
Previous: (5f) Sudoku As An LP

Next: (5h) Column Generation 2

(5g) Column Generation
Column Generation is an efficient way of solving large LPs. In the Cutting Stock Problem we created every possible
pattern for lengths that could be cut from the 20cm rolls, and made each pattern a problem variable. However, if the
roll length had been 100m long (for example), this would have required over 700 patterns to be created (with the
same cutting options of 5cm, 7cm and 9cm). To overcome this problem we can initially solve the problem by
explicitly defining just a few patterns to be considered. Then, given the dual variable values from this first solution,
we can formulate a sub-problem to find if any other patterns have a negative reduced cost. This means that the new
pattern would further reduce the objective function value. The main problem is re-solved with this new pattern and
the dual values from this solve are used to find another pattern. When the reduced cost is greater than or equal to
zero, the optimal solution is found since the objective function cannot be reduced any further.

A good explanation of the above process is under Delayed Column Generation at Wikipedia.

To implement the Column Generation process, 3 blocks of code are required to be written: A main file, a masterSolve
function and a subSolve function. It is a good idea to create a separate file for the functions and the Pattern class
definition.

Main File

A file header explains the purpose of the program and identifies the Author/s. The main file only needs to import the
CG.py function library, and not PuLP. This is because the main file itself does not use any PuLP functions.

Since a loop is required later on to ensure more patterns are searched for until there are none that would reduce the
objective function, the morePatterns variable must be initially set to True. The list of starting patterns must also be
entered. Any starting patterns are adequate as long as the problem is feasible/solvable.

Each of the starting patterns are used to create an object of the class Pattern, in the list Patterns. This class is defined
in the CG.py function file.

"""
The Sponge Roll Problem with Column Generation for the PuLP Modeller

Authors: Antony Phillips, Dr Stuart Mitchell 2008
"""

Import Column Generation functions
from CG import *

The roll data is created
rollData = {#Length Demand SalePrice
 "5": [150, 0.25],
 "7": [200, 0.33],
 "9": [300, 0.40]}

The boolean variable morePatterns is set to True to test for more patterns
morePatterns = True

A list of starting patterns is created
patternslist = [[4,0,0],[0,2,0],[0,0,2]]

Page 1 of 5Column Generation — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ColumnGeneration

The dual variable values from the master problem are passed as an input into the sub problem which passes out the
amended Patterns list of Pattern class objects.

The problem is solved for a final time with all added patterns, and the solution and variable values are passed as
output. The problem is solved as a non-relaxed Integer Problem since having any particular pattern cut a non integer
number of times is impossible.

Displays the solution variables and objective value.

The main file is available here.

Function File CG.py

The second file contains the Pattern class definition, and the functions of masterSolve & subSolve. Before these it is
important to import the PuLP functions:

Class Definition

The Pattern class has 4 pattern constants (cost, trimValue, totalRollLength & lenOpts) defined inside it as class
variables. There are 3 functions inside the Pattern class:
__init__: creates a Pattern object and assigns the name and lengthsdict attributes out of the inputs of the name
and a list of the number of rolls of each length in that pattern.
__str__: returns the name of a pattern.
trim: returns the trim of a pattern, calculated using the class variables and attributes of that pattern.

The starting patterns are instantiated with the Pattern class
Patterns = []
for i in patternslist:
 Patterns += [Pattern("P" + str(len(Patterns)), i)]

This loop will be repeated until morePatterns is set to False
while morePatterns == True:

 # Solve the problem as a Relaxed LP
 duals = masterSolve(Patterns, rollData)

 # Find another pattern
 Patterns, morePatterns = subSolve(Patterns, duals)

Re-solve as an Integer Problem
solution, varsdict = masterSolve(Patterns, rollData, relax = False)

Display Solution
for i,j in varsdict.items():
 print i, "=", j

print "objective = ", solution

"""
Column Generation Functions

Authors: Antony Phillips, Dr Stuart Mitchell 2008
"""

Import PuLP modeler functions
from pulp import *

Page 2 of 5Column Generation — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ColumnGeneration

masterSolve Function

This function simply solves the Sponge Roll Problem LP and returns the relevant result depending on if this is the
final call to this function (when the LP is not relaxed).

The only required inputs are the list of Pattern objects (Patterns), the rollData and whether or not the LP is relaxed.
The rollData is split normally and prob is created.

Depending on the value of the input variable relax, the problem variables are made to be either LpInteger or
LpContinuous.

The objective function and constraints are logically added to the prob variable. The class variables are used and the
Pattern object list Patterns is used in several list comprehensions.

The problem is solved using CPLEX and with no output messages. The solution variables are then rounded,
otherwise values that were meant to be exact values may be slightly off due to floating point representation error.

class Pattern:
 """
 Information on a specific pattern in the SpongeRoll Problem
 """
 cost = 1
 trimValue = 0.04
 totalRollLength = 20
 lenOpts = ["5", "7", "9"]

 def __init__(self, name, lengths = None):
 self.name = name
 self.lengthsdict = dict(zip(self.lenOpts,lengths))

 def __str__(self):
 return self.name

 def trim(self):
 return Pattern.totalRollLength - sum([int(i)*int(self.lengthsdict[i]) for i in self.lengthsdict])

def masterSolve(Patterns, rollData, relax = True):

