
OBOE User Guide

Version 1.0

Jean-Philippe Vial1

Nidhi Sawhney2

June 21, 2007

1jpvial@ordecsys.com
2nsawhney@gmail.com

Abstract

OBOE(Oracle Based Optimization Engine) is a software package developed
for solving convex non-differentiable minimization problems over a convex
set. In this document we give a brief overview of the underlying ACCPM
theory used in OBOE, and how to use OBOE for solving Non-Differentiable
Optimization (NDO) problems. We also present some benchmark problems
solved using OBOE.

Contents

1 Introduction to ACCPM 4

1.1 Polyhedral relaxation schemes 6

1.2 Lower bound on the opimal value 7

1.3 Proximal generalized analytic centers 9

1.3.1 Barriers for the localization set 9

1.3.2 First order optimality 11

1.4 Solving the Newton system 12

1.5 Infeasible start . 12

1.6 General case: nonlinear smooth component 13

1.6.1 Case 1: p is small (p ≤ n) 15

1.6.2 Case 2: p is large (p ≥ n) 15

1.7 Special case: the smooth component is linear 16

1.7.1 Case 1: p is small (p ≤ n) 17

1.7.2 Case 2: p is large (p ≥ n) 18

1.8 Dual analytic center . 18

2 Installation 20

2.1 OBOE on Linux . 20

2.2 OBOE on Windows . 21

3 Using OBOE 22

3.1 C++ callable library . 22

3.1.1 OBOE classes . 22

3.1.2 Linear inequality constraints 25

3.1.3 Ball and box constraints 25

3.1.4 Linear equality constraints 25

2

3.2 Parameter Listing . 26

3.2.1 Retrieving parameter values 29

3.2.2 Array parameter values 29

3.3 Linear Algebra . 30

3.4 Serialization . 30

4 Benchmark for OBOE 31

4.1 Introduction . 31

4.2 The cutting stock problem . 31

4.2.1 Description of the problem 31

4.2.2 Mathematical formulation 32

4.2.3 Solving with OBOE 32

4.3 The quadratically constrained quadratic programming problem 33

4.3.1 Description of the problem 33

4.3.2 Solving with OBOE 34

4.4 The traveling salesman problem 34

4.4.1 Description of the problem 34

4.4.2 Algebraic description 35

4.4.3 Mathematical formulation 35

4.5 Linear support vector machine 36

4.5.1 Description of the problem 36

4.5.2 Mathematical formulation 36

4.5.3 Linear separation oracle 37

3

Chapter 1

Introduction to ACCPM

ACCPM is a class of computational methods used to solve the convex prob-
lems of finding a point in a convex set or minimizing a convex function over
a convex set. The methods we shall describe use polyhedral relaxations of
convex sets and functions. They are based on the property that a convex
set can be described as the intersection of the half-spaces that contain it. A
finite subset of such half-spaces defines a polyhedral relaxation of the set.
We name polyhedral relaxation method, a method that is based on this prop-
erty. Since the half-spaces are bounded by separating hyperplanes that cut
the space into two half-spaces, the terminology cutting plane to denote the
separating hyperplane, and by extension for the method is often used.

The basic assumption is that there exists an oracle that produces separation
hyperplanes. Namely, given a convex set C ⊂ Rn and a point y ∈ Rn, the
oracle returns the information y ∈ C, or produces a vector a ∈ Rn and a
scalar c ≤ 0, which separate y from C

aT (y′ − y) ≤ c, ∀y′ ∈ C.

The first problem that arise in connection with an oracle for C is the feasi-
bility problem

find y ∈ C. (1.1)

The set C is often given in functional form

C = {y | g(y) ≤ 0}.

In that case the oracle for C is a numerical procedure to compute g(y) and
an element ξ ∈ ∂g(y) in the subdifferential set of g at y. This oracle works as
follows: if g(y) ≤ 0, the oracle confirms that y ∈ C; else, the oracle produces
the cut

ξT (y′ − y) + g(y) ≤ 0, ∀y′ ∈ C.

4

The pure feasibility problem may be converted into a simple optimization
problem by adding an objective function

min{bT y | y ∈ C}.

