# ifndef CPPAD_ERF_INCLUDED # define CPPAD_ERF_INCLUDED /* -------------------------------------------------------------------------- CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-07 Bradley M. Bell CppAD is distributed under multiple licenses. This distribution is under the terms of the Common Public License Version 1.0. A copy of this license is included in the COPYING file of this distribution. Please visit http://www.coin-or.org/CppAD/ for information on other licenses. -------------------------------------------------------------------------- */ /* ------------------------------------------------------------------------------- $begin erf$$ $section The AD Error Function$$ $spell Cpp namespace Vec erf const $$ $index erf, AD function$$ $index error, AD function$$ $index function, AD error$$ $head Syntax$$ $syntax%%y% = erf(%x%)%$$ $head Description$$ Returns the value of the error function which is defined by $latex \[ {\rm erf} (x) = \frac{2}{ \sqrt{\pi} } \int_0^x \exp( - t * t ) \; {\bf d} t \] $$ $head Base$$ A definition of $code erf$$ for arguments of type $code float$$ and $code double$$ is included in the $code CppAD$$ namespace (the corresponding results has the same type as the arguments). The type $italic Base$$ can be any type in the $cref/AD levels above/glossary/AD Levels Above Base/$$ above $code float$$ or $code double$$. $head x$$ The argument $italic x$$ has prototype $syntax% const AD<%Base%> &%x% const VecAD<%Base%>::reference &%x% %$$ $head y$$ The result $italic y$$ has prototype $syntax% AD<%Base%> %y% %$$ $head Operation Sequence$$ The AD of $italic Base$$ operation sequence used to calculate $italic y$$ is $xref/glossary/Operation/Independent/independent/1/$$ of $italic x$$. $head Example$$ $children% example/erf.cpp %$$ The file $xref/Erf.cpp/$$ contains an example and test of this function. It returns true if it succeeds and false otherwise. $end ------------------------------------------------------------------------------- */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== * * * double erf(double x) * double erfc(double x) * x * 2 |\ * erf(x) = --------- | exp(-t*t)dt * sqrt(pi) \| * 0 * * erfc(x) = 1-erf(x) * Note that * erf(-x) = -erf(x) * erfc(-x) = 2 - erfc(x) * * Method: * 1. For |x| in [0, 0.84375] * erf(x) = x + x*R(x^2) * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] * where R = P/Q where P is an odd poly of degree 8 and * Q is an odd poly of degree 10. * -57.90 * | R - (erf(x)-x)/x | <= 2 * * * Remark. The formula is derived by noting * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) * and that * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 * is close to one. The interval is chosen because the fix * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is * near 0.6174), and by some experiment, 0.84375 is chosen to * guarantee the error is less than one ulp for erf. * * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and * c = 0.84506291151 rounded to single (24 bits) * erf(x) = sign(x) * (c + P1(s)/Q1(s)) * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 * 1+(c+P1(s)/Q1(s)) if x < 0 * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 * Remark: here we use the taylor series expansion at x=1. * erf(1+s) = erf(1) + s*Poly(s) * = 0.845.. + P1(s)/Q1(s) * That is, we use rational approximation to approximate * erf(1+s) - (c = (single)0.84506291151) * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] * where * P1(s) = degree 6 poly in s * Q1(s) = degree 6 poly in s * * 3. For x in [1.25,1/0.35(~2.857143)], * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) * erf(x) = 1 - erfc(x) * where * R1(z) = degree 7 poly in z, (z=1/x^2) * S1(z) = degree 8 poly in z * * 4. For x in [1/0.35,28] * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6 x >= 28 * erf(x) = sign(x) *(1 - tiny) (raise inexact) * erfc(x) = tiny*tiny (raise underflow) if x > 0 * = 2 - tiny if x<0 * * 7. Special case: * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, * erfc/erf(NaN) is NaN */ # include # include // BEGIN CppAD namespace namespace CppAD { template Type erf_template(const Type &x) { using CppAD::exp; static const Type tiny = static_cast( 1e-300 ), one = static_cast( 1.00000000000000000000e+00 ), erx = static_cast( 8.45062911510467529297e-01 ), /* * Coefficients for approximation to erf on [0,0.84375] */ pp0 = static_cast( 1.28379167095512558561e-01 ), pp1 = static_cast( -3.25042107247001499370e-01 ), pp2 = static_cast( -2.84817495755985104766e-02 ), pp3 = static_cast( -5.77027029648944159157e-03 ), pp4 = static_cast( -2.37630166566501626084e-05 ), qq1 = static_cast( 3.97917223959155352819e-01 ), qq2 = static_cast( 6.50222499887672944485e-02 ), qq3 = static_cast( 5.08130628187576562776e-03 ), qq4 = static_cast( 1.32494738004321644526e-04 ), qq5 = static_cast( -3.96022827877536812320e-06 ), /* * Coefficients for approximation to erf in [0.84375,1.25] */ pa0 = static_cast( -2.36211856075265944077e-03 ), pa1 = static_cast( 4.14856118683748331666e-01 ), pa2 = static_cast( -3.72207876035701323847e-01 ), pa3 = static_cast( 3.18346619901161753674e-01 ), pa4 = static_cast( -1.10894694282396677476e-01 ), pa5 = static_cast( 3.54783043256182359371e-02 ), pa6 = static_cast( -2.16637559486879084300e-03 ), qa1 = static_cast( 1.06420880400844228286e-01 ), qa2 = static_cast( 5.40397917702171048937e-01 ), qa3 = static_cast( 7.18286544141962662868e-02 ), qa4 = static_cast( 1.26171219808761642112e-01 ), qa5 = static_cast( 1.36370839120290507362e-02 ), qa6 = static_cast( 1.19844998467991074170e-02 ), /* * Coefficients for approximation to erfc in [1.25,1/0.35] */ ra0 = static_cast( -9.86494403484714822705e-03 ), ra1 = static_cast( -6.93858572707181764372e-01 ), ra2 = static_cast( -1.05586262253232909814e+01 ), ra3 = static_cast( -6.23753324503260060396e+01 ), ra4 = static_cast( -1.62396669462573470355e+02 ), ra5 = static_cast( -1.84605092906711035994e+02 ), ra6 = static_cast( -8.12874355063065934246e+01 ), ra7 = static_cast( -9.81432934416914548592e+00 ), sa1 = static_cast( 1.96512716674392571292e+01 ), sa2 = static_cast( 1.37657754143519042600e+02 ), sa3 = static_cast( 4.34565877475229228821e+02 ), sa4 = static_cast( 6.45387271733267880336e+02 ), sa5 = static_cast( 4.29008140027567833386e+02 ), sa6 = static_cast( 1.08635005541779435134e+02 ), sa7 = static_cast( 6.57024977031928170135e+00 ), sa8 = static_cast( -6.04244152148580987438e-02 ), /* * Coefficients for approximation to erfc in [1/.35,28] */ rb0 = static_cast( -9.86494292470009928597e-03 ), rb1 = static_cast( -7.99283237680523006574e-01 ), rb2 = static_cast( -1.77579549177547519889e+01 ), rb3 = static_cast( -1.60636384855821916062e+02 ), rb4 = static_cast( -6.37566443368389627722e+02 ), rb5 = static_cast( -1.02509513161107724954e+03 ), rb6 = static_cast( -4.83519191608651397019e+02 ), sb1 = static_cast( 3.03380607434824582924e+01 ), sb2 = static_cast( 3.25792512996573918826e+02 ), sb3 = static_cast( 1.53672958608443695994e+03 ), sb4 = static_cast( 3.19985821950859553908e+03 ), sb5 = static_cast( 2.55305040643316442583e+03 ), sb6 = static_cast( 4.74528541206955367215e+02 ), sb7 = static_cast( -2.24409524465858183362e+01 ); Type R,S,P,Q,s,y,z,r; Type ax, value; Type zero(0); // |x| ax = CondExpGe(x, zero, x, -x); // erf(|x|) when |x| <= 0.84375 z = ax*ax; r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); y = r/s; Type Le0Dot84375 = ax + ax*y; // erf(|x|) when 0.84375 < |x| <= 1.25 s = ax-one; P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); value = erx + P/Q; // erf(|x|) when |x| <= 1.25 Type Le1Dot25 = CondExpGt(ax, Type(0.84375), value, Le0Dot84375); // erf(|x|) when 1.25 < |x| <= 1 / 0.35 s = one/(ax*ax); R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( ra5+s*(ra6+s*ra7)))))); S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( sa5+s*(sa6+s*(sa7+s*sa8))))))); r = exp(Type(-0.5625)) * exp(-ax*ax+R/S); value = one-r/ax; // erf(|x|) when |x| <= 1 / 0.35 Type Le1OverDot35 = CondExpGt(ax, Type(1.25), value, Le1Dot25); // erf(|x|) when 1 / 0.35 < |x| <= 6 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( rb5+s*rb6))))); S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( sb5+s*(sb6+s*sb7)))))); r = exp(Type(-0.5625)) * exp(-ax*ax+R/S); value = one-r/ax; // erf(|x|) when |x| <= 6 Type Le6 = CondExpGt(ax, Type(1/.35), value, Le1OverDot35); // erf(|x|) when |x| > 6 Type Gt6 = one - tiny; // erf(|x|) Type Gt0 = CondExpGt(ax, Type(6.), Gt6, Le6); // Gt0 = erf( CondExpGe(x, zero, x, -x) ) // so must switch sign in case where x < 0 return CondExpGe(x, zero, Gt0, -Gt0); } inline float erf(const float &x) { return erf_template(x); } inline double erf(const double &x) { return erf_template(x); } template inline AD erf(const AD &x) { return erf_template(x); } template inline AD erf(const VecAD_reference &x) { return erf_template( x.ADBase() ); } } // END CppAD namespace # endif