
DYLP: a dynamic LP code

SFU-CMPT TR 2005-18

Lou Hafer

December, 2005

Abstract

DYLP is a full implementation of the dynamic simplex algorithm for linear programming. Dy-
namic simplex attempts to maintain a reduced active constraint system by regularly purging
loose constraints and variables with unfavourable reduced costs, and adding violated constraints
and variables with favourable reduced costs. In abstract, the code alternates between primal and
dual simplex algorithms, using dual simplex to reoptimise after updating the constraint set and
primal simplex to reoptimise after updating the variable set.

1 Introduction

DYLP is a linear programming (LP) code designed to be used as the underlying LP code in a branch-
and-cut integer linear programming (IP) code. It emphasises convenience of use by the client,
particularly with respect to fixing variables and adding and deleting constraints and variables.
The target user population is IP algorithm developers; as such, DYLP emphasises controllability
and convenience over efificiency and is capable of producing copious amounts of output for use in
debugging.

DYLP implements a dynamic simplex algorithm along the lines set out by Padberg in [9, §6.6].
The core idea is that, at any given time, many of the constraints of a LP problem are loose, and
many nonbasic variables are unlikely to ever be considered for pivoting because their reduced costs
are very unfavourable. A rough outline of the algorithm, neglecting unboundedness, infeasibility,
and implementation issues, is as follows.

From the problem supplied by the client, DYLP chooses an initial subset of constraints and
variables to become the active system. This system is solved to optimality with primal simplex.
DYLP then enters a minor loop where it deactivates variables whose reduced costs are worse than
a threshold, activates variables whose reduced costs are favourable, and reoptimises the system
with primal simplex. This minor loop is repeated until there are no more variables suitable for
entry. Next, DYLP deactivates any loose constraints, activates any constraints which are violated
at the current basic solution, and reoptimises with dual simplex. On regaining feasibility, it
returns to primal simplex and the deactivate/activate variable loop. When there are no variables
with favourable reduced costs among the inactive variables and no violated constraints among the
inactive constraints, the solution is optimal.

The primal simplex algorithm used by DYLP is a two-phase algorithm. Phase I uses a dy-
namically modified objective to attain a primal feasible solution. Both phase I and phase II use
a projected steepest edge (PSE) pricing algorithm outlined by Forrest & Goldfarb [3, algorithm
‘dynamic’]. There are two antidegeneracy methods. The first, referred to as ‘anti-degeneracy lite’,
attempts to resolve ties among degenerate pivots by choosing the pivot in such a way as to make
tight a hyperplane which has a desirable alignment. The second, applied when the first takes too
long to resolve the degeneracy, is a perturbation algorithm which builds on a method described by
Ryan & Osborne [10].

The dual simplex algorithm provides only a second phase with dual steepest edge (DSE) pric-
ing [3, algorithm ‘steepest 1’], standard or generalised pivoting, and an implementation of anti-
degeneracy lite in the dual space. In the context of DYLP, it is the subordinate simplex, used
for reoptimisation after adding constraints and as the initial simplex when the problem is dual
feasible but not primal feasible.

The active and inactive constraint systems are maintained with the CONSYS subroutine library
[5]. Basis factoring and pivoting are handled using the basis maintenance package from GLPK
[6, 7].

DYLP is written in C and provides a native C interface. It can be used as a standalone simplex
LP code with only a minimal shell required to generate the constraint system.

In the context of a branch-and-cut code, DYLP expects that the dominant mode of use will be
successive calls to reoptimise a constraint system that is incrementally modified between calls.
On request, it will maintain its internal state (constraint system, basis inverse, and support data
structures) between calls to support efificient hot starts for reoptimisation. DYLP provides interface
routines to support two queries commonly required in a branch-and-cut context, pricing a new
variable and pricing a dual pivot. Because DYLP maintains this internal state, it does not provide

1

a native capability to interleave optimisation and reoptimisation of distinct constraint systems.

DYLP can be used with COIN-OR [2] software through the C++ OsiDylp OSI interface class. An
OSI interface object maintains a copy of the constraint system as well as providing an interface
to the underlying solver. Multiple OsiDylp objects with distinct constraint systems can exist simul-
taneously and calls to optimise and reoptimise the systems can be interleaved. There is some
loss of efificiency as the state of the underlying solver is changed, but the necessary bookkeeping
is handled by the OsiDylp objects.

The next section specifies the notation used for the primal and dual problems in the remainder
of the report. Sections 3 through 10 describe individual components of the implementation. Sec-
tions 11 through 15 describe the simplex algorithms and the variable and constraint management
algorithms used in DYLP. Sections 16 through 18 describe the interface and parameters provided
by DYLP.

2

2 Notation

DYLP works naturally with the minimisation problem

min cx

Ax ≤ b

l ≤ x ≤ u

(1)

Add slack variables s and partition
[

A I
]

into basic and nonbasic portions as

[

B N
]

=

[

Bt 0 N t I t

Bl I l N l 0

]

with corresponding partitions
[

x B sB x N sN
]⊤

for x , s, and
[

bt bl
]⊤

for b. The objective c

is augmented with 0’s in the columns corresponding to the slack variables, and partitioned as
[

cB 0 cN 0
]

. The basis inverse will be

B −1 =

[

(Bt)−1 0

−Bl (Bt)−1 I l

]

.

We then have
[

x B

sB

]

= B −1b − B −1N

[

x N

sN

]

=

[

(Bt)−1bt

bl − Bl (Bt)−1bt

]

−

[

(Bt)−1N t (Bt)−1

N l − Bl (Bt)−1N t −Bl (Bt)−1

][

x N

sN

] (2)

and

z =
[

cB 0
] [

x B sB
]⊤

+
[

cN 0
] [

x N sN
]⊤

=
[

cB 0
]

B −1b +
([

cN 0
]

−
[

cB 0
]

B −1N
) [

x N sN
]⊤

= cB(Bt)−1bt +
[

cN − cB(Bt)−1N t −cB(Bt)−1
] [

x N sN
]⊤

(3)

The quantities
[

x B sB
]⊤

= b = B −1b are the values of the basic variables, the quantities y =
[

cB 0
]

B −1 are the dual variables, and the quantities c =
([

cN 0
]

−
[

cB 0
]

B −1N
)

are the reduced
costs. A row or column of B −1N (as appropriate to the context) will be denoted ak (the single
subscript distinguishes it from an individual element a i j). A row or column of B −1 (as appropriate
to the context) will be denoted 1k. When discussing pivot selection calculations, ∆ j will be the
change in nonbasic variable x j or s j.

The dual problem is formed by first converting (1) to max −cx , giving

min yb

yA ≥ −c

y ≥ 0

Add surplus variables σ and partition
[

A −I
]⊤

into basic and nonbasic portions as

[

B

N

]

=













0 −IB

Bt N t

−IN 0

Bl N l













3

with corresponding partitions
[

σB yB σN yN
]

for y, σ, and
[

cB cN
]

for c. The right-hand side
b is augmented with 0’s in the rows corresponding to the surplus variables and partitioned as
[

0 bt 0 bl
]⊤

. The basis inverse will be

B
−1 =

[

(Bt)−1N t (Bt)−1

−IB 0

]

.

We then have
[

σB yB
]

= (−c)B −1 −
[

σN yN
]

NB
−1

=
[

cN − cB(Bt)−1N t −cB(Bt)−1
]

−
[

σN yN
]

[

−(Bt)−1N t −(Bt)−1

Bl (Bt)−1N t − N l Bl (Bt)−1

]

(4)

and

z =
[

σB yB
] [

0 bt
]⊤

+
[

σN yN
] [

0 bl
]⊤

= (−c)B −1bB +
[

σN yN
]

(bN − NB
−1bB)

= −cB(Bt)−1bt +
[

σN yN
]

[

(Bt)−1bt

bl − Bl (Bt)−1bt

]

(5)

When discussing pivot selection calculations, δ j will be the change in nonbasic dual variable y j or
σ j.

Let ek ∈Rd be a row or column vector of appropriate dimension (as determined by the context),
with a 1 in position k and 0’s in all other positions.

4

3 Updating Formulæ

For purposes of the updating formulæ, the distinction between original variables x and slack
variables s is not important. For simplicity, xk is used to represent both original variables and
slack variables in this section. In the same vein, cB and cN will denote

[

cB 0
]

and
[

cN 0
]

,
respectively.

3.1 Basis Updates

While these formulæ are not applied directly to update the basis, they are useful in deriving update
formulæ for other values.

Suppose that xi will leave basis position k and be replaced by x j. The new basis B′ can be
expressed as B′ = B − aiek + a jek. Premultiplying by B −1 and postmultiplying by (B′)−1, we have

B −1B′(B′)−1 = B −1B(B′)−1 − B −1aiek (B′)−1 + B −1a jek (B′)−1

B −1 = (B′)−1 − a i1
′
k + a j1

′
k

(B′)−1 = B −1 + a i1
′
k − a j1

′
k

(6)

Since xi was basic, a i = ek. This gives

(B′)−1 = B −1 + ek1
′
k − a j1

′
k .

Premultiplying by el to obtain an update formula for row l , we have

1′l = 1l −
a l j

ak j

1k l ≠ k

1′k =
1

ak j

1k

(7)

3.2 Primal Variable Updates

Updating the primal variables is straightforward and follows directly from (2).

Both primal and dual pivots calculate the change in the entering primal variable, ∆ j. The
entering variable x j is set to u j + ∆ j or l j + ∆ j, for x j entering from its upper or lower bound,
respectively. The leaving variable xi is set to ui or li , for xi leaving at its upper or lower bound,
respectively. The remaining basic variables xk, k ≠ i, are updated according to the formula

xk = bk − ak j∆ j.

3.3 Dual Variable Updates

Updating the dual variables is simple in the final implementation, but a little work is necessary
to derive the updating formula. The difificulty lies in the fact that the dual variables of interest are
y =

[

yB yN
]

, i.e., a mixture of basic and nonbasic dual variables. Direct application of (4) is not
possible.

5

Assume that the leaving variable xi occupies row k in the basis B. The new vector of basic
costs, (c′)B, can be expressed as (c′)B = cB − [0 . . . ci . . . 0] + [0 . . . c j . . . 0], where ci and c j occur in
the kth position. From (6), it is easy to show B(B′)−1 = I + ai (1

′)k − a j(1
′)k.

We can proceed to derive the update formulæ for y as follows:

y′ = (c′)B(B′)−1

= cBB −1B(B′)−1 − ci (1
′)k + c j(1

′)k
= y(I + ai (1

′)k − a j(1
′)k) − ci (1

′)k + c j(1
′)k

= y + (c j − ya j)(1
′)k − (ci − yai)(1

′)k .

Recognising that c j = c j − ya j is the reduced cost of x j before the basis change, and noting that
ci = ci − yai = 0 since xi was basic, we have

y′ = y + c j(1
′)k .

As a further observation, note that (1′)k = 1k/ak j, so we can update y using a row of B −1 as

y′ = y + c j1k/ak j.

6

4 Pricing Algorithms

4.1 Projected Steepest Edge Pricing

The primal simplex algorithm in DYLP uses projected steepest edge (PSE) pricing; the algorithm
used is described as dynamic projected steepest edge (‘dynamic’) in Forrest and Goldfarb [3].

To understand the operation of projected steepest edge (PSE) pricing, it will be helpful to start
with the definition of a direction of motion. The values of the basic and nonbasic variables can be
expressed as

[

x B

x N

]

=

[

b

l/u

]

−

[

B −1AN

−I

]

∆

where l/u is intended to indicate use of the lower or upper bound as appropriate for the particular
nonbasic variable. When a given nonbasic variable x j is moved by an amount ∆ j, the values of x

will change as

−

[

B −1a j

−e j

]

∆ j = −

[

a j

−e j

]

∆ j = η j∆ j

The vector η j is the direction of motion as x j is changed; alternatively, it is the edge of the polyhe-
dron which is traversed as x j is changed. Let γ j = ‖η j‖ be the norm of η j.

For pricing, it can be immediately seen that cη j = c j − cBa j is the reduced cost c j. Dantzig pric-
ing chooses an entering variable x j such that c j has appropriate sign and the largest magnitude
over all reduced costs, but it can be misled by differences in scaling from one column to the next.
Steepest edge (SE) pricing scales c j by γ j, choosing an entering variable x j with c j of appropriate

sign and the largest

∣

∣

∣

∣

cη j

‖η j‖

∣

∣

∣

∣

, effectively calculating the change in objective value over a unit vector

in the direction of motion. This gives a uniform pricing comparison, using the slope of the edge.

Projected steepest edge (PSE) pricing uses ‘projected’ column norms which are calculated using
a vector η̃ j which contains only the components of η j included in a reference frame. Initially, this
reference frame contains only the nonbasic variables, so that γ̃ j = 1 for all x j ∈x N . In order to avoid
calculating γ̃ j from scratch each time a column must be priced, the norms are iteratively updated.

To derive the update formulæ for γ̃ j, it is useful to start with the update formulæ for the
full vector η j. As mentioned in §3.3, for xi leaving basis position k and x j entering, B(B′)−1 =
I + ai (1

′)k − a j(1
′)k . Taking this one step further, (B′)−1 = B −1 + a i (1

′)k − a j(1
′)k . Then for an arbitrary

column ap,

(B′)−1ap = B −1ap + a i (1
′)kap − a j(1

′)kap

a ′
p = ap + ek (

akp

ak j

) − a j(
akp

ak j

) (8)

(recalling that (1′)k = 1k/ak j).

To see that (8) amounts to η′p = ηp − η j(
akp

ak j

), it’s helpful to expand the vectors:

a ′
p =

















a1p

...
akp

...
amp

















+

















0
...
1
...
0

















akp

ak j

−

















a1 j

...
ak j

...
am j

















akp

ak j

.

7

With a little thought, it can be seen that the middle term represents one half of the permuta-
tion which moves x j into the basic partition of η′j. (The other half moves xi into the nonbasic

partition). When updating ηi , the update formula can be collapsed to η′i = −η j/ak j, since aki = 1.
Summarising, the update formulæ for the edge directions η j are

η′p = ηp − η j(
akp

ak j

), p ≠ i

η′i = −η j/ak j.

(9)

In fact, the code actually stores and updates γ2
j . With (9) in hand, derivation of the update

formulæ are straightforward:

(γ ′p)2 = η′p ⋅ η′p

= (ηp − η j(
akp

ak j

)) ⋅ (ηp − η j(
akp

ak j

))

= ηp ⋅ ηp − 2(
akp

ak j

)η j ⋅ ηp + (
akp

ak j

)2η j ⋅ η j

= γ2
p − 2(

akp

ak j

)
[

aT
j eT

j

]

[

ap

ep

]

+ (
akp

ak j

)2γ2
j

= γ2
p − 2(

akp

ak j

)(aT
j B −1)ap + (

akp

ak j

)2γ2
j

(10)

(γ ′i)
2 = η′i ⋅ η′i

= η j/ak j ⋅ η j/ak j

= γ2
j /a2

k j

(11)

Equations (9) can be used directly to update the η̃ j. To adapt (10) and (11) for the γ̃ j, a little
algebra should serve to see that it’s sufificient to substitute ã j in (10), as well as using γ̃p and γ̃ j.

It is straightforward to observe that when equations (9) are premultiplied by c, they can be
used to update the reduced costs as

c′p = cp − c j(
akp

ak j

) p ≠ i

c′i = −c j/ak j.

4.2 Dual Steepest Edge Pricing

The dual simplex in DYLP uses dual steepest edge (DSE) pricing; the algorithm used is described
as dual algorithm 1 (‘steepest 1’) in Forrest and Goldfarb [3].

The values b = B−1b are the reduced costs of the nonbasic dual variables. Analogous to Dantzig
pricing in the primal case, one can choose a entering dual variable yi such that bi has appropriate
sign and the largest magnitude over all reduced costs, but there is the same problem with scaling.
The version of dual steepest edge (DSE) pricing implemented in DYLP scales bi by 4i = ‖1i‖, choos-

ing a leaving variable xi with bi of appropriate sign and the largest

∣

∣

∣

∣

1ib

‖1i‖

∣

∣

∣

∣

, effectively calculating

the change in the dual objective value over a unit vector in the dual direction of motion in the

8

space of the dual variables. This gives a uniform pricing comparison, using the slope of the dual
edge.

In the next few paragraphs, an alternative motivation of the algorithm is presented which
(perhaps) clarifies the relationship between dual algorithm 1 and dual algorithm 2 in that paper1.

To see how DSE operates within the context of the revised primal simplex tableau, we can refer
back to equations (4) and (5) from §2, repeated here:

[

σB yB
]

= (−c)B −1 −
[

σN yN
]

NB
−1

=
[

cN − cB(Bt)−1N t −cB(Bt)−1
]

−
[

σN yN
]

[

−(Bt)−1N t −(Bt)−1

Bl (Bt)−1N t − N l Bl (Bt)−1

]

(4)

and

z =
[

σB yB
] [

0 bt
]T

+
[

σN yN
] [

0 bl
]T

= (−c)B −1bB +
[

σN yN
]

(bN − NB
−1bB)

= −cB(Bt)−1bt +
[

σN yN
]

[

(Bt)−1bt

bl − Bl (Bt)−1bt

]

(5)

Recall that the values of the dual basic variables are the reduced costs of the primal problem, and
the reduced costs of the dual variables are the values of the primal basic variables (cf. equations
(2) and (3)).

By analogy to the primal pivoting rules, for dual simplex we want to choose a nonbasic dual
variable which will move us in a direction of steepest descent. If the nonbasic dual is to increase,
its reduced cost must be less than 0 in order to see a reduction in the dual objective. This
corresponds to the case of a primal variable which will be increased and driven out of the basis at
its lower bound with a positive primal reduced cost. If the nonbasic dual is to decrease, its reduced
cost must be greater than 0 in order to see a reduction in the dual objective. This corresponds
to the case of a primal variable which will be decreased and driven out of the basis at its upper
bound with a negative primal reduced cost.

The actual direction of motion in the full dual space (y and σ) would be specified by a row of

NB
−1 =

[

−(Bt)−1N t −(Bt)−1

Bl (Bt)−1N t − N l Bl (Bt)−1

]

,

a vector which is not readily available in the revised primal simplex. (Moreover, for the typical
problem in which the number of variables greatly exceeds the number of constraints, the norm of
this vector is expensive to calculate when initialising the pricing algorithm, and the updates are
expensive. This is the algorithm which Forrest and Goldfarb describe as dual algorithm 2.)

However, one can make an argument that there’s no need to consider the component of the
direction of motion in the subspace of the dual surplus variables. (More positively, we can take
the view that we’re only interested in motion in the polyhedron {y ∈Rm | yA ≥ −c,y ≥ 0} defined by
the dual variables.) Changes in the surplus variables cannot affect the objective directly, as they
account for the 0’s in the augmented and partitioned b vector. Algebraically, we can see that the

dual basic portion of b,
[

0 bt
]T

, guarantees that there will never be any contribution from the

columns of NB
−1 involving N . The component of motion in the space of the dual variables y is

1Those who have read [3] are warned that the author’s notation is in no way compatible with that of Forrest
and Goldfarb.

9

then simply the rows 1l of B −1, which are easily available from the primal tableau. (The analogous
action in the primal problem — ignore the component of η j in the subspace of the primal slack
variables — offers no computational advantage.)

Given a rationale for taking the rows 1l of B −1 as the edges of interest, what remains is to work
out the details. Since we’re aiming for a steepest edge algorithm, we’ll be interested in iteratively
updating ‖1l‖2 = 1l ⋅1l , the square of the norm of a row 1l . Given the update formulæ for 1l derived
in §3.1, the development of the update formulæ for 4l = ‖1l‖2 is straightforward algebra. Let xi be
the leaving variable and x j be the entering variable, and assume xi occupies row k of the basis B

before the update. We have

4′l = 4l − 2
a l j

ak j

1l ⋅ 1k + (
a l j

ak j

)24k l ≠ k

4′k = (
1

ak j

)24k

(12)

Since the update will be performed for all rows in the basis, it’s worth calculating the vector
τ = B −11T

k to obtain all the inner products 1l ⋅ 1k in one calculation.

10

5 Anti-Degeneracy Using a Perturbed Subproblem

In both primal and dual simplex, DYLP implements an anti-degeneracy algorithm using a per-
turbed subproblem. It builds on a method described by Ryan & Osborne [10] in which all variables
are assumed to have lower bounds of zero and upper bounds of infinity.

The original algorithm is easily described in terms of the primal problem. When degeneracy
is detected, a restricted subproblem is formed consisting only of the constraints involved in the
degeneracy (i.e., constraints i such that bi = 0). The values bi are given (relatively) large perturba-
tions and pivots are performed within the context of the restricted subproblem until a direction of
recession from the degenerate vertex is found (indicated by apparent unboundedness). The origi-
nal unperturbed values of bi are then restored (since all pivots were, in actuality, simply changes
of basis while remaining at the degenerate vertex) and the full problem is resumed.

An alternative view goes directly back to the constraints involved in the degeneracy. By per-
turbing their right-hand-side values bi , the single vertex formed by the constraints is fractured
into many vertices. For the simple case of 0 ≤ x ≤ ∞, we have b = B −1b, so perturbing b by the
vector ξ is equivalent to perturbing b by the vector −Bξ.

In dual simplex, this algorithm can be implemented directly. The restricted subproblem is
formed from the dual constraints (primal columns) corresponding to basic dual variables (primal
reduced costs) whose value is zero. The perturbation is introduced directly to the values c j, taking
care to maintain dual feasibility. The perturbation is maintained by the incremental update of
the dual variables and reduced costs after each pivot. When accuracy checks are performed, the
correct value of zero can be substituted on the fly for the perturbed values.