The simple minimization problem allows to treat the more conventional
problem of minimizing a convex function f by simple embedding into the
epigraph space of f

min{z | f(y) − z ≤ 0}.

The more general case deals with the minimization of a function that is the
sum of two convex functions, one smooth and the other not. Since the sum
of the two components is nonsmooth, the solution method belongs to the
realm of nondifferentiable optimization. However, standard methods do not
exploit the second order information that can be extracted from the smooth
component. We propose an adaptation of polyhedral relaxation methods to
exploit this information.

The more general problem —which from now on is our canonical problem—
takes the form

min{f(y) = f1(y) + f2(y) | y ∈ Y1 ∩ Y2}, (1.2)

where f1 and f2 are convex functions on Rn and Yi ⊂ Rn, i = 1, 2, The
function f1 and the set Y1 are revealed by a first order oracle. In a general
setting f2 is taken to be a convex twice continious differentiable function
while Y2 is a 0-level set of a convex twice continuously differenciable function
g(y). In applications, we further assume that f2 is self-concordant and Y2 is
endowed with a self-concordant barrier.

We shall consider two main possibilities for Y2. Either Y2 = Rn, or

Y2 = {y | gi(y) ≤ 0, i = 1, . . . , r}.

The more relevant cases gi are linear or convex quadratic. The function are
written as

gi(y) =
1

2
yTPiy + pT

i y + di ≤ 0.

In general, Y2 includes simple box constraints βl ≤ y ≤ βu or a ball con-
straint ||y − yc|| ≤ R.
Note: OBOE currently only supports the above box and ball constraints.

Finally, the nonsmooth function f1 often is the positively weighted sum of
p nonsmooth functions

f1(y) =

p
∑

i=1

πif1i(y).

This property can be exploited in the solution method.

5

The canonical problem (1.2) can be written in format similar to the simple
minimization problem

min πT z + ζ

f1j(y) − zj ≤ 0, j = 1, . . . , p, (1.3)

f2(y) − ζ ≤ 0, (1.4)

gi(y) ≤ 0, i = 1, . . . , r, (1.5)

y ∈ Y1. (1.6)

The new problem is an embedding of the original problem in an Rn × Rp

dimensional space. If f2(y) is a linear function given by bT y, we replace ζ
by bT y and do away with equation 1.4.

Problem (1.2) often arises in connection with a dualization (or partial du-
alization) scheme. In particular, we have in mind Lagrangian relaxation
schemes which generate dual problems of the canonical type. To be consis-
tent with this important segment of the literature, we shall consider that
Problem 1.2 is the dual problem of some (unspecified) primal problem. The
variables y, z and ζ will be named “dual”. Later, we will work with the
duals of problems written in the dual variables. We will call these problems
“primal”.

In some applications the variables can be additionally constrained to lie in
an affine set {y | DTy = d}.

1.1 Polyhedral relaxation schemes

Suppose the oracle has been querried at (y1, . . . , yk). The oracle has re-
turned a set of feasability and/or optimality cuts. The resulting inequalities
together with the linear constraints in gi(y) ≤ 0 are collected in the inequal-
ities

AT y − ET z ≤ c

In that definition, E is a simple matrix that is constructed as follows. If
the nonsmooth objective is not disaggregated (p = 1), then E would be a
row vector of 0 and 1. The 1 indicates that the z variable is present in
the cut, meaning that the cut is an optimality cut associated with f1. In
contrast, a 0 indicates that the cut is a feasibility cut associated with Y1. If
the nonsmooth objective is disaggregated into p components, E is a p ×m
matrix of the form

E =









1 . . . 1 0 · · · 0 0 · · · 0

0 1 . . . 1 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .

...
0 0 · · · 1 . . . 1 0 · · · 0









.

6

Each row in that matrix correspond to a variable zj and each column to a
cut. A 1 in row j and column k indicates that the cut k is an optimality
cut emanating from f1j(y). If column k is a null vector, then cut k is a
feasibility cut. When the oracle produces an optimality cut for an element
f1j, it is the rule that it produces an element for each component of f1.
Consequently, as soon as there is an optimality cut, the matrix E has full
row rank and its rows are orthogonal.

