// Copyright (C) 2002, International Business Machines // Corporation and others. All Rights Reserved. /* Authors John Forrest */ #ifndef CoinFactorization_H #define CoinFactorization_H #include #include #include #include #include "CoinFinite.hpp" #include "CoinIndexedVector.hpp" class CoinPackedMatrix; /** This deals with Factorization and Updates This class started with a parallel simplex code I was writing in the mid 90's. The need for parallelism led to many complications and I have simplified as much as I could to get back to this. I was aiming at problems where I might get speed-up so I was looking at dense problems or ones with structure. This led to permuting input and output vectors and to increasing the number of rows each rank-one update. This is still in as a minor overhead. I have also put in handling for hyper-sparsity. I have taken out all outer loop unrolling, dense matrix handling and most of the book-keeping for slacks. Also I always use FTRAN approach to updating even if factorization fairly dense. All these could improve performance. I blame some of the coding peculiarities on the history of the code but mostly it is just because I can't do elegant code (or useful comments). I am assuming that 32 bits is enough for number of rows or columns, but CoinBigIndex may be redefined to get 64 bits. */ class CoinFactorization { friend void CoinFactorizationUnitTest( const std::string & mpsDir ); public: /**@name Constructors and destructor and copy */ //@{ /// Default constructor CoinFactorization ( ); /// Copy constructor CoinFactorization ( const CoinFactorization &other); /// Destructor ~CoinFactorization ( ); /// Delete all stuff (leaves as after CoinFactorization()) void almostDestructor(); /// Debug show object (shows one representation) void show_self ( ) const; /// Debug - save on file - 0 if no error int saveFactorization (const char * file ) const; /** Debug - restore from file - 0 if no error on file. If factor true then factorizes as if called from ClpFactorization */ int restoreFactorization (const char * file , bool factor=false) ; /// Debug - sort so can compare void sort ( ) const; /// = copy CoinFactorization & operator = ( const CoinFactorization & other ); //@} /**@name Do factorization */ //@{ /** When part of LP - given by basic variables. Actually does factorization. Arrays passed in have non negative value to say basic. If status is okay, basic variables have pivot row - this is only needed If status is singular, then basic variables have pivot row and ones thrown out have -1 returns 0 -okay, -1 singular, -2 too many in basis, -99 memory */ int factorize ( const CoinPackedMatrix & matrix, int rowIsBasic[], int columnIsBasic[] , double areaFactor = 0.0 ); /** When given as triplets. Actually does factorization. maximumL is guessed maximum size of L part of final factorization, maximumU of U part. These are multiplied by areaFactor which can be computed by user or internally. Arrays are copied in. I could add flag to delete arrays to save a bit of memory. If status okay, permutation has pivot rows - this is only needed If status is singular, then basic variables have pivot row and ones thrown out have -1 returns 0 -okay, -1 singular, -99 memory */ int factorize ( int numberRows, int numberColumns, CoinBigIndex numberElements, CoinBigIndex maximumL, CoinBigIndex maximumU, const int indicesRow[], const int indicesColumn[], const double elements[] , int permutation[], double areaFactor = 0.0); /** Two part version for maximum flexibility This part creates arrays for user to fill. estimateNumberElements is safe estimate of number returns 0 -okay, -99 memory */ int factorizePart1 ( int numberRows, int numberColumns, CoinBigIndex estimateNumberElements, int * indicesRow[], int * indicesColumn[], double * elements[], double areaFactor = 0.0); /** This is part two of factorization Arrays belong to factorization and were returned by part 1 If status okay, permutation has pivot rows - this is only needed If status is singular, then basic variables have pivot row and ones thrown out have -1 returns 0 -okay, -1 singular, -99 memory */ int factorizePart2 (int permutation[],int exactNumberElements); /// Condition number - product of pivots after factorization double conditionNumber() const; //@} /**@name general stuff such as permutation or status */ //@{ /// Returns status inline int status ( ) const { return status_; } /// Sets status inline void setStatus ( int value) { status_=value; } /// Returns number of pivots since factorization inline int pivots ( ) const { return numberPivots_; } /// Sets number of pivots since factorization inline void setPivots ( int value ) { numberPivots_=value; } /// Returns address of permute region inline int *permute ( ) const { return permute_.array(); } /// Returns address of pivotColumn region (also used for permuting) inline int *pivotColumn ( ) const { return pivotColumn_.array(); } /// Returns address of pivot region inline double *pivotRegion ( ) const { return pivotRegion_.array(); } /// Returns address of permuteBack region inline int *permuteBack ( ) const { return permuteBack_.array(); } /// Returns address of pivotColumnBack region (also used for permuting) inline int *pivotColumnBack ( ) const { return pivotColumnBack_.array(); } /// Start of each row in L inline CoinBigIndex * startRowL() const { return startRowL_.array();} /// Start of each column in L inline CoinBigIndex * startColumnL() const { return startColumnL_.array();} /// Index of column in row for L inline int * indexColumnL() const { return indexColumnL_.array();} /// Row indices of L inline int * indexRowL() const { return indexRowL_.array();} /// Elements in L (row copy) inline double * elementByRowL() const { return elementByRowL_.array();} /// Number of Rows after iterating inline int numberRowsExtra ( ) const { return numberRowsExtra_; } /// Set number of Rows after factorization inline void setNumberRows(int value) { numberRows_ = value; } /// Number of Rows after factorization inline int numberRows ( ) const { return numberRows_; } /// Number in L inline CoinBigIndex numberL() const { return numberL_;} /// Base of L inline CoinBigIndex baseL() const { return baseL_;} /// Maximum