The trick to implementing this algorithm in the context of variables with arbitrary upper and
lower bounds is to distinguish between apparent motion due to the introduced perturbations and
real motion (along a direction of recession) which is nonetheless limited by a bound on a variable.
DYLP uses an array, dy_brkout, to record the direction of change (away from the current bound)
required for nondegenerate but bounded motion.

A second, more subtle problem, is that the perturbation for a given variable must be sufificiently
small to avoid a false indication of a nondegenerate pivot. DYLP scales the perturbation to be at
most .001(ui − li), but there is no easy way to guarantee that this is sufificiently small. Consider
two variables xi and xk, and assume that they occupy rows i and k in the basis, with perturbed
values b̃i and b̃k, respectively. For concreteness, assume that each was originally degenerate at its
lower bound, so that a pivot which resulted in one variable leaving at its upper bound would be
nondegenerate. For a i j and ak j of appropriate sign to move xi toward li and xk toward uk, given a
situation where |a i j | << |ak j |, it is not possible to assure that

b̃i − li

a i j

<
uk − b̃k

ak j

without actually testing each pair. In this case, the perturbation introduced for xi is too large,
and the resulting ∆i j appears to allow xk to become the limiting variable, leaving the basis with a
bounded but nondegenerate change. When DYLP detects this problem, it will reduce the perturba-
tion by a factor of 10 and form the restricted subproblem again. If a (small) limit on the number
of attempts is exceeded, DYLP simply gives up and takes a degenerate pivot.

A second problem occurs when a perturbation is so small as to be indistinguishable next to
the bound. Specifically, the test to determine if a variable xi is at bound is dy_tols.zero(1 + |bndi |) <
|xi − bndi |. If bndi is large, the perturbation can be swamped. This situation can arise if ui and

11

li as given to DYLP are nearly equal, or due to reduction of the perturbation as described in the
previous paragraph.

12

6 Lightweight Anti-Degeneracy Measures Based on Hyperplane

Alignment

In addition to the perturbed subproblem anti-degeneracy algorithm described in §5, DYLP pro-
vides a light-weight anti-degeneracy mechanism based on hyperplane alignment. In the code and
documentation, this is referred to as ‘anti-degen lite’.

Each constraint akx ≤ bk defines an associated hyperplane at equality. In the absence of
degeneracy, a simplex pivot consists of moving away from one hyperplane along an edge until
another hyperplane blocks further progress. The hyperplane being left becomes loose, and the
blocking hyperplane becomes tight. The choice of entering variable x j determines the constraint
that will become loose, and the choice of leaving variable xi determines the constraint that will
become tight.

Ideally, the choice of constraints is unique, but life is seldom ideal. Most often the lack of
uniqueness is due to degeneracy, in which one or more basic variables are at their upper or
lower bounds. Geometrically, there are more tight constraints than required to define the current
extreme point. In this case the change of basis that occurs with the pivot will not result in a move
to a new extreme point.

This section describes a suite of measures based on hyperplane alignment which try to bet-
ter the odds of selecting hyperplanes which will form an edge that escapes from the degenerate
extreme point.

Because all constraints at a degenerate vertex are tight, some terminology will be useful to de-
scribe the changes associated with a pivot. For this section only, the terms activate and deactivate
will be used as follows:

❅ When the slack variable for a constraint moves to the basic partition, the constraint is
deactivated. When the slack variable moves to the nonbasic partition, the constraint is
activated.

❅ When an architectural variable moves to the basic partition, the relevant bound constraint
is deactivated. When an architectural variable moves to the nonbasic partition, the relevant
bound constraint is activated.

6.1 Activation of Constraints

In both the primal and dual simplex algorithms, the constraint which is activated by a pivot
depends on the leaving variable and its direction of motion. Before discussing the types of align-
ment calculations, it will be useful to discuss the activation of constraints. Knowing the type of
constraint (‘≤’ or ‘≥’) is necessary because it determines the direction of the normal with respect to
the feasible region.

DYLP assumes that the majority of explicit constraints of the primal problem are of the form
akx ≤ bk. It also understands range constraints of the form b̌k ≤ akx ≤ bk. These are implemented
by placing an upper bound on the associated slack variable sk, but for purposes of determining
the constraint to be activated we need to recognise that there are really two constraints, akx ≥ b̌k

and akx ≤ bk.

Bounded variables are handled implicitly by the primal simplex algorithm. When a bounded
variable becomes nonbasic at its lower bound, the constraint xk ≥ lk is activated; when it becomes
nonbasic at its upper bound, the constraint xk ≤ uk is activated.

13

A final complication is introduced in phase I of the primal simplex, where it’s possible to
approach a constraint from the ‘wrong’ side in the process of finding a primal feasible basic
solution. For example, if a slack variable sk < 0 will increase and leave the basis at 0, the constraint
which is becoming tight is actually akx ≥ bk. « Is this really a valid insight? In terms of blocking motion,
it’s true. In terms of alignment with the objective, for example, I have doubts. »

Turning to the dual problem, the question of what constraint is being activated is substantially
obscured by the mechanics of running the dual simplex algorithm from the primal data struc-
tures. A much clearer picture can be obtained by expanding the primal system to include explicit
upper and lower bound constraints and examining the resulting dual constraints ([3, §3.4], or see
[4] for an extended development). Briefly, let y be the dual variables associated with the original
explicit constraints akx ≤ bk (the architectural constraints), y̌ be the dual variables associated
with the lower bound constraints, and ŷ be the dual variables associated with the upper bound
constraints. A superscript N will represent the set of primal variables at their lower bound, N the
set of primal variables at their upper bound, and B the set of basic primal variables. The set of
dual constraints can then be written as

yB − y̌B I + ŷB I = cB

yN − y̌NI + ŷNI = c N

yN − y̌N I + ŷN I = cN

where the first term in each dual constraint comes from the primal architectural constraints,
the second term from the lower bound constraints, and the third term from the upper bound

constraints. The variables y̌B, ŷB, ŷN, and y̌N are dual nonbasic and therefore have the value
zero. (They are associated with primal bound constraints which are not tight.) We can rewrite the
dual constraints as

yB = cB

yN − y̌NI = c N

yN + ŷN I = cN

We can then interpret the constraints yN − y̌NI = c N as yN ≥ c N, with y̌N acting as the surplus

variables. Similarly, the constraints yN + ŷN I = cN can be interpreted as yN ≤ cN, with ŷN acting
as the slack variables.

With this interpretation in hand, it’s easy to determine the hyperplane that’s activated by a

pivot. When a dual variable y̌
N
k is driven out of the basis at 0 (xk enters rising from its lower

bound), the constraint yak ≥ ck becomes tight. When a dual variable ŷN
k is driven out of the basis

at 0 (xk enters decreasing from its upper bound), the constraint yak ≤ ck becomes tight. This
interpretation is uniform for the original primal variables as well as the primal slack variables.

For the most common case of a primal constraint ai x ≤ bi , with associated slack si , 0 ≤ si ≤ ∞,
the dual constraint reduces to yi ≥ 0, and this is handled as an implicit bound by the dual simplex
algorithm implemented in DYLP. (Range constraints complicate the interpretation, but not the
mechanics, of the implementation. Again, see [4] for a detailed explanation.)

In the sections which follow, the alignment calculations are developed in terms of the most
common constraint form (akx ≤ bk in the case of the primal simplex, and yak ≥ ck in the case
of the dual simplex). Accommodating the different constraint types described in this section is
simply a matter of correcting the sign of the calculation as needed to account for the direction of
the constraint normal.

14

6.2 Alignment With Respect to the Objective Function

The primal objective used in DYLP is min cx . We need to move in the direction −c until we reach
an extreme point of the polytope where the cone formed by the normals of the active constraints
includes −c.

If the goal is to travel in the direction −c, one approach would be to leave each vertex by moving
along the edge which most nearly points in the direction −c. The edges traversed by the simplex
algorithm are simply the intersections of active hyperplanes. If we’re trying to construct an edge
with which we can leave a degenerate vertex, we could choose to activate a hyperplane akx = bk

such that −c most nearly lies in the hyperplane, on the theory that its intersection with other
active hyperplanes at the vertex is more likely to produce an edge with the desired orientation.
This is the ‘Aligned’ strategy, because we want the hyperplanes most closely aligned with the
normal of the objective.

Going to the other extreme, at the optimal vertex it must be true that the active hyperplanes
block further motion in the direction −c, and −c must lie within the cone of normals of the active
hyperplanes. One can make the argument that a good choice of hyperplane would the one that
most nearly blocks motion in the direction −c, as it’s likely to be active at the optimal vertex. This
is called the ‘Perpendicular’ strategy, because we want the hyperplanes which are most nearly
perpendicular to the normal of the objective.

For constraints akx ≤ bk the normal points out of the feasible region. Let the alignment of

the normal ak with −c be calculated as
ai ⋅ c

‖ai‖‖c‖ . Then for the Perpendicular strategy, we want

to select the hyperplane ai x = bi such that i = argmax
k

ak ⋅ c

‖ak‖
over all constraints akx ≤ bk in the

degenerate set.

For the Aligned strategy, the criteria is a bit more subtle. If ak ⋅ −c = 0, −c lies in the hyperplane

akx = bk. Selecting the hyperplane i such that i = argmin
k

∣

∣

∣

∣

ak ⋅ c

‖ak‖

∣

∣

∣

∣

is not quite sufificient. Where

possible, DYLP attempts to choose hyperplanes which are tilted in the direction of the objective, so

as to bound the problem. The preferred hyperplane is ai x = bi such that i = arg min
{k |ak ⋅c≥0}

ak ⋅ c

‖ak‖
over

the constraints in the degenerate set. If ak ⋅ c < 0 for all k, the preferred hyperplane is chosen as

i = argmax
k

ak ⋅ c

‖ak‖
.

The dual objective used in DYLP is minyb, but we must be careful here to to include the effect of

the bounds on the primal variables. The objective is properly stated as min
[

y y̌ ŷ
] [

b −l u
]⊤

,
and we will need to include the coefificients of y̌ and ŷ in the constraint normals. (In the primal
we could ignore this effect, because the objective coefificients associated with the slack variables
are uniformly zero.)

For dual constraints yak ≥ ck, the normal
[

ak −ek 0
]

will point into the feasible region and

DYLP calculates the alignment of
[

−b l −u
]

with the hyperplane as
b ⋅ ak + lk

(‖ak‖ + 1)‖
[

b −l u
]

‖ , so

that a positive result identifies a constraint which blocks motion in the direction of the objective.

For a constraint yak ≤ ck, the calculation is
(−b) ⋅ ak − uk

(‖ak‖ + 1)‖
[

b −l u
]

‖ . Selection of a specific leaving

variable y̌
N
k or ŷN

k is done using the same criteria outlined for the Perpendicular and Aligned cases
in the primal problem.

15

6.3 Alignment With Respect to the Direction of Motion

The selection of an entering variable specifies the desired direction of motion for the pivot. At a
degenerate vertex, we cannot move in the desired direction because the set of active hyperplanes
does not contain this edge. Intuitively, activating a hyperplane which is closely aligned with the
desired direction of motion might increase the chance of being able to move in that direction.

For the primal simplex, the direction of motion derived in §4.1 is η j =
[

−B −1a j −e j

]⊤
. The

normal of a constraint akx ≤ bk points out of the feasible region. The alignment of η j and the

normal ak is calculated as
ak ⋅ η j

‖ak‖‖η j‖
, so that a positive value identifies a hyperplane which blocks

motion in the direction η j.

It’s important to note that normal ak in this calculation is that of the inequality — the coef-
ficient associated with the slack sk is not included. This means that ak ⋅ η j ≡ −ak j. For a bound
constraint, the relation is obvious by inspection. If, for example, the constraint is xk ≤ uk, the
normal is ek, and ek ⋅ −a j = −ak j. For an architectural constraint, it’s necessary to look at the
calculation in a way that separates the contributions of the architectural and slack variables, and

basic and nonbasic variables. We are interested in the structure of the product
[

B N
]

[

−B −1N

I

]

for loose constraints which will be activated by pivoting the associated slack variable out of the
basis. Breaking up the matrices as detailed in §2, we have

[

Bl I N l 0
]

[

−B −1N

I

]

=
[

Bl I N l 0
]









−

[

(Bt)−1 0
−Bl (Bt)−1 I

][

N t

N l

]

[

I 0
0 I

]









=
[

Bl I N l 0
]









−(Bt)−1N t −(Bt)−1

Bl (Bt)−1N t − N l Bl (Bt)−1

I 0
0 I









=
[

−Bl (Bt)−1N t + Bl (Bt)−1N t − N l + N l −Bl (Bt)−1 + Bl (Bt)−1
]

Removing the contribution due to the basic slack variables, we have
[

−Bl (Bt)−1N t + N l −Bl (Bt)−1
]

.
Because the leaving variable for the pivot is a slack, the pivot element ak j will be drawn from the
component

[

Bl (Bt)−1N t − N l Bl (Bt)−1
]

in −B−1N , and the equivalence is verified.

To finish the alignment calculation for the purposes of selecting a leaving variable, all that
is needed is to perform the normalisation by ‖ak‖‖η j‖, and since ‖η j‖ is constant during the
selection of the leaving variable, we need only divide by ‖ak‖ for comparison purposes. The
selection of a leaving variable using the Aligned strategy is as outlined in the previous section.

Given that ak ⋅ η j ≡ −ak j, it’s worth taking a moment to consider a common tie-breaking rule for
selecting the leaving variable — pick the variable with the largest |ak j |, to maintain numerical sta-
bility. In fact, this amounts to selecting a hyperplane to activate using an unnormalised variation
of the Perpendicular strategy. The obvious corollary is that using the Aligned strategy presents a
potential danger to numerical stability by deliberately choosing small pivots.

For the dual simplex, the direction of motion ζi is more complicated. Fortunately, we need only
consider the portion of ζi in the space of the dual variables y. As derived in §4.2, this is simply
row 1i of B −1. For the dual constraints yak ≥ ck, the normal points into the feasible region. To
maintain the convention that the alignment calculation should produce a positive result if the

constraint blocks motion, the alignment calculation used by DYLP is −
ζi ⋅ ak

‖ζi‖‖ak‖
. Given that we’re

16

only interested in the portion of ζi ⋅ ak contributed by the dual variables y, it’s immediately appar-

ent that the alignment calculation can be reduced to −
a ik

‖ak‖
for purposes of selecting the leaving

dual variable. The final selection of a leaving dual variable using the Aligned or Perpendicular
strategy proceeds as outlined in the previous section.

17

7 The LP Basis

DYLP requires three capabilities from a basis maintenance module:

❅ Factoring of the basis to create the basis inverse.

❅ Update of the basis inverse for a pivot.

❅ Premultiplication (‘ftran’) of a column vector by the basis inverse, and postmultiplication
(‘btran’) of a row vector by the basis inverse.

DYLP uses the basis maintenance module from GLPK to provide these services. Knowledge of the
structure and operation of the GLPK subroutines is confined to a set of interface subroutines in the
file dy_basis.c. The majority of these are straightforward interface functions whose sole purpose is
to hide the GLPK structures and to mediate between GLPK and the remainder of the code.

7.1 The GLPK Basis Module Interface

Very roughly, the GLPK basis maintenance module has a two-layer structure. The top layer
(glpinv.c) provides the basic services for a generic basis inverse. In turn, the top layer calls on a
second layer (glpluf.c) to provide a specific implementation of the basis inverse data structures and
algorithms. Dynamic Markowitz pivoting with partial threshold pivot selection is used to factor a
basis.

The routine dy_initbasis is used to initialise the basis module. The capacity of the basis, algo-
rithm options, and numeric tolerances are set at initialisation (vid. §16.3). The basis is deleted
by the routine dy_freebasis. Changing the basis capacity is implemented in DYLP by saving op-
tions and tolerances for the existing basis, deleting the existing basis, and creating a new basis
of the appropriate size. The capacity is checked each time the basis is factored; changes are in-
visible to clients. The GLPK basis module will resize its own internal data structures whenever it
determines that this is required.

In the main, DYLP uses the basis module in a standard way for factoring and pivoting. There
are some departures from GLPK defaults:

❅ The initial size of the sparse vector working area is tripled.

❅ The limit on element growth (luf.max_gro) is reduced from 1012 to 106.

❅ The minimum value for elements on the diagonal of the factorisation (luf_basis.upd_tol is re-
duced from 10−6 to 10−10.

❅ Instead of a fixed default of .1, the pivot stability tolerance is dynamically adjusted in a range
between .01 and .95 based on DYLP’s assessment of the numerical stability of the current
basis. The number of pivot candidates examined when factoring the basis is also adjusted
in the range 4 to 10. More candidates are considered as the stability requirement is raised
in the hope of finding a numerically stable candidate without compromising sparsity.

The routine dy_setpivparms is provided to adjust the pivot stability tolerance and pivot candi-
date limit. Adjustment of the pivot selection parameters is done according to a fixed schedule of
tolerance and limit values kept in the static data structure dy_basis.c:pivtols. The client specifies
an integer delta which is used to select a pair of values from the schedule.

18

Pre- and post-multiplication of vectors by the basis inverse are provided by the routines dy_ftran

and dy_btran, respectively.

7.2 Factoring

For factoring the basis, the routine dy_factor provides significant error recovery functions on top
of the basic abilities of GLPK. The call structure is shown in Figure 1.

dy_factor

dy_setpivparms

dy_calcprimals

dy_calcduals

dy_calccbar

dy_degenout

dy_dseinit

dy_pseinit

dy_clrpivrej

glp_inv_decomp

adjust_basis

adjust_therest

luf_adjustsize
dy_freebasis

dy_initbasis glp_inv_delete

glp_inv_create

Figure 1: Call Graph for dy_factor

A singular basis can occur because of a simplex pivot attempt or as the result of a change in
the coefificients of the basis because the client has fixed variables and then requested a warm or
hot start. The factoring routine glp_inv_decomp detects a singular basis and reports the unpiv-
oted rows and columns, but does not attempt to fix the basis. adjust_basis uses the information
reported by glp_inv_decomp to attempt to patch the basis, substituting columns associated with
slack variables for the set of columns identified as singular. This sequence is repeated until the
basis is successfully factored.

In the larger context of DYLP, patching the basis is the least of the work. dy_factor will call
adjust_therest to adjust the DYLP data structures as necessary to reflect the exchange of variables
between the basic and nonbasic partitions. Depending on the phase, this can include updat-
ing the structures which maintain the basis, recalculating the primal (dy_calcprimals) and dual
(dy_calcduals) variables, recalculating the reduced costs (dy_calccbar), resetting the DSE or PSE
norms (dy_dseinit and dy_pseinit, respectively), clearing the list of variables marked ineligible for
pivoting (dy_clrpivrej), and backing out a perturbed subproblem (dy_degenout).

glp_inv_decomp will abort an attempt to factor the basis if the current pivot selection parameters
give rise to numerical instability (detected as excessive growth in the magnitude of the coefificients
of the factored basis). dy_factor will make repeated tries to factor the basis, tightening the pivot
selection parameters before each attempt. It will admit failure only if the numerical instability
remains after the pivot selection tolerances have been tightened as much as possible, so that each
pivot chosen is the maximum coefificient remaining in the unpivoted portion of the basis.

19

7.3 Pivoting

Pivoting is performed by dy_pivot, which confirms the numerical stability of the pivot element and
calls glp_inv_update to pivot the basis.

To be judged numerically stable, a prospective pivot coefificient a i j must exceed the product of
the GLPK stability multiplier (luf.piv_tol), the DYLP pivot selection multiplier (dy_tols.pivot), and the
maximum element in the transformed column a j = B −1a j (primal simplex) or row a i = 1i N (dual
simplex). Standard defaults in DYLP are 5 × 10−2 for the GLPK stability multiplier and 1 × 10−5

for the DYLP pivot selection multiplier, so that the pivot coefificient is required to satisfy |a i j | >
(5 × 10−7)(maxk |ak j |) (primal simplex) or |a i j | > (5 × 10−7)(maxk |a ik |) (dual simplex). The routine
dy_chkpiv is supplied to perform this test, and is used as a qualification test by the routines which
select the leaving primal variable in primal simplex and the entering primal variable in dual
simplex. The check performed in dy_pivot should not fail, but is retained as a precaution.

If a i j is rejected as numerically unstable, the pivot attempt is aborted. In primal simplex, the
entering variable x j will be placed on the rejected pivot list. For dual simplex, the leaving variable
xi is placed on the rejected pivot list. Recovery from pivoting problems and the handling of the
rejected pivot list are discussed in §11.2.

A pivot can also fail if it results in a singular basis or if the basis representation runs out of
space. The implementation of GLPK requires that the basis be reloaded and factored to recover
from these errors; this is orchestrated by dy_duenna and discussed in §11.2.

Note that glp_inv_update expects to be supplied with L−1a j as a hidden parameter. GLPK pro-
vides the capability to control whether a call to glp_inv_ftran sets this hidden parameter. This
capability is exposed to clients as the second parameter to dy_ftran.

20

8 Accuracy Checks and Maintenance

Primal and dual accuracy checks, primal and dual feasibility checks, and factoring of the basis
can be requested through the routine dy_accchk; each action can be requested separately.