We intersect the set with Y2 and we add the constraint that the objective
achieves at least the best recorded value. If the best value is achieved at ȳ
the constraint takes the form

πT z + ζ ≤ θ̄ = f1(ȳ) + f2(ȳ),

where πT z is a surrogate for the nonsmooth objective and ζ the smooth
objective. The set we described is named the set of localization. It is formally
written

Lθ̄ = {(y, z, ζ) | AT y − ET z ≤ c, πT z + ζ ≤ θ̄, f2(y) ≤ ζ, y ∈ Y2}. (1.7)

Notice also that the last inequalities in the definition of the set of localization
are nonlinear if f2 is non-linear. As mentioned before for the special case f2

is linear we do not need the surrogate ζ and directly use the linear funtion.

The basic step of a cutting plane method can be defined as follows.

1. Select a query point in the set of localization.

2. Send the query point to the oracle and retrieve the information.

3. Update the lower and upper bounds and the set of localization.

4. Test termination.

The set of localization may or may not include an objective cut. Methods
differ in the selection of the query point, in the updating of the localization
set, in the availability of of a lower bound and in the termination criterion.

1.2 Lower bound on the opimal value

We propose a general scheme to compute a lower bound for the optimal
value. In this derivation we assume that the problem is formulated with box
constraints yl ≤ y ≤ yu. The bounds can be well-defined and given explicitly,
or they are conservative estimates on the location of optimal solutions. In
the former case, the lower bound on the optimal value will be exact; in the
latter, it will simply be an estimate.

7

The optimal value is

θ∗ = min{f1(y) + f2(y) | yl ≤ y ≤ yu, y ∈ Y1 ∩ Y2}. (1.8)

We suppose that the epigraph of f1 and the set Y1 are approximated by the
set of inequalities AT y − ET z ≤ c. This means that for all feasible y

f1(y) ≥ min{πT z | ET z ≥ AT y − c}.

By convexity, we also have

f2(y) ≥ f2(ȳ) + (f ′2(ȳ))
T (y − ȳ),

where ȳ is an arbitrary reference point. Since the inequalities are valid for
all feasible y, we may write

θ∗ ≥ min
yl≤y≤yu

{

f2(ȳ) + (f ′2(ȳ))
T (y − ȳ) + min

z
{πT z | ET z ≥ AT y − c}

}

,

≥ f2(ȳ) − (f ′2(ȳ))
T (ȳ) + η,

where

η = min
y,z

{

(f ′2(y))
T y + πT z | AT y − ET z ≤ c, yl ≤ y ≤ yu

}

.

The dual of this minimization problem is

max −cT ξ − yT
uψu + yT

l ψl

Aξ + f ′2(ȳ) + ψu − ψl = 0,

Eξ = π,

ξ ≥ 0, ψu ≥ 0, ψl ≥ 0.

Suppose we are given a non zero vector ξ ≥ 0 such that Eξ = π. We can
easily find feasible values for ψl and ψu that maximize the dual objective.
Indeed

−yT
uψu+yT

l ψl = −(yu−yl)
Tψu+yT

l (ψl−ψu) = −(yu−yl)
Tψu+yT

l (Aξ+f ′2(ȳ)).

Since yu − yl ≥ 0, then ψu must be chosen as small as possible. But ψu ≥ 0
and

ψu = ψl − (Aξ + f ′2(ȳ)) ≥ −(Aξ + f ′2(ȳ)).

Thus, the values that maximize the objective are

ψu = (Aξ + f ′2(ȳ))−

ψl = (Aξ + f ′2(ȳ))+.

8

We thus have the exact lower bound

θ = −cT ξ − yT
u r− + yT

l r+, (1.9)

where r = Aξ + f ′2(ȳ).

To implement (1.9) we need to give values for ȳ, ξ, yl and yu. The natural
choices for ȳ in the proximal analytic center method (to be discussed later)
are either the proximal reference point or the last approximate analytic
center. The latter choice potentially yields a value for r = Aξ+ f ′2(ȳ) closer
to zero. (We shall even discuss later a method to further decrease r.) The
proximal analytic center cutting plane method also produces a vector ξ > 0
that approximately satisfies Eξ ≈ π. Due to the special structure of E,
we can always scale ξ > 0 to have Eξ = π. Finally, if yu > yl are given
explicitly, we obtain an exact lower bound.