of Rows after iterating inline int maximumRowsExtra ( ) const { return maximumRowsExtra_; } /// Total number of columns in factorization inline int numberColumns ( ) const { return numberColumns_; } /// Total number of elements in factorization inline int numberElements ( ) const { return totalElements_; } /// Length of FT vector inline int numberForrestTomlin ( ) const { return numberInColumn_.array()[numberColumnsExtra_]; } /// Number of good columns in factorization inline int numberGoodColumns ( ) const { return numberGoodU_; } /// Whether larger areas needed inline double areaFactor ( ) const { return areaFactor_; } inline void areaFactor ( double value ) { areaFactor_=value; } /// Returns areaFactor but adjusted for dense double adjustedAreaFactor() const; /// Allows change of pivot accuracy check 1.0 == none >1.0 relaxed inline void relaxAccuracyCheck(double value) { relaxCheck_ = value;} inline double getAccuracyCheck() const { return relaxCheck_;} /// Level of detail of messages inline int messageLevel ( ) const { return messageLevel_ ; } void messageLevel ( int value ); /// Maximum number of pivots between factorizations inline int maximumPivots ( ) const { return maximumPivots_ ; } void maximumPivots ( int value ); /// Gets dense threshold inline int denseThreshold() const { return denseThreshold_;} /// Sets dense threshold inline void setDenseThreshold(int value) { denseThreshold_ = value;} /// Pivot tolerance inline double pivotTolerance ( ) const { return pivotTolerance_ ; } void pivotTolerance ( double value ); /// Zero tolerance inline double zeroTolerance ( ) const { return zeroTolerance_ ; } void zeroTolerance ( double value ); #ifndef COIN_FAST_CODE /// Whether slack value is +1 or -1 inline double slackValue ( ) const { return slackValue_ ; } void slackValue ( double value ); #endif /// Returns maximum absolute value in factorization double maximumCoefficient() const; /// true if Forrest Tomlin update, false if PFI inline bool forrestTomlin() const { return doForrestTomlin_;} inline void setForrestTomlin(bool value) { doForrestTomlin_=value;} /// True if FT update and space inline bool spaceForForrestTomlin() const { CoinBigIndex start = startColumnU_.array()[maximumColumnsExtra_]; CoinBigIndex space = lengthAreaU_ - ( start + numberRowsExtra_ ); return (space>=0)&&doForrestTomlin_; } //@} /**@name some simple stuff */ //@{ /// Returns number of dense rows inline int numberDense() const { return numberDense_;} /// Returns number in U area inline CoinBigIndex numberElementsU ( ) const { return lengthU_; } /// Setss number in U area inline void setNumberElementsU(CoinBigIndex value) { lengthU_ = value; } /// Returns length of U area inline CoinBigIndex lengthAreaU ( ) const { return lengthAreaU_; } /// Returns number in L area inline CoinBigIndex numberElementsL ( ) const { return lengthL_; } /// Returns length of L area inline CoinBigIndex lengthAreaL ( ) const { return lengthAreaL_; } /// Returns number in R area inline CoinBigIndex numberElementsR ( ) const { return lengthR_; } /// Number of compressions done inline CoinBigIndex numberCompressions() const { return numberCompressions_;} /// Number of entries in each row inline int * numberInRow() const { return numberInRow_.array();} /// Number of entries in each column inline int * numberInColumn() const { return numberInColumn_.array();} /// Elements of U inline double * elementU() const { return elementU_.array();} /// Row indices of U inline int * indexRowU() const { return indexRowU_.array();} /// Start of each column in U inline CoinBigIndex * startColumnU() const { return startColumnU_.array();} /// Maximum number of Columns after iterating inline int maximumColumnsExtra() { return maximumColumnsExtra_;} /** L to U bias 0 - U bias, 1 - some U bias, 2 some L bias, 3 L bias */ inline int biasLU() const { return biasLU_;} inline void setBiasLU(int value) { biasLU_=value;} /** Array persistence flag If 0 then as now (delete/new) 1 then only do arrays if bigger needed 2 as 1 but give a bit extra if bigger needed */ inline int persistenceFlag() const { return persistenceFlag_;} void setPersistenceFlag(int value); //@} /**@name rank one updates which do exist */ //@{ /** Replaces one Column to basis, returns 0=OK, 1=Probably OK, 2=singular, 3=no room If checkBeforeModifying is true will do all accuracy checks before modifying factorization. Whether to set this depends on speed considerations. You could just do this on first iteration after factorization and thereafter re-factorize partial update already in U */ int replaceColumn ( CoinIndexedVector * regionSparse, int pivotRow, double pivotCheck , bool checkBeforeModifying=false); //@} /**@name various uses of factorization (return code number elements) which user may want to know about */ //@{ /** Updates one column (FTRAN) from regionSparse2 Tries to do FT update number returned is negative if no room regionSparse starts as zero and is zero at end. Note - if regionSparse2 packed on input - will be packed on output */ int updateColumnFT ( CoinIndexedVector * regionSparse, CoinIndexedVector * regionSparse2); /** This version has same effect as above with FTUpdate==false so number returned is always >=0 */ int updateColumn ( CoinIndexedVector * regionSparse, CoinIndexedVector * regionSparse2, bool noPermute=false) const; /** Updates one column (FTRAN) from region2 Tries to do FT update number returned is negative if no room. Also updates region3 region1 starts as zero and is zero at end */ int updateTwoColumnsFT ( CoinIndexedVector * regionSparse1, CoinIndexedVector * regionSparse2, CoinIndexedVector * regionSparse3, bool noPermuteRegion3=false) ; /** Updates one column (BTRAN) from regionSparse2 regionSparse starts as zero and is zero at end Note - if regionSparse2 packed on input - will be packed on output */ int updateColumnTranspose ( CoinIndexedVector * regionSparse, CoinIndexedVector * regionSparse2) const; /** makes a row copy of L for speed and to allow very sparse problems */ void goSparse(); /** get sparse threshold */ inline int sparseThreshold ( ) const { return sparseThreshold_;} /** set sparse threshold */ void sparseThreshold ( int value ); //@} /// *** Below this