DYLP refactors the basis and performs accuracy checks at regular intervals, based on a count
of pivots which actually change the basis. By default, primal and dual accuracy checks are
performed at twice this frequency. During phase II of the primal and dual simplex algorithms, the
appropriate feasibility check is performed following each accuracy check. dy_duenna tracks the
pivot count and requests checks and factoring at the scheduled intervals.

dy_accchk uses dy_factor to factor the basis and recalculate the primal and dual variables.
When the basis has been factored and has passed the accuracy checks, the routine groombasis

checks that the status of the basic variables matches their values and makes any necessary
adjustments.

Failure of an accuracy check will cause the basis to be refactored. Failure of an accuracy check
immediately after refactoring will cause the current pivot selection tolerances to be tightened by
one increment before another attempt is made. dy_accchk will repeat this cycle until the accuracy
checks are satisfied or there’s no more room to tighten the pivot selection parameters. On the
other hand, each time that an accuracy check is passed without refactoring the basis, the current
pivot selection tolerances are loosened by one increment, to a floor given by the minimum pivot
selection tolerance.

The minimum pivot selection tolerance is reset to the loosest possible setting at the start of
each simplex phase. If groombasis detects and corrects major status errors (indicating that an
unacceptable amount of inaccuracy accumulated since the basis was last factored), it will raise
the minimum pivot selection tolerance. Similarly, if the primal phase I objective is found to be
incorrect, or primal or dual feasibility is lost when attempting to verify an optimal solution, the
current and minimum pivot selection tolerances will be raised before returning to simplex pivots.
Raising the minimum pivot selection tolerance provides long-term control (for the duration of a
simplex phase) over reduction in the current pivot selection tolerance.

The primal accuracy check is Bx B = b − Nx N . Comparisons are made against the scaled toler-
ance ‖b‖

1
(dy_tols.pchk). To pass the primal accuracy check, it must be that

‖(b − Nx N) − Bx B‖
1

≤ ‖b‖
1
(dy_tols.pchk)

The dual accuracy check is yB = cB. Comparisons are made against the scaled tolerance
‖c‖

1
(dy_tols.dchk). To pass the dual accuracy check, it must be that

‖cB − yB‖
1

≤ ‖c‖
1
(dy_tols.dchk)

The primal feasibility check is l ≤ x ≤ u. For each variable, it must be true that x j ≥ l j −
(dy_tols.pfeas)(1 + |l j |) and x j ≤ u j + (dy_tols.pfeas)(1 + |u j |). In the implementation, only the basic
variables are actually tested; nonbasic variables are assumed to be within bound as an invariant
property of the simplex algorithm. dy_tols.pfeas is scaled from dy_tols.zero as

dy_tols.pfeas = min(1, log

(‖xB‖1√
m

)

)(dy_tols.zero)(dy_tols.pfeas_scale).

The dual feasibility check is c = cN − yN of appropriate sign. For each variable, it must be true
that c j ≤ dy_tols.dfeas for x j nonbasic at u j and c j ≥ −dy_tols.dfeas for x j nonbasic at l j. dy_tols.dfeas

21

is scaled from dy_tols.cost as

dy_tols.dfeas = min(1, log

(‖yk‖1√
m

)

)(dy_tols.cost)(dy_tols.dfeas_scale).

22

9 Scaling

DYLP provides the capability for row and column scaling of the original LP problem. This section
develops the algebra used for scaling and unscaling and describes some additional details of the
implementation.

Let R be a diagonal matrix used to scale the rows of the LP problem and S be a diagonal matrix
used to scale the columns of the LP problem. The original problem (1) is scaled as

min (cS)(S−1x)

(RAS)(S−1x) ≤ (Rb)

(S−1l) ≤ (S−1x) ≤ (S−1u)

to produce the scaled problem

min c̆x̆

Ăx̆ ≤ b̆

l̆ ≤ x̆ ≤ ŭ

where Ă = RAS, b̆ = Rb, c̆ = cS, l̆ = S−1l , ŭ = S−1u, and x̆ = S−1x . DYLP then treats the scaled
problem as the original problem.

In order to report the solution, DYLP generates unscaled values. Recovering unscaled values
of the nonbasic primal variables is trivial — they can be read from the original unscaled l and u

vectors. To recover the values of the basic variables, DYLP calculates x B = SB x̆ B.

To recover the unscaled dual variables y, start with y̆ = c̆B B̆−1. Then

y̆ = c̆B(RBSB)−1

= (cBSB)((SB)−1B−1R−1)

= cBB−1R−1

= yR−1

and y = y̆R.

By default, DYLP will calculate scaling matrices R and S and scale the constraint system unless
the coefificients satisfy the conditions .5 < mini j |ai j | and maxi j |ai j | < 2. The client can forbid scaling
entirely, or supply a pair of vectors that will be used as the diagonal coefificients of R and S.

A few additional details are helpful to understand the implementation. DYLP scales the original
constraint system before generating logical variables. Nonetheless, it is desirable to maintain a
coefificient of 1.0 for each logical (-1.0 in the case of ≥ constraints). The row scaling coefificient
ri i for constraint i is already determined. To keep the coefificients of logical variables at ±1.0, the
column scaling factor is chosen to be 1/ri i and the column scaling matrix S is extended to include
logical variables.

In order to provide a client program with a general ability to price a dual pivot2 without export-
ing knowledge of the scaling vectors, DYLP calculates unscaled rows of the basis inverse. Given

2One use of this capability is the calculation of standard up and down penalties. Another is estimating the
degradation in the objective function after adding a branching hyperplane.

23

B̆−1 = (SB)−1B−1R−1, a row k of the inverse will be

1̆k = sB(k)1k R−1

and

1k =
1

sB(k)
1̆k R

where B(k) represents the index of the variable x j which is basic in position k of the basis.
DYLP provides routines which will price nonbasic variables (dy_pricenbvars) and price a dual pivot
(dy_pricedualpiv) using unscaled coefificients.

24

10 Startup

DYLP provides a cold, warm, and hot start capability. For a cold start, DYLP selects a set of
constraints and variables to be the initial active constraint system and then crashes a basis.
For a warm start, DYLP expects that the caller will supply a basis but assumes that the active
constraint system and other data structures need to be built to this specification. For a hot
start, DYLP assumes that its internal data structures are valid except for possible modifications
to variable bounds, objective coefificients, or right-hand-side coefificients. It will incorporate these
modifications and continue with simplex iterations.

DYLP will default to attempting a hot start unless specifically requested to perform a warm
or cold start. For all three start types, DYLP will evaluate the constraint system for primal and
dual feasibility, choosing primal simplex unless the constraint system is dual feasible and primal
infeasible.

It is not possible to perform efificient and foolproof checks to determine if the client has violated
the restrictions imposed for a hot start. At minimum, such a check would require a coefificient
by coefificient comparison of the constraint system supplied as a parameter with the copy held
by DYLP from the previous call. It is the responsibility of the client to notify DYLP if variable
bounds, objective coefificients, or right-hand-side coefificients have been changed. DYLP will scan
for changes and update its copy of the constraint system only if the client indicates a change.

Section 16 provides detailed information on the options used to control DYLP’s startup actions.

The startup sequence for DYLP is shown in Figure 2. The first actions are determined by the
purpose of the call. The call may be solely to free retained data structures; if so, this is done
and the call returns. The next action is to determine the type of start — hot, warm, or cold —
requested by the client. If a warm or cold start is requested, any state retained from the previous
call is useless and all retained data structures are freed. For all three types of start, options and
tolerances are updated to reflect the parameters supplied by the client.

For a warm or cold start, the constraint system is examined to see if it should be scaled, and
the options specified by the client are examined to see if scaling is permitted. If this assessment
determines that scaling is advisable and permitted, the constraint system is scaled as described
in §9. The original constraint system is cached and replaced by the scaled copy. In the case of
a hot start, the existing scaled copy, if present, is retrieved for use. The original system is not
consulted again until the solution is packaged for return to the client.

Following scaling, the active constraint system is constructed for a warm or cold start, or
modified for a hot start; §§10.1 – 10.3 describe the actions in detail. At the completion of this
activity, the active constraint system is assessed for primal and dual feasibility and an appropriate
simplex phase is chosen.

Once the constraint system is constructed, common initialisation actions are performed: Data
structures are initialised for PSE and DSE pricing, for the perturbation-based antidegeneracy
algorithm, and for the pivot rejection algorithm.

To complete the startup sequence, DYLP evaluates the constraint system and client options to
determine if it should perform constraint activation or variable activation or deactivation before
starting simplex iterations. Variable deactivation is mutually exclusive to constraint and variable
activation; the former is considered only during a cold start, the latter only during a warm or hot
start.

An initial round of variable deactivation is performed during a cold start if the number of
active variables exceeds the number specified by the coldvars option. This activity is intended to

25

cold, warm

warm, hot

release
solver?

hot warm cold

free retained
data structures

determine
type of start

initialise local
constraint system

(scaling)

update options
and tolerances

variable deactivation
(client request)

perform
hot start

perform
warm start

perform
cold start

cold

common start activities:
determine loadable constraints

and variables; initialise PSE and
DSE pricing, pivot rejection, and

perturbation-based antidegeneracy

free retained
data structuresy

return

variable and/or
constraint activation

(client request)

start

dynamic simplex

Figure 2: DYLP startup sequence

26

reduce the initial size of constraint systems with very large numbers of variables (e.g., set covering
formulations).

Constraint or variable activation, or both, are performed during a warm or hot start if requested
by the client. Constraint activation is performed before variable activation. If initial constraint
activation is requested, DYLP will add all violated constraints to the active system. If constraints
are added, primal feasibility will be lost, and DYLP will reassess the choice of initial simplex phase.

If initial variable activation is requested, the action taken depends on the initial simplex phase.
If DYLP will enter primal simplex, variables with favourable primal reduced costs are activated,
evaluated under the phase I or phase II objective as appropriate. For dual simplex, variables
which will tend to bound the dual problem are selected for activation: For each infeasible primal
basic variable (nonbasic dual variable with favourable reduced cost), primal variables with optimal
reduced costs (feasible dual constraints) which will bound motion in the direction of the incoming
dual variable are selected for activation.

10.1 Cold Start

DYLP performs a cold start in two phases. The first phase, implemented in dy_coldstart, constructs
the initial active constraint system. The second phase, implemented in dy_crash, constructs the
initial basis.

To construct the initial active constraint system, dy_coldstart first checks to see if the client has
specified that the full constraint system should be used. In this case, the active system will be the
entire constraint system and the dynamic simplex algorithm will reduce to a single execution of
either primal or dual simplex.

If the client specifies that DYLP should work with a partial constraint system, the constraints
are first separated into equalities and inequalities. All equalities are included in the initial active
system.

The remaining inequalities are sorted, using the angle of the constraint normal ai to the ob-
jective function normal c as the figure of merit,

ai∠c =
180

π
cos−1 ai ⋅ c

‖ai‖‖c‖

Consider a minimisation objective and ‘≤’ inequalities. The normals of the inequalities point out
of the feasible region, and the normal of the objective function will point into the feasible region
at optimality. Hence a constraint whose normal forms an angle near 180o with the normal of the
objective should be more likely to be active at optimum. A constraint whose normal forms an angle
near 0o is more likely to define a facet on the far side of the polytope. Unfortunately, ‘more likely’
is not certainty, and it’s easy to construct simple two-dimensional examples where the normal of
one of the constraints active at optimality forms an acute angle with the normal of the objective
function.

DYLP allows the client to specify one or two angular intervals and a sampling fraction which are
used to select inequalities to add to the initial active system. By default, the initial system will be
populated with 50% of the inequalities which form angles in the intervals [0o, 90o) and (90o, 180o].
(I.e., inequalities whose normals are perpendicular to the objective normal are excluded entirely,
and half of all other inequalities will be added to the initial active system.) The inequalities selected
will be spread evenly across the specified range(s). DYLP will activate all variables referenced by
each constraint.

27

Once the initial constraint system is populated, dy_crash is called to select an initial basis.
DYLP offers three options for the initial basis, called ‘logical’, ‘slack’, and ‘architectural’. A logical
basis is the standard unit basis composed of slack and artificial (logical) variables for the active
constraints. A slack basis again uses slack variables for inequalities, but attempts to select archi-
tectural variables for equalities, including artificial variables only if necessary. An architectural
basis attempts to choose architectural variables for all constraints, selecting slack and artificial
variables only when necessary.

There are many qualities which are desirable in an initial basis, and they are often in conflict.
A logical basis is trivially easily to construct, factor, and invert, and has excellent numerical
stability. On the other hand, such a basis is hardly likely to be the optimal basis. When choosing
architectural variables, free variables are highly desirable since they will never leave the basis. In
addition, DYLP’s basis construction algorithm tries to select architectural variables which will form
an approximately lower-diagonal matrix and provide numerically stable pivots. Constructing a
matrix which is approximately lower-diagonal minimises fill-in when the basis is factored. Several
of the ideas implemented in DYLP’s initial basis construction algorithms are described by Bixby
in [1].

Since DYLP makes an effort to populate the constraint system with constraints that should be
tight at optimality, an architectural basis is the default.

10.2 Warm Start

The routine dy_warmstart implements a warm start. The client is expected to supply an initial
basis, expressed as a set of active constraints and corresponding basic variables. By default, DYLP

will activate all variables referenced by each constraint. As an option, the client can specify an
initial set of active variables.

10.3 Hot Start

For a hot start, DYLP assumes that all internal data structures are exactly as they were when it last
returned to the client. Changes to the constraint system must be confined to the right-hand-side,
objective, and variable upper and lower bound vectors, so that the basis factorisation and inverse
are not affected. The client is responsible for indicating to DYLP which of these vectors have been
changed. The routine dy_hotstart scans the changed vectors and orchestrates any updates to the
corresponding data structures in the active constraint system. Unlike a cold or warm start, the
basis is not factored prior to resuming pivots. DYLP assumes that the basis was refactored as part
of the normal preoptimality sequence prior to the last return to the client and that no intervening
pivots have occurred. Any numerical problems arising from the modifications specified by the
client will be picked up in the normal course of dynamic simplex execution.

28

11 Dynamic Simplex

11.1 Normal Algorithm Flow

Figure 3 gives the normal flow of the dynamic simplex algorithm implemented in DYLP. The
outcomes included in the normal flow of the algorithm are primal optimality, infeasibility, and
unboundedness, and dual optimality and unboundedness. Other outcomes (e.g., loss of dual
feasibility during dual simplex, or numerical instability) are discussed in §11.2.

The implementation of the dynamic simplex algorithm is structured as a finite state machine,
with six normal states, primal simplex, dual simplex, deactivate variables, activate variables,
deactivate constraints, and activate constraints; two user-supplied states, generate variables and
generate constraints; and three error recovery states, force primal feasibility, force dual feasibility,
and force full constraint system. State transitions are determined by the previous state, the type
of simplex in use, and the outcome of actions in a state.

As described in §10, DYLP establishes an initial active constraint system, determines whether
the system is primal or dual feasible, and chooses the appropriate simplex as the starting phase.

The most common execution pattern is as described in the Introduction: The initial active
constraint system is neither primal or dual feasible. Primal simplex is used to solve this system
to optimality. A minor loop then activates variables with favourable reduced cost and reoptimises
using primal phase II. This loop repeats until no variables can be activated; at this point the
solution is optimal for the active constraints, over all variables. The algorithm then attempts to
activate violated constraints; if none are found, the solution is optimal for the original problem.
After violated constraints are activated, loose constraints are deactivated and dual simplex is used
to reoptimise. When an optimal solution is reached, the algorithm attempts to activate variables
with favourable reduced cost and return to the ‘primal phase II – activate variables’ minor loop. If
no variables can be activated, the algorithm attempts to activate violated constraints. If none are
found, the solution is optimal for the original problem. If violated constraints are activated, then
an attempt is made to activate dual feasible variables and dual simplex is used to reoptimise.

There is an obvious asymmetry in the use of primal and dual simplex. When primal simplex
reaches an optimal solution, the ‘primal phase II – activate variables’ minor loop iterates until no
useful variables remain to be activated. Only then does the algorithm activate violated constraints
and move to dual simplex. The analogous minor loop for dual simplex would be to add violated
constraints (dual variables with favourable reduced costs) and reoptimise with dual simplex until
no violated constraints remain. Instead, the algorithm attempts to add variables and return
to primal simplex; failing that, it will add both violated constraints and dual feasible variables
(satisfied dual constraints). The purpose of this asymmetry is two-fold: It acknowledges that
primal infeasibility is much more likely than primal unboundedness when solving LPs in the
context of a branch-and-cut algorithm, and it attempts to avoid the large swings in the values
of primal variables which often accompany dual unboundedness. Dual simplex moves between
primal infeasible basic solutions which can be at a large distance from the primal feasible region
and at a large distance from one another in the primal space. This presents a challenge for
numerical stability. Because the primal simplex remains within the primal feasible region, primal
unboundedness does not present the same difificulty.

To avoid cycling by repeatedly deactivating and reactivating the same constraint when the
dimension of the optimal face is greater than one, constraint deactivation is skipped unless there
has been an improvement in the objective function since the previous constraint deactivation
phase. This guarantees that the simplex will not return to a previous extreme point.

29

primal
simplex

activate
variables

(P1)

DONE
(infeasible)

DONE
(unbounded)

activate
constraints
(bounding)

activate
constraints
(violated)

full
system?

activate full
constraint system

dual
simplex

activate
variables

(P2)

activate
variables

(D2)

activate
constraints
(violated)

deactivate
variables

DONE
(optimal)

activate
variables

(dual bounding)

activate
variables

(P2)

activate
constraints
(violated)

DONE
(optimal)

deactivate
constraints

activate
variables

(P1)

(P1)

(P2)

(P1/P2)

(D2)

(P1)

(P2)

(P1)

(P2)

(D2)

(opt)

(unbnd)

(opt)

(infeas) (unbnd)

(none)

(new)

(new)

(none)

(none)

(new)

(new)

(none)

(none)

(new)

(new)

(none)

(new)

(none)

(none)

(new)

Figure 3: Dynamic Simplex Algorithm Flow

30

If primal simplex finds that the active system is infeasible, the algorithm will attempt to activate
variables with favourable reduced cost under the phase I objective function (vid. §13) and resume
primal phase I. If no variables can be found, the original problem is infeasible.

If primal simplex finds that the active system is unbounded, the algorithm first attempts to
activate bounding constraints which will not cause the loss of primal feasibility. If such constraints
can be found, execution returns to primal phase II. If no such constraints can be found, or primal
feasibility is not an issue, all violated constraints are added and execution moves to dual simplex.
If no violated constraints can be found, the full constraint system is activated. If primal simplex
again returns an indication of unboundedness, the original problem is declared to be unbounded.
The effort expended before indicating a problem is unbounded acknowledges that unboundedness
is expected to be extremely rare in DYLP’s intended application.

If dual simplex finds that the active system is dual unbounded (primal infeasible), the algorithm
first attempts to activate dual bounding constraints (primal variables) which will not cause the
loss of dual feasibility. If such dual constraints can be found, execution returns to dual simplex.
If no such dual constraints can be found, the algorithm will attempt to activate variables with
favourable reduced cost under the primal phase I objective function and continue with primal
phase I.

11.2 Error Recovery

A substantial amount of DYLP’s error recovery capability is hidden within the primal and dual sim-
plex algorithms. It is also possible to use the capabilities present in a dynamic simplex algorithm
to attempt error recovery at this level. The dynamic simplex algorithm modifies the constraint
system as part of its normal execution. This ability can be harnessed to force a transition from
one simplex to another when one simplex runs into trouble. The actions described in this section
are fully integrated with the actions described in §11.1. They are described separately to avoid
reducing Figure 3 to an incomprehensible snarl of state transitions.

Primal Simplex

The error recovery actions associated with the primal simplex algorithm are shown in Figure 4.
There are five conditions of interest, excessive change in the value of primal variables (excessive
swing), stalling (stall), inability to perform a pivot (punt), numerical instability (accuracy check),
and other errors (other error).

Excessive change (‘swing’) in the value of a primal variable during primal simplex is taken
as an indication that the primal problem is verging on unboundedness. Swing is defined as
(new value)/(old value). DYLP’s default tolerance for this ratio is 1015. The action taken is the
same as that used for normal detection of unboundedness, with the exception that the algorithm
will always return to primal simplex.

When primal simplex stalls or is forced to punt, the strategy is to attempt to modify the con-
straint system so that the simplex algorithm will be able to choose a new pivot and again make
progress toward one of the standard outcomes of optimality, infeasibility, or unboundedness. The
specific actions vary slightly depending on whether primal feasibility has been achieved.

If primal simplex is still in phase I, the first action is to try to activate variables which have a
favourable reduced cost under the phase I objective. If this succeeds, execution returns to primal
simplex. If no variables can be found, the algorithm will attempt to activate violated constraints; if
successful, execution returns to primal simplex. If no variables or constraints have been activated,
there is no point in returning to primal simplex as the outcome will be unchanged. In this case,

31

primal
simplex

primal or dual
simplex

activate full
constraint system

full
system?

yes

no

DONE
(accuracy

check)

activate
variables

(P1)

activate
variables

(P2)

primal
simplex

new

none
primal
simplex

new

activate
constraints
(violated)

primal
simplex

new

force dual
feasibility

deactivate
constraints

dual
simplex

force dual
feasibility

yes

activate
constraints
(violated)

deactivate
constraints

dual
simplex

no
noyes

none

none

none new

primal or dual
simplex

activate full
constraint system

full
system?

yes

no

DONE
(punt/
stall)

DONE
(other error)

activate
constraints
(bounding)

primal
simplex activate

constraints
(violated)

new

none

primal
simplex

excessive
swing

punt/
stall

accuracy
check

other
error

Figure 4: Error Recovery Actions for Primal Simplex Error Outcomes

32

the algorithm will attempt to force dual feasibility by deactivating variables whose reduced costs
are not dual feasible (i.e., deactivate unsatisfied dual constraints). If this succeeds, the algorithm
will deactivate loose constraints (dual variables) to reduce the chance of dual unboundedness and
continue with dual simplex. Failing all the above, the ultimate action is to active the full constraint
system and attempt to solve it with primal or dual simplex. This can be done only once, to avoid
a cycle in which the full system is activated, pared down while forcing primal or dual feasibility,
and then reactivated when lesser measures again fail.

