/* -------------------------------------------------------------------------- CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-08 Bradley M. Bell CppAD is distributed under multiple licenses. This distribution is under the terms of the Common Public License Version 1.0. A copy of this license is included in the COPYING file of this distribution. Please visit http://www.coin-or.org/CppAD/ for information on other licenses. -------------------------------------------------------------------------- */ /* $begin ipopt_cppad.cpp$$ $spell cppad_nlp IpoptDir CppAD $$ $index example, nonlinear, programming$$ $index programming, nonlinear example$$ $index ipopt, AD example$$ $section Nonlinear Programming Using CppAD and Ipopt: Example and Test$$ $head Purpose$$ This example program demonstrates how to use the class ipopt_cppad_nlp to solve the example problem in the Ipopt documentation; i.e., the problem $latex \[ \begin{array}{lc} {\rm minimize \; } & x_1 * x_4 * (x_1 + x_2 + x_3) + x_3 \\ {\rm subject \; to \; } & x_1 * x_2 * x_3 * x_4 \geq 25 \\ & x_1^2 + x_2^2 + x_3^2 + x_4^2 = 40 \\ & 1 \leq x_1, x_2, x_3, x_4 \leq 5 \end{array} \] $$ $head Configuration Requirement$$ This example will be compiled and tested provided that the value $cref/IpoptDir/InstallUnix/IpoptDir/$$ is specified on the $cref/configure/InstallUnix/Configure/$$ command line. $code $verbatim%example/ipopt_cppad.cpp%0%// BEGIN PROGRAM%// END PROGRAM%1%$$ $$ $end */ // BEGIN PROGRAM # include "ipopt_cppad_nlp.hpp" namespace { class my_FG_info : public ipopt_cppad_fg_info { private: bool retape_; public: // derived class part of constructor my_FG_info(bool retape) : retape_ (retape) { } // Evaluation of the objective f(x), and constraints g(x) // using an Algorithmic Differentiation (AD) class. ADVector eval_r(size_t k, const ADVector& x) { ADVector fg(3); // Fortran style indexing ADNumber x1 = x[0]; ADNumber x2 = x[1]; ADNumber x3 = x[2]; ADNumber x4 = x[3]; // f(x) fg[0] = x1 * x4 * (x1 + x2 + x3) + x3; // g_1 (x) fg[1] = x1 * x2 * x3 * x4; // g_2 (x) fg[2] = x1 * x1 + x2 * x2 + x3 * x3 + x4 * x4; return fg; } bool retape(size_t k) { return retape_; } }; } bool ipopt_cppad(void) { bool ok = true; size_t j; // number of independent variables (domain dimension for f and g) size_t n = 4; // number of constraints (range dimension for g) size_t m = 2; // initial value of the independent variables NumberVector x_i(n); x_i[0] = 1.0; x_i[1] = 5.0; x_i[2] = 5.0; x_i[3] = 1.0; // lower and upper limits for x NumberVector x_l(n); NumberVector x_u(n); for(j = 0; j < n; j++) { x_l[j] = 1.0; x_u[j] = 5.0; } // lower and upper limits for g NumberVector g_l(m); NumberVector g_u(m); g_l[0] = 25.0; g_u[0] = 1.0e19; g_l[1] = 40.0; g_u[1] = 40.0; size_t icase; for(icase = 0; icase <= 1; icase++) { // Should ipopt_cppad_nlp retape the operation sequence for // every new x. Can test both true and false cases because // the operation sequence does not depend on x (for this case). bool retape = bool(icase); // object in derived class my_FG_info my_fg_info(retape); ipopt_cppad_fg_info *fg_info = &my_fg_info; // create the Ipopt interface ipopt_cppad_solution solution; Ipopt::SmartPtr cppad_nlp = new ipopt_cppad_nlp( n, m, x_i, x_l, x_u, g_l, g_u, fg_info, &solution ); // Create an instance of the IpoptApplication using Ipopt::IpoptApplication; Ipopt::SmartPtr app = new IpoptApplication(); // turn off any printing app->Options()->SetIntegerValue("print_level", -2); // maximum number of iterations app->Options()->SetIntegerValue("max_iter", 10); // approximate accuracy in first order necessary conditions; // see Mathematical Programming, Volume 106, Number 1, // Pages 25-57, Equation (6) app->Options()->SetNumericValue("tol", 1e-9); // derivative testing app->Options()-> SetStringValue("derivative_test", "second-order"); // Initialize the IpoptApplication and process the options Ipopt::ApplicationReturnStatus status = app->Initialize(); ok &= status == Ipopt::Solve_Succeeded; // Run the IpoptApplication status = app->OptimizeTNLP(cppad_nlp); ok &= status == Ipopt::Solve_Succeeded; /* Check some of the solution values */ ok &= solution.status == ipopt_cppad_solution::success; std::cout << "Optimal Value = " << solution.obj_value << std::endl; // double check_x[] = { 1.000000, 4.743000, 3.82115, 1.379408 }; double check_z_l[] = { 1.087871, 0., 0., 0. }; double check_z_u[] = { 0., 0., 0., 0. }; double rel_tol = 1e-6; // relative tolerance double abs_tol = 1e-6; // absolute tolerance for(j = 0; j < n; j++) { ok &= CppAD::NearEqual( check_x[j], solution.x[j], rel_tol, abs_tol ); ok &= CppAD::NearEqual( check_z_l[j], solution.z_l[j], rel_tol, abs_tol ); ok &= CppAD::NearEqual( check_z_u[j], solution.z_u[j], rel_tol, abs_tol ); } } return ok; } // END PROGRAM