SYMPHONY 5.1.1 User’s Manual !

T.K. Ralphs®
M. Giizelsoy®

December 4, 2006

! This research was partially supported by NSF Grants DMS-9527124, DMI-0534862, and DMI-0522796,
as well as Texas ATP Grant 97-3604-010. A revised version of Chapters 4 of this manual now appears in the
Springer-Verlag book Computational Combinatorial Optimization edited by M. Jinger and D. Naddef, see

http://link.springer.de/link/service/series/0558/tocs/t2241 .htm
2Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18017,

tkralphs@lehigh.edu, http://www.lehigh.edu/~tkr2
3Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18017,

megb@lehigh.edu, http://coral.ie.lehigh.edu/~menal

 http://link.springer.de/link/service/series/0558/tocs/t2241.htm
mailto:tkralphs@lehigh.edu
http://www.lehigh.edu/~tkr2
mailto:megb@lehigh.edu
http://coral.ie.lehigh.edu/~menal

©2000-2006 Ted Ralphs

Acknowledgments

First and foremost, many thanks are due to Laci Ladanyi who worked with me on the development
of an early precursor of SYMPHONY called COMPSys and who taught me much of what I then
knew about programming. Many thanks are due also to Marta Es6, who wrote an early draft
of this manual for what was then COMPSys. This release would not have been possible without
the help of Menal Giizelsoy, who has been instrumental in the development of SYMPHONY since
version 4.0. I would also like to thank Matthew Galati and Ondrej Medek, who contributed to
the development of SYMPHONY over the years. Finally, my sincere appreciation goes to Leslie
Trotter, William Cook, Cornell University, Rice University, Lehigh University, the National Science
Foundation, and the state of Texas, all of whom have supported the development of SYMPHONY.

Contents

1 Introduction

1.1 Introducing SYMPHONY 5.1.1 o e
1.2 What’'s New o o o
1.3 A Brief History e
1.4 Related Work
1.5 How to Use This Manual
1.6 Getting Additional Help o o

2 Imstalling SYMPHONY

2.1 Installing the Binary Distribution
2.1.1 Installation in Unix-like environments
2.1.2 Installation for Use With Microsoft Visual C++

2.2 Building From Source
2.2.1 External Dependencies
2.2.2 Building in Unix-like environments oL
2.2.3 Building Using Microsoft Visual C+4
2.2.4 Building SYMPHONY Applications

3 Using SYMPHONY

3.1 Using SYMPHONY Interactively,
3.1.1 Unix-like Environments
3.1.2 Microsoft Windows

3.1.3 Main Menu

10
10
15
17

3.1.4 Set Menu 24

3.1.5 Display Menuo 25
3.1.6 Sub Menu Browsing 26

3.2 Using SYMPHONY from the Command Line 27
3.3 Using the Callable Library 28
3.3.1 The CAPL e 28
3.32 The C+4+ APT 30
3.3.3 Linking to the Callable Library 32

3.4 Using the Callback Functions 32
4 Technical Details 33
4.1 Branch and Bound 33
4.2 Branchand Cut. e 33
4.3 Design of SYMPHONY e 35
4.3.1 An Object-oriented Approach 36
4.3.2 Data Structures and Storage 37
4.3.3 Modular Implementation 0o 39
4.3.4 Algorithm Summary 42

4.4 Details of the Implementation 43
4.4.1 The Master Module 43
4.4.2 The Node Processing Module 46
4.4.3 The Tree Management Module 50
4.44 The Cut Generation Module, 51
4.4.5 The Cut Management Module 51

4.5 Parallelizing BCP e 52
4.5.1 Parallel Configurations o 53
4.5.2 Inter-process Communication 53
4.5.3 Fault Tolerance L L e 54

5 Developing Custom Applications 55
5.1 Navigating the Source Code L 55

vi

5.2 Building an Application 56
5.2.1 Unix . . . o oo e 56
5.2.2 Microsoft Visual CH++ o 56

5.3 Writing the Callbacks 57

5.4 Data Structures 58

5.5 Parallel Implementation L 59
5.5.1 Distributed-memory Architectures, 59
5.5.2 Shared-memory Architectures 59

5.6 Debugging Your Application 60
5.6.1 The First Rule 60
5.6.2 Debugging with PVM oo 60
5.6.3 Checking the Validity of Cuts and Tracing the Optimal Path 61
5.6.4 Using the Interactive Graph Drawing Software 61
5.6.5 Other Debugging Techniques 62

5.7 Case Study: Implementing a Matching Solver 62

6 Reference 69

6.1 Callable Library C API 69
6.1.1 Primary Interface Functions L Lo 70
6.1.2 Parameter Query and Modification 85
6.1.3 Solver Status Query Functions o oL 92
6.1.4 Data Query Functions o 98
6.1.5 Data Modification Functions L. 122
6.1.6 Warm Starting Functions oo 139
6.1.7 Sensitivity Analysis Functions L. 145

6.2 Callable Library C++ API 149

6.3 User Callback API 152
6.3.1 Master module callbacks o oo 152
6.3.2 LP module callbackso 168
6.3.3 Cut generator module callbacks L oo 202

vii

6.3.4 Cut pool module callbacks 208

6.3.5 Draw graph module callbacks L Lo oo 214

6.4 Run-time Parameters. L 218
6.4.1 Global parameterso 218

6.4.2 Master module parameters o e 218

6.4.3 Draw Graph parameters L L Lo 219

6.4.4 'Tree Manager parameters Lo e e 220

6.4.5 LP parameters 224

6.4.6 Cut Generator Parameters oL 228

6.4.7 Cut Pool Parameters 229

6.4.8 C++ Interface/OSI Parameters 230
Bibliography 231
Index 235

viii

Chapter 1

Introduction

1.1 Introducing SYMPHONY 5.1.1

Welcome to the SYMPHONY Version 5.1.1 user’s manual. Whether you are a new user or simply
upgrading, this manual will help you get started with what we hope you will find to be a useful
and powerful framework for solving mixed-integer linear programs (MILP) sequentially or in par-
allel. The subroutines in the SYMPHONY library comprise a state-of-the-art MILP solver with a
modular design that makes it easy to customize for various problem settings. SYMPHONY works
out of the box as a generic MILP solver that can be invoked from the command line, through an
interactive shell, or by linking to the provided callable library, which has both C and C++ inter-
faces with a look and feel similar to that of other popular solvers (see Sections 6.1 and 6.2 for the
library routines). Models can be read in MPS or GMPL (a subset of AMPL) format, as well as by
interfacing with more powerful modeling environments, such as FlopC++ (also provided with the
distribution). To develop a customized SYMPHONY application, various callbacks can be written
and parameters set that modify the default behavior of the algorithm. Section 3.4 contains an
overview of the API for these subroutines. Files containing function stubs are provided with the
distribution.

SYMPHONY can be built on almost any platform and can be configured either for serial com-
putation or in a wide variety of parallel modes. The parallel version can be built for either a
fully distributed environment (network of workstations) or a shared-memory environment simply
by changing a few configuration options (see Chapter 2). To run in a distributed environment, the
user must have installed the Parallel Virtual Machine (PVM), available for free from Oak Ridge
National Laboratories. To run in a shared-memory environment, the user must have installed an
OpenMP compliant compiler (gec 4.2 is currently the only compiler tested and fully supported).

1.2 What’s New

In SYMPHONY 5.0, we introduced a number of new features that give SYMPHONY some unique
capabilities. These include the ability to solve biobjective integer programs, the ability to warms

1

http://www.ccs.ornl.gov/pvm/

start the solution procedure, and the ability to perform basic sensitivity analyses. These capabilities
have been further developed and enhanced in Version 5.1.1. Other new features and enhancements
are listed below.

e SYMPHONY now has an interactive optimizer that can be used through a command shell. In
both the sequential and parallel configurations, the user can set parameters, load and solve
instances interactively, and display results and statistics. For Windows users, this means
that SYMPHONY can be invoked using the familiar procedure of “double-clicking” on the
symphony . exe file in Windows Explorer.

e SYMPHONY now supports automatic configuration using the new COIN-OR build system
and the GNU autotools. Using the autotools, it is now possible to build SYMPHONY in
most operating systems and with most common compilers without user intervention.

e Both the distributed and shared memory parallel configurations are once again fully imple-
mented, tested, and supported. The user can now build and execute custom SYMPHONY
applications in parallel, as well as solving generic MILPs in parallel ”out of the box.”

e There are now additional options for warm starting. The user can trim the warm starting
tree before starting to resolve a problem. More specifically, the user can decide to initiate
warm starting with a predefined partition of the final branch-and-cut tree resulting from a
previous solution procedure. This partition can include either a number of nodes created first
during the solution procedure or all of the nodes above a given level of the tree.

e The COIN-OR repository, the current host of SYMPHONY has recently undergone some
significant improvements of its own that have resulted in improved services to users, detailed
below.

— SYMPHONY has a new development Web site, where users can submit trouble tickets,
browse the source code interactively, and get up-to-date information on development.
The address of the new site is https://projects.coin-or.org/SYMPHONY.

— SYMPHONY is now hosted using subversion, a version control system with features
vastly improved over CVS, the previous hosting software. This has required some reor-
ganization and renaming of the header files.

— SYMPHONY is now more tightly integrated with other COIN-OR projects. Due to
improved procedures for producing stable releases, it will now be much easier for us to
determine the exact version of SYMPHONY and all other COIN projects you are using
when you report a bug.

— SYMPHONY is now distributed with all COIN software needed to build a complete
solver. Previously, other COIN software packages had to be downloaded and installed
separately.

Two features have been deprecated and are no longer supported:

e The native interfaces to OSL and CPLEX are now deprecated and no longer supported. These
solvers can be called through the COIN-OR, OSI interface.

2

https://projects.coin-or.org/SYMPHONY

e Column generation functionality has also been officially deprecated. For now, there are a
number of other software packages that offer better functionality than SYMPHONY for im-
plementing branch and price algorithms.

