# ifndef CPPAD_REV_SPARSE_HES_INCLUDED # define CPPAD_REV_SPARSE_HES_INCLUDED /* -------------------------------------------------------------------------- CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-08 Bradley M. Bell CppAD is distributed under multiple licenses. This distribution is under the terms of the Common Public License Version 1.0. A copy of this license is included in the COPYING file of this distribution. Please visit http://www.coin-or.org/CppAD/ for information on other licenses. -------------------------------------------------------------------------- */ /* $begin RevSparseHes$$ $spell VecAD Jacobian Jac Hessian Hes const Bool Dep proportional var $$ $section Hessian Sparsity Pattern: Reverse Mode$$ $index RevSparseHes$$ $index reverse, sparse Hessian$$ $index sparse, reverse Hessian$$ $index pattern, reverse Hessian$$ $head Syntax$$ $syntax%%h% = %f%.RevSparseHes(%q%, %s%)%$$ $pre $$ $head Purpose$$ We use $latex F : B^n \rightarrow B^m$$ to denote the $xref/glossary/AD Function/AD function/$$ corresponding to $italic f$$. For a fixed $latex n \times q$$ matrix $latex R$$ and a fixed $latex 1 \times m$$ matrix $latex S$$, the second partial of $latex S * F[ x + R * u ]$$ with respect to $latex u$$ at $latex u = 0$$ and with respect to x $latex \[ H(x) = R^T * (S * F)^{(2)} ( x ) \] $$ where $latex (S * F)^{(2)} (x)$$ is the Hessian of the scalar valued function $latex S * F (x)$$. Given a $xref/glossary/Sparsity Pattern/sparsity pattern/$$ for $latex R$$ and $latex S$$, $code RevSparseHes$$ returns a sparsity pattern for the $latex H(x)$$. $head f$$ The object $italic f$$ has prototype $syntax% const ADFun<%Base%> %f% %$$ $head x$$ If no $xref/VecAD/$$ objects are used by the AD of $italic Base$$ $xref/glossary/Operation/Sequence/operation sequence/1/$$ stored in $italic f$$, the sparsity pattern is valid for all values $latex x \in B^n$$. $pre $$ If $xref/SeqProperty/use_VecAD/f.use_VecAD/$$ is true, the sparsity patter is only valid for the value of $italic x$$ in the previous $xref/ForwardZero//zero order forward mode/$$ call $syntax% %f%.Forward(0, %x%) %$$ If there is no previous zero order forward mode call using $italic f$$, the value of the $xref/Independent//independent/$$ variables during the recording of the AD sequence of operations is used for $italic x$$. $head q$$ The argument $italic q$$ has prototype $syntax% size_t %q% %$$ It specifies the number of columns in the Jacobian $latex J(x)$$. It must be the same value as in the previous $xref/ForSparseJac/$$ call $syntax% %f%.ForSparseJac(%q%, %r%) %$$ Note that the memory required for the calculation is proportional to $latex q$$ times the total number of variables in the AD operation sequence corresponding to $italic f$$ ($xref/SeqProperty/size_var/f.size_var/$$). $head r$$ The argument $italic r$$ in the previous call $syntax% %f%.ForSparseJac(%q%, %r%) %$$ is a sparsity pattern for the matrix $latex R$$ above; i.e., for $latex i = 0 , \ldots , n-1$$ and $latex j = 0 , \ldots , q-1$$. $latex \[ R_{i,j} \neq 0 ; \Rightarrow \; r [ i * q + j ] = {\rm true} \] $$ $head s$$ The argument $italic s$$ has prototype $syntax% const %Vector% &%s% %$$ (see $xref/RevSparseHes/Vector/Vector/$$ below) and its size is $latex m$$. It specifies a $xref/glossary/Sparsity Pattern/sparsity pattern/$$ for the matrix $italic S$$ as follows: for $latex j = 0 , \ldots , m-1$$. $latex \[ S_{0,j} \neq 0 ; \Rightarrow \; s [ j ] = {\rm true} \] $$ $head h$$ The result $italic h$$ has prototype $syntax% %Vector% &%h% %$$ (see $xref/RevSparseHes/Vector/Vector/$$ below) and its size is $latex q * n$$, It specifies a $xref/glossary/Sparsity Pattern/sparsity pattern/$$ for the matrix $latex H(x)$$ as follows: for $latex x \in B^n$$, for $latex i = 0 , \ldots , q-1$$, and $latex j = 0 , \ldots , n-1$$ $latex \[ H(x)_{i,j} \neq 0 ; \Rightarrow \; h [ i * n + j ] = {\rm true} \] $$ $head Vector$$ The type $italic Vector$$ must be a $xref/SimpleVector/$$ class with $xref/SimpleVector/Elements of Specified Type/elements of