When a stall or punt occurs in primal phase II, the first action is again to attempt to activate
variables with a favourable reduced cost. However, if no new variables can be found, the algorithm
immediately attempts to force dual feasibility. Only if this can be achieved will it proceed to
activate violated constraints, deactivate loose constraints, and proceed to dual simplex. Failure to
force dual feasibility or to activate any constraints causes forced activation of the full constraint
system as described above.

Both the primal and dual simplex algorithm incorporate extensive checks and error recovery
actions to detect and recover from numerical instability. By the time a simplex gives up and
reports that it cannot overcome numerical problems, there is little to be done but force activation
of the full constraint system for one last attempt.

Other errors indicate algorithmic failures within the simplex algorithms (e.g., failure to acquire
resources, or conditions not anticipated by the code) and no attempt is made to recover at the
dynamic simplex level.

Dual Simplex

The error recovery actions associated with the dual simplex algorithm are shown in Figure 5. In
addition to the five outcomes cited for primal simplex, loss of dual feasibility (lost dual feasibility)
can be reported by the dual simplex algorithm. (Loss of primal feasibility is handled internally by
the primal simplex, which simply returns to phase I simplex iterations.)

When the dual simplex algorithm loses feasibility, the algorithm will attempt to force dual
feasibility by deleting the offending dual constraints (primal variables). If this succeeds, it will
attempt to activate feasible dual constraints and return to dual simplex. If dual feasibility cannot
be restored, the algorithm attempts to activate variables with favourable reduced costs under the
primal phase I objective and executes primal phase 1.

Excessive change in the value of primal variables during dual simplex is taken as an indica-
tion that the dual algorithm is moving between basic solutions which are far outside the primal
feasible region and far from each other. When excessive change in a primal variable is detected,
the algorithm attempts to activate primal constraints which will bound this motion. If this is
successful, execution of dual simplex resumes. General activation of violated primal constraints
is not attempted as it is less likely to bound the primal swing. If no bounding constraints can
be found, the algorithm attempts to activate feasible dual constraints and return to dual simplex.
If no such constraints can be found, the algorithm attempts to activate variables with favourable
reduced costs under the primal phase I objective and executes primal phase 1.

When dual simplex reports that it has stalled or cannot execute necessary pivots, the algo-
rithm first attempts to activate violated primal constraints. If such constraints can be activated,
execution returns to dual simplex. If no constraints can be found, the algorithm attempts to force
primal feasibility by deactivating violated primal constraints. Depending on the result of this ac-
tion, the algorithm attempts to activate variables with favourable reduced costs under the primal
phase I or phase II objective and executes primal simplex.

Loss of numerical stability and other errors are handled as for primal simplex.

33

force dual
feasibility

activate
variables

(D2)

yes

dual
simplex

no

activate
variables

(P1)

primal
simplex

activate
constraints
(bounding)

dual
simplex

new
none

loadable
variables?

primal
simplex

no

activate
variables

(D2)
new

dual
simplex activate

variables
(P1)

yes

none

primal
simplex

dual
simplex

force primal
feasibility

activate
variables

(P1)

activate
variables

(P2)

activate
constraints
(violated)

dual
simplex

new
none

primal
simplex

no
yes

deactivate
variables

DONE
(other error)lost dual

feasibility

excessive
swing

punt or
stall

accuracy
check

other
error

full
system?

activate full
constraint system

DONE
(accuracy

check)

primal or dual
simplex

yes no

Figure 5: Error Recovery Actions for Dual Simplex Error Outcomes

34

12 Dual Simplex

DYLP will choose dual simplex whenever the current basic solution is dual feasible but not primal
feasible. The primary role of dual simplex in DYLP is reoptimisation following the addition of
violated constraints. The implementation reflects this role and does not provide a dual phase I for
achieving dual feasibility. The dual simplex implementation incorporates dual steepest edge (DSE)
pricing (§4.2), standard (§12.5) and generalised (§12.6) pivoting, and perturbation-based (§5) and
alignment-based (§6) antidegeneracy algorithms.

Because the dual simplex implementation does not provide a phase I, a number of exceptional
conditions will cause DYLP fall back from dual simplex to primal simplex.

In dynamic simplex, apparent primal infeasibility can result because only a subset of the
variables are present in the active constraint system. In some cases, the variables needed to
regain feasibility cannot be activated into the nonbasic partition while maintaining dual feasibility.
In the context of the dual problem, the problem is unbounded and any dual constraint which
would bound it would also make the current basic solution dual infeasible. DYLP implements a
variable activation procedure which can pivot a single variable into the basis as it is activated
in order to maintain dual feasibilty. It is still possible, however, to reach a basic solution where
multiple pivots are required to regain dual feasibility for any candidate variable. When this occurs,
DYLP reverts to primal simplex.

If primal infeasible variables remain but they cannot be pivoted because their pivot coefifi-
cients do not satisfy the current pivot selection tolerances, dy_dual will punt and DYLP will return
to phase I of the primal simplex algorithm in the hope that addition of variables and/or the ap-
plication of primal pivoting rules will allow pivoting to continue. In addition, if the dual simplex
terminates due to stalling or loss of feasibility, DYLP will try the primal simplex algorithm before
giving up.

Figure 6 shows the call structure of the dual simplex implementation.

dy_dual

dy_calcobj

dy_setpivparms

dual2

dy_dualpivot

dy_setpivparms

dy_clrpivrej

dy_duenna

dy_accchk

dy_addtopivrej

dy_clrpivrej

dy_dualout dualpricexk

preoptimality dy_degenout

dy_accchk

dy_clrpivrej

Figure 6: Call Graph for Dual Simplex

35

12.1 Dual Top Level

Dual simplex is executed when the dynamic simplex state machine enters state dyDUAL. If re-
quired, DSE pricing is initialised by calculating the square of the norms of the rows of the basis
inverse (vid. §4.2) and the dual simplex routine dy_dual is called. dy_dual is a trivial shell which
calculates the objective (dy_calcobj) and calls the dual phase II routine dual2 to do the optimisa-
tion.

12.2 Dual Phase II

The overall flow of phase II of the dual algorithm is shown in Figure 7. The body of the routine
is structured as two nested loops. The outer loop handles startup and termination, and the inner
loop handles the majority of routine pivots.

On entry to dual2, the outer loop is entered and dy_dualout is called to select the initial leaving
variable. Then the inner loop is entered and dy_dualpivot is called to perform the pivot. dy_dualpivot

(vid. §12.3) will calculate the coefificients of the pivot row (dualpivrow), select an entering variable
(dualin), pivot the basis (dy_pivot), update the primal and dual variables (dualupdate), and update
the DSE pricing information and reduced costs (dseupdate). For a routine pivot, dseupdate will also
select a leaving variable for the next pivot. dy_duenna evaluates the outcome of the pivot, handles
error detection and recovery where possible, and performs the routine maintenance activities of
accuracy checks and refactoring of the basis. If there are no problems, the pivoting loop iterates,
using the leaving variable selected in dseupdate. The loop continues until optimality is reached,
the problem is determined to be primal infeasible (dual unbounded), or an exception or fatal error
occurs.

One common reason for a failure to select a leaving variable for the next pivot is that the
current pivot was aborted due to numerical problems (an unsuitable pivot coefificient being the
most common of these). In this case, dseupdate never executes. Once dy_duenna has taken the
necessary corrective action, the flow of control escapes to the outer loop and calls dy_dualout to
select a new leaving variable.

Another common reason for failure to select a leaving variable is that all candidates were previ-
ously flagged as unsuitable pivots. In this case, dy_dualout will indicate a ‘punt’ and dy_dealWithPunt

will be called to reevaluate the flagged variables. If it is able to make new candidates available,
control returns to dy_dualout for another attempt to find a leaving variable. If all flagged variables
remain unsuitable, control flow moves to the preoptimality actions with an indication that dual
simplex has punted.

When dy_dualout indicates optimality (primal feasibility) or dy_dualpivot indicates optimality,
dual unboundedness (primal infeasibility), or loss of dual feasibility, the inner loop ends and
preoptimality is called for confirmation. preoptimality will refactor the basis, check for accuracy,
recompute the primal and dual variables, and confirm dual and primal feasibility status. If there
are no surprises, dual phase II terminates with an indication of optimality, dual unboundedness,
or loss of dual feasibility.

Loss of dual feasibility stems from loss of numeric accuracy, but it cannot be corrected within
dual phase II. The error recovery actions taken by the dynamic simplex algorithm are described
in §11.2.

Loss of primal feasibility can occur for two distinct reasons. In the less common case, loss of
primal feasibility stems from loss of numeric accuracy. The pivot selection rules are tightened and

36

(dy_duenna)
preventative maintenance,

error recovery

(dy_dualpivot)
select entering variable;

pivot basis;
update variables, DSE
norms, reduced costs;

select next leaving
variable

(dy_dualout)
select leaving variable

(preoptimality)
factor basis, check
accuracy & confirm

feasibility status

unrecoverable
error?

continue
pivoting?

leaving
variable
selected?

dual
feasible?

punt?

unbounded
expected?

return
error

return
(dual)

unbounded

tighten pivot
selection parameters

y

n

y

y

n

n

y

n

y

y

n

y n

primal
feasible?y n

return
lost dual
feasibility

return
optimal

return
punt

leaving
variable
selected?

(dy_dealWithPunt)
attempt to relax
pivot selection

parameters

new
candidates
available?

n

y

Figure 7: Dual Phase II Algorithm Flow

37

dual simplex iterations are resumed. When the number of false indications of optimality exceeds
a hard-coded limit (currently 15), dual simplex terminates with a fatal error.

The more common reason for apparent loss of primal feasibility at the termination of dual
simplex is that it is ending with a punt, as described above. The variables flagged as unsuitable
for pivoting are not primal feasible, and when the flags are removed to perform the preoptimality
checks, primal feasibility is revealed as an illusion. No further action is possible within dual
simplex; the reader is again referred to §11.2.

Other errors (e.g., stalling, accuracy checks, etc.) not shown in Figure 7 can occur and result
in termination of the dual simplex algorithm with the appropriate error indication.

12.3 Pivoting

DYLP offers two flavours of dual pivoting: A standard dual pivot algorithm in which a single primal
variable is selected and pivoted into the basis, and a generalised dual pivot algorithm [8, §10.2] in
which multiple primal variables may undergo bound-to-bound flips prior to the basis pivot. The
choice of standard or generalised dual pivoting can be controlled with an option; DYLP will use
generalised pivoting by default.

Figure 8 shows the call structure of the dual pivot algorithm. The routine dualin implements
standard dual pivoting; dualmultin implements generalised dual pivoting.

The first activity in dy_dualpivot is the calculation of the coefificients of the pivot row, a i = 1i N ,
by the routine dualpivrow. With the leaving primal variable and the basis inverse row in hand, one
of dy_dualin or dualmultiin are called to select the entering variable. (If generalised dual pivoting is
in use, dualmultiin will perform any bound-to-bound flips before returning.)

Once the entering and leaving variables have been chosen, the actual pivot is performed in
several steps. Prior to the pivot, the vector τ = B −11T

k is calculated for use during the update of
the DSE pricing information. The basis is pivoted next; this involves calls to dy_ftran and dy_pivot,
as outlined in §7.3. If the basis change succeeds, the primal and dual variables are updated
by dualupdate using the iterative update formulæ of §3, and then the DSE pricing information
and reduced costs are updated by dseupdate, using the update formulæ of §4.2. As a side effect,
dseupdate will select a leaving variable for the next pivot.

12.4 Selection of the Leaving Variable

The selection of the leaving primal variable xi (entering dual variable yi) is made using the dual
steepest edge criterion described in §4.2. As outlined above, the normal case is that the leaving
variable for the following pivot will be selected as dseupdate updates the DSE pricing information
for the current pivot. In various exceptional circumstances where this does not occur, the routine
dy_dualout is called to make the selection.

12.5 Standard Dual Pivot

For the standard dual pivot algorithm, the selection of the entering primal variable (leaving dual
variable) is made using the usual dual pivoting rules and a set of tie-breaking strategies.

Let xi be the leaving primal variable, for simplicity of exposition occupying basis position i. 1i is
obtained by calling dy_btran to calculate ei B

−1, where ei is the unit row vector with 1 in position i.

38

dy_dualpivot

dualin
ddirdothyper

bdothyper

dy_chkpiv

dy_confirmDualPivot

dualmultiin

scanForDualInCands

selectWithoutInf

selectWithInf

dy_updateprimals

dy_confirmDualPivot

promoteSanePivot

calcInfChange

dy_ftran

dy_ftran

dualcand_cmp

dualpivrow
consys_dotcol

dy_btran

dseupdate dy_btran

dy_dseinit

dualpricexk

dy_addtopivrej

dualdegenin

dualupdate

dy_factor

dy_dualdegenout

dy_ftran

dy_pivot

Figure 8: Call Graph for Dual Pivoting

The pivot coefificient for a variable xk is a ik = 1iak. Let yi be the dual variable associated with
the constraint in basis position i and let yk be the dual variable associated with the tight bound
constraint for the nonbasic primal variable xk.

Abstractly, we need to check yk = ck + a ikδik to find the maximum allowable δi j such that
yk ≥ 0 ∀k ∈B and y j = 0 for some j. The index j of the entering primal variable x j will be

j = argmin
k

∣

∣

∣

∣

ck

a ik

∣

∣

∣

∣

(13)

for suitable xk ∈N .

In practice, it’s impossible to explain ‘suitable xk ’ properly without going deep into the details
of the workings of the revised dual simplex algorithm (vid. [4]). Table 1 gives the rules in tabular
form, from the perspective that when all is said and done, the leaving primal variable must end
up nonbasic at bound and the sign of the reduced cost must be appropriate for that bound.
Interpreting the table, the second line says that if the leaving variable will be made primal feasible
by rising to its lower bound, the resulting reduced cost must be positive to retain primal optimality,
hence the corresponding dual variable must enter by rising from zero. If the entering primal
variable will be decreasing from its upper bound, the current reduced cost must be negative,

39

leaving xi entering yi resulting ci entering x j leaving y j initial c j pivot a i j −
c j

a i j

= ci

ր lb 0 ր ≥ 0 lb ր ց 0 ≥ 0 < 0 −
(+)

(−)
= (+)

ub ց ր 0 ≤ 0 > 0 −
(−)

(+)
= (+)

ց ub 0 ց ≤ 0 lb ր ց 0 ≥ 0 > 0 −
(+)

(+)
= (−)

ub ց ր 0 ≤ 0 < 0 −
(−)

(−)
= (−)

Table 1: Summary of Dual Simplex Pivoting Rules

hence the corresponding dual variable must leave by rising to zero3. The final columns simply
illustrate that the sign of the pivot is well-defined from the update formula.

DYLP provides a selection of tie-breaking strategies when there are multiple candidates with
equal |δik | = δmin. The simplest is to select the first variable xk such that δik = 0. A slightly
more sophisticated strategy is to scan all variables xk eligible to enter and pick x j such that
j = argmaxk∈K |a ik |, K = {k | |δik | = δmin }; DYLP will use this strategy by default. DYLP also provides
four additional strategies based on hyperplane alignment as described in §6. An option allows the
tie-breaking strategy to be selected by the client.

In case of degeneracy, the perturbed subproblem anti-degeneracy algorithm described in §5
is also available. The client can control the use of perturbed subproblems through two options
which specify whether a perturbed subproblem can be used, and how many consecutive degenerate
pivots must occur before the perturbed subproblem is created. By default, DYLP uses perturbed
subproblems aggressively and will introduce one when faced with a second consecutive degenerate
pivot.

12.6 Generalised Dual Pivot

Suppose that an entering dual variable yi has been chosen, and the ratio test of equation (13)
has been used to select a leaving variable y j and determine the change δi j in yi required to drive
y j = c j to zero. Generalised dual pivoting asks the question “What happens when we push past
this limit?”

Immediately, dual feasibility is lost as the value of y j changes sign. But . . . suppose that the
corresponding nonbasic primal variable x j has both an upper and lower bound. If the value of this
variable is changed to the opposite bound (‘flipped’), the sign of y j is again correct with respect
to the value of x j and dual feasibility is restored. Flipping x j will change the value of any basic
primal variable xk where ak j = 1ka j ≠ 0. In particular, the value of xi will move toward feasibility.

In terms of dual simplex, the reduced cost bi = xi of yi will be reduced. If bi is not yet reduced to
zero, yi can still be used as the entering dual variable (albeit with a less favourable reduced cost)

3Properly accounting for these apparently negative dual variables is the difificulty in trying to explain pivoting
from the dual simplex perspective. In fact, negative dual variables are an artifact of running the dual sim-
plex algorithm using representation and data structures appropriate for primal simplex with implicit bound
constraints.

40

and the ratio test can be repeated to determine a new leaving dual variable y j′. Repeating this
procedure will identify a maximum sequence of primal variable flips. The sequence ends for one
of two reasons:

❅ The primal variable x f associated with a dual variable y f has only one finite bound and
cannot be flipped.

❅ Flipping the primal variable x f will push xi over its bound and into feasibility. In dual
simplex terms, yi will acquire an unfavourable reduced cost and will no longer be a suitable
choice for the entering dual variable.

The dual variable y f corresponding to x f becomes the leaving dual variable. The dual basis
pivot will have y f leaving and yi entering; the corresponding primal pivot has xi leaving and x f

entering. This sequence of primal variable flips culminating in a final pivot is generalised dual
pivoting. Note that it’s possible to choose any variable within the maximum sequence of flips and
use it as the pivot variable.

DYLP implements generalised dual pivoting by first collecting the set of potential leaving dual
variables yk (and associated entering primal variables xk). This set is then sorted using non-
decreasing value of |δik | and numerical stability of the pivot as the primary and secondary sort
criteria. (Numerical stability is a binary condition for this purpose; a pivot is either acceptable or
not.) The tertiary sort criterion varies according to whether δik = 0 or δik ≠ 0.

❅ For variables with δik = 0, give preference to primal variables which can be flipped to their
opposite bound.

❅ For variables with δik ≠ 0, give preference to variables which cannot be flipped.

Any remaining ties are broken with a preference for pivot coefificients with better numerical sta-
bility (compared as an analog value). This final tie-breaking criterion is important when flipping
a sequence of variables because numerical stability is relative to the largest coefificient value
|a iq | = maxk |a ik | in a column. An unstable pivot has a small ratio |a ik/a iq |; this implies a high
probability that when xk is flipped, other basic primal variables (at the least, xq) will incur large
changes. Stability of primal variable values is thus improved by preferring large pivot coefificients.

A nondegenerate dual pivot is clearly preferable to a degenerate pivot, and this motivates the
preference for flippable variables within the set of candidates with δik = 0. Ideally, all variables in
this group can be flipped; failing this, it’s preferable to flip as many as possible. When consid-
eration moves into the group of candidates with δik ≠ 0, the goal changes. Quick selection of a
good pivot will minimise further unpredictable changes to other dual reduced costs (primal basic
variables). Since pivoting is the goal, it is reasonable to give preference to variables that must be
pivoted.

The process of scanning for candidates and sorting the resulting set is implemented in the
routines scanForDualInCands and dualcand_cmp.

The sorting procedure just described may result in an ordered list where one or more unflip-
pable candidates yu with numerically unstable pivots a iu precede the first candidate ys with a
stable pivot a is. In this case, a final attempt is made to promote the candidate with a stable
pivot so that it precedes the the unsuitable candidates yu. From the sort criteria, it must be that
|δis| ≥ |δiu |. For a given variable yu, if |yu − a iuδis| is less than the dual feasibilty tolerance, the
resulting dual infeasibility will be tolerable and ys can be promoted over yu. This promotion of a
stable pivot over an unstable pivot is implemented in promoteSanePivot.

41

At the end of the above sort algorithm, the list of candidates is ordered so that it begins with
a maximum sequence of flippable variables, followed by a variable which must be pivoted. The
routine selectWithoutInf scans the sorted list and selects the actual pivot variable according to the
criteria specified above for a maximum sequence of flips and final pivot.

DYLP implements one additional experimental capability within generalised dual pivoting. As
mentioned above, flipping nonbasic primal variables will, in general, change the values of an
arbitrary set of the basic primal variables. It is possible, but expensive, to track this change; the
major cost is the calculation of ak = B −1ak for each candidate column. With this information in
hand, it is possible to locate, within the sequence of variables eligible to be flipped or pivoted, the
point at which the maximum primal infeasibility is at a minimum over the basic variables; this
variable becomes the pivot variable. This method of selecting the pivot variable is implemented
in the routine selectWithInf.