There were a few minor changes to the API from the previous version of SYMPHONY to version
5.1.1.

e First and foremost, the name of the main header file for SYMPHONY has been changed
from symphony_api.h to symphony.h (though the former has been retained for backward
compatibility purposes).

e The user can now execute a primal heuristic in the user_is feasible() callback and return
the solution to SYMPHONY, which required the arguments of this function to be changed
slightly.

e Several new subroutines were added to the callable library API.

1.3 A Brief History

Since the inception of optimization as a recognized field of study in mathematics, researchers have
been both intrigued and stymied by the difficulty of solving many of the most interesting classes of
discrete optimization problems. Even combinatorial problems, though conceptually easy to model
as integer programs, have long remained challenging to solve in practice. The last two decades
have seen tremendous progress in our ability to solve large-scale discrete optimization problems.
These advances have culminated in the approach that we now call branch and cut, a technique (see
[19, 29, 20]) which brings the computational tools of branch and bound algorithms together with
the theoretical tools of polyhedral combinatorics. Indeed, in 1998, Applegate, Bixby, Chvatal, and
Cook used this technique to solve a Traveling Salesman Problem instance with 13,509 cities, a full
order of magnitude larger than what had been possible just a decade earlier [2] and two orders of
magnitude larger than the largest problem that had been solved up until 1978. This feat becomes
even more impressive when one realizes that the number of variables in the standard formulation
for this problem is approximately the square of the number of cities. Hence, we are talking about
solving a problem with roughly 100 million variables.

There are several reasons for this impressive progress. Perhaps the most important is the dramatic
increase in available computing power over the last decade, both in terms of processor speed and
memory. This increase in the power of hardware has subsequently facilitated the development
of increasingly sophisticated software for optimization, built on a wealth of theoretical results. As
software development has become a central theme of optimization research efforts, many theoretical
results have been “re-discovered” in light of their new-found computational importance. Finally,
the use of parallel computing has allowed researchers to further leverage their gains.

Because of the rapidly increasing sophistication of computational techniques, one of the main dif-
ficulties faced by researchers who wish to apply these techniques is the level of effort required
to develop an efficient implementation. The inherent need for incorporating problem-dependent

3

methods (most notably for dynamic generation of variables and cutting planes) has typically re-
quired the time-consuming development of custom implementations. Around 1993, this led to the
development by two independent research groups of software libraries aimed at providing a generic
framework that users could easily customize for use in a particular problem setting. One of these
groups, headed by Jiinger and Thienel, eventually produced ABACUS (A Branch And CUt Sys-
tem) [21], while the other, headed by the authors, produced what was then known as COMPSys
(Combinatorial Optimization Multi-processing System). After several revisions to enable more
broad functionality, COMPSys became SYMPHONY (Single- or Multi-Process Optimization over
Networks). A version of SYMPHONY written in C++, which we call COIN/BCP has also been
produced at IBM under the COIN-OR project [24]. The COIN/BCP package takes substantially the
same approach and has the same functionality as SYMPHONY, but has extended SYMPHONY’s
capabilities in some areas.

1.4 Related Work

The 1990’s witnessed a broad development of software for discrete optimization. Almost without
exception, these new software packages were based on the techniques of branch, cut, and price.
The packages fell into two main categories—those based on general-purpose algorithms for solving
mixed-integer linear programs (MILPs) (without the use of special structure) and those facilitating
the use of special structure by interfacing with user-supplied, problem-specific subroutines. We will
call packages in this second category frameworks. There have also been numerous special-purpose
codes developed for use in particular problem settings.

Of the two categories, MILP solvers are the most common. Among the dozens of offerings in this
category are MINTO [27], MIPO [3], bc-opt [8], and SIP [26]. Generic frameworks, on the other
hand, are far less numerous. The three frameworks we have already mentioned (SYMPHONY,
ABACUS, and COIN/BCP) are the most full-featured packages available. Several others, such
as MINTO, originated as MILP solvers but have the capability of utilizing problem-specific sub-
routines. CONCORDE [2, 1], a package for solving the Traveling Salesman Problem (TSP), also
deserves mention as the most sophisticated special-purpose code developed to date.

Other related software includes several frameworks for implementing parallel branch and bound.
Frameworks for general parallel branch and bound include PUBB [33], BoB [1], PPBB-Lib [37],
and PICO [10]. PARINO [23] and FATCOP [6] are parallel MILP solvers.

1.5 How to Use This Manual

The manual is divided into six chapters. The first is the introduction, which you are reading now.
Chapter 2 describes how to install SYMPHONY from either a source or binary distribution. If
you have already managed to get SYMPHONY running using the instructions in the README file,
you might want to skip to Chapter 3. However, keep in mind that the manual contains additional
details for customizing your build. Chapter 3 contains an overview of how to use in all three major
modes—as a black-box solver through the interactive shell or on the command line, as a callable
library, and as a customizable framework. Chapter 4 contains further depth and a more complete

4

technical description of the design and implementation of SYMPHONY. In Section 4.3, we describe
the overall design of SYMPHONY without reference to the implementational details and with only
passing reference to parallelism. In Section 4.4, we discuss the details of the implementation. In
Section 4.5, we briefly discuss issues involved in parallel execution of SYMPHONY. Chapter 5
describes in detail how to develop a custom application using SYMPHONY. Note that it is not
necessary to read Chapter 4 before undertaking development of a SYMPHONY application, but it
may help. Chapter 6 contains reference material. Section 6.1 contains a description of the native
C interface for the callable library. Section 6.2 contains a description of the interface for C++
environments. Section 6.3 contains a description of the user callback functions. SYMPHONY's
parameters are described in Section 6.4. For reference use, the HTML version of this manual may
be more practical, as the embedded hyperlinks make it easier to navigate.

1.6 Getting Additional Help

The main point of entry for additional help, trouble-shooting, and problem-solving is the SYM-
PHONY Wiki and development Web site at

https://projects.coin-or.org/SYMPHONY

There, bug reports can be submitted by clicking on the “New Ticket” button and also previous
bug reports searched. For general questions, there is also a SYMPHONY user’s mailing list. To
subscribe, visit

http://list.coin-or.org/mailman/listinfo/coin-symphony

https://projects.coin-or.org/SYMPHONY
http://list.coin-or.org/mailman/listinfo/coin-symphony

Chapter 2

Installing SYMPHONY

This chapter is concerned with detailed instructions for building and installing SYMPHONY, along
with its associated libraries and applications.

2.1 Installing the Binary Distribution

For the users who only need the generic MILP solver or the SYMPHONY callable library to be
used in their custom applications, there are binary distributions released for different compilers and
platforms. Each distribution consists of an executable and libraries built from the source code of
SYMPHONY version 5.1.1. It is important to note, however, that the pre-compiled binaries are
missing some very useful functionality because of the fact that we are unable to distribute code
linked to libraries licensed under the GNU General Public License (GPL). There are also a number
of other potentially useful configurations (such as the parallel version) that we do not distribute
in binary form. Building from source should be easy in most environments and will give you more
flexibility. See Section 2.2 for more information on additional functionality available when building
from source.

You can obtain the SYMPHONY binary distribution by visiting
https://www.coin-or.org/download/binary/SYMPHONY

The binaries are currently available for Linux and Windows. These binaries are built with the
following default options:

e The associated LP solver is the COIN LP solver (CLP).
e Cut generation is done with COIN’s Cut Generation Library (CGL).

e All libraries are compiled statically.

The optimization level for Linux binaries is “O2”.

Only serial executables are included.

https://www.coin-or.org/download/binary/SYMPHONY

2.1.1 Installation in Unix-like environments
e Unpack the distribution with
tar xzvf symphony-\VER-XXX-bin.tgz

where XXX indicates the platform and the version of compiler used to build the distribution.
Switch into the root directory of the unpacked distribution.

e First, test the executable by going to the bin directory and typing

./symphony -F ../examples/sample.mps

e To test the callable library, the distribution includes sample files in examples directory:

milp.c: This sample code is an implementation of a basic MILP solver using SYMPHONY’s
C callable functions with user defined input (see Section 3.3). To test the code, go to the
examples directory and type

make milp
milp

milpOsi.c: This sample code is an implementation of a basic MILP solver using SYM-
PHONY’s C++ callable functions (through OsiSym interface) with user defined input (see
Section 3.3.2). To test the code, go to examples directory and type,

make milpOsi
milpOsi

If everything is working properly, the libraries, executables and header files can be installed in
appropriate system directories if desired. This must be done by hand. This step will be done
automatically if building from source using the automatic scripts provided (see below).

2.1.2 Installation for Use With Microsoft Visual C++4

These instructions are for use with Microsoft Visual Studio 6.0. The procedure for other version of
Visual Studio should be similar. Download and unpack the archive symphony-5.1.1-win32-msvc6.zip

e First, test the executable by opening Windows Explorer and double-click on symphony.exe
in the bin directory in the folder in which the distribution was unpacked. This should open a
Window in which the interactive solver will appear. Type help or 7 to see a list of available
commands or see Chapter 3 for instructions on using the interactive solver.

8

e To test the callable library, the distribution includes sample codes along with associated
project files in the examples directory.

milp.c: This sample code is an implementation of a basic MILP solver using SYMPHONY’s
C callable functions with user defined input (see Section 3.3). To test the code, either

— open the workspace milp.dsw, choose Build milp.exe and then choose Execute from
the Build menu,

or

— open a command terminal (choose Run on the Start menu and type cmd in the dialogue
box) and type

devenv milp.sln /make "all - debug"
Debug/milp.exe

milpOsi.c: This sample code is an implementation of a basic MILP solver using SYM-
PHONY’s C++ callable functions (through OsiSym interface) with user defined input (see
Section 3.3.2). To test the code, either

— open the workspace milpOsi.dsw, choose Build milpOsi.exe and then Execute com-
mands from the Build menu,

or

— open a command terminal (choose Run on the Start menu and type cmd in the dialogue
box) and type

devenv milpOsi.slb /make "all - debug"
Debug/milpOsi.exe

2.2 Building From Source

SYMPHONY can now use the COIN-OR build system and the GNU autotools to automate the build
process. The build process should therefore be identical in all Unix-like environments. It is even
possible to use this system to build COIN in Windows using the Microsoft Visual C++ compiler
if you have MinGW (http://www.mingw.org) installed (you need the GNU make command). The
instructions below will lead you through the steps required to compile SYMPHONY as a generic
MILP solver. This process will create (1) a generic callable library that allows SYMPHONY
to be called from a C or C++ code and (2) an executable that can be used as a stand-alone
application to solve MILPs written in either MPS or GMPL file format. SYMPHONY can be further
customized by implementing one of more than 50 callback functions that change SYMPHONY’s
default behavior. For information on customizing SYMPHONY using callbacks, a quick start guide
is provided below. More detailed information is provided in Chapter 5.