If yu and/or yl and/or some of the components of the two vectors are not
given explicitly, we must estimate them by making some assumption on the
distance of ȳ to the optimal set. To this end, we write

−yT
u r− + yT

l r+ = rT ȳ − rT
−(yu − ȳ) − rT

+(ȳ − yl).

The numerical value of the bound is obtained by stating component-wise
upper bounds on 0 ≤ yu − ȳ and 0 ≤ ȳ − yl.

1.3 Proximal generalized analytic centers

We now propose an implementation of the generic cutting plane method
based on analytic center.

1.3.1 Barriers for the localization set

We associate with constraints of the localization set a standard (weighted)
logarithmic barrier.

F (s̄) =
m

∑

i=0

Fi(si) + Fs(σ) = −
mr
∑

i=0

wi log si − ω log σ,

with s̄ = (s0, s, σ) > 0 defined by

s0 = θ̄ − (πT z + ζ)
si = ci − (AT y − ET z)j , i ∈ I = {1, . . . ,m},
σ = ζ − f2(y).

We also assume that the set Y2 is endowed with a self-concordant barrier
H(y). In most applications the set Y2 is defined by simple constraints.

9

Ball constraint This constraint restricts the points to be in a ball of radius
R centered at yr. The barrier

H(y) = − log(R2 − ||y − yr||2)

is self-concordant with self-concordant parameter ν = 1.

Box constraints The simple box constraints take the form βl ≤ y ≤ βu.
The associated barrier is

H(y) = −
n

∑

i=1

(log(y − βl)i + log(βu − y)i).

From a formal point of view, these constraints can be treated just as
simple feasibility constraints that are introduced at the outset. In the
implementation of the algorithm, the structure of these constraints is
exploited to reduce the complexity of the linear algebra.

The barrier function is augmented with a proximal term to yield the aug-
mented barrier

ρ

2
(y − ȳ)TQ(y − ȳ) + F (s̄) +H(y),

where Q is a positive definite matrix. In view of the original minimization
problem, we compound the generalized augmented barrier with the objective
πT z of the polyhedral approximation of the nonsmooth objective f1(y) and
the objective ζ of the polyhedral approximation of the smooth objective
f2(y). We get

G(y, z, ζ) =
ρ

2
(y − ȳ)TQ(y − ȳ) + πT z + ζ + F (s̄(y, z, ζ)) +H(y). (1.10)

In the interior point literature, problems in which the nonnegativity con-
straints apply to the slacks of linear inequalities are considered to be in the
dual format. Barrier functions of the type G(y, z, ζ) are also referred to as
dual potentials. We shall use this terminology, despite the confusing fact
that our dual potential is applied to our primal problem (1.3).

The proximal generalized analytic center polyhedral method defines the
query point for the nonsmooth oracle as the y component of the solution of

min
ρ

2
(y − ȳ)TQ(y − ȳ) +H(y)

+πT z + ζ −
m

∑

i=0

wi log si − ω log σ (1.11)

s0 = θ̄ − (πT z + ζ) > 0, (1.12)

si = ci − (AT y − ET z)i > 0, i = 1, . . . ,m (1.13)

σ = ζ − f2(y) > 0. (1.14)

10

We shall denote the objective G(y, z, ζ).

To make sure that the minimum exists, we introduce the assumption

Assumption 1 The vector π is positive and the set of localization has a

non-empty interior.

Theorem 1 Under assumption 1, the minimum exists and is unique.

For the sake of simplicity, we shall later use the notation u = (y, z, ζ) and
write G(u) for G(y, z, ζ). Note that G is a barrier for the localization set.
It is self-concordant, but it is not a ν-normal barrier.

To write the generalized analytic center problem in a more condensed format,
we introduce the variable uT = (yT , zT , ζT) and collect all the constraints
into h(u) ≤ 0. Some components of h are associated with the cutting planes
approximating f1 and Y1; the other are just the g functions representing
Y2 and the nonlinear constraints. We find it convenient to formulate the
constraints as

h(u) + s̃ = 0, s̃ = (s0, s1, · · · , sm, σ) ≥ 0.