Computational experience shows that using the minimum maximum primal infeasibility to
choose the pivot variable x f is not a good strategy when dual simplex is behaving well. Dual
simplex moves through a sequence of primal infeasible basic solutions. Observation of dual sim-
plex in operation often shows a pattern where the values of primal variables grow increasingly
infeasible and then, within a relatively few pivots, collapse to feasibility (hence optimality). At-
tempting to suppress the initial growth of primal infeasibility is counterproductive, lengthening
the sequence of pivots required to attain optimality. However, very large infeasible primal values
present challenges to numerical accuracy, so that it may be desirable in extreme cases to choose
pivots with a goal of reducing primal infeasibility.

DYLP by default implements a flexible strategy which normally chooses the maximum sequence
of flips followed by a final pivot (i.e., the pivot is chosen to maximise the improvement in the dual
objective). If it detects that the magnitude of the primal variables has grown to a point where
numerical accuracy may be compromised, it will switch to choosing the pivot variable to minimise
the maximum infeasibility over the primal variables.

The strategy used for generalised dual pivoting is controlled by the same option used to choose
between standard and generalised dual pivoting. The complete set of options is standard dual
pivoting; generalised dual pivoting to maximise dual objective improvement; generalised dual
pivoting to minimise maximum primal infeasibility; and the flexible generalised strategy used as
the default.

Antidegeneracy using perturbed subproblems is used with generalised dual pivoting. The
alignment-based anti-degeneracy strategies are not implemented.

42

13 Primal Simplex

The primal simplex implementation in DYLP is a two-phase algorithm. DYLP will choose primal
simplex phase II whenever the current basic solution is primal feasible but not dual feasible. It will
choose primal simplex phase I when the current basic solution is neither primal or dual feasible.
The primary role of primal simplex in DYLP is to reoptimise following the addition of variables.
Since primal phase I requires neither primal or dual feasibility, it is the fallback simplex.

The primal simplex implementation incorporates projected steepest edge (PSE) pricing (§4.1),
standard (§13.6) and generalised (§13.7) pivoting, and perturbation-based (§5) and alignment-
based (§6) antidegeneracy algorithms.

Figure 9 shows the call structure of the primal simplex implementation.

dy_primalpivot

preoptimality dy_clrpivrej

dy_degenout

dy_accchk

dy_duenna dy_addtopivrej

dy_clrpivrej

dy_accchk

dy_primalin pricexk

dy_clrpivrej

dy_degenout

dy_setpivparms

dy_swapobjs

tweakp1obj

dy_pseinit

dy_initp1obj dy_swapobjs

verifyp1obj
dy_accchk

dy_setpivparms

primal2

primal1

dy_accchkforcesuperbasic

dy_setpivparms

dy_primal

Figure 9: Call Graph for Primal Simplex

13.1 Primal Top Level

Primal simplex is executed when the dynamic simplex state machine enters one of the states
dyPRIMAL1 or dyPRIMAL2. If required, the PSE reference frame is initialised to the nonbasic variables
and the projected column norms are initialised to one (vid. §4.1), and the primal simplex routine
dy_primal is called.

dy_primal controls the use of phase I (primal1) and phase II (primal2) of the primal simplex al-
gorithm. The primary purpose of dy_primal is to provide a loop which allows a limited number
(currently hardwired to 10) of reversions to phase I if primal feasibility is lost during phase II.

43

Loss of primal feasibility is treated as a numeric accuracy problem; with each such reversion the
minimum pivot selection tolerances are tightened by one step.

To maintain primal feasibility when repairing a singular basis (§7.2) in primal phase II, super-
basic variables may be created. Superbasic variables will not normally be created during phase I
and the code assumes that it will not encounter them4. Rarely, a sequence of errors during
phase II will cause DYLP to lose primal feasibility and revert to phase I with superbasic variables
still present in the nonbasic partition. The routine forcesuperbasic is called to ensure that any
superbasic variables are forced to bound in such a phase II to phase I transition.

13.2 Primal Phase I

The overall flow of phase I of the primal simplex is shown in Figure 10. The body of the routine
is structured as two nested loops. The outer loop handles startup and termination, and the inner
loop handles the majority of routine pivots. A pivot iteration in phase I normally consists of three
steps: the actual pivot and variable updates, routine maintenance checks, and revision of the
objective.

A dynamically modified artificial objective is used to guide pivoting to feasibility during phase I.
The (minimisation) coefificients assigned to variables are -1 for variables below their bound, 0 for
variables within bounds, and +1 for variables above their bound. On entry to phase I, dy_initp1obj

forms a working set containing all infeasible variables, constructs the corresponding objective,
swaps out the original objective, and installs the phase I objective.

Once the phase I objective has been constructed, the outer loop is entered and dy_primalin is
called to select the initial entering variable. Then the inner loop is entered and dy_primalpivot

is called to perform the pivot. dy_primalpivot (vid. §13.4) will choose a leaving variable (primalout),
pivot the basis (dy_pivot), update the primal and dual variables (primalupdate), and update the PSE
pricing information and reduced costs (pseupdate). For a routine pivot, pseupdate will also select
an entering variable for the next pivot. dy_duenna evaluates the outcome of the pivot, handles
error detection and recovery where possible, and performs the routine maintenance activities of
accuracy checks and refactoring of the basis.

As the final step in a routine pivot, tweakp1obj scans the working set and removes any newly
feasible variables. The objective function is adjusted to reflect any changes and reduced costs and
dual variables are adjusted or recalculated as required. If there are no problems, the pivoting
loop iterates, using the leaving variable selected in pseupdate. The loop continues until primal
feasibility is reached, the problem is determined to be infeasible, or an exception or fatal error
occurs.

When the working set becomes empty, tweakp1obj will give a preliminary indication of primal
feasibility. If verifyp1obj confirms that all variables are primal feasible, the pivoting loop will end. If
accumulated numerical inaccuracy has caused previously feasible variables to become infeasible,
the pivot selection parameters will be tightened, dy_initp1obj will be called to build a new working
set and objective, and pivoting will resume.

Changes to the objective coefificients may make it necessary to select a new entering variable.
This situation arises when a variable gains feasibility but remains basic, as changing an entry
of cB can potentially affect all reduced costs5. The variable selected in pseupdate may no longer

4More strongly, superbasic variables are introduced only in primal phase II for the purpose of maintaining fea-
sibility during repair of a singular basis. They will appear outside of primal2 only if the problem is unbounded
or if primal2 terminates with an error condition.

44

(dy_duenna)
preventative maintenance,

error recovery

(dy_primalpivot)
select leaving variable;

pivot basis;
update variables, PSE
norms, reduced costs;
select next entering

variable

(dy_primalin)
select entering variable

(dy_initp1obj)
install and initialise

phase I objective

(tweakp1obj)
adjust objective, check

primal feasibility of
variables in objective

(verifyp1obj)
check primal feasbility

of all variables(preoptimality)
factor basis, check
accuracy & confirm

feasibility status

unrecoverable
error?

entering
variable
selected?

primal or dual
feasible?

objective
correct?

(dy_initp1obj)
reinitialise objective,

tighten pivot
selection parameters

primal
feasible?

dual
feasible?

return
feasible

infeasible
expected?

return
error

return
infeasible

return
unbounded

tighten pivot
selection parameters

y

n

y

y

n

y y

y

n

n

n

n

ny

y

n

y

remove phase I
objective; prepare

for phase II

y

entering
variable
selected?

unbounded?

(dy_dealWithPunt)
attempt to relax
pivot selection

parameters

new
candidates
available?

n

y

punt?
unbounded
expected?

n

y

return
punt

Figure 10: Primal Phase I Algorithm Flow

45

be the best (or even a good) choice. The flow of control is redirected to the outer loop, where
dy_primalin will be called to select an entering variable.

It can happen that no entering variable is selected by pseupdate for use in the next iteration.
Here, too, control flow is redirected to dy_primalin. The single most common reason in primal
simplex is a bound-to-bound ‘pivot’ of a nonbasic variable — since there is no basis change,
pseupdate is not called.

Another common reason for failure to select an entering variable is that all candidates were pre-
viously flagged as unsuitable pivots. In this case, dy_primalin will indicate a ‘punt’ and dy_dealWithPunt

will be called to reevaluate the flagged variables. If it is able to make new candidates available,
control returns to dy_primalin for another attempt to find an entering variable. If all flagged vari-
ables remain unsuitable, control flow moves to the preoptimality actions with an indication that
primal phase I has punted.

If the current pivot is aborted due to numerical problems (an unsuitable pivot coefificient being
the most common of these), pseupdate is not executed. Once dy_duenna has taken the necessary
corrective action, the flow of control moves to the outer loop and dy_primalin.

When dy_primalin indicates optimality, dy_primalpivot indicates optimality or unboundedness, or
tweakp1obj indicates primal feasibility, the inner pivoting loop ends and verifyp1obj is called to
verify feasibility. If feasibility is confirmed, preoptimality is called to refactor the basis, perform
accuracy checks, and confirm primal and dual feasibility. If there are no surprises, primal phase
I terminates with an indication of optimality (primal feasibility), unboundedness, or primal in-
feasibility. In any event, if preoptimality reports that the solution is primal feasible, phase I will
end with an indication of optimality even if it was not expected from the pivot loop termination
condition.

If a primal feasible solution has been found, the original objective will be restored before re-
turning from primal1. The transition to phase II entails calculating the objective, dual variables,
and reduced costs for the original objective. If the problem is infeasible or unbounded, the phase I
objective is left in place and DYLP will use it as it attempts to activate variables or constraints to
deal with the problem (§11.2).

Loss of primal feasibility can occur when the basis is factored during the preoptimality checks.
The pivot selection parameters are tightened and pivoting resumes.

Loss of dual feasibility is considered only when it is accompanied by lack of primal feasibility
(i.e., a false indication of infeasibility). Loss of dual feasibility can occur for two distinct reasons.
In the less common case, loss of dual feasibility stems from loss of numeric accuracy. The pivot
selection rules are tightened and pivoting resumes.

The more common reason for apparent loss of dual feasibility at the termination of phase I
primal simplex is that it is ending with a punt, as described above. The variables flagged as
unsuitable for pivoting are not dual feasible, and when the flags are removed to perform the
preoptimality checks, dual feasibility is revealed as an illusion. No further action is possible
within primal simplex; the reader is again referred to §11.2.

When the number of false indications of optimality exceeds a hard-coded limit (currently 15),
primal simplex terminates with a fatal error. Other errors also result in termination of the primal
simplex algorithm, and ultimately in an error return from DYLP.

5Less commonly, the problem arises because the newly feasible leaving variable of the just-completed pivot has
been selected to reenter. The objective coefificient for this variable is incorrect when it is used by pseupdate.

46

13.3 Primal Phase II

The overall flow of phase II of the primal simplex is shown in Figure 11. The major differences

(dy_duenna)
preventative maintenance,

error recovery

(dy_primalpivot)
select leaving variable;

pivot basis;
update variables, PSE
norms, reduced costs;
select next entering

variable

(dy_primalin)
select entering variable

(preoptimality)
factor basis, check
accuracy & confirm

feasibility status

unrecoverable
error?

entering
variable
selected?

primal
feasible?

unbounded
expected?

return
error

return
unbounded

tighten pivot
selection parameters

y

n

y

y n

n

y

y

n

y n

dual
feasible?y n

return
lost primal
feasibility

return
optimal

entering
variable
selected?

continue
pivoting?

(dy_dealWithPunt)
attempt to relax
pivot selection

parameters

new
candidates
available?

n

y

punt?

return
punt

y n

Figure 11: Primal Phase II Algorithm Flow

from phase I are that the problem is know to be feasible and the original objective function is used
instead of an artificial objective function. This considerably simplifies the flow of primal2.

47

The inner pivoting loop has only two steps: the pivot itself (dy_primalpivot) and the maintenance
and error recovery functions (dy_duenna). When dy_primalin indicates optimality or dy_primalpivot

indicates optimality or unboundedness the inner loop ends and preoptimality is called for confir-
mation. preoptimality will refactor the basis, perform accuracy checks, recompute the primal and
dual variables, and confirm primal and dual feasibility. If there are no surprises, primal phase II
will end with an indication of optimality or unboundedness.

Loss of dual feasibility (including punts) is handled as described for primal phase I. Loss of
primal feasibility causes primal2 to return with an indication that it has lost primal feasibility, and
dy_primal will arrange a return to primal phase I.

13.4 Pivoting

DYLP offers two flavours of primal pivoting: A standard primal pivot algorithm in which a single
primal variable is selected and pivoted into the basis, and an extended primal pivot algorithm
which allows somewhat greater flexibility in the choice of leaving variable. By default, DYLP will
use the extended algorithm.

Figure 12 shows the call structure of the primal pivot algorithm. The routine primalout imple-
ments standard primal pivoting; primmultiout implements extended primal pivoting.

dy_primalpivot

primalupdate

dy_ftran

dy_btran

dy_degenout

dy_degenin

dy_pivot

dy_addtopivrej

primmultiout scanForPrimOutCands promoteSanePivot

pricexkpseupdate

primalout

cdothyper

pdirdothyper

dy_chkpiv

Figure 12: Call Graph for Primal Pivoting

The first activity in dy_primalpivot is the calculation of the coefificients of the pivot column,
a j = B −1a j, by the routine dy_ftran. With the entering primal variable and the ftran’d column in
hand, one of primalout or primmultiout are called to select the leaving variable.

If the entering and leaving variables are the same (i.e., a nonbasic variable is moving from one
bound to the other), all that is required is to call primalupdate to update the values of the primal
variables. The basis, dual variables, reduced costs, and PSE pricing information are unchanged.

If the entering and leaving variables are distinct, the pivot is performed in several steps. Prior
to the pivot, the i th row of the basis inverse, 1i , and the vector ã⊤

j B −1 are calculated for use during
the update of the PSE pricing information. The basis is pivoted next; this involves calls to dy_ftran

and dy_pivot, as outlined in §7.3. If the basis change succeeds, the primal and dual variables
are updated by primalupdate using the iterative update formulæ of §3, and then the PSE pricing

48

information and reduced costs are updated by pseupdate, using the update formulæ of §4.1. As a
side effect, pseupdate will select an entering variable for the next pivot.

13.5 Selection of the Entering Variable

Selection of the entering variable x j for a primal pivot is made using the primal steepest edge
criterion described in §4.1. As outlined above, the normal case is that the entering variable for the
following pivot will be selected as pseupdate updates the PSE pricing information for the current
pivot. In various exceptional circumstances where this does not occur, the routine dy_primalin is
called to make the selection.

13.6 Standard Primal Pivot

Selection of the leaving variable xi is made using standard primal pivoting rules and a set of
tie-breaking strategies.

Abstractly, we need to check xk = bk − ak j∆k j to find the maximum allowable ∆k j such that
lk ≤ xk ≤ uk ∀k ∈B and xi = li or xi = ui for some i. The index i of the leaving variable will be

i = argmin
k

∣

∣

∣

∣

∣

bk

ak j

∣

∣

∣

∣

∣

for suitable xk ∈B.

The primal pivoting rules are the standard set for revised simplex with bounded variables, and
are summarised in Table 2. During phase I, when a variable is infeasible below its lower bound

leaving xi entering x j pivot a i j

ր ub lb ր < 0

ub ց > 0

ց lb lb ր > 0

ub ց < 0

Table 2: Summary of Primal Simplex Pivoting Rules

and must increase to become feasible, DYLP sets the limiting ∆ j based on the upper bound, if it is
finite, and uses the lower bound only when the upper bound is infinite. Similarly, when a variable
must decrease to its upper bound, the lower bound is used to calculate the limiting ∆ j if it is finite.

DYLP provides a selection of tie-breaking strategies when there are multiple candidates with
equal |∆k j | = ∆min. The simplest is to select the first variable xk such that ∆k j = 0. A slightly
more sophisticated strategy is to scan all variables eligible to leave and pick xi such that i =

49

argmaxk∈K |ak j |, K = {k | |∆k j | = ∆min }; DYLP will use this strategy by default. DYLP also provides
four additional strategies based on hyperplane alignment, as described in §6. An option allows
the tie-breaking strategy to be selected by the client.

In case of degeneracy, the perturbed subproblem anti-degeneracy algorithm described in §5
is also available. The client can control the use of perturbed subproblems through two options
which specify whether a perturbed subproblem can be used, and how many consecutive degenerate
pivots must occur before the perturbed subproblem is created. By default, DYLP uses perturbed
subproblems aggressively and will introduce one when faced with a second consecutive degenerate
pivot.

13.7 Extended Primal Pivot

All dual variables have a single finite bound of zero, so it’s not possible to develop a generalised
primal pivoting algorithm analogous to the dual pivoting algorithm of §12.6. It is, however,
possible to introduce some flexibility in the selection of the leaving variable. We can also apply the
same strategy used in generalised dual pivoting to promote a numerically stable pivot candidate
over an unstable candidate.

In phase I, for an infeasible basic variable with finite upper and lower bounds, there are
two points where the variable can be pivoted out of the basis: When the variable moves from
infeasibility to one of its bounds (the ‘near’ bound), and when it has crossed the feasible region to
the opposite (‘far’) bound. Pivoting when the near bound is reached is optional; pivoting at the far
bound is mandatory if primal feasibility is to be maintained. The same notion can be applied in
phase II, but its utility is much more limited: In cases where a basic variable is at its near bound
and could be pushed to the far bound, we may prefer to choose a degenerate and numerically
stable pivot over a degenerate and numerically unstable pivot.

DYLP implements extended primal pivoting by first collecting the set of candidates xi to leave
the basis. Variables with two finite bounds get two entries, one with the value of ∆i j associated
with the near bound, the other the value associated with the far bound. The set is then sorted
using nondecreasing value of |∆k j |, with numerical stability as the tie-breaker.

The process of scanning for candidates and sorting the resulting set is implemented in the
routines scanForPrimalOutCands and primalcand_cmp. For efificiency, scanForPrimalOutCands keeps
a ‘best candidate’ using the standard primal pivoting rules. If this candidate is good (nondegen-
erate and numerically stable), it is accepted as the leaving variable and no further processing is
required.

If a good candidate is not identified by the scan, an attempt is made to promote a good candi-
date to the front of the sorted list. The criteria is as outlined for generalised dual pivoting: If the
amount of primal infeasibility that would result from promoting a stable, nondegenerate candi-
date is tolerable, that candidate is promoted and made the leaving variable. This promotion of a
stable pivot over an unstable pivot is implemented in the primal version of promoteSanePivot.

Antidegeneracy using perturbed subproblems is used with extended primal pivoting. The
alignment-based anti-degeneracy strategies are not implemented.

50

14 Variable Management

Activation and deactivation of variables and constraints is a core activity for dynamic simplex. The
activation or deactivation of variables can occur as an independent activity or as a consequence of
constraint activation and deactivation (vid. §15). During normal execution (vid. Fig. 3) variables
are activated (dy_activateVars) when primal simplex returns an indication of infeasibility or when
primal or dual simplex achieve optimality. Variables are deactivated (dy_deactivateVars) when dual
simplex achieves optimality and returns to primal phase II after adding variables.

In a somewhat different context, dual feasible variables are evaluated as dual bounding con-
straints and activated (dy_dualaddvars) when dual simplex indicates an unbounded dual (infeasible
primal). Dual feasible variables are also activated (dy_activateVars) when dual simplex will be reen-
tered after adding constraints without an intervening primal simplex phase. The motivation is to
increase the probability that the dual problem will remain bounded.

Figure 13 shows the call structure for the top-level variable activation and deactivation rou-
tines.

dy_activateVars

dy_ftran

scanPrimVarStdAct

dy_swapobjs

dy_initp1obj

dy_actNBPrimArchList dy_actNBPrimArch

dy_accchk dy_factor

dy_btran

type2eval

dy_actNBPrimArch

type3eval

type3activate dy_dualout

type2activate dy_dualpivot

dy_duenna

dy_actNBPrimArch

type1var dy_actNBPrimArch

dy_dualaddvars

dy_deactivateVars
scanPrimVarStdDeact

deactNBPrimArchList dy_deactNBPrimArch

Figure 13: Call Graph for Variable Management Routines

14.1 Variable Management Primitives

There are two primitive variable management routines:

❅ dy_actNBPrimArch activates a primal architectural variable into the nonbasic partition.

51

❅ dy_deactNBPrimArch deactivates a nonbasic primal architectural variable.

DYLP assumes that inactive variables are feasible and at bound and provides no independent
way to specify the value of the variable. As a special case, inactive free variables are assumed
to have the value zero. A consequence of this is that it is not possible to deactivate a basic
variable; the variable must first be forced into the nonbasic partition. Unless the variable is basic
at bound, this will change the variable’s value. The special-purpose routine dy_deactBPrimArch

performs this service when DYLP is attempting to force primal feasibility by deactivating infeasible
basic variables.

DYLP provides no method for activating an architectural variable into the basic partition. When
activating a constraint, the logical variable associated with the constraint is always used as the
new basic variable.

14.2 Activation of Variables

DYLP looks for variables to activate whenever optimality is attained for the current set of con-
straints and variables, or when the active system is found to be infeasible. The set of inactive
variables is scanned and any variables with favourable reduced costs are activated and placed in
the primal nonbasic partition.

If an optimal solution has been found for the active constraint system by either primal or
dual simplex, scanPrimVarStdAct is called to select a set of variables to be activated under the
assumption that primal phase II iterations will resume after the variables are added. The reduced
costs are calculated using the original objective function for the problem. Variables are selected for
activation if their reduced cost indicates they are not at their optimal bound (i.e., dual infeasible).

If phase I of the primal simplex has found the problem to be infeasible, scanPrimVarStdAct is
again used to select the set of variables to be activated, but the reduced costs are calculated using
the phase I objective (as described in §13.2). Primal phase I iterations resume after variables are
added.