9

http://www.mingw.org

2.2.1 External Dependencies
2.2.1.1 The LP Engine.

SYMPHONY requires the use of a third-party callable library to solve the LP relaxations once they
are formulated. The LP solver is called through Open Solver Interface, also available from COIN
(https://projects.coin-or.org/0si) . The list of solvers with OSI interfaces currently numbers
eight and includes both commercial and open source alternatives. By default, SYMPHONY now
uses the COIN LP solver (Clp). However, if another LP solver is desired, this is possible by changing
the configuration settings.

2.2.1.2 GMPL Parser.
If you would like to be able to parse GMPL models (GMPL is a subset of AMPL), you will need to

install GLPK (http://www.gnu.org/software/glpk/) and configure SYMPHONY appropriately
(see below).

2.2.1.3 COIN Libraries.
SYMPHONY uses other COIN libraries for certain functionality, such as parsing MPS files, solving

linear programs, generating valid inequalities, and for general matrix utilities. The libraries required
for this functionality are now included with the distribution.

2.2.1.4 GNU Libraries.
If the readline and history libraries are available, the interactive solver will have command history

and command completion available. This functionality is only available in Unix-like environments
by configuring with the -—enable-gnu-packages option (see below).

2.2.2 Building in Unix-like environments
2.2.2.1 Downloading
You can obtain the SYMPHONY source code either via the subversion repository or in the form
of archived releases. The recommended method in Unix is to use subversion because it makes it
easier to obtain updates. In a Unix-like environment (such as Linux or CYGWIN), the following
command may be used to obtain SYMPHONY from source using SVN in most cases:

svn checkout https://projects.coin-or.org/svn/SYMPHONY/stable/5.1 SYMPHONY-5.1
Alternatively, you can get point releases of the source code as a compressed file by visiting

https://www.coin-or.org/download/source/SYMPHONY

10

https://projects.coin-or.org/Osi
http://www.gnu.org/software/glpk/
https://www.coin-or.org/download/source/SYMPHONY

The latest version of the source code is 5.1.1, so you should download the file SYMPHONY-5.1.1.tgz
and unpack the distribution with

tar -xzf SYMPHONY-5.1.1.tgz

This will create a subdirectory called SYMPHONY-5.1.1 containing the distribution.

2.2.2.2 Configuring

The first step is to run a configuration script that will allow the compilation process to be customized
for your environment. to perform this step, switch into the root directory of the distribution and

type
./configure

This will set up the default configuration files. If you want to override the default settings, you can
either run the configuration script with command-line options or else modify the options in the file
share/config.site. A complete list of options with brief explanations can be seen both in the
file share/config.site and by typing

./configure --help=recursive

See Figure 2.1 for a list of options the user may want to set.

In order to enable or disable an option, either modify the file share/config.site or add the option
as an argument to configuration script. For instance, running

./configure --enable-debug

will compile the source files with the debugging flag.

It is possible to use compilers oter than the default (which is g++). For example, to perform at
automated build of SYMPHONY using the MSVC++ compiler c1 with GNU autotools in the
CYGWIN environment configure with

./configure CC=cl CXX=cl LD=link

2.2.2.3 Building

After configuring, the code can be built by typing the commands

make
make install

11

This will first create the required libraries and executables and then will install them. By default,
the library 1ibSym and the executable symphony will be installed to the 1ib/ and bin/ directories.
To install in another directory, use the option —-prefix=DIR to the configure command.

After compilation, the SYMPHONY library, together with the header files in the subdirectory
include/, can then be used to call SYMPHONY from any C/C++ code. The API for this is
described in Chapter 3. The executable can also be used for solving generic MILP problems in
MPS and GMPL format. In order to read GMPL files, you will need to have GLPK (http:
//www.gnu.org/software/glpk/) installed and SYMPHONY must be configured with

./configure --with-gmpl --with-glpk-1ib[=GLPK library location]
-—with-glpk-incdir [=GLPK include dir]

For a more powerful modeling interface, FlopC++ can also be used to obtain a capability similar

to ILOG’s Concert technology for building math programming models (see SYMPHONY /Exam-
ples/FLOPC++).

To test SYMPHONY after building, type

make test
to execute an automated unit test. To test out the optimizer manually. a sample MPS file
called sample.mps and a sample GMPL/AMPL file called sample.mod together with its data
file sample.dat are included with the distribution. You can use either the command-line or the
interactive optimizer. To solve the sample MPS model, type

bin/symphony -F SYMPHONY/Datasets/sample.mps

To solve the GMPL model, use the -F switch to specify the file name and the -D for the data file
name if the input is in GMPL/AMPL format, i.e., type

bin/symphony -F SYMPHONY/Datasets/sample.mod -D SYMPHONY/Datasets/sample.dat
For more MPS data files for further testing, see the MIPLIB library in the Data/ subdirectory.
To run the interactive optimizer, execute SYMPHONY without any command-line arguments, i.e.,
type

bin/symphony

and then type help or 7 to see a list of available commands. After the SYMPHONY library and
the executable are compiled and tested, you can type

make clean

if you want to save disk space. That’s it! Now you are ready to use SYMPHONY callable library
or solve generic MILP problems through the executable.

12

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

2.2.2.4 Building for parallel architectures

Shared-memory architectures. To compile a shared memory version of SYMPHONY, simply
use an OpenMP compliant compiler. Version 5.1.1 has been tested with gcc 4.2, and should build
by configuring with

./configure --enable-openmp

After configuring, follow the earlier instructions for building and testing. To invoke SYMPHONY
from the command-line with multiple threads, specify the number of threads with the —-p option,
i.e.,

bin/symphony -p 2 -F SYMPHONY/Datasets/sample.mps

Distributed-memory architectures To compile a distributed application, it is necessary that
PVM be installed either in the system path or in the directory pointed to by the environment
variable PVM_ROOT (this can be your home directory if PVM is not already installed on your network).
To install PVM yourself, the current version can be obtained at http://www.csm.ornl.gov/pvm/.
It should compile and install without problems on most architectures. You will have to make a
few modifications to your .cshrc file, such as defining the PVM_ROOT environment variable, but this
is all explained clearly in the PVM documentation. Note that all executables (or at least a link
to them) must reside in the $PVM_ROOT/bin/$PVM_ARCH directory in order for parallel processes to
be spawned correctly. The environment variable PVM_ARCH is set in your .cshrc file and should
contain a string representing the current architecture type. To run a parallel application, you must
first start up the daemon on each of the machines you plan to use in the computation. How to do
this is also explained in the PVM documentation.

To configure for a parallel build with the default parallel configuration, invoke the configuration
script as follows:

./configure --with-pvm

Note that there are a number of different parallel configurations (see Chapter 4.3.3 for an overview
of SYMPHONY’s parallel modules). The default configuration is to build two parallel modules, the
first consisting of the master, tree management, and cut management modules, while the second
consisting of the node processing, and cut generation modules. To build in another configuration,
there are four configure flags that control which modules run as separate executables and which
are called directly in serial fashion. The variables are as follows:

--with-cg: If set, then the cut generator function will be called directly from the LP in serial
fashion, instead of running as a separate executable. This is desirable if cut generation is
quick and running it in parallel is not worth the price of the communication overhead.

--with-cp: If set, then the cut pool(s) will be maintained as a data structure auxiliary to the
tree manager.

13

http://www.csm.ornl.gov/pvm/

——with-1p: If set, then the LP functions will be called directly from the tree manager. When
running the distributed version, this necessarily implies that there will only be one active
subproblem at a time, and hence the code will essentially be running serially. In the shared-
memory version, however, the tree manager will be threaded in order to execute subproblems
in parallel.

--with-tm: If set, then the tree will be managed directly from the master process. This is only
recommended if a single executable is desired (i.e. the three other variables are also set to
true). A single executable is extremely useful for debugging purposes.

These variables can be set in virtually any combination, though some don’t really make much sense.
Note that in a few user functions that involve process communication, there will be different versions
for serial and parallel computation. This is accomplished through the use of #ifdef statements in
the source code. This is well documented in the function descriptions and the in the source files
containing the function stubs.

Once configured, follow the build instructions in Section 2.1.1 to build the code. Note that this will
also compile the sequential version. Make sure there are links from your $PVM_RO0OT/bin/$PVM_ARCH
subdirectory to each of the executables in your bin/ directory, as required by PVM. In order to keep
track of the various possible configurations, executable and their corresponding libraries are named
as follows. The name of each executable is symphony, along with a combination of the (abbreviated)
names of the modules that were combined to produce that executable joined by underscores: m for
the master module, tm for the tree management module, 1p for the node processing module, cg for
the cut generation module, and cp for the cut management module. For instance, in the default
distributed configuration, the executables produced are symphony m_tm_cp and symphony_lp_cg.

To test the parallel version, first start the PVM daemon by typing pvm on the command line and
then typing quit. As above, invoke SYMPHONY using the sample MPS file called sample.mps
included with the distribution. To specify the file name, use the -F command-line option, i.e., in
the root directory, type

bin/symphony_m_EXT -F SYMPHONY/Datasets/sample.mps

where EXT is the extension to be added according to the chosen configuration of the modules.