user may not want to know about /**@name various uses of factorization (return code number elements) which user may not want to know about (left over from my LP code) */ //@{ /// Get rid of all memory inline void clearArrays() { gutsOfDestructor();} //@} /**@name various updates - none of which have been written! */ //@{ /** Adds given elements to Basis and updates factorization, can increase size of basis. Returns rank */ int add ( CoinBigIndex numberElements, int indicesRow[], int indicesColumn[], double elements[] ); /** Adds one Column to basis, can increase size of basis. Returns rank */ int addColumn ( CoinBigIndex numberElements, int indicesRow[], double elements[] ); /** Adds one Row to basis, can increase size of basis. Returns rank */ int addRow ( CoinBigIndex numberElements, int indicesColumn[], double elements[] ); /// Deletes one Column from basis, returns rank int deleteColumn ( int Row ); /// Deletes one Row from basis, returns rank int deleteRow ( int Row ); /** Replaces one Row in basis, At present assumes just a singleton on row is in basis returns 0=OK, 1=Probably OK, 2=singular, 3 no space */ int replaceRow ( int whichRow, int numberElements, const int indicesColumn[], const double elements[] ); /// Takes out all entries for given rows void emptyRows(int numberToEmpty, const int which[]); //@} /**@name used by ClpFactorization */ /// See if worth going sparse void checkSparse(); /// For statistics inline bool collectStatistics() const { return collectStatistics_;} /// For statistics inline void setCollectStatistics(bool onOff) const { collectStatistics_ = onOff;} /// The real work of constructors etc 0 just scalars, 1 bit normal void gutsOfDestructor(int type=1); /// 1 bit - tolerances etc, 2 more, 4 dummy arrays void gutsOfInitialize(int type); void gutsOfCopy(const CoinFactorization &other); /// Reset all sparsity etc statistics void resetStatistics(); //@} /**@name used by factorization */ /// Gets space for a factorization, called by constructors void getAreas ( int numberRows, int numberColumns, CoinBigIndex maximumL, CoinBigIndex maximumU ); /** PreProcesses raw triplet data. state is 0 - triplets, 1 - some counts etc , 2 - .. */ void preProcess ( int state, int possibleDuplicates = -1 ); /// Does most of factorization int factor ( ); protected: /** Does sparse phase of factorization return code is <0 error, 0= finished */ int factorSparse ( ); /** Does sparse phase of factorization (for smaller problems) return code is <0 error, 0= finished */ int factorSparseSmall ( ); /** Does sparse phase of factorization (for larger problems) return code is <0 error, 0= finished */ int factorSparseLarge ( ); /** Does dense phase of factorization return code is <0 error, 0= finished */ int factorDense ( ); /// Pivots when just one other row so faster? bool pivotOneOtherRow ( int pivotRow, int pivotColumn ); /// Does one pivot on Row Singleton in factorization bool pivotRowSingleton ( int pivotRow, int pivotColumn ); /// Does one pivot on Column Singleton in factorization bool pivotColumnSingleton ( int pivotRow, int pivotColumn ); /** Gets space for one Column with given length, may have to do compression (returns True if successful), also moves existing vector, extraNeeded is over and above present */ bool getColumnSpace ( int iColumn, int extraNeeded ); /** getColumnSpaceIterateR. Gets space for one extra R element in Column may have to do compression (returns true) also moves existing vector */ bool getColumnSpaceIterateR ( int iColumn, double value, int iRow); /** getColumnSpaceIterate. Gets space for one extra U element in Column may have to do compression (returns true) also moves existing vector. Returns -1 if no memory or where element was put Used by replaceRow (turns off R version) */ CoinBigIndex getColumnSpaceIterate ( int iColumn, double value, int iRow); /** Gets space for one Row with given length, may have to do compression (returns True if successful), also moves existing vector */ bool getRowSpace ( int iRow, int extraNeeded ); /** Gets space for one Row with given length while iterating, may have to do compression (returns True if successful), also moves existing vector */ bool getRowSpaceIterate ( int iRow, int extraNeeded ); /// Checks that row and column copies look OK void checkConsistency ( ); /// Adds a link in chain of equal counts inline void addLink ( int index, int count ) { int *nextCount = nextCount_.array(); int *firstCount = firstCount_.array(); int *lastCount = lastCount_.array(); int next = firstCount[count]; lastCount[index] = -2 - count; if ( next < 0 ) { //first with that count firstCount[count] = index; nextCount[index] = -1; } else { firstCount[count] = index; nextCount[index] = next; lastCount[next] = index; }} /// Deletes a link in chain of equal counts inline void deleteLink ( int index ) { int *nextCount = nextCount_.array(); int *firstCount = firstCount_.array(); int *lastCount = lastCount_.array(); int next = nextCount[index]; int last = lastCount[index]; if ( last >= 0 ) { nextCount[last] = next; } else { int count = -last - 2; firstCount[count] = next; } if ( next >= 0 ) { lastCount[next] = last; } nextCount[index] = -2; lastCount[index] = -2; return; } /// Separate out links with same row/column count void separateLinks(int count,bool rowsFirst); /// Cleans up at end of factorization void cleanup ( ); /// Updates part of column (FTRANL) void updateColumnL ( CoinIndexedVector * region, int * indexIn ) const; /// Updates part of column (FTRANL) when densish void updateColumnLDensish ( CoinIndexedVector * region, int * indexIn ) const; /// Updates part of column (FTRANL) when sparse void updateColumnLSparse ( CoinIndexedVector * region, int * indexIn ) const; /// Updates part of column (FTRANL) when sparsish void updateColumnLSparsish ( CoinIndexedVector * region, int * indexIn ) const; /// Updates part of column (FTRANR) without FT update void updateColumnR ( CoinIndexedVector * region ) const; /** Updates part of column (FTRANR) with FT update. Also stores update after L and R */ void updateColumnRFT ( CoinIndexedVector * region, int * indexIn ); /// Updates part of column (FTRANU) void updateColumnU ( CoinIndexedVector * region, int * indexIn) const; /// Updates part of column (FTRANU) when sparse void updateColumnUSparse ( CoinIndexedVector * regionSparse, int * indexIn) const; /// Updates part of column (FTRANU) when sparsish void updateColumnUSparsish ( CoinIndexedVector * regionSparse, int * indexIn) const; /// Updates part of column (FTRANU) int updateColumnUDensish ( double * COIN_RESTRICT region, int * COIN_RESTRICT regionIndex) const; /// Updates part of 2 columns (FTRANU) real work void updateTwoColumnsUDensish ( int & numberNonZero1, double * COIN_RESTRICT region1, int * COIN_RESTRICT index1, int & numberNonZero2, double * COIN_RESTRICT region2, int * COIN_RESTRICT index2) const; /// Updates part of column PFI (FTRAN) (after rest) void updateColumnPFI ( CoinIndexedVector * regionSparse) const; /// Permutes back at end of updateColumn void permuteBack ( CoinIndexedVector * regionSparse, CoinIndexedVector * outVector) const; /// Updates part of column transpose PFI (BTRAN) (before rest) void updateColumnTransposePFI ( CoinIndexedVector * region) const; /** Updates part of column transpose (BTRANU), assumes index is sorted i.e. region is correct */ void updateColumnTransposeU ( CoinIndexedVector * region, int smallestIndex) const; /** Updates part of column transpose (BTRANU) when sparsish, assumes index is sorted i.e. region is correct */ void updateColumnTransposeUSparsish ( CoinIndexedVector * region, int smallestIndex) const; /** Updates part of column transpose (BTRANU) when densish, assumes index is sorted i.e. region is correct */ void updateColumnTransposeUDensish ( CoinIndexedVector * region, int smallestIndex) const; /** Updates part of column transpose (BTRANU) when sparse, assumes index is sorted i.e. region is correct */ void updateColumnTransposeUSparse ( CoinIndexedVector * region) const; /// Updates part of column transpose (BTRANR) void updateColumnTransposeR ( CoinIndexedVector * region ) const; /// Updates part of column transpose (BTRANR) when dense void updateColumnTransposeRDensish ( CoinIndexedVector * region ) const; /// Updates part of column transpose (BTRANR) when sparse void updateColumnTransposeRSparse ( CoinIndexedVector * region ) const; /// Updates part of column transpose (BTRANL) void updateColumnTransposeL ( CoinIndexedVector * region ) const; /// Updates part of column transpose (BTRANL) when densish by column void updateColumnTransposeLDensish ( CoinIndexedVector * region ) const; /// Updates part of column transpose (BTRANL) when densish by row void updateColumnTransposeLByRow ( CoinIndexedVector * region ) const; /// Updates part of column transpose (BTRANL) when sparsish by row void updateColumnTransposeLSparsish ( CoinIndexedVector * region ) const; /// Updates part of column transpose (BTRANL) when sparse (by Row) void updateColumnTransposeLSparse ( CoinIndexedVector * region ) const; public: /** Replaces one Column to basis for PFI returns 0=OK, 1=Probably OK, 2=singular, 3=no room. In this case region is not empty - it is incoming variable (updated) */ int replaceColumnPFI ( CoinIndexedVector * regionSparse, int pivotRow, double alpha); protected: /** Returns accuracy status of replaceColumn returns 0=OK, 1=Probably OK, 2=singular */ int checkPivot(double saveFromU, double oldPivot) const; /********************************* START LARGE TEMPLATE ********/ #ifdef INT_IS_8 #define COINFACTORIZATION_BITS_PER_INT 64 #define COINFACTORIZATION_SHIFT_PER_INT 6 #define COINFACTORIZATION_MASK_PER_INT 0x3f #else #define COINFACTORIZATION_BITS_PER_INT 32 #define COINFACTORIZATION_SHIFT_PER_INT 5 #define COINFACTORIZATION_MASK_PER_INT 0x1f #endif template inline bool pivot ( int pivotRow, int pivotColumn, CoinBigIndex pivotRowPosition, CoinBigIndex pivotColumnPosition, double work[], unsigned int workArea2[], int increment, int increment2, T markRow[] , int largeInteger) { int *indexColumnU = indexColumnU_.array(); CoinBigIndex *startColumnU = startColumnU_.array(); int *numberInColumn = numberInColumn_.array(); double *elementU = elementU_.array(); int *indexRowU = indexRowU_.array(); CoinBigIndex *startRowU = startRowU_.array(); int *numberInRow = numberInRow_.array(); double *elementL = elementL_.array(); int *indexRowL = indexRowL_.array(); int *saveColumn = saveColumn_.array(); int *nextRow = nextRow_.array(); int *lastRow = lastRow_.array() ; //store pivot columns (so can easily compress) int numberInPivotRow = numberInRow[pivotRow] - 1; CoinBigIndex startColumn = startColumnU[pivotColumn]; int numberInPivotColumn = numberInColumn[pivotColumn] - 1; CoinBigIndex endColumn = startColumn + numberInPivotColumn + 1; int put = 0; CoinBigIndex startRow = startRowU[pivotRow]; CoinBigIndex endRow = startRow + numberInPivotRow + 1; if ( pivotColumnPosition < 0 ) { for ( pivotColumnPosition = startRow; pivotColumnPosition < endRow; pivotColumnPosition++ ) { int iColumn = indexColumnU[pivotColumnPosition]; if ( iColumn != pivotColumn ) { saveColumn[put++] = iColumn; } else { break; } } } else { for (CoinBigIndex i = startRow ; i < pivotColumnPosition ; i++ ) { saveColumn[put++] = indexColumnU[i]; } } assert (pivotColumnPosition lengthAreaL_ ) { //need more memory printf("more memory needed in middle of invert\n"); return false; } //l+=currentAreaL_->elementByColumn-elementL; CoinBigIndex lSave = l; pivotRowL_.array()[numberGoodL_] = pivotRow; CoinBigIndex * startColumnL = startColumnL_.array(); startColumnL[numberGoodL_] = l; //for luck and first time numberGoodL_++; startColumnL[numberGoodL_] = l + numberInPivotColumn; lengthL_ += numberInPivotColumn; if ( pivotRowPosition < 0 ) { for ( pivotRowPosition = startColumn; pivotRowPosition < endColumn; pivotRowPosition++ ) { int iRow = indexRowU[pivotRowPosition]; if ( iRow != pivotRow ) { indexRowL[l] = iRow; elementL[l] = elementU[pivotRowPosition]; markRow[iRow] = static_cast(l - lSave); l++; //take out of row list CoinBigIndex start = startRowU[iRow]; CoinBigIndex end = start + numberInRow[iRow]; CoinBigIndex where = start; while ( indexColumnU[where] != pivotColumn ) { where++; } /* endwhile */ #if DEBUG_COIN if ( where >= end ) { abort ( ); } #endif indexColumnU[where] = indexColumnU[end - 1]; numberInRow[iRow]--; } else { break; } } } else { CoinBigIndex i; for ( i = startColumn; i < pivotRowPosition; i++ ) { int iRow = indexRowU[i]; markRow[iRow] = static_cast(l - lSave); indexRowL[l] = iRow; elementL[l] = elementU[i]; l++; //take out of row list CoinBigIndex start = startRowU[iRow]; CoinBigIndex end = start + numberInRow[iRow]; CoinBigIndex where = start; while ( indexColumnU[where] != pivotColumn ) { where++; } /* endwhile */ #if DEBUG_COIN if ( where >= end ) { abort ( ); } #endif indexColumnU[where] = indexColumnU[end - 1]; numberInRow[iRow]--; assert (numberInRow[iRow]>=0); } } assert (pivotRowPosition(l - lSave); indexRowL[l] = iRow; elementL[l] = elementU[pivotRowPosition]; l++; //take out of row list CoinBigIndex start = startRowU[iRow]; CoinBigIndex end = start + numberInRow[iRow]; CoinBigIndex where = start; while ( indexColumnU[where] != pivotColumn ) { where++; } /* endwhile */ #if DEBUG_COIN if ( where >= end ) { abort ( ); } #endif indexColumnU[where] = indexColumnU[end - 1]; numberInRow[iRow]--; assert (numberInRow[iRow]>=0); } markRow[pivotRow] = static_cast(largeInteger); //compress pivot column (move pivot to front including saved) numberInColumn[pivotColumn] = 0; //use end of L for temporary space int *indexL = &indexRowL[lSave]; double *multipliersL = &elementL[lSave]; //adjust int j; for ( j = 0; j < numberInPivotColumn; j++ ) { multipliersL[j] *= pivotMultiplier; } //zero out fill CoinBigIndex iErase; for ( iErase = 0; iErase < increment2 * numberInPivotRow; iErase++ ) { workArea2[iErase] = 0; } CoinBigIndex added = numberInPivotRow * numberInPivotColumn; unsigned int *temp2 = workArea2; int * nextColumn = nextColumn_.array(); //pack down and move to work int jColumn; for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) { int iColumn = saveColumn[jColumn]; CoinBigIndex startColumn = startColumnU[iColumn]; CoinBigIndex endColumn = startColumn + numberInColumn[iColumn]; int iRow = indexRowU[startColumn]; double value = elementU[startColumn]; double largest; CoinBigIndex put = startColumn; CoinBigIndex positionLargest = -1; double thisPivotValue = 0.0; //compress column and find largest not updated bool checkLargest; int mark = markRow[iRow]; if ( mark == largeInteger+1 ) { largest = fabs ( value ); positionLargest = put; put++; checkLargest = false; } else { //need to find largest largest = 0.0; checkLargest = true; if ( mark != largeInteger ) { //will be updated work[mark] = value; int word = mark >> COINFACTORIZATION_SHIFT_PER_INT; int bit = mark & COINFACTORIZATION_MASK_PER_INT; temp2[word] = temp2[word] | ( 1 << bit ); //say already in counts added--; } else { thisPivotValue = value; } } CoinBigIndex i; for ( i = startColumn + 1; i < endColumn; i++ ) { iRow = indexRowU[i]; value = elementU[i]; int mark = markRow[iRow]; if ( mark == largeInteger+1 ) { //keep indexRowU[put] = iRow; elementU[put] = value; if ( checkLargest ) { double absValue = fabs ( value ); if ( absValue > largest ) { largest = absValue; positionLargest = put; } } put++; } else if ( mark != largeInteger ) { //will be updated work[mark] = value; int word = mark >> COINFACTORIZATION_SHIFT_PER_INT; int bit = mark & COINFACTORIZATION_MASK_PER_INT; temp2[word] = temp2[word] | ( 1 << bit ); //say already in counts added--; } else { thisPivotValue = value; } } //slot in pivot elementU[put] = elementU[startColumn]; indexRowU[put] = indexRowU[startColumn]; if ( positionLargest == startColumn ) { positionLargest = put; //follow if was largest } put++; elementU[startColumn] = thisPivotValue; indexRowU[startColumn] = pivotRow; //clean up counts startColumn++; numberInColumn[iColumn] = put - startColumn; int * numberInColumnPlus = numberInColumnPlus_.array(); numberInColumnPlus[iColumn]++; startColumnU[iColumn]++; //how much space have we got int next = nextColumn[iColumn]; CoinBigIndex space; space = startColumnU[next] - put - numberInColumnPlus[next]; //assume no zero elements if ( numberInPivotColumn > space ) { //getColumnSpace also moves fixed part if ( !getColumnSpace ( iColumn, numberInPivotColumn ) ) { return false; } //redo starts positionLargest = positionLargest + startColumnU[iColumn] - startColumn; startColumn = startColumnU[iColumn]; put = startColumn + numberInColumn[iColumn]; } double tolerance = zeroTolerance_; int *nextCount = nextCount_.array(); for ( j = 0; j < numberInPivotColumn; j++ ) { value = work[j] - thisPivotValue * multipliersL[j]; double absValue = fabs ( value ); if ( absValue > tolerance ) { work[j] = 0.0; elementU[put] = value; indexRowU[put] = indexL[j]; if ( absValue > largest ) { largest = absValue; positionLargest = put; } put++; } else { work[j] = 0.0; added--; int word = j >> COINFACTORIZATION_SHIFT_PER_INT; int bit = j & COINFACTORIZATION_MASK_PER_INT; if ( temp2[word] & ( 1 << bit ) ) { //take out of row list iRow = indexL[j]; CoinBigIndex start = startRowU[iRow]; CoinBigIndex end = start + numberInRow[iRow]; CoinBigIndex where = start; while ( indexColumnU[where] != iColumn ) { where++; } /* endwhile */ #if DEBUG_COIN if ( where >= end ) { abort ( ); } #endif indexColumnU[where] = indexColumnU[end - 1]; numberInRow[iRow]--; } else { //make sure won't be added int word = j >> COINFACTORIZATION_SHIFT_PER_INT; int bit = j & COINFACTORIZATION_MASK_PER_INT; temp2[word] = temp2[word] | ( 1 << bit ); //say already in counts } } } numberInColumn[iColumn] = put - startColumn; //move largest if ( positionLargest >= 0 ) { value = elementU[positionLargest]; iRow = indexRowU[positionLargest]; elementU[positionLargest] = elementU[startColumn]; indexRowU[positionLargest] = indexRowU[startColumn]; elementU[startColumn] = value; indexRowU[startColumn] = iRow; } //linked list for column if ( nextCount[iColumn + numberRows_] != -2 ) { //modify linked list deleteLink ( iColumn + numberRows_ ); addLink ( iColumn + numberRows_, numberInColumn[iColumn] ); } temp2 += increment2; } //get space for row list unsigned int *putBase = workArea2; int bigLoops = numberInPivotColumn >> COINFACTORIZATION_SHIFT_PER_INT; int i = 0; // do linked lists and update counts while ( bigLoops ) { bigLoops--; int bit; for ( bit = 0; bit < COINFACTORIZATION_BITS_PER_INT; i++, bit++ ) { unsigned int *putThis = putBase; int iRow = indexL[i]; //get space int number = 0; int