Finally, writing

K(u) =
ρ

2
(y − ȳ)TQ(y − ȳ) + πT z + ζ +H(y),

we formulate the generalized analytic center problem as

uc = (yc, zc, ζc) = arg min
u,s

{K(u) + F (s̄) | h(u) + s̄ = 0, s̄ > 0}. (1.15)

1.3.2 First order optimality

The first order optimality conditions are

ρQ(y − ȳ) +H ′(y) + ωσ−1f ′2(y) +Ax = 0, (1.16)

(1 + w0s
−1
0)π − Ex = 0, (1.17)

(1 + w0s
−1
0) − ωσ−1 = 0, (1.18)

s0 + (πT z + ζ) − θ = 0, (1.19)

s+AT y − ET z − c = 0, (1.20)

σ + f2(y) − ζ = 0. (1.21)

It is possible to interpret xi = wis
−1
i and ξ = ωσ−1 as “primal” variables.

We then have the complementary condition xisi = wi, i = 0, 1, . . . m, and
ξσ = ω.

Recall that if f2 is linear we replace ζ with the linear term bT y and there is
no need for variable σ. We use eqaution 1.18 in equation 1.16 to get
ρQ(y − ȳ) +H ′(y) + (1 + w0s

−1
0)b+Ax = 0

11

1.4 Solving the Newton system

The aim is to minimize G(u) = K(u) + F (−h(u)). The method of choice is
Newton’s method. Let us first briefly review the case of a feasible Newton
method. The Newton direction is

du = −[G′′(u)]−1G′(u).

The variant of Newton’s method for computing the proximal generalized
analytic center consists in taking damped steps to preserve feasibility of y
and z. The aim is to achieve a sufficient decrease of G, until the area of
quadratic convergence is hit. From then on, the method takes full New-
ton steps, with no line-search. We recall that the sufficient condition for
guaranteed quadratic convergence is

〈[G′′(u)]−1G′(u), G′(u)〉 = 〈−du,G′(u)〉 < 1. (1.22)

The left-hand side of the inequality is a proximity measure. When the
proximity is below the unit threshold, then the point u+ du is feasible and
quadratically closer to the generalized analytic center (smaller proximity
measure). The stopping criterion is a threshold value η < 1 on the proximity.
To enforce this proximity at u + du, it suffices that the proximity at u be
less than

√
η.

The stopping criterion (1.22) does not imply that G′(u) = 0, but most likely
G′(u) will be close to zero and G′(u+ du) even closer.

1.5 Infeasible start

Problem (1.15) raises the issue of feasibility. In cutting plane schemes, the
new constraints exclude the current iterate from the new localization set.
There is no direct way to retrieve feasibility if the cuts are deep. We propose
an infeasible start Newton method, which aims to achieve feasibility and
optimality simultaneously.

Let us explicit the the first and second derivatives. (Recall that h is linear.)

G′(u) = K ′(u) − ∂h

∂u
F ′(−h(u)),

G′′(u) = K ′′(u) +
∂h

∂u
F ′′(−h(u))∂h

∂u

T

.

Using the intermediate slack variable s̄ = (s0, s, σ), we obtain for the first
optimality conditions for (1.15)

K ′(u) − ∂h

∂u
F ′(s̄) = 0,

h(u) + s̄ = 0.

12

In the course of the optimization process, those equations are never satisfied.
However, we assume that s̄ > 0, and we introduce the residual r and write

K ′(u) − ∂h

∂u
F ′(s̄) = rd, (1.23)

h(u) + s̄ = rp. (1.24)

The Newton direction in the (du, ds̄) space with ds̄ = (ds0, ds, dσ) is given
by

K ′′(u)du −∂h
∂u
F ′′(s̄)ds̄ = −rd, (1.25)

∂h

∂u

T

du +ds̄ = −rp. (1.26)

1.6 General case: nonlinear smooth component

Prior to discussing ways of solving (1.25)-(1.26), we explicit the components
in the equations (1.23) to (1.26). We have

K ′(u) =





ρQ(y − ȳ) +H ′(y)
π
1



 ,

K ′′(u) =





ρQ+H ′′(y) 0 0
0 0 0
0 0 0



 ,

and

∂h

∂u
=





0 A f ′2(y)
π −E 0
1 0 −1



 .