Normally, when dual simplex indicates optimality, primal phase II is executed after adding
variables with favourable (dual infeasible) reduced costs. It can happen, however, that there are
no such variables. In this case, DYLP will attempt to add violated constraints and, if any are found,
resume execution of dual simplex. To increase the likelihood that the dual problem will remain
bounded, DYLP will again attempt to add variables before resuming dual simplex iterations, but
the criteria in this case will be variables whose reduced costs are dual feasible (i.e., unfavourable
from a primal perspective).

Activating a variable into the nonbasic partition will not change to the basis, primal or dual
variable values, or DSE pricing information. The reduced cost and the projected column norm
used for PSE pricing must be properly initialised for the new variable. The action taken for the
projected column norm depends on the context of variable activation. If primal simplex was
executing prior to variable activation and will be resumed after variable activation, the projected
column norms are up-to-date and correct values must be calculated for the new variables. In
other cases, PSE pricing information will be initialised when primal simplex iterations resume
and no action is required.

If the dual simplex has found the problem to be primal infeasible (dual unbounded), the prob-
lem of selecting variables to add should be viewed from the perspective of looking for dual con-
straints which will bound the problem. The goal is to activate one or more dual constraints and
return to dual simplex iterations.

52

The selection of the candidate entering dual variable yi (leaving primal variable xi) has fixed
the direction of travel, ζi . The best outcome will be to add dual constraints (primal variables)
which block travel in the direction ζi . If that isn’t possible (because activating any bounding dual
constraint would result in the loss of dual feasibility) a second possibility is to activate variables
which will change the dual reduced costs (the values of the primal basic variables) so that a
different dual variable yk is selected to enter. The hope is that motion in a different direction ζk

may make it possible to activate constraints which will bound the dual without loss of feasibility.

The subroutine dy_dualaddvars controls the search process, and can activate three classes of
variables, for convenience called type 1, type 2, and type 3.

Type 1 variables are those variables which constitute feasible dual constraints which bound
the dual problem. These can be activated and placed in the primal nonbasic partition without
losing dual feasibility. Type 1 variables are preferred, as dy_dualaddvars can activate any number
of them in a given call.

If there are no type 1 variables, dy_dualaddvars considers type 2 variables. Type 2 variables are
those variables which constitute dual constraints that bound the dual problem and which, while
not dual feasible if activated into the primal nonbasic partition, will give a dual feasible solution
if activated and immediately pivoted into the basis. This is equivalent to adding a cutting plane
which renders the current solution infeasible and executing a single pivot to regain feasibility;
necessarily, the objective will deteriorate. In the context of Table 1 in §12.5, this amounts to
selecting a pivot with the signs of c j and a i j reversed. The pivot is sufificiently similar to a normal
dual pivot that it can be handled by dy_dualpivot. It is not standard in that the entering primal
variable will move away from its bound toward the infeasible side (e.g., x j would enter falling
from its lower bound with c j < 0 and a i j > 0). One such variable can be activated on each call to
dy_dualaddvars.

In the absence of type 1 or type 2 variables, type 3 variables are considered. These are variables
which are not dual feasible at their current bound but which will reduce the infeasibility of the
leaving primal variable if activated and changed to their opposite bound. The motivation for
activating a type 3 variable is that it makes the reduced cost of yi less desirable, so that some
other variable yk can be selected to enter (thus moving in a different direction ζk). The routine
type3activate will attempt to activate as many type 3 variables as required in order to change the
entering dual variable yi .

Activation of type 2 or type 3 variables is generally not cost-effective. By default, DYLP limits
dy_dualaddvars to type 1 activations. The dynamic simplex algorithm will revert to primal phase I
if no type 1 variables exist. An option allows the client to specify whether type 1, type 2, or type 3
variables will be considered.

Activation of a type 1 variable is no different from any other activation into the nonbasic parti-
tion, as described above. For type 2 variables, the pivot will cause a change of basis. dy_dualpivot

will take care of the required calculations and updates in the context of dual simplex. For type 3
variables, the basis doesn’t change, and the values of the dual variables and DSE norms are
unchanged. The values of the primal variables do change, however, and this changes the DSE
pricing information.

14.3 Deactivation of Variables

Deactivation of variables occurs when dual simplex finds an optimal solution for the active con-
straint system and variable activation identifies dual infeasible variables for activation. In this
case, variable deactivation is performed before entering primal phase II simplex. The subrou-

53

tine dy_deactivateVars is called to deactivate variables according to a client-specified threshold,
expressed as a percentage of the maximum unfavourable reduced cost over all active variables.

Specifically, dy_deactivateVars scans the reduced costs of the active variables and determines a
pair of values č = max

{k:ck<0}
|ck | and ĉ = max

{k:ck>0}
|ck |. It then deactivates variables with ck > ĉ(dy_tols.purgevar)

or ck < −č(dy_tols.purgevar).

14.4 Initial Variable Selection

For a cold start, the initial set of active variables is completely determined by the initial set of
constraints. All variables referenced in the constraints are activated. As noted in §10, the client
can set parameters which will cause variable deactivation to be executed prior to starting simplex
iterations.

For a hot start, the initial set of active variables is the set that was active at return from the
previous call to dylp.

For a warm start, the set of active constraints is specified by the basis. The initial set of active
variables can be determined from the constraints as for a cold start, or the client can specify a set
of variables which should be activated as the active constraint system is created.

As noted in §10, for a hot or warm start the client can set parameters which will cause variable
activation to be executed prior to starting simplex iterations.

54

15 Constraint Management

Constraint management activities can be separated into selection of the initial constraint set,
activation of violated or bounding constraints, and deactivation of loose constraints. In general,
the goal is to maintain an active constraint system which is a subset of the original constraint
system, consisting only of equalities and those inequalities necessary to define an optimal extreme
point. DYLP expects that all constraints will be equalities or ≤ inequalities. Figure 14 shows the
call structure for the constraint activation and deactivation routines.

dy_activateCons
dy_activateVars

scanPrimConStdAct

dy_actBLogPrimConList dy_actBLogPrimCon dy_loadcon

dy_accchk dy_factor

dy_activateBndCons scanPrimConBndAct dy_ftran

dy_deactivateCons

scanPrimConStdDeact

deactBLogPrimConLst dy_deactBLogPrimCon

dy_factor

Figure 14: Call Graph for Constraint Management Routines

During construction of the initial constraint system, any variables referenced in a constraint
are activated along with the constraint. During subsequent constraint activation phases, variable
activation is more selective. The logical variable for the constraint is created and used as the new
basic variable. If the next simplex will be primal simplex, activation is restricted to the subset of
referenced variables with dual infeasible (favourable) reduced cost. If the next simplex will be dual
simplex, activation is restricted to the subset of referenced variables that are dual feasible.

When a constraint is deactivated, only the slack variable for the constraint is deactivated. This
minimises the work that must be performed to repair the basis.

15.1 Initial Constraint Selection

For a warm or hot start, the initial active constraint system is completely determined from the
basis supplied by the client. As noted in §10, the client can set parameters which will cause
constraint activation to be executed prior to starting simplex iterations. In this specific case,
variable activation is not automatic and must be requested independently if desired.

For a cold start, where no initial basis is supplied, the initial active constraint system will
include all equalities and a client-specified selection of inequalities. See §10.1 for a more detailed
description.

15.2 Activation of Constraints

DYLP enters the constraint activation phase whenever the system is found to be primal unbounded
or optimal for the set of active constraints and all variables (active and inactive). When the system

55

is found to be optimal, DYLP calls dy_activateCons to search the inactive constraints for violated
constraints. When the system is found to be unbounded, DYLP first calls dy_activateBndCons to
search the inactive constraints for feasible constraints which block the direction of recession.
If such bounding constraints exist, they are activated and primal phase II simplex is resumed.
Otherwise, dy_activateCons is called to add any violated constraints and execution will go to primal
phase I or dual simplex as appropriate.

Violated constraints are identified using a straightforward scan of the inactive constraints. The
routine scanPrimConStdAct evaluates each constraint at the current value of x and returns a list of
violated constraints. The routines dy_activateBLogPrimConList and dy_activateBLogPrimCon perform
the activations. Following activations, the logical variables for the new constraints are made
basic, the basis is refactored, and a new basic solution is calculated. If the call to dy_activateCons

requested activation of referenced variables, dy_activateBLogPrimConList will collect a set of variable
indices for activation. After the basis has been refactored, the set is passed to dy_activateVars

for activation. If dual simplex will be the next simplex executed, only dual-feasible variables are
activated.

In DYLP, unboundedness is detected by the primal simplex implementation; dual simplex is
not called until primal simplex has found an initial optimal solution. When unboundedness is
discovered, DYLP calls dy_activateBndCons to search for bounding constraints which are feasible
at the current basic solution. A constraint will block motion in the direction η j if ai ⋅ η j > 0 for x j

increasing, or ai ⋅ η j < 0 for x j decreasing. This scan is performed by scanPrimConBndAct. Once
the list of constraints is returned, constraint activation and basis repair proceed as in the case of
violated constraints, but referenced variables are not activated.

When a constraint is activated, the set of basic variables is augmented with the slack variable
for the constraint. Because the slack is basic, the value of the associated dual is zero. The
basis will change, but the values of other active primal variables will remain the same. Since
the new slack variables are not part of the PSE reference frame, the projected column norms
associated with PSE pricing are unchanged. Because the objective coefificients associated with the
slack variables are 0, the values of the preexisting dual variables and the reduced costs remain
unchanged.

15.3 Deactivation of Constraints

Constraint deactivation is handled by dy_deactivateCons. DYLP implements three options for con-
straint deactivation, ‘normal’, ‘aggressive’, and ‘fanatical’. When normal constraint deactivation
is specified, DYLP will only deactivate inequalities which are strictly loose. Eligible inequalities
are identified by scanning the basis for slack variables which are strictly within bounds. When
aggressive constraint deactivation is specified, DYLP will also deactivate tight inequalities whose
associated dual variable is zero. When fanatical constraint deactivation is specified, DYLP will
deactivate any constraint (equality or inequality) whose associated dual is zero. The set of con-
straints to be deactivated is identified by the routine scanPrimConStdDeact.

Once a set of constraints has been identified for deactivation, the routines deactBLogPrimConList

and dy_deactBLogPrimCon are called to perform the deactivations. The corresponding constraint
is deactivated and removed from the active constraint system along with its associated logical
variable. The basis is patched, if necessary, by moving the variable which is basic in the position of
the deactivated constraint to the basis position which was occupied by the constraint’s associated
logical.

As with activation of constraints, deactivation of constraints changes the basis and DYLP will

56

refactor and recalculate the primal and dual variables. The dual variables do not change, nor do
the reduced costs of the remaining variables, since the cost coefificient of a logical variable is zero.
In general, the PSE column norms will be changed because the deleted logical variables may be
part of the reference frame. DYLP opts to reset the reference frame to deal with this, rather than
updating or recalculating the column norms.

57

16 DYLP Interface

This section describes the native interface for DYLP. In addition to the main routine, dylp, various
pricing, printing, and utility routines are provided. These routines, and the major interface struc-
tures, are described briefly in this section. For additional details on how to use DYLP, consult the
comments in the source, particularly in dylp.h and dy_setup.c, and the example drivers supplied
in the distribution.

DYLP’s native interface is peculiar to DYLP and a bit low-level in places. Many individuals will
find it more convenient to use DYLP as an embedded component within the software infrastructure
provided by the COIN-OR project [2]. For details of the COIN OSI layer for DYLP, OsiDylp, please
consult the COIN documentation. An added advantage of this approach is that the COIN OSI API
provides a solver-independent interface. The underlying solver can be easily changed because the
OSI layer insulates the client from the details of the solver’s native interface.

The DYLP distribution provides a simple C driver program using DYLP’s native interface in the
file osi_dylp.c. The command ‘osi_dylp -h’ will print a message describing the available command
line options.

DYLP assumes that the constraint system passed to it as a parameter does not contain logical
variables (i.e., slacks and artificials). On occasion, it must return values for logical variables; in
such cases, it will use the negative of the index of the associated constraint.

16.1 Simplex Solver

DYLP is called as

lpret_enum dylp (lpprob_struct *orig_lp, lpopts_struct *orig_opts, lptols_struct *orig_tols,

lpstats_struct *orig_stats)

The orig_lp structure (§16.9) specifies the constraint system, control options, and (optionally)
an initial basis and status vector and an initial active variable set. It is used to return the
final status, primal and dual variable values, basis, and status vector, and (optionally) the
active variables.

The orig_opts structure (§16.10) specifies option settings to control DYLP’s actions. The
orig_tols structure (§16.11) specifies numeric tolerances and related control information.

The optional structure orig_stats (§17) can be used (in conjunction with conditionally compiled
code) to return detailed statistics about DYLP’s actions.

16.2 Parameter Routines

The normal sequence to establish parameter values for DYLP is as follows:

1. The client calls dy_defaults to allocate option and tolerance structures and populate them
with default values. The client can then adjust the parameters as desired.

2. The client somehow establishes the original copy of the constraint system. Typically, this
will be a call to a constraint system generator6, or a call to a routine which will read an MPS
file.

58

3. The client calls dy_checkdefaults to to set parameter values which are calculated based on
properties of the constraint system, and to ensure that all parameters are within acceptable
bounds.

void dy_defaults (lpopts_struct **opts, lptols_struct **tols)

This routine will allocate an options structure opts and a tolerance structure tols and populate
them with the standard default values for DYLP. Note that default values for some parameters
are calculated in dy_checkdefaults based on the size of the constraint system.

void dy_checkdefaults (consys_struct *sys, lpopts_struct *opts, lptols_struct *tols)

This routine checks limits on parameter values and calculates values which depend on the
size of the constraint system. User-supplied values are not overridden unless they are out-
side of DYLP’s bounds for the parameter.

void dy_setprintopts (int lvl, lpopts_struct *opts)

This routine is provided purely for convenience; it will set all of DYLP’s print levels based on
the single value supplied for lvl. Roughly, lvl = 0 suppresses all output, lvl = 1 establishes the
default print levels, which allow messages about extraordinary events, and lvl ≥ 2 provides
increasing amounts of information. Consult the code for details.

16.3 Basis Package Initialisation

The GLPK basis package used in DYLP maintains static data structures that must be initialised
before use and freed after use. For efificiency, it is useful to postpone initialisation until the size of
the constraint system is known and can be used to estimate the size of the basis package’s data
structures, but DYLP will expand the basis structures if it detects that the constraint system has
grown too large for the allocated capacity. Initialisation must occur before the first call to dylp.
The basis structures should be freed when they are no longer needed.

void dy_initbasis (int concnt, int factor_freq, double zero_tol)

dy_initbasis initialises the data structures used by the GLPK basis maintenance package.
concnt specifies the maximum allowable number of rows (constraints). factor_freq is the
maximum number of basis updates which can occur between each (re)factorisation of the
basis. A conservative value will be a bit larger than the regular refactorisation interval;
for DYLP, lpopts.factor + 5. The final parameter, zero_tol, can be used to override GLPK’s
default zero tolerance if it is set to any value other than zero. Be sure you understand the
ramifications of overriding the default.

The routine sets several other parameters important to pivoting. Interested readers should
consult the comments in the code (dy_basis.c:dy_initbasis).

void dy_freebasis (void)

This routine will free the data structures allocated by the call to dy_initbasis.

6Consult the consys documentation for information on how to use the routines in the consys package to build a
constraint system from scratch.

59

16.4 Information and Error Messages

DYLP uses private library packages for information and error messages7. The most visible value-
added service provided by the libraries is integration of file and terminal output. Routines which
generate output accept parameters to specify whether the output generated by a call should be
sent to a file, to the terminal, both, or neither. The library packages must be initialised during
startup. A brief explanation is provided here.

Information Messages

The I/O library provides a convenient means to generate information messages. Information
messages may use any of the standard C conversion specifications; the underlying print engine for
the current implementation is vfprintf. In addition to integrated file and terminal i/o, the library
manages open file descriptors and coordinates activity with the error message library. See the
code for examples of usage of the routines used to generate information messages (outchr, outfmt,
and outfxd). The simple driver in osi_dylp.c contains a fragment of code which uses the chgerrlog

routine to merge information and error messages in a single log file.

Initialisation and shutdown of the error message package is accomplished with the routines
ioinit and ioterm.

bool ioinit (void)

Initialises internal data structures.

void ioterm (void)

Cleans up and shuts down the i/o package. Note that ioterm does not close open streams.
It is assumed that the client will close open streams as appropriate, and that remaining
streams can be left open until closed by the operating system at program termination.

Error Messages

The error message library provides a convenient means to generate warning and error mes-
sages. Error messages may use any of the standard C conversion specifications; the underlying
print engine for the current implementation is vfprintf. The text of error messages reside in a file
(bonsaierrs.txt in the DYLP distribution). Error messages are printed using the routines warn and
errmsg. In calls to these routines, the error message is specified by a number. If an error message
file cannot be located, a generic error message giving the error number will be produced. See
the code for examples of usage of the routines used to generate warning (warn) and error (errmsg)
messages.

Initialisation and shutdown of the error message package is accomplished with the routines
errinit and errterm.

void errinit (const char *emsgpath, const char *elogpath, bool errecho))

The parameter emsgpath specifies the file containing the error messages. The parameter
elogpath specifies a file name to be used to log error messages; if null, error messages are

7This usage is historical, rooted in an ancient era when i/o was still a roll-your-own enterprise that differed
dramatically from one operating system and programming environment to the next.

60

not logged. The parameter errecho should be set to true if error messages should be echoed
to stderr, false otherwise.

void errterm (void)

Cleans up and shuts down the error message package. In keeping with the behaviour of
ioterm, it is left to the client or operating system to close any error log file.

On startup, the error message package should be initialised first, followed by the i/o package.
At termination, the i/o package should be shut down first.

16.5 Summary of DYLP Startup and Shutdown

Pulling together the information from the previous sections, the sequence of actions required to
use DYLP is listed below.

1. Initialise the error message and i/o packages. Open log files for information and error mes-
sages (optional).

2. Establish default parameter structures. Open and parse a file of DYLP option specifications
(optional).

3. Create a constraint system using a constraint generator or by reading an input file. Adjust
options and tolerances to match the constraint system. At some point between creating the
constraint system and calling dylp, convert any ‘≥’ constraints to other forms.

4. Initialise the basis package.

5. Construct parameter structures and call dylp.

6. Process the answer, restoring ‘≥’ constraints and adjusting the answer appropriately, if the
application demands it.

7. Free data structures. This may require an additional call to dylp, if the parameters given in
the previous call instructed DYLP to retain internal data structures for efificient reoptimisa-
tion. It will certainly require calls to dy_freebasis, dy_freesoln, and consys_free.

8. Close files and shut down the i/o and error message packages.

Consult the sample drivers provided with DYLP for example implementations.

16.6 Pricing Routines

DYLP provides two additional routines which are useful in a mixed-integer linear programming en-
vironment. dy_pricenbvars will calculate the reduced cost for nonbasic variables and dy_pricedualpiv

will calculate the cost of a dual pivot (a generalised penalty calculation).

bool dy_pricenbvars (lpprob_struct *orig_lp, flags priceme,

double **p_ocbar, int *p_nbcnt, int **p_nbvars)

This routine calculates the reduced cost of nonbasic variables, tapping the DYLP data struc-
tures for active variables and calculating the reduced cost as needed for inactive variables.

61

priceme provides limited additional control by allowing the client to specify the status of
the nonbasic variables that should be priced. For example, to price all variables that are
nonbasic at their upper or lower bound, priceme should be set to vstatNBUB|vstatNBLB. Other
nonbasic variables (fixed, free, or superbasic) will not be priced. (See the section on status
codes in dylp.h:for additional information.) The routine returns a compact list of p_nbcnt in-
dices of priced variables in p_nbvars, with the corresponding reduced costs in p_ocbar. The
indices returned in p_nbvars are the indices used in the original constraint system, which
does not contain logical variables. Where nonbasic logical variables are present in the active
system, they are identified in p_nbvars by the negative of the index of the associated con-
straint. In particular, the values returned are appropriate for use as the nbcnt, nbvars, and
cbar parameters to dy_pricedualpiv.

bool dy_pricedualpiv (lpprob_struct *orig_lp, int oxindx, double nubi, double xi, double nlbi,

int nbcnt, int *nbvars, double *cbar, double *p_upeni, double *p_dpeni)

This routine calculates the cost of the first dual pivot associated with forcing the value of the
basic variable xi down to a new upper bound ui (a down penalty) or up to a new lower bound
li (an up penalty).

The up penalty is upeni = min
k





−(li − xi)
ck

a ik





 for {k ∈N | a ik < 0 ∧ xk < uk ∨ a ik > 0 ∧ xk > lk }.

The down penalty is dpeni = min
k





−(ui − xi)
ck

a ik





 for {k ∈N | a ik > 0 ∧ xk < uk ∨ a ik < 0 ∧ xk > lk }.

To perform the standard penalty calculation for forcing a basic variable to an integral value,
the new lower bound would be ⌈xi⌉ and the new upper bound would be ⌊xi⌋. The basic
variable xi can be an architectural or a logical variable. The routine is capable of pricing a
pivot involving the logical variable for a constraint that is not currently active.

oxindx specifies the basic variable to be priced (a logical is specified as the negative of the
index of the associated constraint). xi is the current value of xi in the optimal solution to the
LP. (In the case of the logical for an inactive constraint, the value is obtained by evaluating
the constraint at the current solution.) nubi is the new upper bound ui , and nlbi is the new
lower bound li . It should be true that nubi ≤ xi ≤ nlbi. nbcnt, nbvars, and cbar are as described
for dy_pricenbvars. The up and down penalties will be returned in p_upeni and p_dpeni,
respectively.