jColumn; for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) { unsigned int test = *putThis; putThis += increment2; test = 1 - ( ( test >> bit ) & 1 ); number += test; } int next = nextRow[iRow]; CoinBigIndex space; space = startRowU[next] - startRowU[iRow]; number += numberInRow[iRow]; if ( space < number ) { if ( !getRowSpace ( iRow, number ) ) { return false; } } // now do putThis = putBase; next = nextRow[iRow]; number = numberInRow[iRow]; CoinBigIndex end = startRowU[iRow] + number; int saveIndex = indexColumnU[startRowU[next]]; //add in for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) { unsigned int test = *putThis; putThis += increment2; test = 1 - ( ( test >> bit ) & 1 ); indexColumnU[end] = saveColumn[jColumn]; end += test; } //put back next one in case zapped indexColumnU[startRowU[next]] = saveIndex; markRow[iRow] = static_cast(largeInteger+1); number = end - startRowU[iRow]; numberInRow[iRow] = number; deleteLink ( iRow ); addLink ( iRow, number ); } putBase++; } /* endwhile */ int bit; for ( bit = 0; i < numberInPivotColumn; i++, bit++ ) { unsigned int *putThis = putBase; int iRow = indexL[i]; //get space int number = 0; int jColumn; for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) { unsigned int test = *putThis; putThis += increment2; test = 1 - ( ( test >> bit ) & 1 ); number += test; } int next = nextRow[iRow]; CoinBigIndex space; space = startRowU[next] - startRowU[iRow]; number += numberInRow[iRow]; if ( space < number ) { if ( !getRowSpace ( iRow, number ) ) { return false; } } // now do putThis = putBase; next = nextRow[iRow]; number = numberInRow[iRow]; CoinBigIndex end = startRowU[iRow] + number; int saveIndex; saveIndex = indexColumnU[startRowU[next]]; //add in for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) { unsigned int test = *putThis; putThis += increment2; test = 1 - ( ( test >> bit ) & 1 ); indexColumnU[end] = saveColumn[jColumn]; end += test; } indexColumnU[startRowU[next]] = saveIndex; markRow[iRow] = static_cast(largeInteger+1); number = end - startRowU[iRow]; numberInRow[iRow] = number; deleteLink ( iRow ); addLink ( iRow, number ); } markRow[pivotRow] = static_cast(largeInteger+1); //modify linked list for pivots deleteLink ( pivotRow ); deleteLink ( pivotColumn + numberRows_ ); totalElements_ += added; return true; } /********************************* END LARGE TEMPLATE ********/ //@} ////////////////// data ////////////////// protected: /**@name data */ //@{ /// Pivot tolerance double pivotTolerance_; /// Zero tolerance double zeroTolerance_; #ifndef COIN_FAST_CODE /// Whether slack value is +1 or -1 double slackValue_; #else #ifndef slackValue_ #define slackValue_ -1.0 #endif #endif /// How much to multiply areas by double areaFactor_; /// Relax check on accuracy in replaceColumn double relaxCheck_; /// Number of Rows in factorization int numberRows_; /// Number of Rows after iterating int numberRowsExtra_; /// Maximum number of Rows after iterating int maximumRowsExtra_; /// Number of Columns in factorization int numberColumns_; /// Number of Columns after iterating int numberColumnsExtra_; /// Maximum number of Columns after iterating int maximumColumnsExtra_; /// Number factorized in U (not row singletons) int numberGoodU_; /// Number factorized in L int numberGoodL_; /// Maximum number of pivots before factorization int maximumPivots_; /// Number pivots since last factorization int numberPivots_; /// Number of elements in U (to go) /// or while iterating total overall CoinBigIndex totalElements_; /// Number of elements after factorization CoinBigIndex factorElements_; /// Pivot order for each Column CoinIntArrayWithLength pivotColumn_; /// Permutation vector for pivot row order CoinIntArrayWithLength permute_; /// DePermutation vector for pivot row order CoinIntArrayWithLength permuteBack_; /// Inverse Pivot order for each Column CoinIntArrayWithLength pivotColumnBack_; /// Status of factorization int status_; /** 0 - no increasing rows - no permutations, 1 - no increasing rows but permutations 2 - increasing rows - taken out as always 2 */ //int increasingRows_; /// Number of trials before rejection int numberTrials_; /// Start of each Row as pointer CoinBigIndexArrayWithLength startRowU_; /// Number in each Row CoinIntArrayWithLength numberInRow_; /// Number in each Column CoinIntArrayWithLength numberInColumn_; /// Number in each Column including pivoted CoinIntArrayWithLength numberInColumnPlus_; /** First Row/Column with count of k, can tell which by offset - Rows then Columns */ CoinIntArrayWithLength firstCount_; /// Next Row/Column with count CoinIntArrayWithLength nextCount_; /// Previous Row/Column with count CoinIntArrayWithLength lastCount_; /// Next Column in memory order CoinIntArrayWithLength nextColumn_; /// Previous Column in memory order CoinIntArrayWithLength lastColumn_; /// Next Row in memory order CoinIntArrayWithLength nextRow_; /// Previous Row in memory order CoinIntArrayWithLength lastRow_; /// Columns left to do in a single pivot CoinIntArrayWithLength saveColumn_; /// Marks rows to be updated CoinIntArrayWithLength markRow_; /// Detail in messages int messageLevel_; /// Larger of row and column size int biggerDimension_; /// Base address for U (may change) CoinIntArrayWithLength indexColumnU_; /// Pivots for L CoinIntArrayWithLength pivotRowL_; /// Inverses of pivot values CoinDoubleArrayWithLength pivotRegion_; /// Number of slacks at beginning of U int numberSlacks_; /// Number in U int numberU_; /// Maximum space used in U CoinBigIndex maximumU_; /// Base of U is always 0 //int baseU_; /// Length of U CoinBigIndex lengthU_; /// Length of area reserved for U CoinBigIndex lengthAreaU_; /// Elements of U CoinDoubleArrayWithLength elementU_; /// Row indices of U CoinIntArrayWithLength indexRowU_; /// Start of each column in U CoinBigIndexArrayWithLength startColumnU_; /// Converts rows to columns in U CoinBigIndexArrayWithLength convertRowToColumnU_; /// Number in L CoinBigIndex numberL_; /// Base of L CoinBigIndex baseL_; /// Length of L CoinBigIndex lengthL_; /// Length of area reserved for L CoinBigIndex lengthAreaL_; /// Elements of L CoinDoubleArrayWithLength elementL_; /// Row indices of L CoinIntArrayWithLength