Finally we have
F ′(s̄) = −w̄s̄−1,

with w̄ = (w0, w, ω)
F ′′(s) = W̄ S̄−2.

We recall the first order optimality conditions

ρQ(y − ȳ) + ωf ′2(y)σ
−1 +H ′(y) +AWs−1 = 0, (1.27)

−EWs−1 + πw0s
−1
0 = −π, (1.28)

w0s
−1
0 − ωσ−1 = −1, (1.29)

πT z + ζ + s0 = θ, (1.30)

AT y −ET z + s = c, (1.31)

f2(y) − ζ + σ = 0. (1.32)

13

The system to be solved takes the form

(ρQ+ ωf ′′2 (y)σ−1 +H ′′(y))dy −AWS−2ds− ωf ′2(y)σ
−2dσ = ry,(1.33)

EWS−2ds− πw0s
−2
0 ds0 = rz,(1.34)

−w0s
−2
0 ds0 + ωσ−2dσ = rζ ,(1.35)

πT dz + dζ + ds0 = rs0
,(1.36)

ATdy − ETdz + ds = rs,(1.37)

f ′2(y)dy − dζ + dσ = rσ,(1.38)

with residuals defined by

ry = −(ρQ(y − ȳ) + ωf ′2(y)σ
−1 +H ′(y) +AWs−1),

rz = −(−EWs−1 + πw0s
−1
0 + tπ),

rζ = −(w0s
−1
0 − ωσ−1 + t),

rs0
= −(πT z + ζ + s0 − θ),

rs = −(AT y − ET z + s− c),

rσ = −(f2(y) − ζ + σ).

Let us write the matrix associated with the system (1.33)–(1.38). We have

N =

















∆ 0 0 0 −AΛ −ωf ′2(y)σ−2

0 0 0 −πw0s
−2
0 EΛ 0

0 0 0 −w0s
−2
0 0 ωσ−2

0 πT 1 1 0 0
AT −ET 0 0 I 0

f ′2(y)
T 0 −1 0 0 1

















,

with
∆ = ρQ+ ωf ′′2 (y)σ−1 +H ′′(y)

and
Λ = WS−2.

Denote
M = ∆ +AΛAT + ωσ−2f ′2(y)f

′
2(y)

T .

After pivoting on the SE diagonal block of N , we obtain the equivalent
system:





M −AΛET −ωσ−2f ′2(y)
−EΛAT EΛET + w0s

−2
0 ππT w0s

−2
0 π

−ωσ−2f ′2(y)
T w0s

−2
0 πT w0s

−2
0 + ωσ−2









dy
dz
dζ





=





ry +AΛrs + ωσ−2rσf
′
2(y)

rz − EΛrs + w0s
−2
0 rs0

π
rζ + w0s

−2
0 rs0

− ωσ−2rσ



 .(1.39)

We propose many ways for solving (1.33)–(1.38). The choice depends on the
relative dimensions n, p and m of the variables y, z and s.

14

1.6.1 Case 1: p is small (p ≤ n)

Case 1.1: m ≥ n

We solve (1.39) by factoring the matrix directly, without any preliminary
block pivot.

Case 1.2: m ≤ n

To solve (1.39), we suggest pivoting on M . We obtain the following equiva-
lent system

(

T R
RT W

)(

dz
dζ

)

=

(

ϕz

ϕζ

)

. (1.40)

with

T = EΛET + w0s
−2
0 ππT − EΛATM−1AΛET ,

R = w0s
−2
0 π − EΛATM−1ωσ−2f ′2(y),

W = w0s
−2
0 + ωσ−2 − ωσ−2f ′2(y)

TM−1ωσ−2f ′2(y)

ϕz = rz − EΛrs + w0s
−2
0 rs0

π + EΛATM−1(ry +AΛrs + ωσ−2rσf
′
2(y)),

ϕζ = rζ + w0s
−2
0 rs0

− ωσ−2rσ + ωσ−2f ′2(y)
TM−1(ry +AΛrs + ωσ−2rσf

′
2(y)).

(1.41)

To compute the inverse M−1, we use the Shermann-Morrison formula. In-
deed, the matrix

B = AΛ
1

2 + ω
1

2σ−1f ′2(y)

has fewer columns than rows and we may write

M−1 = ∆−1 − ∆−1B(I +BT ∆−1B)−1BT ∆−1.