16.7 Print Routines

There are three routines to supply strings for DYLP status, phase, and return codes, a routine to
print the compact solution returned by dylp, and a routine to print the contents of the statistics
structure.

dy_dumpcompact (ioid chn, bool echo, lpprob_struct *soln, bool nbzeros)

This routine prints the solution returned by dylp in soln using a human-readable format.
Output is directed to the channel specified by chn, and echoed to the terminal if echo is true.
Normally, nothing is printed for nonbasic variables with a value of zero; set nbzeros to true
to force them to be printed.

dy_dumpstats (ioid chn, bool echo, lpstats_struct *lpstats, consys_struct *orig_sys)

62

This routine prints the contents of the lpstats structure in a human-readable format. chn and
echo are as for dy_dumpcompact. orig_sys should be the same constraint system referenced
in the orig_lp parameter to dylp

dy_prtlpret (lpret_enum lpret)

Returns a pointer to a string for the return code specified in lpret.

dy_prtlpphase (dyphase_enum phase, bool abbrv)

Returns a pointer to a string for the return code specified in phase. If abbrv is true, this will
be a two-character abbreviation.

dy_prtvstat (flags status)

Returns a pointer to a static buffer containing a string representation of the status flags
specified in status. The buffer is overwritten at each call.

16.8 Utility Routines

An eclectic trio of additional interface routines.

bool dy_dupbasis (int dst_basissze, basis_struct **p_dst_basis, basis_struct *src_basis,

int dst_statussze, flags **p_dst_status, int src_statuslen, flags *src_status)

This routine will duplicate the basis and status arrays. Data structures will be allocated as
required if they are not supplied as parameters.

bool dy_expandxopt (lpprob_struct *lp, double **p_xopt)

This routine will expand the compact form of the solution in lp into a single vector p_xopt.
The vector will be allocated if one is not supplied as a parameter.

dy_freesoln (lpprob_struct *lpprob)

This routine will free the data structures used to hold the LP solution, including data struc-
tures for the basis, status vector, primal and dual variable values, and the active variables
vector.

16.9 The LP Problem Specification

The structure lpprob_struct *orig_lp is used to define the LP problem to DYLP and to return the
answer to the client. It holds pointers to the constraint system, an active variable vector, a
basis vector, a status vector, and vectors for the primal and dual variables, as well as fields for
information and control. Each field is discussed below; for precise details, the reader should
consult the file dylp.h.

actvars A vector used to specify and/or return the set of active variables. The vector supplied
as an input parameter will be overwritten on output.

63

(i) For a warm start, an initial set of active variables can be specified. This in-
formation will be used only if the lpctlACTVARSIN flag is set in the ctlopts field.
For a cold or hot start, a vector can be provided to return the final set of active
variables.

(o) The final set of active variables. If no vector was supplied as an input parameter,
DYLP will allocate one on output. Active variable information is returned only if
the lpctlACTVARSOUT flag is set when DYLP is called. Valid information is returned
only if an optimal solution is found. If valid information is not returned, the
lpctlACTVARSOUT flag will be reset.

basis A data structure for the LP basis. Because the set of active constraints at optimum
will not, in general, include all constraints, the basis vector specifies the constraint
and the primal variable in each basis position.

(i) For a warm start, an initial basis must be provided. For a cold or hot start, a
structure can be provided to return the final basis.

(o) The final basis. If no vector was supplied as an input parameter, DYLP will
allocate one on output.

colsze The allocated column capacity of the data structure. The status and actvars data
structures, if provided by the client, must be capable of holding this many entries. If
colsze is insufificient to return the answer, DYLP will reallocate the data structures.

consys The constraint system, in the format described for the CONSYS constraint system
subroutine library [5].

ctlopts A vector of flags used to specify optional actions and status. The current set of flags
can be used to control allocation and deallocation of internal DYLP data structures
(lpctlDYVALID, lpctlNOFREE, lpctlONLYFREE), specify the presence of changes to the prob-
lem bounds (lpctlUBNDCHG, lpctlLBNDCHG, lpctlRHSCHG) and objective (lpctlOBJCHG),
specify initial variable and/or constraint activation (lpctlINITACTVAR, lpctlINITACTCON),
and specify the exchange of active variable information (lpctlACTVARSIN, lpctlACTVAR-

SOUT).

iters The total number of simplex iterations.

lpret The return code from the simplex routine.

If no errors occur, the code should be one of lpOPTIMAL (optimal), lpINFEAS (primal
infeasible), or lpUNBOUNDED (primal unbounded).

Error returns include lpPUNT (nonbasic variables exist with favourable reduced costs,
but they cannot be pivoted due to unsuitable pivot coefificients), lpLOSTFEAS (primal
feasibility has been lost and DYLP has exceeded its limit on attempts to regain feasi-
bility), lpSTALLED (the limit on pivots without improvement in the objective has been
exceeded, due to cycling or stalling), lpITERLIM (a limit on pivots per phase or total
pivots has been exceeded), lpACCCHK (a numerical accuracy check has occurred),
lpNOSPACE (the GLPK basis routines could not acquire sufificient space to maintain
the basis inverse), lpFATAL (an unspecified fatal error has occurred), and lpINV (DYLP

aborted due to internal confusion).

obj For an optimal result, the value of the objective function. For an infeasible result,
the total primal infeasibility. For an unbounded result, the index of the unbounded
variable, negated if the variable can decrease without bound, positive if it can increase
without bound. For any other return status, this field is undefined.

64

phase

(i) If the phase is set to dyDONE, DYLP will assume that the only purpose of the call
is to free internal data structures. Other values are ignored.

(o) The termination phase of the dynamic simplex algorithm; should be dyDONE

unless an error has occurred, in which case it’ll be dyINV.

rowsze The allocated row capacity of the data structure. The basis, x, and y data structures,
if provided by the client, must be capable of holding this many entries. If rowsze is
insufificient to return the answer, DYLP will reallocate the data structures.

status A data structure to hold the status of variables. For nonbasic variables, an entry is a
DYLP status code (vstatNBFX, vstatNBUB, vstatNBLB, or vstatNBFR). For basic variables, an
entry is the negative of the basis position.

(i) For a warm start, an initial status must be provided. For a cold or hot start, a
structure can be provided to return the final status.

(o) The final status vector. The value of nonbasic primal variables is returned
through this vector. If no vector was supplied as an input parameter, DYLP

will allocate one on output.

x A data structure to hold the values of the basic primal variables.

(i) A structure can be provided to return the final values.

(o) The values of the basic primal variables, indexed by basis position. If no vector
was supplied as an input parameter, DYLP will allocate one on output.

y A data structure to hold the values of the dual variables.

(i) A structure can be provided to return the final values.

(o) The values of the dual variables, indexed by basis position. If no vector was
supplied as an input parameter, DYLP will allocate one on output.

16.10 DYLP Options

DYLP is intended to be a flexible testbed, and as such has a large number of options. Many, in
fact, have argued that it has entirely too many options. The author offers two observations in his
own defense:

❅ All of them, at some point, were useful to him, and

❅ if you’re not interested, ignore them all and let DYLP choose what it thinks are reasonable
values.

If you look through the code, you may notice a few options that aren’t documented here. By
and large, this is because the best choice is clear and choices other than the current default give
uniformly poor performance.

Options are held internally in a lpopts_struct structure. Each field is described briefly below,
including default values. The reader is encouraged to consult dylp.h for details, and dy_setup.c to
confirm that default values have not changed since this documentation was written.

65

Most options can be set using commands read from an options file. This file is parsed by a
simple command interpreter (contained in cmdint.c) and support routines in dy_setup.c and in the
i/o library (vid. §16.4). If your application has some other way to acquire options from the user,
all that’s really necessary is a way to create and load a lpopts_struct to pass as a parameter to dylp.
As described in §16.2, the routines dy_defaults and dy_checkdefaults will, respectively, initialise a
lpopts_struct with default values and adjust those values to match the constraint system.

In the individual option descriptions which follow, the first line provides the syntax expected by
the simple command interpreter mentioned above. information about acceptable values. Where
applicable, for simple numeric parameters, the next line gives the lower bound, default value, and
upper bound for the option in the notation (lower bound) ≤ (default value) ≤ (upper bound). The
remainder of the entry describes the action of the option.

active: cons, vars

lpcontrol active size-spec-LIST
,
;

size-spec ::= variables float | constraints float

0.0 ≤ .25 ≤ 1.0 for both

The values active.vars and active.cons specify the fraction of variables and constraints,
respectively, which are expected to be active at any one time. The initial allocated
capacity of the active constraint system data structure will be the specified fraction of
the number of variables and constraints in the constraint system passed to dylp. They
do not represent limits — the constraint system will be expanded as required. They
are exposed for efificiency in the event that the client can provide a better estimate for
the expected size of the active constraint system.

Note that specifying active.vars = 1.0 and active.cons = 1.0 is not the same as specifying
that DYLP use the full constraint system (cf. fullsys). The data structure for the active
constraint system will be created with the capacity to hold the full constraint system,
but constraint and variable activation and deactivation will proceed as usual.

addvar lpcontrol actvarlim integer ;

Limits the maximum number of variables which can be activated in any one execu-
tion of the variable activation phase. A value of 0 (the default) means that no limit is
enforced.

check lpcontrol check integer ;

1 ≤ factor/2 ≤ ∞
The nominal interval between accuracy checks, expressed in terms of the number of
pivots which actually change the basis.

Accuracy checks attempt to detect the accumulation of numerical inaccuracy, and
DYLP will perform a check earlier if it suspects numerical problems. While there’s no
enforced upper limit on the number of pivots between accuracy checks, in practice an
accuracy check is performed each time the basis is factored during simplex phases.

coldvars lpcontrol coldvars integer ;

0 ≤ 5000 ≤ 100000.

When the number of active variables in the constraint system on a cold start exceeds
coldvars, and the client has not requested that DYLP work with the full constraint
system, DYLP will attempt to deactivate variables before beginning simplex iterations.

The upper limit is soft; DYLP will issue a warning if a higher value is requested, but
will not enforce the limit.

66

con actlvl, actlim, deactlvl

con.actlvl lpcontrol actconlvl integer ;

Specifies the constraint activation strategy. There are two levels:

0 (strict) Activate only constraints which are strictly violated.

1 (tight) Activate constraints which are tight or strictly violated.

con.actlim lpcontrol actconlim integer ;

Limits the maximum number of constraints which can be activated in any one
execution of the constraint activation phase. A value of 0 (the default) means
that no limit is enforced.

con.deactlvl lpcontrol deactconlvl [normal|aggressive|fanatic] ;

Specifies the constraint deactivation strategy. There are three levels:

0 (normal) Deactivate only inequalities which are strictly loose (i.e., the asso-
ciated slack is basic and not at bound).

1 (aggressive) (default) Deactivate loose inequalities and tight inequalities
whose associated dual variable is zero.

2 (fanatic) Deactivate loose inequalities and any tight constraint (inequality
or equality) whose associated dual variable is zero.

copyorigsys lpcontrol forcecopy boolean ;

If set to true, DYLP will always make a local copy of the original system. By default, a
local copy is made only when necessary.

DYLP needs access to a copy of the original constraint system in order to scan it for
constraints or variables that should be added. Normally this access is read-only, and
DYLP uses the constraint system supplied as a parameter. When scaling is needed,
DYLP makes a local copy of the original constraint system, applies scaling, and uses
the scaled local copy as the original constraint system.

degen lpcontrol antidegen boolean ;

If set to false, DYLP will not use the perturbation-based anti-degeneracy algorithm
described in §5. The default is to use perturbation-based anti-degeneracy.

degenlite lpcontrol degenlite
[pivotabort|pivot|alignobj| alignedge|perpobj|perpedge] ;

This option specifies the tie-breaking strategy used for choosing between candidates
with equal deltas when selecting the leaving primal or dual variable, as described
in §6. The options are:

0 (pivotabort) Break ties using the magnitude of the pivot coefificient, and abort
the search at the first basic variable which gives a delta of zero.

1 (pivot) (default) Break ties using the magnitude of the pivot coefificient,
scanning all basic variables.

2 (alignobj) Break ties by choosing the leaving variable which will make tight
the hyperplane most closely aligned with the normal of the objec-
tive function (i.e., the normal most nearly lies in the hyperplane).

3 (alignedge) Break ties by choosing the leaving variable which will make tight
the hyperplane most closely aligned with the direction of motion
specified by the entering variable (i.e., the edge most nearly lies in
the hyperplane).

67

4 (perpobj) Break ties by choosing the leaving variable which will make tight
the hyperplane most nearly perpendicular to the normal of the ob-
jective function (i.e., the hyperplane most nearly blocks motion in
the direction of the normal of the objective)

5 (perpedge) Break ties by choosing the leaving variable which will make tight
the hyperplane most nearly perpendicular to the direction of mo-
tion specified by the entering variable (i.e., the hyperplane most
nearly blocks motion in the direction of the edge).

degenpivlim lpcontrol degenpivs boolean ;

1 ≤ 1 ≤ ∞
Limits the number of consecutive degenerate pivots which are required to trigger the
perturbation-based anti-degeneracy algorithm. A perturbed subproblem is formed
when the number of consecutive degenerate pivots exceeds degenpivlim. The current
default of 1 is very aggressive.

dpsel: strat, flex, allownopiv

lpcontrol dualmultipiv integer ;

There are four dual pivoting strategies accessible from the dualmultipiv command,
specified by the following integer codes:

0 standard dual pivoting (vid. §12.5)

1 generalised dual pivoting (vid. §12.6); pivot chosen for maximum dual objective
improvement

2 generalised dual pivoting; pivot chosen to mimimise the maximum infeasibility
over primal variables

3 generalised dual pivoting; pivot chosen to minimise the maximum infeasibility
over primal variables only if the infeasibility can be reduced; otherwise the pivot
is chosen for maximum dual objective improvement

The pivoting strategy currently in use is held in dpsel.strat.

Two additional values are used to control generalised dual pivoting; these can only be
changed under program control. dpsel.flex defaults to true, allowing DYLP to move
between strategies 1 and 3. If the client specifies a pivoting strategy using the
dualmultipiv command, dpsel.flex is set to false. dpsel.allownopiv controls whether
DYLP will consider a generalised dual ‘pivot’ which consists of a sequence of variable
flips without a final pivot. Computational experience says that this is very prone to
cycling and dpsel.allownopiv is set to false by default.

The default initial setting for the dual pivoting options is dpsel.strat = 1, dpsel.flex = true,
and dpsel.allownopiv = false.

dualadd lpcontrol dualacttype integer ;

This option controls the amount of effort that DYLP will expend attempting to add
variables (dual constraints) to bound a constraint system which is dual unbounded
(vid. §14.2).

0 Variable activation is not attempted.

1 Type 1 variables are activated. These are variables which could potentially bound
the dual problem and which will be dual feasible if activated and placed in the
nonbasic partition. Multiple variables of this type can be activated simultane-
ously.

68

2 Type 2 variables will be activated if there are no type 1 variables. Type 2 variables
are variables which would be dual infeasible if placed in the nonbasic partition,
but which can be activated and immediately pivoted into the basis to regain dual
feasibility. Only one variable of this type can be activated at a time, so this level
is computationally expensive.

3 (default) Type 3 variables will be activated if there are no type 1 or type 2 vari-
ables. Type 3 variables are variables which can be activated and placed in the
nonbasic partition with a bound-to-bound pivot.

If the limits placed on dual variable activation do not allow the dual to be bounded
DYLP will revert to primal simplex. Allowing up to type 3 activations by default is
somewhat risky; limiting activations to type 1 would be a more conservative choice.

factor lpcontrol factor integer ;

1 ≤ 50 ≤ 100

The nominal interval for refactoring the basis, in terms of the number of pivots which
actually change the basis.

Put another way, factor limits the total number of eta matrices in the multiplicative
representation of the basis. As eta matrices accumulate, the work required to perform
multiplication by the basis inverse increases, numerical inaccuracy increases, and
the data structure grows (vid. §16.3). This parameter attempts to balance these
considerations against the work required to refactor the basis. DYLP will refactor
earlier if it suspects numerical problems.

The upper limit is soft; DYLP will issue a warning if a higher value is requested, but
will not enforce the limit.

finpurge vars, cons

lpcontrol final purge purge-spec-LIST
,
;

purge-spec ::= [variables|constraints] boolean

Specifies whether DYLP should perform a final round of constraint and/or variable
deactivation when the problem has been solved to optimality. By default, DYLP will
perform a final round of constraint deactivation and a final round of variable deacti-
vation before it returns.

This application of constraint and/or variable deactivation is not suppressed by the
fullsys option.

forcecold lpcontrol cold boolean ;

When set to true, this option will force DYLP to perform a cold start. forcecold domi-
nates forcewarm. The absence of forcecold and forcewarm allows a hot start.

forcewarm lpcontrol warm boolean ;

When set to true, this option will force DYLP to perform a warm start. The absence of
forcecold and forcewarm allows a hot start.

fullsys lpcontrol fullsys boolean ;

When set to true, fullsys forces the use of the full constraint system at all times. DYLP

will load the entire constraint system at startup and no constraint or variable activa-
tion or deactivation will be performed.

In the context of a branch-and-bound MIP code, where the bulk of the LPs are reop-
timisations from a known basis, the use of dynamic simplex can save considerable

69

work. To solve an LP once from scratch, or to solve the initial LP relaxation in a
branch-and-bound context, use of the full system is usually (but not always) more
efificient.

groom lpcontrol groom [silent|warn|abort] ;

Specifies the action taken when DYLP detects a nontrivial change in the status of a
variable when it performs a check following refactoring. The possible values are

0 (silent) Do nothing.

1 (warn) (default) Issue a warning message.

2 (abort) Issue an error message and force an abort.

The working assumption is that refactoring the basis removed accumulated numeri-
cal inaccuracy, causing the change in the status of the variable.

heroics: d2p, p2d

These parameters control whether DYLP will attempt difificult deactivations when try-
ing to force a transition to dual or primal feasibility.

d2p If true, DYLP will attempt to deactivate primal infeasible basic architectural
variables when trying to force primal feasibility.

p2d If true, DYLP will attempt to deactivate tight constraints (i.e., nonbasic logicals)
when trying to force dual feasibility.

Both of these default to false. Computational experience says that setting them to
true is not useful. They can be adjusted only under program control.

idlelim lpcontrol idle integer ;

0 ≤ 1000 ≤ 2 ∗ (concnt + archvcnt) ≤ 50000 ≤ 2sizeof(int)−3

The limit on the number of pivots allowed without an improvement in the value of
the objective function.

A pivot in which the change in the objective function value is less than dy_tols.dchk

is defined to be an idle pivot. Too many consecutive idle pivots are taken as an
indication that the LP has stalled and may be cycling. If the number of pivots without
change in the objective exceeds idlelim, DYLP aborts and returns lpSTALLED. Left to its
own devices, DYLP will enforce the inner limits of 1000 ≤ idlelim ≤ 50000; the client can
explicitly specify any value within the outer limits.

initbasis lpcontrol coldbasis [slack|logical|architectural] ;

This parameter specifies the type of initial basis constructed for a cold start, as de-
scribed in §10.1.

1 (logical) (default) Prefer slack, then artificial, variables for basic vari-
ables. Architectural variables will not be used.

1 (slack) Prefer slack, then architectural, variables for basic variables.
Artificial variables will be used if absolutely necessary.

2 (architectural) Prefer architectural, then slack, variables for basic variables.
Artificial variables will be used if absolutely necessary.

70

initcons: frac, i1lopen, i1l, i1uopen, i1u, i2lopen, i2l, i2uopen, i2u

lpcontrol load [load-fraction] interval-LIST
,
;

load-fraction ::= float

interval ::= open-delim ub lb close-delim

ub ::= float

lb ::= float

open-delim ::= (| [
close-delim ::=) |]

These parameters control the loading of a partial constraint system during a cold
start. As described in §10.1, constraints are ranked by the angle formed by the
constraint normal and the objective normal, and a specified fraction of one or two
angular intervals is loaded.

The parameter frac specifies what fraction of the inequalities in the specified intervals
will be loaded. The parameters i1l and i1u specify the upper and lower bounds of one
interval. If i1lopen is true, the lower boundary is open; if i1uopen is true, the upper
boundary is open. The parameters i2l, i2u, i2lopen, and i2uopen can be used to specify
an optional second interval.

A few examples will make the usage clear. By default, DYLP loads 50% of all inequal-
ities, with the exception of inequalities which form an angle of 90o with the objective.
This is specified as

lpcontrol load .5 [180 90) (90 0] ;

To load 75% of the inequalities with angles between 100o and 80o, inclusive, the
specification would be

lpcontrol load .75 [100 80] ;

Loading the complete constraint system with the specification

lpcontrol load 1.0 [180 0] ;

is not equivalent to asking DYLP to always use the full constraint system (cf. fullsys). It
will look pretty much the same from the outside, but DYLP will spend time internally
performing scans related to constraint and variable activation and deactivation.

iterlim lpcontrol iters integer ;

0 ≤ 10000 ≤ 5 ∗ (concnt + archvcnt) ≤ 100000 ≤ 2sizeof(int)−3

The pivot limit for each occurrence of a simplex phase (primal phases I and II and
dual phase II). The overall pivot limit, cumulative over all occurrences of all phases,
is 3 ∗ iterlim. If either the per phase or total limit is exceeded, DYLP terminates the
problem and returns lpITERLIM. Left to its own devices, DYLP will enforce the inner
limits of 10000 ≤ iterlim ≤ 100000; the client can explicitly specify any value within
the outer limits.

patch lpcontrol patch boolean ;

If set to false, DYLP is forbidden from patching a singular basis. By default, DYLP will
patch a singular basis and keep going. You really don’t want to set this to false.