type bool/$$. The routine $xref/CheckSimpleVector/$$ will generate an error message if this is not the case. In order to save memory, you may want to use a class that packs multiple elements into one storage location; for example, $xref/CppAD_vector/vectorBool/vectorBool/$$. $head Entire Sparsity Pattern$$ Suppose that $latex q = n$$ and $latex R$$ is the $latex n \times n$$ identity matrix, If follows that $latex \[ r [ i * q + j ] = \left\{ \begin{array}{ll} {\rm true} & {\rm if} \; i = j \\ {\rm false} & {\rm otherwise} \end{array} \right. \] $$ is an efficient sparsity pattern for $latex R$$; i.e., the choice for $italic r$$ has as few true values as possible. Further suppose that the $latex S$$ is the $th k$$ $xref/glossary/Elementary Vector/elementary vector/$$ If follows that $latex \[ s [ j ] = \left\{ \begin{array}{ll} {\rm true} & {\rm if} \; j = k \\ {\rm false} & {\rm otherwise} \end{array} \right. \] $$ is an efficient sparsity pattern for $latex S$$. In the case defined above, the result $italic h$$ corresponds to a sparsity pattern for the Hessian $latex F_k^{(2)} (x)$$. $head Example$$ $children% example/rev_sparse_hes.cpp %$$ The file $xref/RevSparseHes.cpp/$$ contains an example and test of this operation. It returns true if it succeeds and false otherwise. $end ----------------------------------------------------------------------------- */ # include // BEGIN CppAD namespace namespace CppAD { template template Vector ADFun::RevSparseHes(size_t q, const Vector &s) const { // type used to pack bits (must support standard bit operations) typedef size_t Pack; // temporary indices size_t i, j, k, p; // check Vector is Simple Vector class with bool elements CheckSimpleVector(); // range and domain dimensions for F size_t m = dep_taddr_.size(); size_t n = ind_taddr_.size(); CPPAD_ASSERT_KNOWN( q > 0, "RevSparseHes: q (first argument) is not greater than zero" ); CPPAD_ASSERT_KNOWN( q == for_jac_bit_dim_, "RevSparseHes: q (first argument) is not equal to its value" " in the previous call to ForSparseJac with this ADFun object." ); CPPAD_ASSERT_KNOWN( s.size() == m, "RevSparseHes: s (third argument) length is not equal to\n" "range dimension for ADFun object." ); // number of packed values per variable on the tape size_t npv = 1 + (q - 1) / sizeof(Pack); CPPAD_ASSERT_UNKNOWN( npv <= for_jac_col_dim_ ); // array that will hold packed reverse Jacobian values Pack *RevJac = CPPAD_NULL; RevJac = CPPAD_TRACK_NEW_VEC(total_num_var_, RevJac); // array that will hold packed reverse Hessain values Pack *RevHes = CPPAD_NULL; RevHes = CPPAD_TRACK_NEW_VEC(total_num_var_ * npv, RevHes); // update maximum memory requirement // memoryMax = std::max( memoryMax, // Memory() + total_num_var_ * (npv + 1) * sizeof(Pack) // ); // initialize entire RevHes and RevJac matrix to false for(i = 0; i < total_num_var_; i++) { RevJac[i] = 0; for(k = 0; k < npv; k++) RevHes[ i * npv + k ] = 0; } for(i = 0; i < m; i++) { CPPAD_ASSERT_UNKNOWN( dep_taddr_[i] < total_num_var_ ); if( s[i] ) { // set all the bits to true RevJac[ dep_taddr_[i] ] = ~ Pack(0); } } // comput the reverse mode Jacobian sparsity RevJacSweep(1, total_num_var_, &play_, taylor_col_dim_, taylor_, RevJac); // compute the Hessian sparsity patterns RevHesSweep( npv, total_num_var_, &play_, taylor_col_dim_, taylor_, for_jac_, RevJac, RevHes ); // return values corresponding to independent variables Pack mask; Vector h(n * q); // j is index corresponding to reverse mode martial for(j = 0; j < n; j++) { CPPAD_ASSERT_UNKNOWN( ind_taddr_[j] < total_num_var_ ); // ind_taddr_[j] is operator taddr for j-th independent variable CPPAD_ASSERT_UNKNOWN( play_.GetOp( ind_taddr_[j] ) == InvOp ); // i is index corresponding to forward mode partial for(i = 0; i < q; i++) { k = i / sizeof(Pack); p = i - k * sizeof(Pack); mask = Pack(1) << p; mask &= RevHes[ ind_taddr_[j] * npv + k ]; h[ i * n + j ] = (mask != 0); } } // free memory used for the calculation CPPAD_TRACK_DEL_VEC(RevJac); CPPAD_TRACK_DEL_VEC(RevHes); return h; } } // END CppAD namespace # endif