
Multifario (MF): Documentation

Michael E. Henderson
IBM Research Division

T. J. Watson Research Center
Yorktown Heights, NY 10598

August 12, 2003

1 Introduction

Multifario (MF) is a package for continuing solution manifolds of nonlinear
systems of equations. The algorithm is described in some detail in the paper:

Henderson, M. E., ”Multiparameter Continuation: Computing
Implicitly Defined Surfaces”, International Journal of Bifurcation
and Chaos, Vol. 12, No. 3 (2002) pp. 451–476.

This document is a reference to the implementation that was used for the
examples in that paper. An example, of a c8amped rod, has been submitted
for publication –



1.1 Overview



1.2 Software Architecture

This code is what is sometimes called a framework. It does not attempt to
provide “the best” iterative solver for solving nonlinear systems, or “the best“
collection of inflated systems, singular point detection method or branch
switching algorithm. These are all dependant on the particular problem
being solved. Instead it provides a “Continuation Method”, that can be used



MFAtlas Represents a collection of charts





2 Installation

The IMF’s provided with the distribution require Lapack, and the makefile
assumes that it is available in a library called liblapack.a . The blas will also
be required. To install:

1. edit the file share/config.site to give local lib and include dirs where
Linpack and Lapack can be found.

2. run the configure script ”./configure”

3. create the libraries (installed in lib) ”make”

4. create the utilities (installed in bin) ”make utilities”

5. create the examples (installed in bin) ”make examples”



ComputeSphere

ComputeSphereSub



Uses the MFTPBVP manifold, with k = 1. Demonstrates secondary
bifurcation from a sequence of pitchfork bifurcations from a trivial
branch.



PlotfileToPOV Creates a POV-Ray (available at www.povray.org) file from
the plotfile. A sample .pov control file (genericPOVRay.pov) is included
which sets up a camera and colors and renders a .pov file generated by
PlotfileToPOV.

DrawAtlas Creates a Tiff-file (by choice if libtiff – www.libtiff.org is avail-
able) or a Postscript file (if it isn’t) with a rendering of an atlas file.

DrawAtlasTS Creates a Tiff or Postscript file with a rendering of an atlas
file (with charts drawn in the tangent spaces, faster than DrawAtlas).

DrawDual Creates a Tiff or Postscript file with a rendering of the dual
triangulation of the atlas file.

DualToDX Creates a DataExplorer file with the dual triangulation of the
atlas file.

To create an image of the sphere run “bin/DrawPlotfile Sphere”. This
looks in the current directory for aatlascalledat134Sphere.view”awhich contains



Figure 1: The output from the ComputeSphere example.

10



05 MFImplicitMF M;





36 MFFreeNVector(u0);

37 MFFreeHe-dersonsMethod(H);

38

39 return 0;

40 }

Of course, whe- mai- ends all the storage is free’d anyway, but this is a good
habit.

6 Example – solving a two point boundary

value problem, the MFTPBVP manifold

Below we dissect the ComputeDomokos example, which should be enough to
get you started with the TPBVP solver. The ComputeRod is more realistic,
but the solution has sheets with symmetries, and the example separates these
by controlling crossings of the planes of symmetry. The problem is from the
paper

Domokos, G. ”Global Description of Elastic Bars”. ZAMM – Z.
angew. Math. Mech. 74 (1994) 4, T 289–T291.



03 int MFDomokosProjectToDraw(MFNVector,double*,void*);

04 void MFTPBVPSetStability(MFImplicitMF,MFNVector,MFNKMatrix,

void*);

05 int MFStopTPBVP(MFImplicitMF,MFNVector,MFNKMatrix,MFNVector,

MFNKMatrix,void*);

06 #define PI 3.14159265358979323846264338327950288

07

08 #define NX 100

09

10 int main(int argc, char *argv[])

11 {



boundary value problem. This is of the form

u′ = f(t, u, p, u0, p0)
a(u(0), u(1), p, u0(0), u0(1), p0) = 0∫ 1

0
l(t, u(t), p, u0(t), p0)d t+m(p, p0) = 0

The routines are passed as triples (except for m), of the routine to evaluate
the function, and it’s derivatives w.r.t. u and the parameters p. The pair u0
and p0 are a nearby function and parameter (for imposing phase constraints).





them all.) Fnally in line 62 we give a prefix for files (e.g. the plotfile will be
Domokos.plotfile).

53 H=MFCreateHendersonsMethod();



Of course, when main ends all the storage is free’d anyway, but this is a good
habit.

Finally, there are the routines defining the problem and the projection.