The inner matrix (I+BT ∆−1B) has dimension m×m which is quite smaller
than the dimension of M .

1.6.2 Case 2: p is large (p ≥ n)

When the number p of subproblems is relatively large, the oracle returns one
cut per subproblem. Therefore, m is also large, and there is no incentive for
pivoting on M as in Case 1. Since the rows of E are orthoganal, the matrix
EΛET is diagonal and the inverse of EΛET + w0s

−2
0 ππT can be computed

explicitely by the Shermann-Morrison formula. Thus, we suggest to pivot
on EΛET + w0s

−2
0 ππT .

15

1.7 Special case: the smooth component is linear

To work with simpler formulas in Problem 1.11, we make the following
substitutions:

(b,A) → A, (−π,E) → E,

(

θ̄

c

)

→ c and

(

s0
s

)

→ s. (1.42)

The system (1.25)-(1.26) can be simplified. The variable ζ and the constraint
ζ ≥ bT y can be eliminated. The main component become

K ′(u) =

(

ρQ(y − ȳ) +H ′(y)

π

)

,

K ′′(u) =

(

ρQ+H ′′(y) 0
0 0

)

,

and
∂h

∂u
=

(

A
−E

)

.

Finally, we have
F ′(s̄) = −w̄s̄−1,

with w̄ = (w0, w)
F ′′(s) = W̄ S̄−2.

The first order optimality conditions boil down to

ρQ(y − ȳ) + b+H ′(y) +AWs−1 = 0,

EWs−1 = π,

AT y − ET z + s = c.

The system to be solved takes the form

(ρQ+H ′′(y))dy −AWS−2ds = ry, (1.43)

EWS−2ds = rz, (1.44)

AT dy − ETdz + ds = rs, (1.45)

with residuals defined by

ry = −(ρQ(y − ȳ) + b+H ′(y) +AWs−1),

rz = −(−EWs−1 + π),

rs = −(AT y − ET z + s− c).

The matrix associated with the linear system (1.43) is

N =





∆ 0 −AΛ
0 0 EΛ
AT −ET I



 ,

16

with
∆ = ρQ+H ′′(y)

and
Λ = WS−2.

When the oracle computes f1(y) for the first time, it returns p function values
f1•(y) and p subgradients f

′

1•(y). Consequently, in practical implementation,
we always have m ≥ p. Depending on the relative values of m, n and p, we
use one of the methods below to solve the system (1.43).

1.7.1 Case 1: p is small (p ≤ n)

Case 1.1: m ≥ n

Let us pivot on the SE diagonal block of N . We obtain the equivalent
system:

(

∆ +AΛAT −AΛET

−EΛAT EΛET

)(

dy
dz

)

=

(

ry +AΛrs
rz − EΛrs

)

. (1.46)

We solve this system by factoring it directly, without performing a prelimi-
nary block pivot.

Case 1.2: m ≤ n

The proximal term Q guarantees that the matrix ∆ has an inverse. We
assume that the inverse can be computed trivially. Successive substitutions
yield

dz = [E(Λ−1 +AT ∆−1A)−1ET]−1
(

rz + E(Λ−1 +AT ∆−1A)−1(AT ∆−1ry − rs)
)

,

ds = Λ−1(Λ−1 +AT ∆−1A)−1(ET dz −AT ∆−1ry + rs),

dy = ∆−1(AΛds + ry).

The crux in the computation is the solving of linear systems of the following
types

(Λ−1 +AT ∆−1A)v = γ (1.47)

and
[E(Λ−1 +AT ∆−1A)−1ET]w = δ. (1.48)

The square matrix Λ−1 + AT ∆−1A has dimension m × m. The approach
is interesting since m is small with respect to n and p. Since (1.47) is to
be solved with different right-hand sides it is worth using a Cholesky fac-
torization and perform backsolves with the Cholesky factors on the various
right-hand sides.

17

When ∆ is independent of y —a case that occurs when H(y) = 0— then the
product AT ∆−1A keeps constant from one Newton iteration to the next. On
large scale problems, this property may significantly reduce the computing
time. It is also worth noticing that the transformation resulting from the
addition of new cuts is incremental. When a new cut is added, A becomes
(A, a) and

(A, a)T ∆−1(A, a) =

(

AT ∆−1A AT ∆−1a
aT ∆−1A aT ∆−1a

)

.