2.2.2.5 Building SYMPHONY Applications

There are a number of sample applications available as examples of how to do customized devel-
opment with SYMPHONY. These include customized solvers for the matching problem, the set
partitioning problem (simple and advanced versions), the vehicle routing and traveling salesman
problems, the mixed postman problem, the multi-criteria knapsack problem, and the capacitated
network routing problem. These applications are contained in the SYMPHONY/Applications/ subdi-
rectory in the distribution. There is also a white paper that guides the user through the development
of the MATCH solver in the SYMPHONY/Doc/ directory. For detailed instructions on developing your
own application with SYMPHONY, see Chapter 5.

14

In order to compile SYMPHONY’s applications in Unix-like environments, you must first compile
a version of the callable library with hooks for the callback functions.

./configure --with-application
make
make install

This will create the application library called 1ibSymAppl to be used while building custom ap-
plications. Note that that the generic sequential library and executable will also be made and
installed.

After building the library, go to one of the application subdirectories in the SYMPHONY/Applications/
directory and type make there to build the corresponding application. For more information, includ-
ing the parallel configuration instructions, see the INSTALL file of the corresponding application.

2.2.3 Building Using Microsoft Visual C++

Here is a sketch outline of how to compile SYMPHONY in MS Windows with the MSVC++
compiler. These instructions will lead you through the steps required to compile SYMPHONY
as a generic MILP solver. Note that the Windows version has some limitations. Detailed timing
information is not currently provided. Support is only provided for running in sequential mode at
this time.

First, obtain the source code by downloading from https://www.coin-or.org/download/source/
SYMPHONY/. Unpack the archive to create the directory SYMPHONY-5.1.1. You now have three
options. You can either build using the MSVC++ IDE, build on the command-line with MSVC++
compiler, or use the NMAKE utility.

2.2.3.1 Building with the MSVC++ Graphical Interface

These instructions are for MSVC+4+ Version 8. Instructions for other versions should be similar.

e Go to Win32\v8 directory and open the solution file symphony.sln.

e Note that there are a number of additional preprocessor definitions that control the func-
tionality of SYMPHONY. These definitions are described in sym.mak, a Unix-style makefile
included in the distribution. To enable the functionality associated with a particular defini-
tion, simply add it to the list of definitions of 1ibSymphony project together with the required
libraries and paths. For instance, if you want to enable GMPL reader option, you need to

— add the directory of the header files of GLPK to the include files path
— add USE_GLPMPL to the defines
— add the GLPK library to the workspace

15

https://www.coin-or.org/download/source/SYMPHONY/
https://www.coin-or.org/download/source/SYMPHONY/

e Make sure that the project symphony is set as the startup project by choosing Set as Startup
Project from the Project menu after selecting the symphony project in the Solution Ex-
plorer. Choose Build Solution from the Build menu. This should successfully build the
SYMPHONY library and the corresponding executable.

e To test the executable, go to the Debug tab and choose Start Without Debugging. This
should open a Window in which the interactive solver will appear. Type help or 7 to see a
list of available commands or see Chapter 3 for instructions on using the interactive solver.

Note that there is some functionality missing from the Windows version. Most prominently, the
timing functions do not work. In addition, the Windows version will only run in sequential mode
for a variety of reasons. However, it should be relatively easy to get it running in parallel if you
can get PVM working under Windows.

2.2.3.2 Building in a Windows Terminal

These instructions are for MSVC++ Version 8. Instructions for other versions should be similar.

e Open a command terminal (choose Run on the Start menu and type cmd in the dialogue box).
Go to the Win32\v8 directory and type

devenv symphony.sln /build all

This will create both the debug and release versions of SYMPHONY. If you want to compile
only one of them, type

devenv symphony.sln /build "all - debug"
or
devenv symphony.sln /build "all - release"

For each command, the library 1ibSymphony.1lib and the executable symphony will be cre-
ated in Debug and/or Release directories. The library, together with the header files in
SYMPHONY\include\, can then be used to call SYMPHONY from any C/C++ code. The
API for calling SYMPHONY is described in Section 3.3.

e Test the executable by opening Windows Explorer and double-clicking on symphony.exe in
the Debug)\ subdirectory. This should open a Window in which the interactive solver will
appear. Type help or 7 to see a list of available commands or see Chapter 3 for instructions
on using the interactive solver.

e If you modify the source code of SYMPHONY, type
devenv symphony.dsw /make all /rebuild

in order to clean and rebuild everything.

16

2.2.3.3 Building with the MSVC++ compiler in CYGWIN

It is possible to perform at automated build of SYMPHONY using the MSVC++ compiler c1
with GNU autotools in the CYGWIN environment. To do so, follow the instuctions for building in
Unix-like environments (see Section 2.2.2), except when configuring, use the command

./configure CC=cl CXX=cl LD=link

2.2.3.4 Building with the NMAKE Utility

e Go to Win32 directory and edit the sym.mak makefile to reflect your environment. This
involves specifying the LP solver to be used, assigning some variables and setting various
paths. Only minor edits should be required. An explanation of what has to be set is contained
in the comments in the makefile. Note that, you have to first create the COIN libraries Cgl,
Clp, Osi, 0siClp and CoinUtils which reside in Win32/v6 directory.

e Once configuration is done, open a command line terminal and type
nmake sym.mak

This will make the SYMPHONY library 1ibSymphony.1lib and the executable symphony in
Debug directory. The library, together with the header files in SYMPHONY\include\, can then
be used to call SYMPHONY from any C/C++ code. The API for calling SYMPHONY is
described in Section 3.3.

e Test the executable by opening Windows Explorer and double-clicking on symphony.exe in
the Debug\ subdirectory. This should open a Window in which the interactive solver will
appear. Type help or 7 to see a list of available commands or see Chapter 3 for instructions
on using the interactive solver.

2.2.4 Building SYMPHONY Applications

As mentioned above, there are a number of sample applications available as examples of how
to do development with SYMPHONY. These include solvers for the matching problem, the set
partitioning problem (simple and advanced versions), the vehicle routing and traveling salesman
problems, the mixed postman problem, multi-criteria knapsack problem and, capacitated network
routing problem. These applications are contained in the SYMPHONY/Applications/ subdirectory
in the distribution. There is also a white paper that guides the user through the development
of the MATCH solver in the SYMPHONY/Doc/ directory. For instructions on developing your own
application with SYMPHONY, see Chapter 5.

In order to compile SYMPHONY’s applications in the Microsoft Visual C++ environment, ob-
tain the source code as described earlier. As before, you then have three options. You can
either build using the MSVC++ IDE, build on the command-line with MSVC++4 executable,

17

or use the NMAKE utility. The below instructions are for MSVC++ Version 6, but building
in other versions should be similar. All of the following commands should be executed in the
SYMPHONY-5.1.1\Applications\XXX\Win32\v6 directory, where XXX is the name of the applica-
tion to be built.

2.2.4.1 Building With the MSVC++ IDE

e Open the workspace xxx.dsw.

e The configuration steps are exactly the same as that described in Section 2.2.3.1. The only
difference is that you are using the xxx project instead of the symphony project. Go through
the same steps to configure.

e Once you have the proper settings, choose Build xxx.exe from the Build menu. This should
successfully build the executable.

e To test the executable, right click on the xxx project, go to the Debug) tab and set the program
arguments to -F ..\..\sample.xxx. Note that command-line switches are Unix-style.

e Now choose Execute from the build menu and you have a working branch and bound solver.

2.2.4.2 Building in a Windows Terminal

e Open a command terminal (choose Run on the Start menu and type cmd in the dialogue box)
and type

devenv xxx.sln /make all

where xxx is the name of the application. This will create both the debug and release versions
of the application executable. If you want to compile only one of them, type

devenv xxx.sln /make "all - debug"
or
devenv xxx.sln /make "all - release"

For each command, the executable user will be created in Debug\ and/or Release\ directo-
ries.

e To test the executable, type

Debug\xxx.exe -F ..\..\sample.xxx

e If the source files for the application are modified, type
devenv user.sln /make all /rebuild

in order to clean and rebuild everything.

18

2.2.4.3 Using the NMAKE Utility

e Edit the file xxx.mak, where xxx is the name of the application, to reflect your environment.
Only minor edits should be required. An explanation of what has to be set is contained in
the comments in the xxx.mak file. Also, see the related parts of Section 2.2.3.4 above.

e Once configuration is done, type
nmake /f xxx.mak

The executable xxx.exe will be created in the Debug/ directory.

e To test the executable, type

Debug\xxx.exe -F ..\..\sample.xxx

19

--enable-debug compile all projects with debug options set

--enable-debug-symphony compile only SYMPHONY project with debug options

--enable-doscompile Under Cygwin, compile so that executables do not depend on the CY(

--enable-static build static libraries

--enable-static-executable create a complete static executable

--enable-gnu-packages compile with GNU packages
compile interactive optimizer with readline library

--disable-cgl-cuts disable generic cut generation

--enable-sensitivity-analysis compile in the sensitivity analysis features

--enable-root-only process only the root node

--enable-frac-branching compile in the fractional branching option

--enable-tests perform additional sanity checks (for debugging purposes)

——-enable-tm-tests perform more tests

--enable-trace-path additional debugging options

--enable-cut-check additional debugging options

--enable-statistics additional statistics

--enable-pseudo-costs enable some experimental pseudo-cost branching tools

--enable-draw-graph enable IGD graph drawing application

--with-XXX-incdir specify the directory with the header files for the XXX package

where XXX is one of LP solver packages: cplex, glpk, osl, soplex,
xpress

--with-XXX-1ib specify the flags to link with the library XXX package
where XXX is one of LP solver packages: cplex, glpk, osl, soplex,
Xpress

--with-lp-solver [=lpsolver] specify the LP solver in small letters (default lpsolver=clp)

--with-gmpl compile with GMPL reader (requires -—with-glpk-incdir and

--with-glpk-1lib options to be set)

--with-osi-interface compile with SymOsi interface

--with-application compile the application library

—--enable-openmp compile in OpenMP features

--with-pvm compile in parallel architecture (assuming that pvm is
installed and the variable PVM_ROOT is defined.)

