#ifndef _CglClique_h_ #define _CglClique_h_ #include "CglCutGenerator.hpp" //class OsiCuts; //class OsiSolverInterface; class CglClique : public CglCutGenerator { friend void CglCliqueUnitTest(const OsiSolverInterface * siP, const std::string mpdDir ); public: /// Copy constructor CglClique(const CglClique& rhs); /// Clone virtual CglCutGenerator * clone() const; /// Assignment operator CglClique& operator=(const CglClique& rhs); public: virtual void generateCuts(const OsiSolverInterface& si, OsiCuts & cs, const CglTreeInfo info = CglTreeInfo()) const; /**@name Constructors and destructors */ //@{ /** Default constructor. If the setPacking argument is set to true then CglClique will assume that the problem in the solverinterface passed to the generateCuts() method describes a set packing problem, i.e., - all variables are binary - the matrix is a 0-1 matrix - all constraints are '= 1' or '<= 1' Otherwise the user can use the considerRows() method to set the list of clique rows, that is, - all coeffs corresponding to binary variables at fractional level is 1 - all other coeffs are non-negative - the constraint is '= 1' or '<= 1'. If the user does not set the list of clique rows then CglClique will start the generateCuts() methods by scanning the matrix for them. Also justOriginalRows can be set to true to limit clique creation */ CglClique(bool setPacking = false, bool justOriginalRows = false); /// Destructor virtual ~CglClique() {} /// Create C++ lines to get to current state virtual std::string generateCpp( FILE * fp); void considerRows(const int numRows, const int* rowInd); public: /** possible choices for selecting the next node in the star clique search */ enum scl_next_node_method { SCL_MIN_DEGREE, SCL_MAX_DEGREE, SCL_MAX_XJ_MAX_DEG }; void setStarCliqueNextNodeMethod(scl_next_node_method method) { scl_next_node_rule = method; } void setStarCliqueCandidateLengthThreshold(int maxlen) { scl_candidate_length_threshold = maxlen; } void setRowCliqueCandidateLengthThreshold(int maxlen) { rcl_candidate_length_threshold = maxlen; } void setStarCliqueReport(bool yesno = true) { scl_report_result = yesno; } void setRowCliqueReport(bool yesno = true) { rcl_report_result = yesno; } void setDoStarClique(bool yesno = true) { do_star_clique = yesno; } void setDoRowClique(bool yesno = true) { do_row_clique = yesno; } void setMinViolation(double minviol) { petol = minviol; } double getMinViolation() const { return petol; } private: struct frac_graph ; friend struct frac_graph ; /** A node of the fractional graph. There is a node for every variable at fractional level. */ struct fnode { /** pointer into all_nbr */ int *nbrs; /** 1-x_i-x_j, needed for odd holes, in the same order as the adj list, pointer into all_edgecost */ double *edgecosts; /** degree of the node */ int degree; /** the fractional value of the variable corresponding to this node */ double val; }; /** A graph corresponding to a fractional solution of an LP. Two nodes are adjacent iff their columns are non-orthogonal. */ struct frac_graph { /** # of nodes = # of fractional values in the LP solution */ int nodenum; /** # of edges in the graph */ int edgenum; /** density= edgenum/(nodenum choose 2) */ double density; int min_deg_node; int min_degree; int max_deg_node; int max_degree; /** The array of the nodes in the graph */ fnode *nodes; /** The array of all the neighbors. First the indices of the nodes adjacent to node 0 are listed, then those adjacent to node 1, etc. */ int *all_nbr; /** The array of the costs of the edges going to the neighbors */ double *all_edgecost; frac_graph() : nodenum(0), edgenum(0), density(0), min_deg_node(0), min_degree(0), max_deg_node(0), max_degree(0), nodes(0), all_nbr(0), all_edgecost(0) {} }; protected: /** An indicator showing whether the whole matrix in the solverinterface is a set packing problem or not */ bool setPacking_; /// True if just look at original rows bool justOriginalRows_; /** pieces of the set packing part of the solverinterface */ mutable int sp_numrows; mutable int* sp_orig_row_ind; mutable int sp_numcols; mutable int* sp_orig_col_ind; mutable double* sp_colsol; mutable int* sp_col_start; mutable int* sp_col_ind; mutable int* sp_row_start; mutable int* sp_row_ind; /** the intersection graph corresponding to the set packing problem */ mutable frac_graph fgraph; /** the node-node incidence matrix of the intersection graph. */ mutable bool* node_node; /** The primal tolerance in the solverinterface. */ mutable double petol; /** data for the star clique algorithm */ /** Parameters */ /**@{*/ /** whether to do the row clique algorithm or not. */ bool do_row_clique; /** whether to do the star clique algorithm or not. */ bool do_star_clique; /** How the next node to be added to the star clique should be selected */ scl_next_node_method