# ifndef CPPAD_ROSEN_34_INCLUDED # define CPPAD_ROSEN_34_INCLUDED /* -------------------------------------------------------------------------- CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-07 Bradley M. Bell CppAD is distributed under multiple licenses. This distribution is under the terms of the Common Public License Version 1.0. A copy of this license is included in the COPYING file of this distribution. Please visit http://www.coin-or.org/CppAD/ for information on other licenses. -------------------------------------------------------------------------- */ /* $begin Rosen34$$ $spell cppad.hpp bool xf templated const Rosenbrock CppAD xi ti tf Karp Rosen Shampine ind dep $$ $index Rosen34$$ $index ODE, Rosenbrock$$ $index Rosenbrock, ODE$$ $index solve, ODE$$ $index stiff, ODE$$ $index differential, equation$$ $index equation, differential$$ $section A 3rd and 4th Order Rosenbrock ODE Solver$$ $head Syntax$$ $syntax%# include %$$ $syntax%%xf% = Rosen34(%F%, %M%, %ti%, %tf%, %xi%) %$$ $syntax%%xf% = Rosen34(%F%, %M%, %ti%, %tf%, %xi%, %e%) %$$ $head Description$$ This is an embedded 3rd and 4th order Rosenbrock ODE solver (see Section 16.6 of $xref/Bib/Numerical Recipes/Numerical Recipes/$$ for a description of Rosenbrock ODE solvers). In particular, we use the formulas taken from page 100 of $xref/Bib/Shampine, L.F./Shampine, L.F./$$ (except that the fraction 98/108 has been correction to be 97/108). $pre $$ We use $latex n$$ for the size of the vector $italic xi$$. Let $latex \R$$ denote the real numbers and let $latex F : \R \times \R^n \rightarrow \R^n$$ be a smooth function. The return value $italic xf$$ contains a 5th order approximation for the value $latex X(tf)$$ where $latex X : [ti , tf] \rightarrow \R^n$$ is defined by the following initial value problem: $latex \[ \begin{array}{rcl} X(ti) & = & xi \\ X'(t) & = & F[t , X(t)] \end{array} \] $$ If your set of ordinary differential equations are not stiff an explicit method may be better (perhaps $xref/Runge45/$$.) $head Include$$ The file $code cppad/rosen_34.hpp$$ is included by $code cppad/cppad.hpp$$ but it can also be included separately with out the rest of the $code CppAD$$ routines. $head xf$$ The return value $italic xf$$ has the prototype $syntax% %Vector% %xf% %$$ and the size of $italic xf$$ is equal to $italic n$$ (see description of $xref/Rosen34/Vector/Vector/$$ below). $latex \[ X(tf) = xf + O( h^5 ) \] $$ where $latex h = (tf - ti) / M$$ is the step size. If $italic xf$$ contains not a number $cref/nan/$$, see the discussion of $cref/f/Rosen34/Fun/Nan/$$. $head Fun$$ The class $italic Fun$$ and the object $italic F$$ satisfy the prototype $syntax% %Fun% &%F% %$$ This must support the following set of calls $syntax% %F%.Ode(%t%, %x%, %f%) %F%.Ode_ind(%t%, %x%, %f_t%) %F%.Ode_dep(%t%, %x%, %f_x%) %$$ $subhead t$$ In all three cases, the argument $italic t$$ has prototype $syntax% const %Scalar% &%t% %$$ (see description of $xref/Rosen34/Scalar/Scalar/$$ below). $subhead x$$ In all three cases, the argument $italic x$$ has prototype $syntax% const %Vector% &%x% %$$ and has size $italic n$$ (see description of $xref/Rosen34/Vector/Vector/$$ below). $subhead f$$ The argument $italic f$$ to $syntax%%F%.Ode%$$ has prototype $syntax% %Vector% &%f% %$$ On input and output, $italic f$$ is a vector of size $italic n$$ and the input values of the elements of $italic f$$ do not matter. On output, $italic f$$ is set equal to $latex F(t, x)$$ (see $italic F(t, x)$$ in $xref/Rosen34/Description/Description/$$). $subhead f_t$$ The argument $italic f_t$$ to $syntax%%F%.Ode_ind%$$ has prototype $syntax% %Vector% &%f_t% %$$ On input and output, $italic f_t$$ is a vector of size $italic n$$ and the input values of the elements of $italic f_t$$ do not matter. On output, the $th i$$ element of $italic f_t$$ is set equal to $latex \partial_t F_i (t, x)$$ (see $italic F(t, x)$$ in $xref/Rosen34/Description/Description/$$). $subhead f_x$$ The argument $italic f_x$$ to $syntax%%F%.Ode_dep%$$ has prototype $syntax% %Vector% &%f_x% %$$ On input and output, $italic f_x$$ is a vector of size $syntax%%n%*%n%$$ and the input values of the elements of $italic f_x$$ do not matter. On output, the [$syntax%%i%*%n%+%j%$$] element of $italic f_x$$ is set equal to $latex \partial_{x(j)} F_i (t, x)$$ (see $italic F(t, x)$$ in $xref/Rosen34/Description/Description/$$). $subhead Nan$$ If any of the elements of $italic f$$, $italic f_t$$, or $italic f_x$$ have the value not a number $code nan$$, the routine $code Rosen34$$ returns with all the elements of $italic xf$$ and $italic e$$ equal to $code nan$$. $subhead Warning$$ The arguments $italic f$$, $italic f_t$$, and $italic f_x$$ must have a call by reference in their prototypes; i.e., do not forget the $code &$$ in the prototype for $italic f$$, $italic f_t$$ and $italic f_x$$. $subhead Optimization$$ Every call of the form $syntax% %F%.Ode_ind(%t%, %x%, %f_t%) %$$ is directly followed by a call of the form $syntax% %F%.Ode_dep(%t%, %x%, %f_x%) %$$ where the arguments $italic t$$ and $italic x$$ have not changed between calls. In many cases it is faster to compute the values of $italic f_t$$ and $italic f_x$$ together and then pass them back one at a time. $head M$$ The argument $italic M$$ has prototype $syntax% size_t %M% %$$ It specifies the number of steps to use when solving the differential equation. This must be greater than or equal one. The step size is given by $latex h = (tf - ti) / M$$, thus the larger $italic M$$, the more accurate the return value $italic xf$$ is as an approximation for $latex X(tf)$$. $head ti$$ The argument $italic ti$$ has prototype $syntax% const %Scalar% &%ti% %$$ (see description of $xref/Rosen34/Scalar/Scalar/$$ below). It specifies the initial time for $italic t$$ in the differential equation; i.e., the time corresponding to the value $italic xi$$. $head tf$$ The argument $italic tf$$ has prototype $syntax% const %Scalar% &%tf% %$$ It specifies the final time for $italic t$$ in the differential equation; i.e., the time corresponding to the value $italic xf$$. $head xi$$ The argument $italic xi$$ has the prototype $syntax% const %Vector% &%xi% %$$ and the size of $italic xi$$ is equal to $italic n$$. It specifies the value of $latex X(ti)$$ $head e$$ The argument $italic e$$ is optional and has the prototype $syntax% %Vector% &%e% %$$ If $italic e$$ is present, the size of $italic e$$ must be equal to $italic n$$. The input value of the elements of $italic e$$ does not matter. On output it contains an element by element estimated bound for the absolute value of the error in $italic xf$$ $latex \[ e = O( h^4 ) \] $$ where $latex h = (tf - ti) / M$$ is the step size. $head Scalar$$ The type $italic Scalar$$ must satisfy the conditions for a $xref/NumericType/$$ type. The routine $xref/CheckNumericType/$$ will generate an error message if this is not the case. In addition, the following operations must be defined for $italic Scalar$$ objects $italic a$$ and $italic b$$: $table $bold Operation$$ $cnext $bold Description$$ $rnext $syntax%%a% < %b%$$ $cnext less than operator (returns a $code bool$$ object) $tend $head Vector$$ The type $italic Vector$$ must be a $xref/SimpleVector/$$ class with $xref/SimpleVector/Elements of Specified Type/elements of type Scalar/$$. The routine $xref/CheckSimpleVector/$$ will generate an error message if this is not the case. $head Example$$ $children% example/rosen_34.cpp %$$ The file $xref/Rosen34.cpp/$$ contains an example and test a test of using this routine. It returns true if it succeeds and false otherwise. $head Source Code$$ The source code for this routine is in the file $code cppad/rosen_34.hpp$$. $end -------------------------------------------------------------------------- */ # include # include # include # include # include # include # include namespace CppAD { // BEGIN CppAD namespace template Vector Rosen34( Fun &F , size_t M , const Scalar &ti , const Scalar &tf , const Vector &xi ) { Vector e( xi.size() ); return