// Copyright (C) 2000, International Business Machines // Corporation and others. All Rights Reserved. #ifndef CoinIndexedVector_H #define CoinIndexedVector_H #if defined(_MSC_VER) // Turn off compiler warning about long names # pragma warning(disable:4786) #endif #include #ifndef CLP_NO_VECTOR #include "CoinPackedVectorBase.hpp" #endif #include "CoinSort.hpp" #include #ifndef COIN_FLOAT #define COIN_INDEXED_TINY_ELEMENT 1.0e-50 #define COIN_INDEXED_REALLY_TINY_ELEMENT 1.0e-100 #else #define COIN_INDEXED_TINY_ELEMENT 1.0e-35 #define COIN_INDEXED_REALLY_TINY_ELEMENT 1.0e-39 #endif /** Indexed Vector This stores values unpacked but apart from that is a bit like CoinPackedVector. It is designed to be lightweight in normal use. It now has a "packed" mode when it is even more like CoinPackedVector Indices array has capacity_ extra chars which are zeroed and can be used for any purpose - but must be re-zeroed Stores vector of indices and associated element values. Supports sorting of indices. Does not support negative indices. Does NOT support testing for duplicates *** getElements is no longer supported Here is a sample usage: @verbatim const int ne = 4; int inx[ne] = { 1, 4, 0, 2 } double el[ne] = { 10., 40., 1., 50. } // Create vector and set its valuex1 CoinIndexedVector r(ne,inx,el); // access as a full storage vector assert( r[ 0]==1. ); assert( r[ 1]==10.); assert( r[ 2]==50.); assert( r[ 3]==0. ); assert( r[ 4]==40.); // sort Elements in increasing order r.sortIncrElement(); // access each index and element assert( r.getIndices ()[0]== 0 ); assert( r.getIndices ()[1]== 1 ); assert( r.getIndices ()[2]== 4 ); assert( r.getIndices ()[3]== 2 ); // access as a full storage vector assert( r[ 0]==1. ); assert( r[ 1]==10.); assert( r[ 2]==50.); assert( r[ 3]==0. ); assert( r[ 4]==40.); // Tests for equality and equivalence CoinIndexedVector r1; r1=r; assert( r==r1 ); assert( r.equivalent(r1) ); r.sortIncrElement(); assert( r!=r1 ); assert( r.equivalent(r1) ); // Add indexed vectors. // Similarly for subtraction, multiplication, // and division. CoinIndexedVector add = r + r1; assert( add[0] == 1.+ 1. ); assert( add[1] == 10.+10. ); assert( add[2] == 50.+50. ); assert( add[3] == 0.+ 0. ); assert( add[4] == 40.+40. ); assert( r.sum() == 10.+40.+1.+50. ); @endverbatim */ class CoinIndexedVector { friend void CoinIndexedVectorUnitTest(); public: /**@name Get methods. */ //@{ /// Get the size inline int getNumElements() const { return nElements_; } /// Get indices of elements inline const int * getIndices() const { return indices_; } /// Get element values // ** No longer supported virtual const double * getElements() const ; /// Get indices of elements inline int * getIndices() { return indices_; } /** Get the vector as a dense vector. This is normal storage method. The user should not not delete [] this. */ inline double * denseVector() const { return elements_; } /// For very temporary use when user needs to borrow a dense vector inline void setDenseVector(double * array) { elements_ = array;} /// For very temporary use when user needs to borrow an index vector inline void setIndexVector(int * array) { indices_ = array;} /** Access the i'th element of the full storage vector. */ double & operator[](int i) const; //@} //------------------------------------------------------------------- // Set indices and elements //------------------------------------------------------------------- /**@name Set methods */ //@{ /// Set the size inline void setNumElements(int value) { nElements_ = value; if (!nElements_) packedMode_=false;} /// Reset the vector (as if were just created an empty vector). This leaves arrays! void clear(); /// Reset the vector (as if were just created an empty vector) void empty(); /** Assignment operator. */ CoinIndexedVector & operator=(const CoinIndexedVector &); #ifndef CLP_NO_VECTOR /** Assignment operator from a CoinPackedVectorBase.