scl_next_node_rule; /** In the star clique method the maximal length of the candidate list (those nodes that are in a star, i.e., connected to the center of the star) to allow complete enumeration of maximal cliques. Otherwise a greedy algorithm is used. */ int scl_candidate_length_threshold; /** whether to give a detailed statistics on the star clique method */ bool scl_report_result; /** In the row clique method the maximal length of the candidate list (those nodes that can extend the row clique, i.e., connected to all nodes in the row clique) to allow complete enumeration of maximal cliques. Otherwise a greedy algorithm is used. */ int rcl_candidate_length_threshold; /** whether to give a detailed statistics on the row clique method */ bool rcl_report_result; /**@}*/ /** variables/arrays that are used across many methods */ /**@{*/ /** List of indices that must be in the to be created clique. This is just a pointer, it is never new'd and therefore does not need to be delete[]'d either. */ mutable const int* cl_perm_indices; /** The length of cl_perm_indices */ mutable int cl_perm_length; /** List of indices that should be considered for extending the ones listed in cl_perm_indices. */ mutable int* cl_indices; /** The length of cl_indices */ mutable int cl_length; /** An array of nodes discarded from the candidate list. These are rechecked when a maximal clique is found just to make sure that the clique is really maximal. */ mutable int* cl_del_indices; /** The length of cl_del_indices */ mutable int cl_del_length; /**@}*/ private: /** Scan through the variables and select those that are binary and are at a fractional level. */ void selectFractionalBinaries(const OsiSolverInterface& si) const; /** Scan through the variables and select those that are at a fractional level. We already know that everything is binary. */ void selectFractionals(const OsiSolverInterface& si) const; /** */ void selectRowCliques(const OsiSolverInterface& si,int numOriginalRows) const; /** */ void createSetPackingSubMatrix(const OsiSolverInterface& si) const; /** */ void createFractionalGraph() const; /** */ int createNodeNode() const; /** */ void deleteSetPackingSubMatrix() const; /** */ void deleteFractionalGraph() const; /** */ void find_scl(OsiCuts& cs) const; /** */ void find_rcl(OsiCuts& cs) const; /** */ int scl_choose_next_node(const int current_nodenum, const int *current_indices, const int *current_degrees, const double *current_values) const; /** */ void scl_delete_node(const int del_ind, int& current_nodenum, int *current_indices, int *current_degrees, double *current_values) const; /** */ int enumerate_maximal_cliques(int& pos, bool* scl_label, OsiCuts& cs) const; /** */ int greedy_maximal_clique(OsiCuts& cs) const; /** */ void recordClique(const int len, int* indices, OsiCuts& cs) const; }; //############################################################################# /** A function that tests the methods in the CglClique class. The only reason for it not to be a member method is that this way it doesn't have to be compiled into the library. And that's a gain, because the library should be compiled with optimization on, but this method should be compiled with debugging. */ void CglCliqueUnitTest(const OsiSolverInterface * siP, const std::string mpdDir); /// This works on a fake solver i.e. invented rows class CglProbing; class CglFakeClique : public CglClique { public: /// Copy constructor CglFakeClique(const CglFakeClique& rhs); /// Clone virtual CglCutGenerator * clone() const; /// Assignment operator CglFakeClique& operator=(const CglFakeClique& rhs); virtual void generateCuts(const OsiSolverInterface& si, OsiCuts & cs, const CglTreeInfo info = CglTreeInfo()) const; /**@name Constructors and destructors */ //@{ /** Default constructor. If the setPacking argument is set to true then CglFakeClique will assume that the problem in the solverinterface passed to the generateCuts() method describes a set packing problem, i.e., - all variables are binary - the matrix is a 0-1 matrix - all constraints are '= 1' or '<= 1' Otherwise the user can use the considerRows() method to set the list of clique rows, that is, - all coeffs corresponding to binary variables at fractional level is 1 - all other coeffs are non-negative - the constraint is '= 1' or '<= 1'. If the user does not set the list of clique rows then CglFakeClique will start the generateCuts() methods by scanning the matrix for them. */ CglFakeClique(OsiSolverInterface * solver=NULL,bool setPacking = false); /// Destructor virtual ~CglFakeClique(); /// Assign solver (generator takes over ownership) void assignSolver(OsiSolverInterface * fakeSolver); protected: /// fake solver to use mutable OsiSolverInterface * fakeSolver_; /// Probing object mutable CglProbing * probing_; }; #endif