indexRowL_; /// Start of each column in L CoinBigIndexArrayWithLength startColumnL_; /// true if Forrest Tomlin update, false if PFI bool doForrestTomlin_; /// Number in R int numberR_; /// Length of R stuff CoinBigIndex lengthR_; /// length of area reserved for R CoinBigIndex lengthAreaR_; /// Elements of R double *elementR_; /// Row indices for R int *indexRowR_; /// Start of columns for R CoinBigIndexArrayWithLength startColumnR_; /// Dense area double * denseArea_; /// Dense permutation int * densePermute_; /// Number of dense rows int numberDense_; /// Dense threshold int denseThreshold_; /// First work area CoinDoubleArrayWithLength workArea_; /// Second work area CoinUnsignedIntArrayWithLength workArea2_; /// Number of compressions done CoinBigIndex numberCompressions_; /// Below are all to collect mutable double ftranCountInput_; mutable double ftranCountAfterL_; mutable double ftranCountAfterR_; mutable double ftranCountAfterU_; mutable double btranCountInput_; mutable double btranCountAfterU_; mutable double btranCountAfterR_; mutable double btranCountAfterL_; /// We can roll over factorizations mutable int numberFtranCounts_; mutable int numberBtranCounts_; /// While these are average ratios collected over last period double ftranAverageAfterL_; double ftranAverageAfterR_; double ftranAverageAfterU_; double btranAverageAfterU_; double btranAverageAfterR_; double btranAverageAfterL_; /// For statistics mutable bool collectStatistics_; /// Below this use sparse technology - if 0 then no L row copy int sparseThreshold_; /// And one for "sparsish" int sparseThreshold2_; /// Start of each row in L CoinBigIndexArrayWithLength startRowL_; /// Index of column in row for L CoinIntArrayWithLength indexColumnL_; /// Elements in L (row copy) CoinDoubleArrayWithLength elementByRowL_; /// Sparse regions mutable CoinIntArrayWithLength sparse_; /** L to U bias 0 - U bias, 1 - some U bias, 2 some L bias, 3 L bias */ int biasLU_; /** Array persistence flag If 0 then as now (delete/new) 1 then only do arrays if bigger needed 2 as 1 but give a bit extra if bigger needed */ int persistenceFlag_; //@} }; // Dense coding #ifdef COIN_HAS_LAPACK #define DENSE_CODE 1 /* Type of Fortran integer translated into C */ #ifndef ipfint //typedef ipfint FORTRAN_INTEGER_TYPE ; typedef int ipfint; typedef const int cipfint; #endif #endif #endif // Extra for ugly include #ifdef UGLY_COIN_FACTOR_CODING #define FAC_UNSET (FAC_SET+1) { goodPivot=false; //store pivot columns (so can easily compress) CoinBigIndex startColumnThis = startColumn[iPivotColumn]; CoinBigIndex endColumn = startColumnThis + numberDoColumn + 1; int put = 0; CoinBigIndex startRowThis = startRow[iPivotRow]; CoinBigIndex endRow = startRowThis + numberDoRow + 1; if ( pivotColumnPosition < 0 ) { for ( pivotColumnPosition = startRowThis; pivotColumnPosition < endRow; pivotColumnPosition++ ) { int iColumn = indexColumn[pivotColumnPosition]; if ( iColumn != iPivotColumn ) { saveColumn[put++] = iColumn; } else { break; } } } else { for (CoinBigIndex i = startRowThis ; i < pivotColumnPosition ; i++ ) { saveColumn[put++] = indexColumn[i]; } } assert (pivotColumnPosition lengthAreaL_ ) { //need more memory printf("more memory needed in middle of invert\n"); goto BAD_PIVOT; } //l+=currentAreaL_->elementByColumn-elementL; CoinBigIndex lSave = l; pivotRowL_.array()[numberGoodL_] = iPivotRow; CoinBigIndex * startColumnL = startColumnL_.array(); startColumnL[numberGoodL_] = l; //for luck and first time numberGoodL_++; startColumnL[numberGoodL_] = l + numberDoColumn; lengthL_ += numberDoColumn; if ( pivotRowPosition < 0 ) { for ( pivotRowPosition = startColumnThis; pivotRowPosition < endColumn; pivotRowPosition++ ) { int iRow = indexRow[pivotRowPosition]; if ( iRow != iPivotRow ) { indexRowL[l] = iRow; elementL[l] = element[pivotRowPosition]; markRow[iRow] = l - lSave; l++; //take out of row list CoinBigIndex start = startRow[iRow]; CoinBigIndex end = start + numberInRow[iRow]; CoinBigIndex where = start; while ( indexColumn[where] != iPivotColumn ) { where++; } /* endwhile */ #if DEBUG_COIN if ( where >= end ) { abort ( ); } #endif indexColumn[where] = indexColumn[end - 1]; numberInRow[iRow]--; } else { break; } } } else { CoinBigIndex i; for ( i = startColumnThis; i < pivotRowPosition; i++ ) { int iRow = indexRow[i]; markRow[iRow] = l - lSave; indexRowL[l] = iRow; elementL[l] = element[i]; l++; //take out of row list CoinBigIndex start = startRow[iRow]; CoinBigIndex end = start + numberInRow[iRow]; CoinBigIndex where = start; while ( indexColumn[where] != iPivotColumn ) { where++; } /* endwhile */ #if DEBUG_COIN if ( where >= end ) { abort ( ); } #endif indexColumn[where] = indexColumn[end - 1]; numberInRow[iRow]--; assert (numberInRow[iRow]>=0); } } assert (pivotRowPosition= end ) { abort ( ); } #endif indexColumn[where] = indexColumn[end - 1]; numberInRow[iRow]--; assert (numberInRow[iRow]>=0); } markRow[iPivotRow] = FAC_SET; //compress pivot column (move pivot to front including saved) numberInColumn[iPivotColumn] = 0; //use end of L for temporary space int *indexL = &indexRowL[lSave]; double *multipliersL = &elementL[lSave]; //adjust int j; for ( j = 0; j < numberDoColumn; j++ ) { multipliersL[j] *= pivotMultiplier; } //zero out fill CoinBigIndex iErase; for ( iErase = 0; iErase < increment2 * numberDoRow; iErase++ ) { workArea2[iErase] = 0; } CoinBigIndex added = numberDoRow * numberDoColumn; unsigned int *temp2 = workArea2; int * nextColumn = nextColumn_.array(); //pack down and move to work int jColumn; for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) { int iColumn = saveColumn[jColumn]; CoinBigIndex startColumnThis = startColumn[iColumn]; CoinBigIndex endColumn = startColumnThis + numberInColumn[iColumn]; int iRow = indexRow[startColumnThis]; double value = element[startColumnThis]; double largest; CoinBigIndex put = startColumnThis; CoinBigIndex positionLargest = -1; double thisPivotValue = 0.0; //compress column and find largest not updated bool checkLargest; int mark = markRow[iRow]; if ( mark == FAC_UNSET ) { largest = fabs ( value ); positionLargest = put; put++; checkLargest = false; } else { //need to find largest largest = 0.0; checkLargest = true; if ( mark != FAC_SET ) { //will be updated workArea[mark] = value; int word = mark >> COINFACTORIZATION_SHIFT_PER_INT; int bit = mark & COINFACTORIZATION_MASK_PER_INT; temp2[word] = temp2[word] | ( 1 << bit ); //say already in counts added--; } else { thisPivotValue = value; } } CoinBigIndex i; for ( i = startColumnThis + 1; i < endColumn; i++ ) { iRow = indexRow[i]; value = element[i]; int mark = markRow[iRow]; if ( mark == FAC_UNSET ) { //keep indexRow[put] = iRow; element[put] = value; if ( checkLargest ) { double absValue = fabs ( value ); if ( absValue > largest ) { largest = absValue; positionLargest = put; } } put++; } else if ( mark != FAC_SET ) { //will be updated workArea[mark] = value; int word = mark >> COINFACTORIZATION_SHIFT_PER_INT; int bit = mark & COINFACTORIZATION_MASK_PER_INT; temp2[word] = temp2[word] | ( 1 << bit ); //say already in counts added--; } else { thisPivotValue = value; } } //slot in pivot element[put] = element[startColumnThis]; indexRow[put] = indexRow[startColumnThis]; if ( positionLargest == startColumnThis ) { positionLargest = put; //follow if was largest } put++; element[startColumnThis] = thisPivotValue; indexRow[startColumnThis] = iPivotRow; //clean up counts startColumnThis++; numberInColumn[iColumn] = put - startColumnThis; int * numberInColumnPlus = numberInColumnPlus_.array(); numberInColumnPlus[iColumn]++; startColumn[iColumn]++; //how much space have we got int next = nextColumn[iColumn]; CoinBigIndex space; space = startColumn[next] - put - numberInColumnPlus[next]; //assume no zero elements if ( numberDoColumn > space ) { //getColumnSpace also moves fixed part if ( !getColumnSpace ( iColumn, numberDoColumn ) ) { goto BAD_PIVOT; } //redo starts positionLargest = positionLargest + startColumn[iColumn] - startColumnThis; startColumnThis = startColumn[iColumn]; put = startColumnThis + numberInColumn[iColumn]; } double tolerance = zeroTolerance_; int *nextCount = nextCount_.array(); for ( j = 0; j < numberDoColumn; j++ ) { value = workArea[j] - thisPivotValue * multipliersL[j]; double absValue = fabs ( value ); if ( absValue > tolerance ) { workArea[j] = 0.0; element[put] = value; indexRow[put] = indexL[j]; if ( absValue > largest ) { largest = absValue; positionLargest = put; } put++; } else { workArea[j] = 0.0; added--; int word = j >> COINFACTORIZATION_SHIFT_PER_INT; int bit = j & COINFACTORIZATION_MASK_PER_INT; if ( temp2[word] & ( 1 << bit ) ) { //take out of row list iRow = indexL[j]; CoinBigIndex start = startRow[iRow]; CoinBigIndex end = start + numberInRow[iRow]; CoinBigIndex where = start; while ( indexColumn[where] != iColumn ) { where++; } /* endwhile */ #if DEBUG_COIN if ( where >= end ) { abort ( ); } #endif indexColumn[where] = indexColumn[end - 1]; numberInRow[iRow]--; } else { //make sure won't be added int word = j >> COINFACTORIZATION_SHIFT_PER_INT; int bit = j & COINFACTORIZATION_MASK_PER_INT; temp2[word] = temp2[word] | ( 1 << bit ); //say already in counts } } } numberInColumn[iColumn] = put - startColumnThis; //move largest if ( positionLargest >= 0 ) { value = element[positionLargest]; iRow = indexRow[positionLargest]; element[positionLargest] = element[startColumnThis]; indexRow[positionLargest] = indexRow[startColumnThis]; element[startColumnThis] = value; indexRow[startColumnThis] = iRow; } //linked list for column if ( nextCount[iColumn + numberRows_] != -2 ) { //modify linked list deleteLink ( iColumn + numberRows_ ); addLink ( iColumn + numberRows_, numberInColumn[iColumn] ); } temp2 += increment2; } //get space for row list unsigned int *putBase = workArea2; int bigLoops = numberDoColumn >> COINFACTORIZATION_SHIFT_PER_INT; int i = 0; // do linked lists and update counts while ( bigLoops ) { bigLoops--; int bit; for ( bit = 0; bit < COINFACTORIZATION_BITS_PER_INT; i++, bit++ ) { unsigned int *putThis = putBase; int iRow = indexL[i]; //get space int number = 0; int jColumn; for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) { unsigned int test = *putThis; putThis += increment2; test = 1 - ( ( test >> bit ) & 1 ); number += test; } int next = nextRow[iRow]; CoinBigIndex space; space = startRow[next] - startRow[iRow]; number += numberInRow[iRow]; if ( space < number ) { if ( !getRowSpace ( iRow, number ) ) { goto BAD_PIVOT; } } // now do putThis = putBase; next = nextRow[iRow]; number = numberInRow[iRow]; CoinBigIndex end = startRow[iRow] + number; int saveIndex = indexColumn[startRow[next]]; //add in for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) { unsigned int test = *putThis; putThis += increment2; test = 1 - ( ( test >> bit ) & 1 ); indexColumn[end] = saveColumn[jColumn]; end += test; } //put back next one in case zapped indexColumn[startRow[next]] = saveIndex; markRow[iRow] = FAC_UNSET; number = end - startRow[iRow]; numberInRow[iRow] = number; deleteLink ( iRow ); addLink ( iRow, number ); } putBase++; } /* endwhile */ int bit; for ( bit = 0; i < numberDoColumn; i++, bit++ ) { unsigned int *putThis = putBase; int iRow = indexL[i]; //get space int number = 0; int jColumn; for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) { unsigned int test = *putThis; putThis += increment2; test = 1 - ( ( test >> bit ) & 1 ); number += test; } int next = nextRow[iRow]; CoinBigIndex space; space = startRow[next] - startRow[iRow]; number += numberInRow[iRow]; if ( space < number ) { if ( !getRowSpace ( iRow, number ) ) { goto BAD_PIVOT; } } // now do putThis = putBase; next = nextRow[iRow]; number = numberInRow[iRow]; CoinBigIndex end = startRow[iRow] + number; int saveIndex; saveIndex = indexColumn[startRow[next]]; //add in for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) { unsigned int test = *putThis; putThis += increment2; test = 1 - ( ( test >> bit ) & 1 ); indexColumn[end] = saveColumn[jColumn]; end += test; } indexColumn[startRow[next]] = saveIndex; markRow[iRow] = FAC_UNSET; number = end - startRow[iRow]; numberInRow[iRow] = number; deleteLink ( iRow ); addLink ( iRow, number ); } markRow[iPivotRow] = FAC_UNSET; //modify linked list for pivots deleteLink ( iPivotRow ); deleteLink ( iPivotColumn + numberRows_ ); totalElements_ += added; goodPivot= true; // **** UGLY UGLY UGLY } BAD_PIVOT: ; } #undef FAC_UNSET #endif