NOTE: This assumes no duplicates */ CoinIndexedVector & operator=(const CoinPackedVectorBase & rhs); #endif /** Copy the contents of one vector into another. If multiplier is 1 It is the equivalent of = but if vectors are same size does not re-allocate memory just clears and copies */ void copy(const CoinIndexedVector & rhs, double multiplier=1.0); /** Borrow ownership of the arguments to this vector. Size is the length of the unpacked elements vector. */ void borrowVector(int size, int numberIndices, int* inds, double* elems); /** Return ownership of the arguments to this vector. State after is empty . */ void returnVector(); /** Set vector numberIndices, indices, and elements. NumberIndices is the length of both the indices and elements vectors. The indices and elements vectors are copied into this class instance's member data. Assumed to have no duplicates */ void setVector(int numberIndices, const int * inds, const double * elems); /** Set vector size, indices, and elements. Size is the length of the unpacked elements vector. The indices and elements vectors are copied into this class instance's member data. We do not check for duplicate indices */ void setVector(int size, int numberIndices, const int * inds, const double * elems); /** Elements set to have the same scalar value */ void setConstant(int size, const int * inds, double elems); /** Indices are not specified and are taken to be 0,1,...,size-1 */ void setFull(int size, const double * elems); /** Set an existing element in the indexed vector The first argument is the "index" into the elements() array */ void setElement(int index, double element); /// Insert an element into the vector void insert(int index, double element); /** Insert or if exists add an element into the vector Any resulting zero elements will be made tiny */ void add(int index, double element); /** Insert or if exists add an element into the vector Any resulting zero elements will be made tiny. This version does no checking */ inline void quickAdd(int index, double element) { if (elements_[index]) { element += elements_[index]; if (fabs(element)>= COIN_INDEXED_TINY_ELEMENT) { elements_[index] = element; } else { elements_[index] = 1.0e-100; } } else if (fabs(element)>= COIN_INDEXED_TINY_ELEMENT) { indices_[nElements_++] = index; assert (nElements_<=capacity_); elements_[index] = element; } } /** Makes nonzero tiny. This version does no checking */ inline void zero(int index) { if (elements_[index]) elements_[index] = 1.0e-100; } /** set all small values to zero and return number remaining - < tolerance => 0.0 */ int clean(double tolerance); /// Same but packs down int cleanAndPack(double tolerance); /// Same but packs down and is safe (i.e. if order is odd) int cleanAndPackSafe(double tolerance); /// Mark as packed inline void setPacked() { packedMode_ = true;} /// For debug check vector is clear i.e. no elements void checkClear(); /// For debug check vector is clean i.e. elements match indices void checkClean(); /// Scan dense region and set up indices (returns number found) int scan(); /** Scan dense region from start to < end and set up indices returns number found */ int scan(int start, int end); /** Scan dense region and set up indices (returns number found). Only ones >= tolerance */ int scan(double tolerance); /** Scan dense region from start to < end and set up indices returns number found. Only >= tolerance */ int scan(int start, int end, double tolerance); /// These are same but pack down int scanAndPack(); int scanAndPack(int start, int end); int scanAndPack(double tolerance); int scanAndPack(int start, int end, double tolerance); /// Create packed array void createPacked(int number, const int * indices, const double * elements); /// This is mainly for testing - goes from packed to indexed void expand(); #ifndef CLP_NO_VECTOR /// Append a CoinPackedVector to the end void append(const CoinPackedVectorBase & caboose); #endif /// Append a CoinIndexedVector to the end void append(const CoinIndexedVector & caboose); /// Swap values in positions i and j of indices and elements void swap(int i, int j); /// Throw away all entries in rows >= newSize void truncate(int newSize); /// Print out void print() const; //@} /**@name Arithmetic operators. */ //@{ /// add value to every entry void operator+=(double value); /// subtract value from every entry void operator-=(double value); /// multiply every entry by value void operator*=(double value); /// divide every entry by value (** 0 vanishes) void operator/=(double value); //@} /**@name Comparison operators on two indexed vectors */ //@{ #ifndef CLP_NO_VECTOR /** Equal. Returns true if vectors have same length and corresponding element of each vector is equal. */ bool operator==(const CoinPackedVectorBase & rhs) const; /// Not equal bool operator!=(const CoinPackedVectorBase & rhs) const; #endif /** Equal. Returns true if vectors have same length and corresponding element of each vector is equal. */ bool operator==(const CoinIndexedVector & rhs) const; /// Not equal bool operator!=(const CoinIndexedVector & rhs) const; //@} /**@name Index methods */ //@{ /// Get value of maximum index int getMaxIndex() const; /// Get value of minimum index int getMinIndex() const; //@} /**@name Sorting */ //@{ /** Sort the indexed storage vector (increasing indices). */ void sort() { std::sort(indices_,indices_+nElements_); } void sortIncrIndex() { std::sort(indices_,indices_+nElements_); } void sortDecrIndex(); void sortIncrElement(); void sortDecrElement(); //@} //############################################################################# /**@name Arithmetic operators on packed vectors. NOTE: These methods operate on those positions where at least one of the arguments has a value listed. At those positions the appropriate operation is executed, Otherwise the result of the operation is considered 0.
NOTE 2: Because these methods return an object (they can't return a reference, though they could return a pointer...) they are very inefficient... */ //@{ /// Return the sum of two indexed vectors CoinIndexedVector operator+( const CoinIndexedVector& op2); /// Return the difference of two indexed vectors CoinIndexedVector operator-( const CoinIndexedVector& op2); /// Return the element-wise product of two indexed vectors CoinIndexedVector operator*( const CoinIndexedVector& op2); /// Return the element-wise ratio of two indexed vectors (0.0/0.0 => 0.0) (0 vanishes) CoinIndexedVector operator/( const CoinIndexedVector& op2); /// The sum of two indexed vectors void operator+=(const CoinIndexedVector& op2); /// The difference of two indexed vectors void operator-=( const CoinIndexedVector& op2); /// The element-wise product of two indexed vectors void operator*=(const CoinIndexedVector& op2); /// The element-wise ratio of two indexed vectors (0.0/0.0 => 0.0) (0 vanishes) void operator/=(const CoinIndexedVector& op2); //@} /**@name Memory usage */ //@{ /** Reserve space. If one knows the eventual size of the indexed vector, then it may be more efficient to reserve the space. */ void reserve(int n); /** capacity returns the size which could be accomodated without having to reallocate storage. */ int capacity() const { return capacity_; } /// Sets packed mode inline void setPackedMode(bool yesNo) { packedMode_=yesNo;} /// Gets packed mode inline bool packedMode() const { return packedMode_;} //@} /**@name Constructors and destructors */ //@{ /** Default constructor */ CoinIndexedVector(); /** Alternate Constructors - set elements to vector of doubles */ CoinIndexedVector(int size, const int * inds, const double * elems); /** Alternate Constructors - set elements to same scalar value */ CoinIndexedVector(int size, const int * inds, double element); /** Alternate Constructors - construct full storage with indices 0 through size-1. */ CoinIndexedVector(int size, const double * elements); /** Alternate Constructors - just size */ CoinIndexedVector(int size); /** Copy constructor. */ CoinIndexedVector(const CoinIndexedVector &); /** Copy constructor.2 */ CoinIndexedVector(const CoinIndexedVector *); #ifndef CLP_NO_VECTOR /** Copy constructor from a PackedVectorBase. */ CoinIndexedVector(const CoinPackedVectorBase & rhs); #endif /** Destructor */ ~CoinIndexedVector (); //@} private: /**@name Private methods */ //@{ /// Copy internal data void gutsOfSetVector(int size, const int * inds, const double * elems); void gutsOfSetVector(int size, int numberIndices, const int * inds, const double * elems); void gutsOfSetPackedVector(int size, int numberIndices, const int * inds, const double * elems); /// void gutsOfSetConstant(int size, const int * inds, double value); //@} private: /**@name Private member data */ //@{ /// Vector indices int * indices_; ///Vector elements double * elements_; /// Size of indices and packed elements vectors int nElements_; /// Amount of memory allocated for indices_, and elements_. int capacity_; /// Offset to get where new allocated array int offset_; /// If true then is operating in packed mode bool packedMode_; //@} }; //############################################################################# /** A function that tests the methods in the CoinIndexedVector class. The only reason for it not to be a member method is that this way it doesn't have to be compiled into the library. And that's a gain, because the library should be compiled with optimization on, but this method should be compiled with debugging. */ void CoinIndexedVectorUnitTest(); /** Pointer with length in bytes This has a pointer to an array and the number of bytes in array. If number of bytes==-1 then CoinConditionalNew deletes existing pointer and returns new pointer of correct size (and number bytes still -1). CoinConditionalDelete deletes existing pointer and NULLs it. So behavior is as normal (apart from New deleting pointer which will have no effect with good coding practices. If number of bytes >=0 then CoinConditionalNew just returns existing pointer if array big enough otherwise deletes existing pointer, allocates array with spare 1%+64 bytes and updates number of bytes CoinConditionalDelete sets number of bytes = -size-2 and then array returns NULL */ class CoinArrayWithLength { public: /**@name Get methods. */ //@{ /// Get the size inline int getSize() const { return size_; } /// See if persistence already on inline bool switchedOn() const { return size_!=-1; } /// Get the capacity inline int getCapacity() const { return (size_>-2) ? size_ : (-size_)-2; } /// Set the capacity to >=0 if <=-2 inline void setCapacity() { if (size_<=-2) size_ = (-size_)-2; } /// Get Array inline const char * array() const { return (size_>-2) ? array_ : NULL; } //@} /**@name Set methods */ //@{ /// Set the size inline void setSize(int value) { size_ = value; } /// Set the size to -1 inline void switchOff() { size_ = -1; } /// Does what is needed to set persistence void setPersistence(int flag,int currentLength); /// Zero out array void clear(); /// Swaps memory between two members void swap(CoinArrayWithLength & other); /// Extend a persistent array keeping data (size in bytes) void extend(int newSize); //@} /**@name Condition methods */ //@{ /// Conditionally gets new array char * conditionalNew(long sizeWanted); /// Conditionally deletes void conditionalDelete(); //@} /**@name Constructors and destructors */ //@{ /** Default