--without-cg compile without cut generator module

--without-cp compile without cut pool module

--without-1p compile without LP solver module

--without-tm compile without tree manager module

Figure 2.1: A list of useful configuration options

20

Chapter 3

Using SYMPHONY

3.1 Using SYMPHONY Interactively

3.1.1 Unix-like Environments

If you are planning to use the interactive optimizer in a Unix-like environment and you are building
SYMPHONY from source, it is recommended that you run the configuration script (see Section
2.2.2.2) with the command-line argument that enables GNU packages, i.e.,

./configure --enable-gnu-packages

This will allow the interactive shell to behave exactly like a Linux terminal command line, i.e., it
will keep the history of the used commands, will do command completion, etc. Note that you must
have the required packages (readline and history) installed.

To use SYMPHONY'’s interactive shell, run the executable without any command line arguments,
i.e., type

bin/symphony

You will enter a command shell environment where you will be prompted for inputs. The user
interface consists of a main menu, where an instance is read in and solved, a set menu, where
parameters are set, and a display menu, where results, statistics and parameter values are displayed.

3.1.2 Microsoft Windows

To invoke SYMPHONY’s interactive solver in an Microsoft Windows environment, simply double-
click on the symphony.exe file in Windows Explorer. This should open a terminal window in
which the solver will run. Note that if you built SYMPHONY in CYGWIN without the option
-—enable-dos-compile, then you will have to have the CYGWIN DLL in your path in order for
the executable to run.

21

3.1.3 Main Menu

Below is the main menu displayed at the beginning of a new session:

skook sk ok ok ok ok ok ok ok stk sk ok sk ok ok ok ok ook ook ook ook ook s ok ok sk ok sk ok ook sk ok sk ok ok ok sk ok ok ok ok

* This is SYMPHONY Version 5.1.1 *
* Copyright 2000-2006 Ted Ralphs *
* All Rights Reserved. *

* Distributed under the Common Public License 1.0 *
stk sk ok ok ok ok sk ok ok sk ok sk kst ok st ok st ok st ok st ok ook ook ook ook ok ook sk ok s ok s ok sk ok sk ok sk ok sk ok ok ok ok ok

*xxxx WELCOME TO SYMPHONY INTERACTIVE MIP SOLVER sk
Please type ’help’/’?’ to see the main commands!

SYMPHONY :

When you type help or 7, a list of main commands is displayed:

SYMPHONY: help

List of main commands:

load : read a problem in mps or ampl format

solve : solve the problem

lpsolve : solve the 1lp relaxation of the problem

set : set a parameter

display : display optimization results and stats
reset : restart the optimizer

help : show the available commands/params/options

quit/exit : leave the optimizer

SYMPHONY :
Following is an illustration of a session to read in a sample instance:

SYMPHONY: load

Name of the file: sample.mps
Coin0001I At line 1 NAME SAMPLE
Coin0001I At line 2 ROWS
Coin0001I At line 6 COLUMNS
Coin0001I At line 25 RHS
CoinO001I At line 28 BOUNDS
Coin0001I At line 34 ENDATA

22

Coin0002I Problem SAMPLE has 2 rows, 6 columns and 10 elements
SYMPHONY :

The format of the input file is recognized from the file extension. If there is none, you will be
prompted to define the input format:

SYMPHONY: load

Name of the file: sample

Type of the file (’mps’/’ampl’/’gmpl’): mps
Coin0001I At line 1 NAME SAMPLE

Coin0O001I At line 2 ROWS

Coin0001I At line 6 COLUMNS

Coin0O001I At line 25 RHS

Coin0001I At line 28 BOUNDS

Coin0O001I At line 34 ENDATA

Coin0002I Problem SAMPLE has 2 rows, 6 columns and 10 elements
SYMPHONY :

If the input is in AMPL/GMPL format, you will also be prompted to read in a data file (note again
that in order to enable GMPL/AMPL reader, you have to install GLPK and configure SYMPHONY
appropriately—see Section 2.2.2.3)):

SYMPHONY: load

Name of the file: sample.mod

Name of the data file: sample.dat
Reading model section from sample.mod...
32 lines were read

Reading data section from sample.dat...
68 lines were read

Generating nb...

Generating cost...

Model has been successfully generated
SYMPHONY :

After loading the instance, type solve to solve the corresponding integer program or lpsolve to
solve its linear relaxation:

SYMPHONY: solve

xx*x Found Better Feasible Solution !
¥x%x*x Cost: -40.000000

sk sk ok o o sk sk sk ok ok o ok ok sk ok sk s ke sk sk sk sk sk ok sk sk sk sk sk o ke sk sk sk sk sk ok sk sk sk sk sk ke kskok sk sk ok
* Optimal Solution Found *

23

3k 3k >k 3k >k 3k 5k 3k 5k >k 5k >k 3k 5k 3k 5k >k 3k >k 3k 5k 5k 3k >k 3k >k 5k 5k >k 3k >k 3k 5k >k 5k >k 5k >k 3k 5k %k 5k >k 5k >k %k 5k %k 5k %k >k k

SYMPHONY: 1lpsolve

***xxx*kx Found Better Feasible Solution !
*¥x**x*x Cost: -43.000000

>k 3k 3k 3k >k >k 3k 3k 3k >k >k >k 3k 3k >k >k >k 3k 3k 5k >k >k k 3k 3k >k %k >k 3k 3k >k >k %k 3k 5k >k >k >k %k 3k >k >k %k >k >k >k >k %k %k %k >k >k

* Optimal Solution Found *
sk sk ok o ok sk sksk ok ok e sk ok sk ok s ok sksk sk sk ok ok sk sksk sk s ke sksksk sk sk ke sk sk sk sk ok s sk sksksk ok ok ok

SYMPHONY :

As above, only the objective values of the feasible solutions found so far and the termination code
of the solution process will be displayed (see Section 3.1.4 for displaying more output).

3.1.4 Set Menu

The Set submenu is used to set SYMPHONY’s run-time parameters. To enter this submenu, type
set:

SYMPHONY: set
Please type ’help’/’?’ to see the list of parameters!
SYMPHONY\Set:

You can override the default value of a parameter by typing the name of the parameter. You will
then be prompted to enter the new value of that parameter. For instance, in order to display more
outputs during the solution process, you need to set the verbosity parameter (set to -1 by default
for the interactive shell routines) to a nonnegative integer:

SYMPHONY\Set: verbosity
Value of the parameter: 3
Setting verbosity to: 3
SYMPHONY\Set:

A confirmation message will also be displayed. Note that typing help or 7 displays only a subset
of the most commonly used run-time parameters. However, you are allowed to set any of the pa-
rameters given in Section 6.4. Additionally, you can set the values of parameters using a parameter
file as an input. In such a file, the new value of each parameter must follow the name of that
parameter. For instance, suppose that the my_param file consists of the following lines:

verbosity 3
node_selection_rule 3

time_limit 100

24

Then, type param file to be prompted to read in the parameter file:

SYMPHONY\Set: param_file

Name of the parameter file: my_param
Setting verbosity to: 3

Setting node_selection_rule to: 3
Setting time_limit to: 100
SYMPHONY\Set:

At this point, you can return to the main menu by typing back, load an instance and solve it with
updated run-time parameters.

3.1.5 Display Menu

The Display submenu is used to print out results and statistics of the solution process after a
solve call. To enter this submenu and see available options, type display and then help or 7:

SYMPHONY: display
Please type ’help’/’7’ to see the display options!
SYMPHONY\Display: help

List of display options:

solution : display the column values

obj : display the objective value
stats : display the statistics

parameter : display the value of a parameter
back : leave this menu

quit/exit : leave the optimizer
SYMPHONY\Display:

Clearly, in order to display column solutions and the optimal solution value, you need to type
solution and then obj:

SYMPHONY\Display: solution
Optimal Solution found!
e i o S L 2

Nonzero column names and values in the solution
++++++++H+
COL00002 3.000
COLO0006 1.000

25

SYMPHONY\Display: obj
Objective Value: -40.000000
SYMPHONY\Display:

You can also display the values of SYMPHONY’s run-time parameters (see Section 6.4) by moving
into parameters submenu:

SYMPHONY\Display: parameter
Please type ’help’/’?7’ to see the list of available parameters!
SYMPHONY\Display\Parameter:

For instance, in order to display the verbosity level, type verbosity:

SYMPHONY\Display\Parameter: verbosity
The value of verbosity: 3
SYMPHONY\Display\Parameter:

As in Set submenu, typing help or ? will display only a subset of available run-time parameters.
However, you are allowed to display the value of any of the parameters given in Section 6.4.

3.1.6 Sub Menu Browsing

SYMPHONY’s interactive optimizer also allows the user to reach the lower level menu commands
from the higher level menus. In other words, the user has the flexibility to use submenu commands
without entering the corresponding submenu. As an instance, all three of the following sessions
have the same result:

° SYMPHONY: display parameter verbosity

° SYMPHONY: display
Please type ’help’/’?’ to see the display options!
SYMPHONY\Display: parameter verbosity

° SYMPHONY: display
Please type ’help’/’?’ to see the display options!
SYMPHONY\Display: parameter
Please type ’help’/’?’ to see the list of available parameters!
SYMPHONY\Display\Parameter: verbosity

This flexibility is also enabled for the 1oad command and the Set submenu. The followings are all
valid commands:

26

SYMPHONY: load sample.mps

SYMPHONY: load sample.mod sample.dat

SYMPHONY: set
SYMPHONY\Set: verbosity 3

SYMPHONY: set verbosity 3
SYMPHONY: set param_file my_param

3.2 Using SYMPHONY from the Command Line

For batch processing and scripting, SYMPHONY can also be called from the command line from
a terminal in any operating system (note that in the Windows terminal, the path separator is \
rather than /). When called from the command line, a number of command-line switches can be
invoked to specify the file to be read and solved, as well as set parameters. Note that the switches
are Unix-style, even in Windows). At a minimum, one must specify the name of the file to be read
and solved. The following is the calling sequence to load in an instance file in MPS format and
solve it.

