# ifndef CPPAD_REV_TWO_INCLUDED # define CPPAD_REV_TWO_INCLUDED /* -------------------------------------------------------------------------- CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-06 Bradley M. Bell CppAD is distributed under multiple licenses. This distribution is under the terms of the Common Public License Version 1.0. A copy of this license is included in the COPYING file of this distribution. Please visit http://www.coin-or.org/CppAD/ for information on other licenses. -------------------------------------------------------------------------- */ /* $begin RevTwo$$ $spell ddw typename Taylor const $$ $index partial, second order driver$$ $index second, order partial driver$$ $index driver, second order partial$$ $index easy, partial$$ $index driver, easy partial$$ $index partial, easy$$ $section Reverse Mode Second Partial Derivative Driver$$ $head Syntax$$ $syntax%%ddw% = %f%.RevTwo(%x%, %i%, %j%)%$$ $head Purpose$$ We use $latex F : B^n \rightarrow B^m$$ to denote the $xref/glossary/AD Function/AD function/$$ corresponding to $italic f$$. The syntax above sets $latex \[ ddw [ k * p + \ell ] = \DD{ F_{i[ \ell ]} }{ x_{j[ \ell ]} }{ x_k } (x) \] $$ for $latex k = 0 , \ldots , n-1$$ and $latex \ell = 0 , \ldots , p$$, where $latex p$$ is the size of the vectors $italic i$$ and $italic j$$. $head f$$ The object $italic f$$ has prototype $syntax% ADFun<%Base%> %f% %$$ Note that the $xref/ADFun/$$ object $italic f$$ is not $code const$$ (see $xref/RevTwo/RevTwo Uses Forward/RevTwo Uses Forward/$$ below). $head x$$ The argument $italic x$$ has prototype $syntax% const %VectorBase% &%x% %$$ (see $xref/RevTwo/VectorBase/VectorBase/$$ below) and its size must be equal to $italic n$$, the dimension of the $xref/SeqProperty/Domain/domain/$$ space for $italic f$$. It specifies that point at which to evaluate the partial derivatives listed above. $head i$$ The argument $italic i$$ has prototype $syntax% const %VectorSize_t% &%i% %$$ (see $xref/RevTwo/VectorSize_t/VectorSize_t/$$ below) We use $italic p$$ to denote the size of the vector $italic i$$. All of the indices in $italic i$$ must be less than $italic m$$, the dimension of the $xref/SeqProperty/Range/range/$$ space for $italic f$$; i.e., for $latex \ell = 0 , \ldots , p-1$$, $latex i[ \ell ] < m$$. $head j$$ The argument $italic j$$ has prototype $syntax% const %VectorSize_t% &%j% %$$ (see $xref/RevTwo/VectorSize_t/VectorSize_t/$$ below) and its size must be equal to $italic p$$, the size of the vector $italic i$$. All of the indices in $italic j$$ must be less than $italic n$$; i.e., for $latex \ell = 0 , \ldots , p-1$$, $latex j[ \ell ] < n$$. $head ddw$$ The result $italic ddw$$ has prototype $syntax% %VectorBase% %ddw% %$$ (see $xref/RevTwo/VectorBase/VectorBase/$$ below) and its size is $latex n * p$$. It contains the requested partial derivatives; to be specific, for $latex k = 0 , \ldots , n - 1 $$ and $latex \ell = 0 , \ldots , p - 1$$ $latex \[ ddw [ k * p + \ell ] = \DD{ F_{i[ \ell ]} }{ x_{j[ \ell ]} }{ x_k } (x) \] $$ $head VectorBase$$ The type $italic VectorBase$$ must be a $xref/SimpleVector/$$ class with $xref/SimpleVector/Elements of Specified Type/elements of type Base/$$. The routine $xref/CheckSimpleVector/$$ will generate an error message if this is not the case. $head VectorSize_t$$ The type $italic VectorSize_t$$ must be a $xref/SimpleVector/$$ class with $xref/SimpleVector/Elements of Specified Type/elements of type size_t/$$. The routine $xref/CheckSimpleVector/$$ will generate an error message if this is not the case. $head RevTwo Uses Forward$$ After each call to $xref/Forward/$$, the object $italic f$$ contains the corresponding $xref/glossary/Taylor Coefficient/Taylor coefficients/$$. After $code RevTwo$$, the previous calls to $xref/Forward/$$ are undefined. $head Examples$$ $children% example/rev_two.cpp %$$ The routine $xref/RevTwo.cpp//RevTwo/$$ is both an example and test. It returns $code true$$, if it succeeds and $code false$$ otherwise. $end ----------------------------------------------------------------------------- */ // BEGIN CppAD namespace namespace CppAD { template template VectorBase ADFun::RevTwo( const VectorBase &x, const VectorSize_t &i, const VectorSize_t &j) { size_t i1; size_t j1; size_t k; size_t l; size_t n = Domain(); size_t m = Range(); size_t p = i.size(); // check VectorBase is Simple Vector class with Base elements CheckSimpleVector(); // check VectorSize_t is Simple Vector class with size_t elements CheckSimpleVector(); CPPAD_ASSERT_KNOWN( x.size() == n, "RevTwo: Length of x not equal domain dimension for f." ); CPPAD_ASSERT_KNOWN( i.size() == j.size(), "RevTwo: Lenght of the i and j vectors are not equal." ); // point at which we are evaluating the second partials Forward(0, x); // dimension the return value VectorBase ddw(n * p); // direction vector in argument space VectorBase dx(n); for(j1 = 0; j1 < n; j1++) dx[j1] = Base(0); // direction vector in range space VectorBase w(m); for(i1 = 0; i1 < m; i1++) w[i1] = Base(0); // place to hold the results of a reverse calculation VectorBase r(n * 2); // check the indices in i and j for(l = 0; l < p; l++) { i1 = i[l]; j1 = j[l]; CPPAD_ASSERT_KNOWN( i1 < m, "RevTwo: an eleemnt of i not less than range dimension for f." ); CPPAD_ASSERT_KNOWN( j1 < n, "RevTwo: an element of j not less than domain dimension for f." ); } // loop over all forward directions for(j1 = 0; j1 < n; j1++) { // first order forward mode calculation done bool first_done = false; for(l = 0; l < p; l++) if( j[l] == j1 ) { if( ! first_done ) { first_done = true; // first order forward mode in j1 direction dx[j1] = Base(1); Forward(1, dx); dx[j1] = Base(0); } // execute a reverse in this component direction i1 = i[l]; w[i1] = Base(1); r = Reverse(2, w); w[i1] = Base(0); // place the reverse result in return value for(k = 0; k < n; k++) ddw[k * p + l] = r[k * 2 + 1]; } } return ddw; } } // END CppAD namespace # endif