constructor - NULL*/ inline CoinArrayWithLength() { array_=NULL; size_=-1;} /** Alternate Constructor - length in bytes - size_ -1 */ inline CoinArrayWithLength(int size) { array_=new char [size]; size_=-1;} /** Alternate Constructor - length in bytes mode - 0 size_ set to size 1 size_ set to size and zeroed */ inline CoinArrayWithLength(int size, int mode) { array_ = new char [size]; if (mode) memset(array_,0,size);size_=size;} /** Copy constructor. */ CoinArrayWithLength(const CoinArrayWithLength & rhs); /** Copy constructor.2 */ CoinArrayWithLength(const CoinArrayWithLength * rhs); /** Assignment operator. */ CoinArrayWithLength& operator=(const CoinArrayWithLength & rhs); /** Assignment with length (if -1 use internal length) */ void copy(const CoinArrayWithLength & rhs, int numberBytes=-1); /** Assignment with length - does not copy */ void allocate(const CoinArrayWithLength & rhs, int numberBytes); /** Destructor */ inline ~CoinArrayWithLength () { delete [] array_; } // was { free(array_); } //@} protected: /**@name Private member data */ //@{ /// Array char * array_; /// Size of array in bytes int size_; //@} }; /// double * version class CoinDoubleArrayWithLength : public CoinArrayWithLength { public: /**@name Get methods. */ //@{ /// Get the size inline int getSize() const { return size_/sizeof(double); } /// Get Array inline double * array() const { return (double *) ((size_>-2) ? array_ : NULL); } //@} /**@name Set methods */ //@{ /// Set the size inline void setSize(int value) { size_ = value*sizeof(double); } //@} /**@name Condition methods */ //@{ /// Conditionally gets new array inline double * conditionalNew(int sizeWanted) { return (double *) CoinArrayWithLength::conditionalNew(sizeWanted>=0 ? (long) (((long) sizeWanted)*sizeof(double)) : -1); } //@} /**@name Constructors and destructors */ //@{ /** Default constructor - NULL*/ inline CoinDoubleArrayWithLength() { array_=NULL; size_=-1;} /** Alternate Constructor - length in bytes - size_ -1 */ inline CoinDoubleArrayWithLength(int size) { array_=new char [size*sizeof(double)]; size_=-1;} /** Alternate Constructor - length in bytes mode - 0 size_ set to size 1 size_ set to size and zeroed */ inline CoinDoubleArrayWithLength(int size, int mode) : CoinArrayWithLength(size*sizeof(double),mode) {} /** Copy constructor. */ inline CoinDoubleArrayWithLength(const CoinDoubleArrayWithLength & rhs) : CoinArrayWithLength(rhs) {} /** Copy constructor.2 */ inline CoinDoubleArrayWithLength(const CoinDoubleArrayWithLength * rhs) : CoinArrayWithLength(rhs) {} /** Assignment operator. */ inline CoinDoubleArrayWithLength& operator=(const CoinDoubleArrayWithLength & rhs) { CoinArrayWithLength::operator=(rhs); return *this;} //@} }; /// int * version class CoinIntArrayWithLength : public CoinArrayWithLength { public: /**@name Get methods. */ //@{ /// Get the size inline int getSize() const { return size_/sizeof(int); } /// Get Array inline int * array() const { return (int *) ((size_>-2) ? array_ : NULL); } //@} /**@name Set methods */ //@{ /// Set the size inline void setSize(int value) { size_ = value*sizeof(int); } //@} /**@name Condition methods */ //@{ /// Conditionally gets new array inline int * conditionalNew(int sizeWanted) { return (int *) CoinArrayWithLength::conditionalNew(sizeWanted>=0 ? (long) (((long) sizeWanted)*sizeof(int)) : -1); } //@} /**@name Constructors and destructors */ //@{ /** Default constructor - NULL*/ inline CoinIntArrayWithLength() { array_=NULL; size_=-1;} /** Alternate Constructor - length in bytes - size_ -1 */ inline CoinIntArrayWithLength(int size) { array_=new char [size*sizeof(int)]; size_=-1;} /** Alternate Constructor - length in bytes mode - 0 size_ set to size 1 size_ set to size and zeroed */ inline CoinIntArrayWithLength(int size, int