Rosen34(F, M, ti, tf, xi, e); } template Vector Rosen34( Fun &F , size_t M , const Scalar &ti , const Scalar &tf , const Vector &xi , Vector &e ) { // check numeric type specifications CheckNumericType(); // check simple vector class specifications CheckSimpleVector(); // Parameters for Shampine's Rosenbrock method // are static to avoid recalculation on each call and // do not use Vector to avoid possible memory leak static Scalar a[3] = { Scalar(0), Scalar(1), Scalar(3) / Scalar(5) }; static Scalar b[2 * 2] = { Scalar(1), Scalar(0), Scalar(24) / Scalar(25), Scalar(3) / Scalar(25) }; static Scalar ct[4] = { Scalar(1) / Scalar(2), - Scalar(3) / Scalar(2), Scalar(121) / Scalar(50), Scalar(29) / Scalar(250) }; static Scalar cg[3 * 3] = { - Scalar(4), Scalar(0), Scalar(0), Scalar(186) / Scalar(25), Scalar(6) / Scalar(5), Scalar(0), - Scalar(56) / Scalar(125), - Scalar(27) / Scalar(125), - Scalar(1) / Scalar(5) }; static Scalar d3[3] = { Scalar(97) / Scalar(108), Scalar(11) / Scalar(72), Scalar(25) / Scalar(216) }; static Scalar d4[4] = { Scalar(19) / Scalar(18), Scalar(1) / Scalar(4), Scalar(25) / Scalar(216), Scalar(125) / Scalar(216) }; CPPAD_ASSERT_KNOWN( M >= 1, "Error in Rosen34: the number of steps is less than one" ); CPPAD_ASSERT_KNOWN( e.size() == xi.size(), "Error in Rosen34: size of e not equal to size of xi" ); size_t i, j, k, l, m; // indices size_t n = xi.size(); // number of components in X(t) Scalar ns = Scalar(double(M)); // number of steps as Scalar object Scalar h = (tf - ti) / ns; // step size Scalar zero = Scalar(0); // some constants Scalar one = Scalar(1); Scalar two = Scalar(2); // permutation vectors needed for LU factorization routine CppAD::vector ip(n), jp(n); // vectors used to store values returned by F Vector E(n * n), Eg(n), f_t(n); Vector g(n * 3), x3(n), x4(n), xf(n), ftmp(n), xtmp(n), nan_vec(n); // initialize e = 0, nan_vec = nan for(i = 0; i < n; i++) { e[i] = zero; nan_vec[i] = nan(zero); } xf = xi; // initialize solution for(m = 0; m < M; m++) { // time at beginning of this interval Scalar t = ti * (Scalar(int(M - m)) / ns) + tf * (Scalar(int(m)) / ns); // value of x at beginning of this interval x3 = x4 = xf; // evaluate partial derivatives at beginning of this interval F.Ode_ind(t, xf, f_t); F.Ode_dep(t, xf, E); // E = f_x if( hasnan(f_t) || hasnan(E) ) { e = nan_vec; return nan_vec; } // E = I - f_x * h / 2 for(i = 0; i < n; i++) { for(j = 0; j < n; j++) E[i * n + j] = - E[i * n + j] * h / two; E[i * n + i] += one; } // LU factor the matrix E int sign = LuFactor(ip, jp, E); CPPAD_ASSERT_KNOWN( sign != 0, "Error in Rosen34: I - f_x * h / 2 not invertible" ); // loop over integration steps for(k = 0; k < 3; k++) { // set location for next function evaluation xtmp = xf; for(l = 0; l < k; l++) { // loop over previous function evaluations Scalar bkl = b[(k-1)*2 + l]; for(i = 0; i < n; i++) { // loop over elements of x xtmp[i] += bkl * g[i*3 + l] * h; } } // ftmp = F(t + a[k] * h, xtmp) F.Ode(t + a[k] * h, xtmp, ftmp); if( hasnan(ftmp) ) { e = nan_vec; return nan_vec; } // Form Eg for this integration step for(i = 0; i < n; i++) Eg[i] = ftmp[i] + ct[k] * f_t[i] * h; for(l = 0; l < k; l++) { for(i = 0; i < n; i++) Eg[i] += cg[(k-1)*3 + l] * g[i*3 + l]; } // Solve the equation E * g = Eg LuInvert(ip, jp, E, Eg); // save solution and advance x3, x4 for(i = 0; i < n; i++) { g[i*3 + k] = Eg[i]; x3[i] += h * d3[k] * Eg[i]; x4[i] += h * d4[k] * Eg[i]; } } // Form Eg for last update to x4 only for(i = 0; i < n; i++) Eg[i] = ftmp[i] + ct[3] * f_t[i] * h; for(l = 0; l < 3; l++) { for(i = 0; i < n; i++) Eg[i] += cg[2*3 + l] * g[i*3 + l]; } // Solve the equation E * g = Eg LuInvert(ip, jp, E, Eg); // advance x4 and accumulate error bound for(i = 0; i < n; i++) { x4[i] += h * d4[3] * Eg[i]; // cant use abs because cppad.hpp may not be included Scalar diff = x4[i] - x3[i]; if( diff < zero ) e[i] -= diff; else e[i] += diff; } // advance xf for this step using x4 xf = x4; } return xf; } } // End CppAD namespace # endif