./symphony -F sample.mps
To read and solve an GMPL model and associated data file, the command would be
./symphony -F sample.mod -D sample.dat

In addition to specifying the name of the instance file, most of the common parameters can also be
set on the command line by adding various switches. Calling SYMPHONY with just the argument
-h will list all the options. To set parameters that cannot be set on the command line or to save
parameter setting, it is possible to use a parameter file in which a group of parameters can be set.
To invoke SYMPHONY with a parameter file, type ./symphony -f filename, where filename
is the name of the parameter file. The format of the file and a list of all parameters is given in
Section 6.4.

The output level can be controlled through the use of the verbosity parameter, which can be invoked
Setting this parameter at different levels will cause different progress messages to be printed out.
Level 0 only prints out the introductory and solution summary messages, along with status messages
every 10 minutes. Level 1 prints out a message every time a new node is created. Level 3 prints
out messages describing each iteration of the solution process. Levels beyond 3 print out even more
detailed information. To get no output at all, the verbosity level must be set to -2.

27

3.3 Using the Callable Library

SYMPHONY’s callable library consists of a complete set of subroutines for loading and modifying
problem data, setting parameters, and invoking solution algorithms. The user invokes these sub-
routines through the API specified in the header file symphony_api.h. Some of the basic commands
are described below. For the sake of brevity, the arguments have been left out.

3.3.1 The C API

sym_open_environment () Opens a new environment, and returns a pointer to it. This pointer
then has to be passed as an argument to all other API subroutines (in the C++ interface, this
pointer is maintained for the user).

sym parse_command line() Invokes the built-in parser for setting commonly used parameters,
such as the file name which to read the problem data, via command-line switches. A call to this
subroutine instructs SYMPHONY to parse the command line and set the appropriate parameters.
This subroutine also sets all other parameter values to their defaults, so it should only called when
this is desired.

sym_load problem() Reads the problem data and sets up the root subproblem. This includes
specifying which cuts and variables are in the core (those that are initially present in every sub-
problem during the search process) and the additional cuts and variables to be initially active in
the root subproblem. By default, SYMPHONY reads an MPS or GMPL file specified by the user,
but the user can override this default by implementing a user callback that reads the data from a
file in a customized format (see Section 3.4).

sym find initial bounds() Invokes the user callback to find initial bounds using a custom
heuristic.

sym_solve() Solves the currently loaded problem from scratch. This method is described in more
detail in Section 4.4.1.1.

sym_warm_solve() Solves the currently loaded problem from a warm start. This method is de-
scribed in more detail in Section 4.4.1.2.

symmc_solve() Solves the currently loaded problem as a multicriteria problem. This method is
described in more detail in Section 4.4.1.3.

28

int main(int argc, char *xargv)

{
Sym_environment *env = sym_open_environment() ;
sym_parse_command_line(env, argc, argv);
sym_load_problem(env) ;
sym_solve(env) ;
sym_close_environment (env) ;

}

Figure 3.1: Implementation of a generic MILP solver with the SYMPHONY C callable library.

sym_close_environment () Frees all problem data and deletes the environment.

As an example of the use of the library functions, Figure 3.1 shows the code for implementing a
generic MILP solver with default parameter settings. To read in an MPS file called sample.mps
and solve it using this program, the following command would be issued:

./symphony -F sample.mps

The user does not have to invoke a command to read the MPS file. During the call to sym_parse_
command line (), SYMPHONY determines that the user wants to read in an MPS file. During the
subsequent call to sym_load problem(), the file is read and the problem data stored. To read an
GMPL file, the user would issue the command

./symphony -F sample.mod -D sample.dat

Although the same command-line switch is used to specify the model file, the additional presence
of the -D option indicates to SYMPHONY that the model file is in GMPL format and GLPK’s
GMPL parser is invoked [25]. Note that the interface and the code of Figure 3.1 is the same for both
sequential and parallel computations. The choice between sequential and parallel execution modes
is made at compile-time through modification of the makefile or the project settings, depending on
the operating system.

To start the solution process from a warm start, the sym warm solve() command is used. SYM-
PHONY automatically records the warm start information resulting from the last solve call and
restarts from that checkpoint if a call to sym warm solve() is made. Alternatively, external warm
start information can be loaded manually. Figure 3.2 illustrates the use of the re-solve capability
by showing the code for implementing a solver that changes from depth first search to best first
search after the first feasible solution is found. The user can also modify problem data in between
calls to the solver. Code for doing so is shown in Figure 3.3. In this example, the solver is allowed
to process 100 nodes and then save the warm start information. Afterward, the original problem
is solved to optimality, then is modified and re-solved from the saved checkpoint.

29

int main(int argc, char *xargv)

{
sym_environment *env = sym_open_environment () ;
sym_parse_command_line(env, argc, argv);
sym_load_problem(env) ;
sym_set_int_param(env, "find_first_feasible", TRUE);
sym_set_int_param(env, "node_selection_strategy", DEPTH_FIRST_SEARCH);
sym_solve(env) ;
sym_set_int_param(env, "find_first_feasible", FALSE);
sym_set_int_param(env, "node_selection_strategy", BEST_FIRST_SEARCH);
sym_warm_solve (env) ;

}

Figure 3.2: Implementation of a dynamic MILP solver with SYMPHONY.

Finally, SYMPHONY now also has a bicriteria solve call. The applications of such a solver are
numerous. Besides yielding the ability to closely examine the tradeoffs between competing objec-
tives, the method can be used to perform detailed sensitivity analysis in a manner analogous to
that which can be done with simplex based solvers for linear programs. As an example, suppose
we would like to know exactly how the optimal objective function value for a given pure integer
program depends on the value of a given objective function coefficient. Consider increasing the
objective function coefficient of variable ¢ from its current value. Taking the first objective function
to be the original one and taking the second objective function to be the i*" unit vector, we can
derive the desired sensitivity function by using the bicriteria solution algorithm to enumerate all
supported solutions and breakpoints. This information can easily be used to obtain the desired
function. Figure 3.4 shows the code for performing this analysis on variable 0.

In addition to the parts of the API we have just described, there are a number of standard subrou-
tines for accessing and modifying problem data and parameters. These can be used between calls
to the solver to change the behavior of the algorithm or to modify the instance being solved. These
modifications are discussed in more detail in Section 4.4.1.2.

3.3.2 The C++4 API

The Open Solver Interface (OSI) is a C++ class that provides a standard API for accessing a variety
of solvers for mathematical programs. It is provided as part of the COIN-OR repository [24], along
with a collection of solver-specific derived classes that translate OSI call into calls to the underlying
libraries of the solvers. A code implemented using calls to the methods in the OSI base class can
easily be linked with any solver for which there is an OSI interface. This allows development
of solver-independent codes and eliminates many portability issues. The current incarnation of
OSI supports only solvers for linear and mixed-integer linear programs, although a new version
supporting a wider variety of solvers is currently under development.

We have implemented an OSI interface for SYMPHONY 5.1.1 that allows any solver built with

30

int main(int argc, char *xargv)

{
warm_start_desc *ws;
sym_environment *env = sym_open_environment () ;
sym_parse_command_line(env, argc, argv);
sym_load_problem(env) ;
sym_set_int_param(env, "node_limit", 100);
sym_set_int_param(env, "keep_warm_start", TRUE);
sym_solve(env) ;
ws = sym_get_warm_start(env);
sym_set_int_param(env, "node_limit", -1);
sym_warm_solve (env) ;
sym_set_obj_coeff(env, 0, 100);
sym_set_obj_coeff (env, 200, 150);
sym_set_warm_start (ws) ;
sym_warm_solve (env) ;

}

Figure 3.3: Use of SYMPHONY’s warm start capability.

SYMPHONY to be accessed through the OSI, including customized solvers and those configured
to run on parallel architectures. To ease code maintenance, for each method in the OSI base class,
there is a corresponding method in the callable library. The OSI methods are implemented simply
as wrapped calls to the SYMPHONY callable library. When an instance of the OSI interface class is
constructed, a call is made to sym_open_environment () and a pointer to the environment is stored
in the class. Most subsequent calls within the class can then be made without any arguments. When
the OSI object is destroyed, sym_close_environment is called and the environment is destroyed.

To fully support SYMPHONY’s capabilities, we have extended the OSI interface to include some
methods not in the base class. For example, we added calls equivalent to our sym_parse_command _line ()
and sym find initial bounds(). Figure 3.5 shows the program of Figure 3.1 implemented using
the OSI interface. Note that the code would be exactly the same for accessing any customized

int main(int argc, char *xargv)

{
Sym_environment *env = sym_open_environment () ;
sym_parse_command_line(env, argc, argv);
sym_load_problem(env) ;
sym_set_obj2_coeff(env, 0, 1);
sym_mc_solve(env) ;

}

Figure 3.4: Performing sensitivity analysis with SYMPHONY’s bicriteria solver.

31

int main(int argc, char *xargv)

{
OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.loadProblem();
si.branchAndBound() ;

}

Figure 3.5: Implementation of a generic MILP solver with the SYMPHONY OSI interface.

SYMPHONY solver, sequential or parallel.

Although we are using the OSI to access a MILP solver, the current version of the OSI is geared
primarily toward support of solvers for linear programming (LP) problems. This is because LP
solvers employing some version of the simplex algorithm support much richer functionality and a
wider range of interface functions, due to their support of warm starting from previously saved
checkpoints. This functionality is difficult to provide for MILP solvers. In SYMPHONY 5.1.1,
we have implemented for MILPs some of the same functionality that has long been available for
LP solvers. As such, our OSI interface supports warm starting and sensitivity analysis. The
implementations of this functionality is straightforward at the moment, but will be improved in
future versions.

3.3.3 Linking to the Callable Library

To link your program to the callable library, make sure you have included the header file symphony.h
in all the source files that call SYMPHONY functions. Also, make sure that your include path
contains the directory where all of SYMPHONY'’s header files are stored. Then simply include the
appropriate SYMPHONY library in the set of libraries to be linked and make sure that the path
to the library is in the library path. Example makefiles For Unix-like environments are included in
the Examples/ directory.