F

i

g

u

r

e

2

:

T

h

e

o

u

t

p

u

t

f

r

o

m

t

h

e

C

o

m

p

u

t

e

D

o

m

o

k

o

s

e

x

a

m

p

l

e

.

2

1



What the implementations below are missing (and AUTO and LOCA pro-



double MFIMFScale(M,u,Phi); – Returns a radius for the ball at a point
u, at which the columns of the matrix Phi give an o.n. basis for the
tangent space. The idea is that for points in the tangent space that







11 MFNVector – a point in the embedding

space

These are points lying in the embedding space. Again, the interface is quite
a bit simpler than the IMF.

MFNVector MFCreateNVector(int); – Creates and returns an N vector of
the given length. This ctor creates a vector stored as an array of dou-
bles. It should be Free’d with the MFFreeNVector routine when it is
no longer needed.

MFNVector MFCreateNVectorWithData(int,double*); – Creates and re-
turns an N vector of the given length, with coordinates copied from
the array. This ctor creates a vector stored as an array of doubles. It
should be Free’d with the MFFreeNVector routine when it is no longer
needed.



void MFFreeNVector(MFNVector); – Release a reference to the NVector.
When the reference count goes to zero the storage associated with the
object is free’d.

12 MFKVector – a point in the tangent space

These are points lying in the tangent space of the manifold. They are stored
as a vector of doubles. The user normally would not need to use these objects.

MFKVector MFCreateKVector(int); – Creates and returns an K vector of
the given length. This ctor creates a vector stored as an array of dou-





int MFNKMatrixN(MFNKMatrix); – Returns the length of the columns in
the matrix.



MFPolytope MFChartPolytope(MFChart); – Returns the Polyhedron asso-
ciated with a chart.

MFNVector MFChartCenter(MFChart); – Returns the center of a chart.

MFNKMatrix MFChartTangentSpace(MFChart); – Returns an o.n. basis
for the tangent space of the manifold at the center of a chart.

double MFChartRadius(MFChart); – Returns the radius of a chart.

int MFChartEvaluate(MFChart,MFKVector s,MFNVector u); – Projects a
point in the domain of the chart onto the manifold. The NVector u
must have been allocated by the user and should be the same type as
the chart center.

int MFChartInterior(MFChart,MFKVector); – Tests to see if a point is
interior to the polyhedron of a chart.

int MFChartHasBoundary(MFChart); – Tests to see if all vertices of the
polyhedron of a chart have radius less than the radius of the chart.



15 MFContinuationMethod – an algorithm

for computing an atlas of charts for a man-

ifold





void MFHendersonsMethodSetMinR(H,int); – Sets the minimum chart ra-





NOTE: I’m still working on this.

void MFHendersonsMethodSetDumpToRestartFileEvery(H,int); – Indicates
how dense the points in the restart file are. As charts are added each
is assigned a number, which is the minimum of the numbers assigned
to its neighbors, plus one. This is a rough indication of how many



int MFAtlasAddChartWithAll(A,u,Phi,double R); – Adds a chart centered
at the given point u with tangent space Phi, and radius R to the atlas.

MFImplicitMF MFAtlasMF(A); – Returns the manifold corresponding to
the atlas.

int MFAtlasNumberOfCharts(A); – Returns the number of charts in the
atlas.



17 Error handling

These routines provide a way of finding out what errors have occured in the





void MFNVectorSetSetC(MFNVector,void (*)(int,double,void*));– Sets the
routine used to change a coordinate. This is meant to be a fallback in
case a routine has to deal with a vector of unknown type. (Performance
suffers if used to access long vectors.)

void MFNVectorSetAdd(MFNVector,void (*)(void*,void*,void*)); – Sets
the routine used to add two vectors.

void MFNVectorSetDiff(MFNVector,void (*)(void*,void*,void*)); – Sets the
routine used to multiply a vector by a scalar.

void MFNVectorSetPrint(MFNVector,void (*)(FILE*,void*)); – Sets the
routine used to print a readable version of a vector.

19 Implementing an MFNSpace



void MFNSpaceSetFreeData(MFNSpace,void (*freedata)(void *)); – Sets
the routine that is called when the last reference to the vector is Free’d.
Note that the CreateBaseClass returns a vector with one reference.

void *MFNVectorGetData(MFNVector); – returns the data pointer of a
vector.

void MFNSpaceSetDistance(MFNSpace,distance); – Sets the routine that
computes the distance between two vectors in the space. The routine
has the signature:



20 Implement7ng an MFNRegion

The MFNRegion represents a subset of an n-dimensional space. The only
real function is supplies is a ”test”.







The data pointer is passed as the last argument. If u or the Pu is
passed as NULL the routine is expected to return the required length



void MFIMFSetStop(M,stop);