mode) : CoinArrayWithLength(size*sizeof(int),mode) {} /** Copy constructor. */ inline CoinIntArrayWithLength(const CoinIntArrayWithLength & rhs) : CoinArrayWithLength(rhs) {} /** Copy constructor.2 */ inline CoinIntArrayWithLength(const CoinIntArrayWithLength * rhs) : CoinArrayWithLength(rhs) {} /** Assignment operator. */ inline CoinIntArrayWithLength& operator=(const CoinIntArrayWithLength & rhs) { CoinArrayWithLength::operator=(rhs); return *this;} //@} }; /// CoinBigIndex * version class CoinBigIndexArrayWithLength : public CoinArrayWithLength { public: /**@name Get methods. */ //@{ /// Get the size inline int getSize() const { return size_/sizeof(CoinBigIndex); } /// Get Array inline CoinBigIndex * array() const { return (CoinBigIndex *) ((size_>-2) ? array_ : NULL); } //@} /**@name Set methods */ //@{ /// Set the size inline void setSize(int value) { size_ = value*sizeof(CoinBigIndex); } //@} /**@name Condition methods */ //@{ /// Conditionally gets new array inline CoinBigIndex * conditionalNew(int sizeWanted) { return (CoinBigIndex *) CoinArrayWithLength::conditionalNew(sizeWanted>=0 ? (long) (((long) sizeWanted)*sizeof(CoinBigIndex)) : -1); } //@} /**@name Constructors and destructors */ //@{ /** Default constructor - NULL*/ inline CoinBigIndexArrayWithLength() { array_=NULL; size_=-1;} /** Alternate Constructor - length in bytes - size_ -1 */ inline CoinBigIndexArrayWithLength(int size) { array_=new char [size*sizeof(CoinBigIndex)]; size_=-1;} /** Alternate Constructor - length in bytes mode - 0 size_ set to size 1 size_ set to size and zeroed */ inline CoinBigIndexArrayWithLength(int size, int mode) : CoinArrayWithLength(size*sizeof(CoinBigIndex),mode) {} /** Copy constructor. */ inline CoinBigIndexArrayWithLength(const CoinBigIndexArrayWithLength & rhs) : CoinArrayWithLength(rhs) {} /** Copy constructor.2 */ inline CoinBigIndexArrayWithLength(const CoinBigIndexArrayWithLength * rhs) : CoinArrayWithLength(rhs) {} /** Assignment operator. */ inline CoinBigIndexArrayWithLength& operator=(const CoinBigIndexArrayWithLength & rhs) { CoinArrayWithLength::operator=(rhs); return *this;} //@} }; /// unsigned int * version class CoinUnsignedIntArrayWithLength : public CoinArrayWithLength { public: /**@name Get methods. */ //@{ /// Get the size inline int getSize() const { return size_/sizeof(unsigned int); } /// Get Array inline unsigned int * array() const { return (unsigned int *) ((size_>-2) ? array_ : NULL); } //@} /**@name Set methods */ //@{ /// Set the size inline void setSize(int value) { size_ = value*sizeof(unsigned int); } //@} /**@name Condition methods */ //@{ /// Conditionally gets new array inline unsigned int * conditionalNew(int sizeWanted) { return (unsigned int *) CoinArrayWithLength::conditionalNew(sizeWanted>=0 ? (long) (((long) sizeWanted)*sizeof(unsigned int)) : -1); } //@} /**@name Constructors and destructors */ //@{ /** Default constructor - NULL*/ inline CoinUnsignedIntArrayWithLength() { array_=NULL; size_=-1;} /** Alternate Constructor - length in bytes - size_ -1 */ inline CoinUnsignedIntArrayWithLength(int size) { array_=new char [size*sizeof(unsigned int)]; size_=-1;} /** Alternate Constructor - length in bytes mode - 0 size_ set to size 1 size_ set to size and zeroed */ inline CoinUnsignedIntArrayWithLength(int size, int mode) : CoinArrayWithLength(size*sizeof(unsigned int),mode) {} /** Copy constructor. */ inline CoinUnsignedIntArrayWithLength(const CoinUnsignedIntArrayWithLength & rhs) : CoinArrayWithLength(rhs) {} /** Copy constructor.2 */ inline CoinUnsignedIntArrayWithLength(const CoinUnsignedIntArrayWithLength * rhs) : CoinArrayWithLength(rhs) {} /** Assignment operator. */ inline CoinUnsignedIntArrayWithLength& operator=(const CoinUnsignedIntArrayWithLength & rhs) { CoinArrayWithLength::operator=(rhs); return *this;} //@} }; #endif