3.4 Using the Callback Functions

The user’s main avenues for customization of SYMPHONY are the tuning of parameters and the
implementation of one or more of over 50 user callback functions. The callback functions allow the
user to override SYMPHONY’s default behavior for many of the functions performed as part of its
algorithm. The user has complete control over branching, cutting plane generation, management
of the cut pool and the LP relaxation, search and diving strategies, etc. More detailed information
about using the callback functions to develop custom applications is provided in Chapter 5.

32

Chapter 4

Technical Details

4.1 Branch and Bound

Branch and bound is the broad class of algorithms from which branch, cut, and price is descended.
A branch and bound algorithm uses a divide and conquer strategy to partition the solution space
into subproblems and then optimizes individually over each subproblem. For instance, let S be the
set of solutions to a given problem, and let ¢ € R® be a vector of costs associated with members
of S. Suppose we wish to determine a least cost member of S and we are given § € S, a “good”
solution determined heuristically. Using branch and bound, we initially examine the entire solution
space S. In the processing or bounding phase, we relax the problem. In so doing, we admit solutions
that are not in the feasible set S. Solving this relaxation yields a lower bound on the value of an
optimal solution. If the solution to this relaxation is a member of S or has cost equal to 3, then we
are done—either the new solution or §, respectively, is optimal. Otherwise, we identify n subsets
of S, S1,...,5,, such that U}, S; = S. Each of these subsets is called a subproblem; Si,...,S, are
sometimes called the children of S. We add the children of S to the list of candidate subproblems
(those which need processing). This is called branching.

To continue the algorithm, we select one of the candidate subproblems and process it. There are four
possible results. If we find a feasible solution better than §, then we replace § with the new solution
and continue. We may also find that the subproblem has no solutions, in which case we discard,
or prune it. Otherwise, we compare the lower bound to our global upper bound. If it is greater
than or equal to our current upper bound, then we may again prune the subproblem. Finally, if we
cannot prune the subproblem, we are forced to branch and add the children of this subproblem to
the list of active candidates. We continue in this way until the list of active subproblems is empty,
at which point our current best solution is the optimal one.

4.2 Branch and Cut

In many applications, the bounding operation is accomplished using the tools of linear programming
(LP), a technique first described in full generality by Hoffman and Padberg [20]. This general class

33

Bounding Operation

Input: A subproblem S, described in terms of a “small” set of inequalities £’ such that
S={z*:s€ Fandar® <3V (a,5) € L'} and o, an upper bound on the global optimal
value.

Output: Either (1) an optimal solution s* € S to the subproblem, (2) a lower bound on the
optimal value of the subproblem, or (3) a message pruned indicating that the subproblem
should not be considered further.

Step 1. Set C «— L.

Step 2. Solve the LP min{cxz : ax < 8V (a,f) € C}.

Step 3. If the LP has a feasible solution &, then go to Step 4. Otherwise, STOP and
output pruned. This subproblem has no feasible solutions.

Step 4. If ¢ < «, then go to Step 5. Otherwise, STOP and output pruned. This
subproblem cannot produce a solution of value better than a.

Step 5. If z is the incidence vector of some § € S, then § is the optimal solution to
this subproblem. STOP and output $ as s*. Otherwise, apply separation algorithms and
heuristics to Z to get a set of violated inequalities C’. If C' = (), then c& is a lower bound
on the value of an optimal element of §. STOP and return & and the lower bound cz.
Otherwise, set C «+ CUC’ and go to Step 2.

Figure 4.1: Bounding in the branch and cut algorithm

of algorithms is known as LP-based branch and bound. Typically, the integrality constraints of an
integer programming formulation of the problem are relaxed to obtain a LP relazation, which is
then solved to obtain a lower bound for the problem. In [29], Padberg and Rinaldi improved on
this basic idea by describing a method of using globally valid inequalities (i.e., inequalities valid for
the convex hull of integer solutions) to strengthen the LP relaxation. They called this technique
branch and cut. Since then, many implementations (including ours) have been fashioned around
the framework they described for solving the Traveling Salesman Problem.

As an example, let a combinatorial optimization problem CP = (E,F) with ground set E and
feasible set F C 2F be given along with a cost function ¢ € R¥. The incidence vectors corresponding
to the members of F are sometimes specified as the the set of all incidence vectors obeying a
(relatively) small set of inequalities. These inequalities are typically the ones used in the initial LP
relaxation. Now let P be the convex hull of incidence vectors of members of 7. Then we know by
Weyl’s Theorem (see [28]) that there exists a finite set £ of inequalities valid for P such that

P={zreR":azx<f Y (a,p)€L}. (4.1)

The inequalities in £ are the potential cutting planes to be added to the relaxation as needed.
Unfortunately, it is usually difficult, if not impossible, to enumerate all of inequalities in £ or we
could simply solve the problem using linear programming. Instead, they are defined implicitly and
we use separation algorithms and heuristics to generate these inequalities when they are violated.
In Figure 4.1, we describe more precisely how the bounding operation is carried out in branch and
cut.

Once we have failed to either prune the current subproblem or separate the current fractional
solution from P, we are forced to branch. The branching operation is accomplished by specifying a

34

Branching Operation

Input: A subproblem S and Z, the LP solution yielding the lower bound.

Output: Si, ..., S, such that S = UY_, S;.

Step 1. Determine sets Lq,...,L, of inequalities such that S = U ;{z € § : ax <
BV (a,B) € L} and & ¢ U {S;.

Step 2. Set S; ={xr € S:ax < VY (a,p) € L; UL} where L' is the set of inequalities
used to describe S.

Figure 4.2: Branching in the branch and cut algorithm

Generic Branch and Cut Algorithm

Input: A data array specifying the problem instance.

Output: The global optimal solution s* to the problem instance.

Step 1. Generate a “good” feasible solution § using heuristics. Set a < ¢(3).

Step 2. Generate the first subproblem S’ by constructing a small set £/ of inequalities
valid for P. Set A « {S'}.

Step 3. If A = (), STOP and output § as the global optimum s*. Otherwise, choose some
Se A Set A— A\ {S}. Process S.

Step 4. If the result of Step 3 is a feasible solution 3, then ¢s < ¢§. Set § «— 5 and a « ¢(3)
and go to Step 3. If the subproblem was pruned, go to Step 3. Otherwise, go to Step 5.
Step 5. Perform the branching operation. Add the set of subproblems generated to A and
go to Step 3.

Figure 4.3: Description of the generic branch and cut algorithm

set of hyperplanes which divide the current subproblem in such a way that the current solution is
not feasible for the LP relaxation of any of the new subproblems. For example, in a combinatorial
optimization problem, branching could be accomplished simply by fixing a variable whose current
value is fractional to 0 in one branch and 1 in the other. The procedure is described more formally
in Figure 4.2. Figure 4.3 gives a high level description of the generic branch and cut algorithm.

In the remainder of the manual, we often use the term search tree. This term derives from the
common representation of the list of subproblems as the nodes of a graph in which each subproblem
is connected only to its parent and its children. Storing the subproblems in such a form is an
important aspect of our global data structures. Since the subproblems correspond to the nodes of
this graph, they are sometimes be referred to as nodes in the search tree or simply as nodes. The
root node or root of the tree is the node representing the initial subproblem.

4.3 Design of SYMPHONY

SYMPHONY was designed with two major goals in mind—portability and ease of use. With
respect to ease of use, we aimed for a “black box” design, whereby the user would not be required
to know anything about the implementation of the library, but only about the user interface. With
respect to portability, we aimed not only for it to be possible to use the framework in a wide

35

variety of settings and on a wide variety of hardware, but also for it to perform effectively in all
these settings. Our primary measure of effectiveness was how well the framework would perform
in comparison to a problem-specific (or hardware-specific) implementation written “from scratch.”

It is important to point out that achieving such design goals involves a number of very difficult
tradeoffs. For instance, ease of use is quite often at odds with efficiency. In several instances, we
had to give up some efficiency to make the code easy to work with and to maintain a true black box
implementation. Maintaining portability across a wide variety of hardware, both sequential and
parallel, also required some difficult choices. For example, solving large-scale problems on sequential
platforms requires extremely memory-efficient data structures in order to maintain the very large
search trees that can be generated. These storage schemes, however, are highly centralized and do
not scale well to large numbers of processors.

4.3.1 An Object-oriented Approach

As we have already alluded to, applying BCP to large-scale problems presents several difficult
challenges. First and foremost is designing methods and data structures capable of handling the
potentially huge numbers of cuts and variables that need to be accounted for during the solution
process. The dynamic nature of the algorithm requires that we must also be able to efficiently
move cuts and variables in and out of the active set of each search node at any time. A second,
closely-related challenge is that of effectively dealing with the very large search trees that can be
generated for difficult problem instances. This involves not only the important question of how
to store the data, but also how to move it between modules during parallel execution. A final
challenge in developing a generic framework, such as SYMPHONY, is to deal with these issues
using a problem-independent approach.

Describing a node in the search tree consists of, among other things, specifying which cuts and
variables are initially active in the subproblem. In fact, the vast majority of the methods in
BCP that depend on the model are related to generating, manipulating, and storing the cuts and
variables. Hence, SYMPHONY can be considered an object-oriented framework with the central
“objects” being the cuts and variables. From the user’s perspective, implementing a BCP algorithm
using SYMPHONY consists primarily of specifying various properties of objects, such as how they
are generated, how they are represented, and how they should be realized within the context of a
particular subproblem.

With this approach, we achieved the “black box” structure by separating these problem-specific
functions from the rest of the implementation. The internal library interfaces with the user’s
subroutines through a well-defined Application Program Interface (API) (see Section 6.3) and
independently performs all the normal functions of BCP—tree management, LP solution, and
cut pool management, as well as inter-process communication (when parallelism is employed).
Although there are default options for many of the operations, the user can also assert control over
the behavior of the algorithm by overriding the default methods or by parameter setting.

