than any
of the CBC/Gurobi approaches;

• For large problems, DIP becomes the preferred approach.

The main motivation for the development of Dippy was to alleviate obsta-
cles to experimentation with and customisation of advanced MILP frameworks.
These obstacles arose from an inability to use the description of a problem in a
high-level modelling languag integrated with the callback functions in leading
solvers. This is mitigated with Dippy by using the Python-based modelling lan-
guage PuLP to describe the problem and then exploiting Python’s variable scop-
ing rules to implement the callback functions.

Using the Capacitated Facility Location problem we have shown that Dippy is
relatively simple to experiment with and customise, enabling the user to quickly
and easily test many approaches for a particular problem, including combina-
tions of approaches. In practice Dippy has been used successfully to enable final
year undergraduate students to experiment with advanced branching, cut gener-
ation, column generation and root/node heuristics. The Wedding Planner prob-
lem shows that Dippy can be a highly competitive solver for problems in which
column generation is the preferred approach. Given the demonstrated ease of the
implementation of advanced MILP techniques and the flexibility of a high-level
mathematical modelling language, this suggests that Dippy is effective as more
than just an experimental “toy” or educational tool. It enables users to concen-
trate on furthering Operations Research knowledge and solving hard problems
instead of spending time worrying about implementation details. Dippy breaks
down the barriers to experimentation with advanced MILP approaches for both
practitioners and researchers.

3All tests were run using Python 2.7.1 on a Dell XPS1530 laptop with an Intel Core 2 Duo CPU
T9500@2.60GHz and 4 GB of RAM. We used CBC version 2.30.00, Gurobi version 4.5.1, and Dippy
version 1.0.10.
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Figure 7: Comparing solver performance on the Wedding Planner problem. In
this figure the times for generating the columns for “CBC with columns” and
“Gurobi with columns” have been included in the total solve time. The time
required for solving the original formulation sharply increases for both Gurobi
and CBC (marked with crosses) but at different problem sizes. However the
time for the column-wise formulation is similar for Gurobi and CBC. The time
for DIP does not smoothly increase with problem size, but is consistently lower
than Gurobi for instances with 16 or more guests.
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Strategies Time (s) Nodes

Default (branch and cut) 0.26 419
+ ordering constraints (OC) 0.05 77
+ OC & advanced branching (AB) 0.01 3
+ weighted inequalities (WI) 0.34 77
+ WI & OC 0.17 20
+ WI & OC & AB 0.06 4
+ first-fit heuristic (FF) at root node 0.28 419
+ FF & OC 0.05 77
+ FF & OC & AB 0.01 3
+ FF & WI 0.36 77
+ FF & WI & OC 0.14 17
+ FF & WI & OC & AB 0.05 3
+ fractional-fit heuristic (RF) at nodes 0.28 419
+ RF & OC 0.05 77
+ RF & OC & AB 0.01 3
+ WI & RF 0.38 77
+ WI & RF & OC 0.14 17
+ WI & RF & OC & AB 0.05 3
+ FF & RF 0.28 419
+ FF & RF & OC 0.05 77
+ FF & RF & OC & AB 0.01 3
+ WI & FF & RF 0.38 77
+ WI & FF & RF & OC 0.14 17
+ WI & FF & RF & OC & AB 0.05 3
+ column generation (CG) 2.98 37
+ CG & OC 2.07 23
+ CG & OC & AB 0.56 10
+ CG & customised subproblem solver (CS) 2.87 37
+ CG & CS & OC 1.95 23
+ CG & CS & OC & AB 0.44 10
+ CG & first-fit initial variable generation (FV) 3.96 45
+ CG & CS & FV 3.72 45
+ CG & CS & FV & OC 1.70 18
+ CG & CS & FV & OC & AB 0.22 3
+ CG & one-each initial variable generation (OV) 3.40 41
+ CG & CS & OV 3.33 41
+ CG & CS & OV & OC 2.23 24
+ CG & CS & OV & OC & AB 0.27 3

Table 2: Experiments for the Capacitated Facility Location Problem
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# guests Time (s)

CBC CBC & columns Gurobi Gurobi & columns DIP Customised
gen vars solve gen vars solve DIP

6 0.07 0.01 0.06 0.04 0.01 0.05 0.90 0.33
7 0.07 0.01 0.12 0.04 0.01 0.11 1.77 0.57
8 0.90 0.01 0.27 0.07 0.01 0.25 4.78 0.57
9 2.54 0.01 0.57 0.09 0.01 0.55 2.11 0.78
10 3.83 0.01 1.23 0.13 0.01 1.15 5.60 0.94
11 6.48 0.01 2.46 0.14 0.01 2.36 8.62 0.91
12 26.73 0.01 4.64 0.34 0.01 4.55 25.17 2.80
13 53.18 0.01 8.57 0.39 0.01 8.28 14.86 1.40
14 70.51 0.01 15.27 0.38 0.01 14.65 20.09 2.66
15 97.79 0.01 26.26 0.47 0.01 25.07 33.52 1.59
16 >1000 0.01 43.86 68.08 0.01 42.11 26.73 2.09
17 – 0.01 72.07 79.71 0.01 68.87 50.48 3.92
18 – 0.01 115.64 96.03 0.01 110.52 40.80 4.67
19 – 0.01 181.39 113.01 0.01 173.13 78.20 2.64
20 – 0.02 283.16 >6000 0.01 270.08 61.86 5.31
21 – 0.02 434.60 – 0.02 418.04 77.66 4.23
22 – 0.02 664.87 – 0.02 639.04 134.76 4.63
23 – – >1000 – – >1000 149.82 9.16
24 – – – – – – 110.24 6.51
25 – – – – – – 202.59 8.80
26 – – – – – – 185.21 18.47

Table 3: Experiments for the Wedding Planner Problem
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