71

ppsel lpcontrol primmultipiv integer ;

There are two primal pivoting strategies accessible from the primmultipiv com-
mand, specified by the following integer codes:

0 standard primal pivoting (vid. §13.6)

1 (default) extended primal pivoting (vid. §13.7)

The pivoting strategy currently in use is held in ppsel.strat.

print lpprint what integer ;
what ::= basis|conmgmt|crash|degen|dual| major|phase1|phase2|pivoting|

pivreject|pricing|scaling|setup|varmgmt

The print options control the amount of output which DYLP produces as it runs. This
can be varied from absolutely nothing to copious output useful only during detailed
debugging. Printing options are covered in detail in §18, which describes debugging
options and capabilities. If DYLP is compiled with the compile-time constant NDEBUG

defined, virtually all informational printing is removed.

scaling lpcontrol scaling integer ;

Specifies how DYLP should scale the constraint system (§9).

0 DYLP is not allowed to apply scaling.

1 DYLP should use scaling vectors attached to the constraint system.

2 (default) DYLP should evaluate the constraint system and apply scaling if neces-
sary.

scan lpcontrol scan integer ;

200 ≤ archvcnt/2 ≤ 1000.

Specifies the minimum number of columns which will be scanned in primal sim-
plex to select a new candidate entering variable. This parameter applies only when
dy_primalin is called to select the entering variable (vid. §13.5).

usedual lpcontrol usedual boolean ;

When set to false, this option prevents DYLP from using dual simplex. By default,
DYLP will use dual simplex when possible.

16.11 DYLP Tolerances

DYLP has a number of numeric tolerances and related control information which are used in equal-
ity and accuracy checks and associated algorithms which attempt to control the accumulation of
numerical accuracy. Each is described briefly below; again, the reader is encouraged to consult
dylp.h for details.

Several of the tolerances described below are dynamically adjusted by DYLP in response to its
assessment of the numerical stability of the current basis. As a general rule, tread carefully when
overriding DYLP’s defaults, and please take the time to read the code comments and consider the
interrelationships between the tolerances.

72

bogus lpcontrol bogus double ;

Default: 1.0

The ‘bogus number’ tolerance. Values such that zero < |x | ≤ zero ∗ bogus are considered
likely to be the result of accumulated numerical inaccuracy, rather than legitimate
values. Pivot coefificients and primal variable values within this range will trigger
refactoring of the basis. For dual variables, the same test is applied, using the dual
zero tolerance (cost). The default value is 1.0.

Experience seems to show that for the majority of problems increasing this value
will cause the basis to be refactored more often and will not improve performance or
accuracy. It’s better to rely on DYLP’s accuracy checks to determine if the basis should
be refactored before the normal refactor interval has passed. Increasing bogus may
be useful if scaling is disabled, or if factor has been set to a very large value.

cost lpcontrol costz double ;

Default: 1.0 × 10−11

The zero tolerance applied to values associated with the dual problem (dual variables
and reduced costs).

This tolerance may be tightened if DYLP scales the constraint system for numerical
stability. Let ψ = ((maxi j |ai j |)/(mini j |ai j |))1/2. Let ψu be the value calculated for the

unscaled matrix A and ψs be the value calculated for the scaled matrix Ă. Let s =
max(0, ⌊logψu/ψs + .5⌋ − 2. The dual zero tolerance will be tightened by 10−s (i.e.,
cost = cost × 10−s). In english, if scaling really did make a difference, so that the scaled
matrix is significantly more stable than the unscaled matrix, DYLP should be extra
careful about accuracy so that the scaled solution is still a solution after unscaling.

dchk lpcontrol dchk double ;

Default: 1.0 × 10s−4, where s = max(0, ⌊logarchccnt + .5⌋ − 2

The dual accuracy check tolerance, as described in §8. The adjustment by s progres-
sively loosens the accuracy check tolerance for systems with more than 102.5 ≈ 300
dual variables. In english, when there are many dual variables, accumulating nu-
merical inaccuracy warrants some relaxation of the accuracy check tolerance. This
adjustment is made in dy_checkdefaults.

dfeas

The dual feasibility check tolerance, dynamically calculated using cost as the base
value, as described in §8.

dfeas_scale lpcontrol dfeas double ;

Default: 1.0 × 10s+2, where s = max(0, ⌊logarchccnt + .5⌋ − 2

Decoupling multiplier for scaling dfeas. This multiplier may be increased if the con-
straint system contains many dual variables or if the constraint system is scaled.

The adjustment for a large number of dual variables is the same adjustment applied
for dchk.

The adjustment for matrix scaling follows the adjustment described for cost. Using the
definitions for ψu and ψs given for cost, s = max(0, ⌊logψu/ψs + .5⌋ − 1 and dfeas_scale

will be increased by 10s. In english, the separation between the dual zero tolerance
and the dual feasibility tolerance is increased to compensate for tightening the dual
zero tolerance.

73

inf lpcontrol infinity [IEEE|DBL_MAX|double] ;

Infinity. DYLP can work with an infinite or finite infinity.

Default: HUGE_VAL

HUGE_VAL will be IEEE 754 infinity on most modern systems.

Many numerical programs still use that mathematical oxymoron, a finite infinity.
Most commonly, this will be the value defined for the ANSI C symbol float.h:DBL_MAX,
the maximum representable value for type double. Finite and infinite infinity do not
play well together. If DYLP is being used by a client program which uses a finite
infinity, set inf to the client’s value of infinity.

pchk lpcontrol pchk double ;

Default: 1.0 × 10s−5, where s = max(0, ⌊logarchvcnt + .5⌋ − 2

The primal accuracy check tolerance, as described in §8. The adjustment by s pro-
gressively loosens the accuracy check tolerance for systems with more than 102.5 ≈
300 variables. In english, when there are many variables, accumulating numerical
inaccuracy warrants some relaxation of the accuracy check tolerance. This adjust-
ment is made in dy_checkdefaults.

pfeas

The primal feasibility check tolerance, dynamically calculated using zero as the base
value, as described in §8.

pfeas_scale lpcontrol pfeas double ;

Default: 1.0 × 10s+2, where s = max(0, ⌊logarchvcnt + .5⌋ − 2

A decoupling multiplier used to adjust the separation of pfeas and zero as described in
§8. This multiplier may be increased if the constraint system contains many variables
or if the constraint system is scaled.

The adjustment for a large number of variables, specified with the default value, is
the same adjustment applied for pchk. In english, when there are many variables,
accumulating numerical inaccuracy warrants some relaxation of the feasibility toler-
ance.

The adjustment for matrix scaling follows the adjustment described for zero. Using the
definitions for ψu and ψs given for zero, s = max(0, ⌊logψu/ψs + .5⌋ − 1 and pfeas_scale

will be increased by 10s. In english, the separation between the zero tolerance and
the feasibility tolerance is increased to compensate for tightening the zero tolerance.

pivot lpcontrol pivot double ;

Default: 1.0 × 10−5

The pivot selection multiplier. A pivot coefificient a i j will be accepted as numerically
stable in the primal algorithm if |a i j | ≥ (pivot)(piv_tol)‖a j‖1

, where piv_tol is the stable
pivot tolerance used during factoring in GLPK. In the dual algorithm, the 1-norm is
calculated over the pivot row a i .

The pivot selection multiplier may be reduced if DYLP finds itself at an extreme point
where all potential pivots xi , x j have been rejected because the pivot coefificients a i j

were judged numerically unstable (vid. §11.2).

In english, if pivot were set to 1, the pivot coefificient a i j for every simplex pivot would
have to satisfy the same stability criterion that the GLPK basis package applies when
factoring the basis. This would be overly restrictive, however — when executing

74

simplex pivots, DYLP needs to choose the pivot row and column to maximise progress
toward an optimal extreme point. Some compromise is necessary; the value of pivot

controls the balance between numerical stability and progress toward an optimal
solution. When DYLP finds itself in a difificult spot, it will tilt the balance in order to
make progress toward optimality.

purge lpcontrol purgecon double ;

Default: 1.0 × 10−4

The required percentage change in the value of the objective function before con-
straint or variable deactivation is allowed. This should be strictly greater than zero
in order to minimise the possibility of a cycle involving activation/deactivation of
constraints or variables.

purgevar lpcontrol purgevar double ;

Default: .5

Used to calculate the variable deactivation threshold as a percentage of the maximum
unfavourable reduced costs, as described in §14.3.

reframe lpcontrol reframe double ;

Default: .1

The percentage error in the updated column or row norms which is required to trigger
a reset of the PSE reference frame or the DSE row norms, respectively. A relatively
large error can be tolerated here. The consequence of inaccuracy, a chance of a
suboptimal choice of primal entering or dual leaving variable, is not too serious. In
contrast, for the dual the computational cost of recalculating the basis inverse row
norms ‖1k‖ is high. For the primal, all column norms are reset to 1, effectively
reverting to unscaled (‘Dantzig’) pricing.

swing lpcontrol swing double ;

Default: 1.0 × 1015

This tolerance is used to detect excessive change in the values of the primal variables.
The magnitude of the value prior to a pivot is compared to the magnitude after the
pivot. If the ratio exceeds the value of swing, the simplex phase will abort and DYLP

will attempt to bound the primal swing (vid. §11.2).

toobig

Default: 1.0 × 1030.

This value is used to control changes in the dual multipivot strategy. The breakpoints
are currently hardcoded in dy_dualmultipivot:dualmultiin (which see).

zero lpcontrol zero double ;

Default: 1.0 × 10−11.

The zero tolerance. Values smaller than |zero| are set to a clean floating-point zero.

This tolerance may be tightened if DYLP scales the constraint matrix for numerical
stability. Let ψ = ((maxi j |ai j |)/(mini j |ai j |))1/2. Let ψu be the value calculated for the

unscaled matrix A and ψs be the value calculated for the scaled matrix Ă. Let s =
max(0, ⌊logψu/ψs + .5⌋ − 2. The zero tolerance will be tightened by 10−s (i.e., zero =
zero × 10−s). In english, if scaling really did make a difference, so that the scaled
matrix is significantly more stable than the unscaled matrix, DYLP should be extra
careful about accuracy so that the scaled solution is still a solution after unscaling.

75

17 DYLP Statistics

DYLP will collect detailed statistics if the conditional compilation symbol DYLP_STATISTICS is defined.
The available statistics are described briefly in the paragraphs which follow; for details on sub-
fields, consult dylp.h. Routines in the file statistics.c provide initialisation (dy_initstats), printing
(dy_dumpstats), and release of the data structure (dy_freestats).

angle: max, min, hist

Statistics on the angles of inequality constraints to the objective function. For con-

straint i, this is calculated as
180

π
cos−1 aic

‖ai‖‖c‖ . The maximum and minimum angle

is recorded, and a histogram in 5o increments with a dedicated 90o bin.

cons: sze, angle, actcnt, deactcnt, init, fin

Information about individual constraints: the angle of the constraint with the ob-
jective function, the number of times it’s activated and deactivated, and booleans to
indicate if the constraint is active in the initial and final active systems.

d2: pivs, iters

Total pivot and iteration counts for DYLP. The pivot count is the number of suc-
cessful simplex pivots. The iteration count also includes pivot attempts which did
not succeed for some reason (e.g., a primal pivot in which the entering variable was
eventually rejected because the pivot element was numerically unstable).

ddegen: cnt, avgsiz, maxsiz, totpivs, avgpivs, maxpivs

Statistics on the amount of time spent in restricted subproblems trying to escape
dual degeneracy.

For each level (i.e., each nested level of restricted subproblem), DYLP records the num-
ber of times this level was reached, the average and maximum number of variables
involved in a degeneracy, the total and average number of pivots executed at this
level, and the maximum number of pivots executed in any one subproblem at this
level. The array is generously sized (by compile time constant) to accommodate a
maximum of 25 levels.

dmulti: flippable, cnt, cands, promote, nontrivial, evals, flips, pivrnks, maxrnk

Statistics on the behaviour of the generalised dual pivoting algorithm. Each call to
dualmultiin collects a list of candidate variables to enter the basis and sorts the list.
This process may produce a unique candidate for entry, or it may leave a list of
requiring further evaluation to determine the best sequence of flips and final pivot.

The flippable field records the number of flippable variables in the problem (i.e., vari-
ables with finite lower and upper bounds). The cnt field records the total number of
calls to dualmultiin, and nontrivial records the number of times the initial scan and sort
did not identify a unique entering variable.

The remaining fields, with one exception, are totals. They record the number of can-
didates queued for evaluation, the number of times that a sane pivot was promoted
over an unstable pivot, the number of columns transformed (B−1ak) for evaluation,
the number of bound-to-bound flips, the rank in the sorted list of the variable selected
to enter, and the maximum rank for a variable selected to enter.

76

factor: cnt, prevpiv, avgpivs, maxpivs

Statistics about basis factoring. The cnt field records the total number of times the
basis was refactored. The avgpivs and maxpivs fields record the average and maximum
number of pivots between basis refactoring.

infeas: prevpiv, maxcnt, totpivs, maxpivs, chgcnt1, chgcnt2

Statistics on the resolution of infeasibility during primal phase I.

The maximum number of infeasible variables is recorded, as well as the total pivots
in phase I and the maximum number of pivots with no change in the number of
infeasible variables. DYLP also counts the number of times that the number of infea-
sible variables changed without requiring recalculation of the reduced costs (chgcnt1),
and the number of times when it did (chgcnt2). Specifically, if exactly one variable
gains feasibility, and it leaves the basis as it does so, the reduced costs do not have
to be recalculated.

p1: pivs, iters

Total pivot and iteration counts for primal phase 1 simplex.

p2: pivs, iters

Total pivot and iteration counts for primal phase 2 simplex.

pdegen: cnt, avgsiz, maxsiz, totpivs, avgpivs, maxpivs

Statistics on the amount of time spent in restricted subproblems trying to escape
primal degeneracy. The content of individual fields is as for ddgen.

pivrej: max, mad, sing, pivtol_red, min_pivtol, puntcall, puntret

Statistics on the management of variables judged unsuitable for pivoting. Variables
are queued on the rejected pivot list when a pivot attempt fails because the pivot ele-
ment is numerically unstable or because the pivot produced a singular basis. During
primal simplex, candidate entering variables are queued; during dual simplex, can-
didate leaving variables.

The max field records the maximum length of the rejected pivot list. The fields mad

and singular record the number of variables queued for unstable pivots and singular
basis, respectively.

The puntcall field records the number of times the routine dy_dealWithPunt was called
in an attempt to remove variables from the rejected pivot list. The pivtol_red field
records the number of times that the pivot selection multiplier was reduced in order
to consider candidate variables previously rejected for numeric instability; min_pivtol

is the minimum multiplier value used. The puntret field records the number of times
dy_dealWithPunt was unable to remove any candidates from the rejected pivot list and
therefore recommended termination of the current simplex phase.

pmulti: cnt, cands, nontrivial, promote

Statistics on the behaviour of the extended primal pivoting algorithm. Each call
to primalmultiout collects a list of candidate variables to leave the basis. This process
may produce a unique candidate to leave, or it may leave a list of candidates requiring
further evaluation to determine the final pivot.

The cnt field records the total number of calls to primalmultiout, and nontrivial records
the number of times the initial scan did not identify a unique leaving variable. The
promote field records the number of times that a sane pivot was promoted over an
unstable pivot,

77

tot: pivs, iters

Total pivot and iteration counts for the call to dylp.

vars: sze, actcnt, deactcnt

Information about individual variables: the number of times a variable is activated
and deactivated.

78

18 DYLP Debugging Features

DYLP incorporates two types of debugging features: a controllable printing facility and paranoid
checks. The printing facility is enabled when the symbol NDEBUG is not defined at compile time,
and is intended to allow the generation of log information at whatever level of detail is desired by
the user. The paranoid checks are enabled when the symbol PARANOIA is defined at compile time
and are intended to provide significant (and expensive) cross-checks during code development.

18.1 Printing

The amount of output generated by DYLP can be varied from next to nothing to a level of detail
intended only for detailed debugging. The paragraphs which follow briefly outline the capabilities;
for specific output at a given print level, please refer to the file dylp.h.

basis Prints information related to management of the basis, including adjustments to
suppress numerical instability and recover from singularity.

conmgmt Prints information on the management of constraints, including activation and de-
activation, changes to primal and dual variables, and (at the highest level) a run-
ning commentary on all constraint and variable additions, deletions, and motions
attributable to activation and deactivation of constraints.

crash Prints information regarding the generation of the initial basis, including factoring,
the initial set of basic variables, and their values. For a cold start, information on the
selection of the basic variables can be printed.

degen Prints information about degenerate pivots and restricted subproblem formation to
deal with degeneracy.

dual Prints information about the execution of the dual simplex, with capabilities similar
to phase1.

major Tracks the major state transitions of the dynamic simplex algorithm as DYLP solves
an LP.

phase1 Prints information about the execution of phase I of the primal simplex. At the low
end, messages are printed for extraordinary events — unboundedness, serious piv-
oting problems, etc. At a medium level, a one line message is printed summarising
each pivot, as well as messages about routine but infrequent events — refactoring,
accuracy checks, and various minor problems. At the highest level, all primal and
dual variables are printed as they are recalculated for each pivot, along with detailed
information about reduction of infeasibility and changes to the phase I objective func-
tion. This is an enormous amount of output for large problems.

phase2 Prints information about the execution of phase II of the primal simplex, with capa-
bilities similar to phase1.

pivoting Prints information on the evaluation of candidates for the leaving primal or entering
dual variable and details of the pivot column or row. At least one line per pivot; at
the highest level, produces a lot of output.

pivreject Prints information on the operation of DYLP’s pivot rejection mechanism.

79

pricing Prints information regarding the pricing of candidates for the entering primal or leav-
ing dual variable. At any level above 1 you’ll get many lines of output per pivot; that’s
an enormous amount of output for large problems.

scaling Prints information regarding numerical scaling of the constraint system.

setup Prints information regarding the loading and initialisation of an LP problem, includ-
ing the constraints and variables which are activated and the angle of inequalities to
the objective function.

varmgmt Prints information on the activation and deactivation of variables, much as conmgmt.

18.2 Paranoia

Because it is intended as a development code, DYLP incorporates a large number of sanity checks,
enabled by defining the conditional compilation symbol PARANOIA. Many of these tests are cheap
and simple — checks for null parameters, sensible constraint and variable counts, proper major
phase, and range checks on indices. Others are more elaborate and expensive.

There are two dedicated subroutines which are used at several points to check the integrity of
the current simplex point (basis, status, and primal variable values) and the constraint system:

❅ dy_chkstatus implements extensive checks to make sure that the status and value of a primal
variable agree across multiple data structures and are appropriate for the current major
phase.

❅ dy_chkdysys implements extensive checks to ensure that the active constraint system and
associated data structures are correct and consistent.

There is another set of checks which track the numerical accuracy of calculations by perform-
ing an independent calculation of a quantity. These are of little use unless there is some reason
to doubt the correctness of the calculation, hence the separate conditional compilation symbols.

❅ Checks on the accuracy of the calculations to produce unscaled rows of the basis inverse are
controlled by the symbol CHECK_UNSCALED_BETAI.

❅ Checks on the accuracy of iterative updating for PSE column norms and DSE row norms are
controlled by the conditional compilation symbols CHECK_PSE_UPDATES and CHECK_DSE_UPDATES.
These checks calculate the norms directly for comparison with the updated values, and the
computational expense is unacceptable unless there is specific reason to suspect an error.

80

References

[1] R. Bixby. Implementing the Simplex Method: The Initial Basis. ORSA Journal on Computing,
4(3):267–284, Summer 1992.

[2] COIN-OR (Common Infrastructure for Operations Research).
Available at http://www.coin-or.org.

[3] J. Forrest and D. Goldfarb. Steepest-edge simplex algorithms for linear programming. Math-

ematical Programming, 57:341–374, 1992.

[4] L. Hafer. A Note on the Relationship of Primal and Dual Simplex. Technical Report SFU-
CMPT TR 1998-21, School of Computing Science, Simon Fraser University, Burnaby, B.C.,
V5A 1S6, December 1998.

[5] L. Hafer. CONSYS: a dynamic constraint system. Technical Report SFU-CMPT TR 1998-22,
School of Computing Science, Simon Fraser University, Burnaby, B.C., V5A 1S6, December
1998.

[6] A. Makhorin. GLPK (GNU Linear Programming Kit).
Available at http://www.gnu.org/software/glpk/glpk.html.

[7] A. Makhorin. GLPK Linear Programming Kit: Implementation of the Revised Simplex Method.
Glpk documentation, Moscow Aviation Institute, Moscow, Russia, February 2001.

[8] I. Maros. Computational Techniques of the Simplex Method. Kluwer Academic Publishers,
Norwell, Massachusetts, 2003.

[9] M. Padberg. Linear Optimization and Extensions, volume 12 of Algorithms and Combinatorics.
Springer-Verlag, New York, 1995.

[10] D. Ryan and M. Osborne. On the Solution of Highly Degenerate Linear Programmes. Mathe-

matical Programming, 41:385–392, 1988.

81