Although we have described our approach as being “object-oriented,” we would like to point out
that SYMPHONY is implemented in C, not C++. To avoid inefficiencies and enhance the modu-
larity of the code (allowing for easy parallelization), we used a more “function-oriented” approach
for the implementation of certain aspects of the framework. For instance, methods used for com-

36

municating data between modules are not naturally “object-oriented” because the type of data
being communicated is usually not known by the message-passing interface. It is also common that
efficiency considerations require that a particular method be performed on a whole set of objects
at once rather than on just a single object. Simply invoking the same method sequentially on each
of the members of the set can be extremely inefficient. In these cases, it is far better to define a
method which operates on the whole set at once. In order to overcome these problems, we have also
defined a set of interface functions, which are associated with the computational modules. These
function is described in detail in Section 6.3.

4.3.2 Data Structures and Storage

Both the memory required to store the search tree and the time required to process a node are
largely dependent on the number of objects (cuts and variables) that are active in each subproblem.
Keeping this active set as small as possible is one of the keys to efficiently implementing BCP. For
this reason, we chose data structures that enhance our ability to efficiently move objects in and
out of the active set. Allowing sets of cuts and variables to move in and out of the linear programs
simultaneously is one of the most significant challenges of BCP. We do this by maintaining an
abstract representation of each global object that contains information about how to add it to a
particular LP relaxation.

In the literature on linear and integer programming, the terms cut and row are typically used
interchangeably. Similarly, variable and column are often used with similar meanings. In many
situations, this is appropriate and does not cause confusion. However, in object-oriented BCP
frameworks, such as SYMPHONY or ABACUS [21], a cut and a row are fundamentally different
objects. A cut (also referred to as a constraint) is a user-defined representation of an abstract
object which can only be realized as a row in an LP matrix with respect to a particular set of active
variables. Similarly, a variable is a representation which can only be realized as a column of an LP
matrix with respect to a particular set of cuts. This distinction between the representation and the
realization of objects is a crucial design element and is what allows us to effectively address some of
the challenges inherent in BCP. In the remainder of this section, we further discuss this distinction
and its implications.

4.3.2.1 Variables

In SYMPHONY, problem variables are represented by a unique global index assigned to each
variable by the user. This index represents each variable’s position in a “virtual” global list known
only to the user. The main requirement of this indexing scheme is that, given an index and a list of
active cuts, the user must be able to generate the corresponding column to be added to the matrix.
As an example, in problems where the variables correspond to the edges of an underlying graph,
the index could be derived from a lexicographic ordering of the edges (when viewed as ordered pairs
of nodes).

This indexing scheme provides a very compact representation, as well as a simple and effective means
of moving variables in and out of the active set. However, it means that the user must have a priori
knowledge of all problem variables and a method for indexing them. For combinatorial models

37

such as the Traveling Salesman Problem, this does not present a problem. However, for some set
partitioning models, for instance, the number of columns may not be known in advance. Even if the
number of columns is known in advance, a viable indexing scheme may not be evident. Eliminating
the indexing requirement by allowing variables to have abstract, user-defined representations (such
as we do for cuts), would allow for more generality, but would also sacrifice some efficiency. A
hybrid scheme, allowing the user to have both indexed and algorithmic variables (variables with
user-defined representations) is planned for a future version of SYMPHONY.

For efficiency, the problem variables can be divided into two sets, the base variables and the extra
variables. The base variables are active in all subproblems, whereas the extra variables can be added
and removed. There is no theoretical difference between base variables and extra variables; however,
designating a well-chosen set of base variables can significantly increase efficiency. Because they
can move in and out of the problem, maintaining extra variables requires additional bookkeeping
and computation. If the user has reason to believe a priori that a variable is “good” or has a high
probability of having a non-zero value in some optimal solution to the problem, then that variable
should be designated as a base variable. It is up to the user to designate which variables should be
active in the root subproblem. Typically, when column generation is used, only base variables are
active. Otherwise, all variables must be active in the root node.

4.3.2.2 Constraints

Because the global list of potential constraints (also called cuts) is not usually known a priori or
is extremely large, constraints cannot generally be represented simply by a user-assigned index.
Instead, each constraint is assigned a global index only after it becomes active in some subproblem.
It is up to the user, if desired, to designate a compact representation for each class of constraints that
is to be generated and to implement subroutines for converting from this compact representation
to a matrix row, given the list of active variables. For instance, suppose that the set of nonzero
variables in a particular class of constraints corresponds to the set of edges across a cut in a graph.
Instead of storing the indices of each variable explicitly, one could simply store the set of nodes on
one side (“shore”) of the cut as a bit array. The constraint could then be constructed easily for
any particular set of active variables (edges).

Just as with variables, the constraints are divided into core constraints and extra constraints. The
core constraints are those that are active in every subproblem, whereas the extra constraints can
be generated dynamically and are free to enter and leave as appropriate. Obviously, the set of core
constraints must be known and constructed explicitly by the user. Extra constraints, on the other
hand, are generated dynamically by the cut generator as they are violated. As with variables, a
good set of core constraints can have a significant effect on efficiency.

Note that the user is not required to designate a compact representation scheme. Constraints can
simply be represented explicitly as matrix rows with respect to the global set of variables. However,
designating a compact form can result in large reductions in memory use if the number of variables
in the problem is large.

38

4.3.2.3 Search Tree

Having described the basics of how objects are represented, we now describe the representation of
search tree nodes. Since the base constraints and variables are present in every subproblem, only
the indices of the extra constraints and variables are stored in each node’s description. A complete
description of the current basis is maintained to allow a warm start to the computation in each
search node. This basis is either inherited from the parent, computed during strong branching (see
Section 4.4.2.3), or comes from earlier partial processing of the node itself (see Section 4.4.3.3).
Along with the set of active objects, we must also store the identity of the object(s) which were
branched upon to generate the node. The branching operation is described in Section 4.4.2.3.

Because the set of active objects and the status of the basis do not tend to change much from parent
to child, all of these data are stored as differences with respect to the parent when that description
is smaller than the explicit one. This method of storing the entire tree is highly memory-efficient.
The list of nodes that are candidates for processing is stored in a heap ordered by a comparison
function defined by the search strategy (see 4.4.3). This allows efficient generation of the next node
to be processed.

4.3.3 Modular Implementation

SYMPHONY’s functions are grouped into five independent computational modules. This modular
implementation not only facilitates code maintenance, but also allows easy and highly configurable
parallelization. Depending on the computational setting, the modules can be compiled as either (1)
a single sequential code, (2) a multi-threaded shared-memory parallel code, or (3) separate processes
running in distributed fashion over a network. The modules pass data to each other either through
shared memory (in the case of sequential computation or shared-memory parallelism) or through
a message-passing protocol defined in a separate communications API (in the case of distributed
execution). an schematic overview of the modules is presented in Figure 4.4. In the remainder of
the section, we describe the modularization scheme and the implementation of each module in a
sequential environment.

4.3.3.1 The Master Module

The master module includes functions that perform problem initialization and I/O. This module is
the only persistent module and stores all static problem data. The other modules are created only
during a solve call and destroyed afterward. All calls to the API are processed through the master
module. These functions of the master module implement the following tasks:

Initialize the environment.

Set and maintain parameter values.

Read and store static problem data for instance to be solved.

Compute an initial upper bound using heuristics.

39

The Modules of Branch, Cut, and Price

M aster

+ store problem data reguest data
parameters + service requests for data
+ compute initial upper bound
send data
root node + store best solution
+ handlei/o
Cut Generator
5 + generate cuts violated by a
GU | % particular LP solution
+ display solutions %
Tree M anager + input user cuts k.
+ maintain search tree
+ track upper bound 83 @)
+ service requests for node data S 5 ¢
active node data j
+ generate children and upper bound + process subproblems
add to candidate list . .
§ + select branching objects
o
% g + check feasibility
ke
cut list 5 + send cutsto cut pool
s—P— LP Solver
Cut Pool new cuts
copy cuts + maintain alist of
"effective” inequalities LP solution
subtree is finished + return &l cuts violated by a
particular LP solution
violated cuts

Figure 4.4: Schematic overview of the branch, cut, and price algorithm

40

Perform problem preprocessing.

Initialize the solution process, pass problem information to the solver modules and store the
results after completion of the solve call.

Track the status of associated processes during parallel solution calls.
Act as a clearing house for output during the solution process.
Store warm start information between solver calls.

Service requests from the user through the API for problem data, problem modification, and
parameter modification.

4.3.3.2 The Tree Management Module

The tree manager controls the overall execution of the algorithm. It tracks the status of its worker
modules, as well as that of the search tree, and distributes the subproblems to be processed to the
node processing module(s). Functions performed by the tree management module are:

Receive data for the root node and place it on the list of candidates for processing.
Receive data for subproblems to be held for later processing.
Handle requests from linear programming modules to release a subproblem for processing.

Receive branching object information, set up data structures for the children, and add them
to the list of candidate subproblems.

Keep track of the global upper bound and notify all node processing modules when it changes.

Write current state information out to disk periodically to allow a restart in the event of a
system crash.

Keep track of run data and send it to the master program at termination.

4.3.3.3 The Node Processing Module

The node processing (NP) module is the most complex and computationally intensive of the five
processes. Its job is to perform the bounding and branching operations. These operations are, of
course, central to the performance of the algorithm. Functions performed by the LP module are:

Inform the tree manager when a new subproblem is needed.

Receive a subproblem and process it in conjunction with the cut generator and the cut pool.
Decide which cuts should be sent to the global pool to be made available to other NP modules.
If necessary, choose a branching object and send its description back to the tree manager.

Perform the fathoming operation, including generating variables.

41

4.3.3.4 The Cut Generation Module

The cut generator performs only one function—generating valid inequalities violated by the current
fractional solution and sending them back to the requesting LP process. Here are the functions
performed by the cut generator module:

e Receive an LP solution and attempt to separate it from the convex hull of all solutions.
e Send generated valid inequalities back to the NP module.

e When finished processing a solution vector, inform the NP module not to expect any more
cuts in case it is still waiting.

4.3.3.5 The Cut Management Module

The concept of a cut pool was first suggested by Padberg and Rinaldi [29], and is based on the
observation that in BCP, the inequalities which are generated while processing a particular node
in the search tree are also generally valid and potentially useful at other nodes. Since generating
these cuts is usually a relatively