// Copyright (C) 2004, International Business Machines // Corporation and others. All Rights Reserved. #ifndef CbcBranchLotsize_H #define CbcBranchLotsize_H #include "CbcBranchBase.hpp" /** Lotsize class */ class CbcLotsize : public CbcObject { public: // Default Constructor CbcLotsize (); /* Useful constructor - passed model index. Also passed valid values - if range then pairs */ CbcLotsize (CbcModel * model, int iColumn, int numberPoints, const double * points, bool range=false); // Copy constructor CbcLotsize ( const CbcLotsize &); /// Clone virtual CbcObject * clone() const; // Assignment operator CbcLotsize & operator=( const CbcLotsize& rhs); // Destructor ~CbcLotsize (); using CbcObject::infeasibility ; /// Infeasibility - large is 0.5 virtual double infeasibility(int & preferredWay) const; using CbcObject::feasibleRegion ; /** Set bounds to contain the current solution. More precisely, for the variable associated with this object, take the value given in the current solution, force it within the current bounds if required, then set the bounds to fix the variable at the integer nearest the solution value. */ virtual void feasibleRegion(); using CbcObject::createBranch ; /// Creates a branching object virtual CbcBranchingObject * createBranch(int way) ; /** \brief Given a valid solution (with reduced costs, etc.), return a branching object which would give a new feasible point in the good direction. The preferred branching object will force the variable to be +/-1 from its current value, depending on the reduced cost and objective sense. If movement in the direction which improves the objective is impossible due to bounds on the variable, the branching object will move in the other direction. If no movement is possible, the method returns NULL. Only the bounds on this variable are considered when determining if the new point is feasible. */ virtual CbcBranchingObject * preferredNewFeasible() const; /** \brief Given a valid solution (with reduced costs, etc.), return a branching object which would give a new feasible point in a bad direction. As for preferredNewFeasible(), but the preferred branching object will force movement in a direction that degrades the objective. */ virtual CbcBranchingObject * notPreferredNewFeasible() const ; /** Reset original upper and lower bound values from the solver. Handy for updating bounds held in this object after bounds held in the solver have been tightened. */ virtual void resetBounds(const OsiSolverInterface * solver); /** Finds range of interest so value is feasible in range range_ or infeasible between hi[range_] and lo[range_+1]. Returns true if feasible. */ bool findRange(double value) const; /** Returns floor and ceiling */ virtual void floorCeiling(double & floorLotsize, double & ceilingLotsize, double value, double tolerance) const; /// Model column number inline int modelSequence() const {return columnNumber_;} /// Set model column number inline void setModelSequence(int value) {columnNumber_ = value;} /** Column number if single column object -1 otherwise, so returns >= 0 Used by heuristics */ virtual int columnNumber() const; /// Original bounds inline double originalLowerBound() const { return bound_[0];} inline double originalUpperBound() const { return bound_[rangeType_*numberRanges_-1];} /// Type - 1 points, 2 ranges inline int rangeType() const { return rangeType_;} /// Number of points inline int numberRanges() const { return numberRanges_;} /// Ranges inline double * bound() const { return bound_;} /** \brief Return true if object can take part in normal heuristics */ virtual bool canDoHeuristics() const {return false;} private: /// Just for debug (CBC_PRINT defined in CbcBranchLotsize.cpp) void printLotsize(double value,bool condition,int type) const; private: /// data /// Column number in model int columnNumber_; /// Type - 1 points, 2 ranges int rangeType_; /// Number of points int numberRanges_; // largest gap double largestGap_; /// Ranges double * bound_; /// Current range mutable int range_; }; /** Lotsize branching object This object can specify a two-way branch on an integer variable. For each arm of the branch, the upper and lower bounds on the variable can be independently specified. Variable_ holds the index of the integer variable in the integerVariable_ array of the model. */ class CbcLotsizeBranchingObject : public CbcBranchingObject { public: /// Default constructor CbcLotsizeBranchingObject (); /** Create a lotsize floor/ceiling branch object Specifies a simple two-way branch. Let \p value = x*. One arm of the branch will be is lb <= x <= valid range below(x*), the other valid range above(x*) <= x <= ub. Specify way = -1 to set the object state to perform the down arm first, way = 1 for the up arm. */ CbcLotsizeBranchingObject (CbcModel *model, int variable, int way , double value,const CbcLotsize * lotsize) ; /** Create a degenerate branch object Specifies a `one-way branch'. Calling branch() for this object will always result in lowerValue <= x <= upperValue. Used to fix in valid range */ CbcLotsizeBranchingObject (CbcModel *model, int variable, int way, double lowerValue, double upperValue) ; /// Copy constructor CbcLotsizeBranchingObject ( const CbcLotsizeBranchingObject &); /// Assignment operator CbcLotsizeBranchingObject & operator= (const CbcLotsizeBranchingObject& rhs); /// Clone virtual CbcBranchingObject * clone() const; /// Destructor virtual ~CbcLotsizeBranchingObject (); using CbcBranchingObject::branch ; /** \brief Sets the bounds for the variable according to the current arm of the branch and advances the object state to the next arm. */ virtual double branch(); #if 0 // No need to override. Default works fine. /** Reset every information so that the branching object appears to point to the previous child. This method does not need to modify anything in any solver. */ virtual void previousBranch(); #endif using CbcBranchingObject::print ; /** \brief Print something about branch - only if log level high */ virtual void print(); /** Return the type (an integer identifier) of \c this */ virtual int type() const { return 300; } // LL: compareOriginalObject can be inherited from the CbcBranchingObject // since variable_ uniquely defines the lot sizing object. /** Compare the \c this with \c brObj. \c this and \c brObj must be os the same type and must have the same original object, but they may have different feasible regions. Return the appropriate CbcRangeCompare value (first argument being the sub/superset if that's the case). In case of overlap (and if \c replaceIfOverlap is true) replace the current branching object with one whose feasible region is the overlap. */ virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject* brObj, const bool replaceIfOverlap = false); protected: /// Lower [0] and upper [1] bounds for the down arm (way_ = -1) double down_[2]; /// Lower [0] and upper [1] bounds for the up arm (way_ = 1) double up_[2]; }; #endif