 # The rollData is made into separate dictionaries
 (rollDemand,surplusPrice) = splitDict(rollData)

 # The variable prob is created
 prob = LpProblem("Cutting Stock Problem",LpMinimize)

 # vartype represents whether or not the variables are relaxed
 if relax:
 vartype = LpContinuous
 else:
 vartype = LpInteger

 # The problem variables are created
 pattVars = LpVariable.dicts("Pattern", Patterns, 0, None, vartype)
 surplusVars = LpVariable.dicts("Surplus", Pattern.lenOpts, 0, None, vartype)

 # The objective function is entered: (the total number of large rolls used * the cost of each) -
 # (the value of the surplus stock) - (the value of the trim)
 prob += lpSum([pattVars[i]*Pattern.cost for i in Patterns]) - lpSum([surplusVars[i]*surplusPrice[i]\
 for i in Pattern.lenOpts]) - lpSum([pattVars[i]*i.trim()*Pattern.trimValue for i in Patterns])

 # The demand minimum constraint is entered
 for j in Pattern.lenOpts:
 prob += lpSum([pattVars[i]*i.lengthsdict[j] for i in Patterns]) - surplusVars[j]>=rollDemand[j],"Min%s"%j

Page 3 of 5Column Generation — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ColumnGeneration

Since the state of relaxation of the LP determines what output is necessary, an if statement is used. When the LP is
relaxed, it is not the final run through masterSolve and we are still looking for more patterns. Therefore the required
output is the dictionary of dual variables values

Alternatively, if the problem is not relaxed then the function needs to return the value of the objective function, and
the optimum variable values. The function also prints the number of rolls of each length in each pattern name, so the
solution can be fully interpreted.

subSolve Function

This function searches for another pattern to add to the master LP which would reduce the objective function. This is
done by minimising the reduced cost of any potential new pattern. If the minimum value is less than zero, it is worth
adding. The reduced cost of a pattern is calculated by the cost of that pattern minus the sum of the dual variables on
each of the length constraints multiplied by the number of rolls of that length in the new pattern.

The inputs to the subSolve function are the list of Pattern objects, and the duals dictionary. The prob variable is
created first.

A variable for the number of each length roll in the pattern is created, along with a variable for the trim length.

The reduced cost of a new pattern is entered. Note that the cost of adding the pattern is it's cost ($1 in this case)
minus the money gained back from sale of trim. This is because the amount of trim is a fixed attribute for any given
pattern.

 # The problem is solved using CPLEX with no output
 prob.solve(CPLEX(msg=0))

 # The variable values are rounded
 prob.roundSolution()

 if relax:
 # Creates a dual variables list
 duals = {}
 for name,i in zip([Min5,Min7,'Min9'],Pattern.lenOpts):
 duals[i] = prob.constraints[name].pi

 return duals

 else:
 # Creates a dictionary of the variables and their values
 varsdict = {}
 for v in prob.variables():
 varsdict[v.name] = v.varValue

 # The number of rolls of each length in each pattern is printed
 for i in Patterns:
 print i, " = %s"%[i.lengthsdict[j] for j in Pattern.lenOpts]

 return value(prob.objective), varsdict

def subSolve(Patterns, duals):

 # The variable prob is created
 prob = LpProblem("SubProb",LpMinimize)

 # The problem variables are created
 vars = LpVariable.dicts("Roll Length", Pattern.lenOpts, 0, None, LpInteger)
 trim = LpVariable("Trim", 0 ,None,LpInteger)

 # The objective function is entered: the reduced cost of a new pattern
 prob += (Pattern.cost - Pattern.trimValue*trim) - lpSum([vars[i]*duals[i] for i in Pattern.lenOpts]), "Objective"

Page 4 of 5Column Generation — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ColumnGeneration

The only constraint to this problem is that the total length of the trim and the smaller cut rolls must be equal to the
length of the initial roll.

The problem is solved and the results are rounded.

The new pattern is written to a dictionary so that there is no problem with the values being out of order.

If the value of the objective function is negative then this new pattern will reduce the value of master LP objective
function and so it is added to the Patterns list, as a new instance of the Pattern class. Otherwise, morePatterns is set
to False, so that the loop in the main function will end. Some values of prob.objective would be very small negatives
that were meant to be zero, but took a non-zero value due to floating point representation error. To stop these values
being interpreted as negatives (when they should be zero), value(prob.objective) is tested to be less than -10^-5.

The function file is available here.

Previous: (5f) Sudoku As An LP

Next: (5h) Column Generation 2

 # The conservation of length constraint is entered
 prob += lpSum([vars[i]*int(i) for i in Pattern.lenOpts]) + trim == Pattern.totalRollLength, "lengthEquate"

 # The problem is solved using CPLEX
 prob.solve(CPLEX_DLL(msg=0))

 # The variable values are rounded
 prob.roundSolution()

 # The new pattern is written to a dictionary
 varsdict = {}
 newPattern = {}
 for v in prob.variables():
 varsdict[v.name] = v.varValue
 for i,j in zip(Pattern.lenOpts,["Roll_Length_5","Roll_Length_7","Roll_Length_9"]):
 newPattern[i] = int(varsdict[j])

 # Check if there are more patterns which would reduce the master LP objective function further
 if value(prob.objective) < -10**-5:
 morePatterns = True # continue adding patterns
 Patterns += [Pattern("P" + str(len(Patterns)), [newPattern[i] for i in ["5","7","9"]])]
 else:
 morePatterns = False # all patterns have been added

 return Patterns, morePatterns

Page 5 of 5Column Generation — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ColumnGeneration