If AT ∆−1A is saved from one outer iteration to the next, the updating takes
m + 1 scalar products of n-dimensional vectors while forming the product
anew would require (m+ 1)2 scalar products.

1.7.2 Case 2: p is large (p ≥ n)

Just as in the preceding section, let us pivot on the SE diagonal block of N .
We obtain the equivalent system:

(

∆ +AΛAT −AΛET

−EΛAT EΛET

)(

dy
dz

)

=

(

ry +AΛrs
rz − EΛrs

)

. (1.49)

If p is relatively large compare to n, it is best to block pivot on EΛET ,
wich is a diagonal matrix plus a symmetric rank one matrix. We obtain by
substitution

dy = [(∆ +AΛAT) −AΛET (EΛET)−1EΛAT]−1(ry −AΛrs+AΛET (EΛET)−1(rz −EΛrs))

dz = (EΛET)−1EΛATdy + (EΛET)−1(rz − EΛrs).

1.8 Dual analytic center

The dual method works on points (y, z, ζ) in the primal space (sorry for
the confusing use of primal and dual!). However, at the solution, or close
to it, the computation of the Newton direction yields as a by-product an
approximate dual analytic center as defined earlier.

Let (yc, zc, ζc, sc
0, s

c) be the output of the computation of the generalized
analytic center. This vector is an approximate solution of the first order
optimality conditions 1.27 and 1.29

ρQ(yc − ȳ) +H ′(yc) + f ′2(y
c)(1 + w0(s

c
0)

−1) +Aw(sc)−1 = −ry ≈ 0.

Let

x̃ =
w(sc)−1

1 + w0(s
c
0)

−1
> 0.

18

If we use the perturbation vector

r = f ′2(y
c) +Ax̃

in (1.27) we obtain a lower bound estimate. The residual is thus

r =
1

1 + w0(sc
0)

−1
(−ry − ρQ(yc − ȳ) −H ′(yc)).

Note that the residual is likely to be small when yc is good approximation
to the analytic center (ry ≈ 0) and in the meantime is close to ȳ.

19

Chapter 2

Installation

OBOE is implemented in C++ and uses BLAS[8], LAPACK[6] and La-
pack++ [7] for the underlying matrix operations.

Currently OBOE is supported on Linux and Windows platforms.

2.1 OBOE on Linux

The OBOE distribution comes as a compressed file in one of the 2 forms

OBOE-<version>.tar.gz, or

OBOE-<version>.tar.bz2

The user needs to untar one of the above files, for example by doing the
following:

bunzip2 OBOE-<version>.tar.bz2, or

gunzip OBOE-<version>.tar.gz

and then run tar

tar -xvf OBOE-<version>.tar

OBOE is built and distributed using the automake [2] utility. It provides an
easy-to-use framework for automatically creating makefiles, documentation,
distributables. It generates a configure script which the user needs to run
the first time. This script detects the system settings and checks for the
existence of the required utitlities and libraries. It uses template makefiles
Makefile.am to generate the correct makefiles for the system. The user
can check the functionalities provided by configure by using the following
command:

configure --help

20

2.2 OBOE on Windows

OBOE has a distributable for Windows on Visual C# .NET 2003 framework.
This comes as a set of Visual C++ Projects and Visual C++ Solution
files(.sln).

OBOE has been tested with Lapack++ versions 2.1.0 and 2.4.1 1. Since
these did not have support on Windows, we have incorporated these files in
the OBOE distribution. Users using the Windows version do not need to
worry about getting the set of BLAS, LAPACK and LAPACKPP libraries
as they are bundled with the distribution. However, it is advisable to check
that the default libraries perform efficiently or the users should try to obtain
the best possible libraries for their platform.

Note: Recent releases of Lapack++ version 2.4.7 and after have support for
Visual C++ Projects, but we have not yet tested these releases so we leave
it to the discretion of the user if they want to try the new release.

The Linux distributables can also be used on Windows if the user has
MinGW[10] installed.

1The intermediate releases of Lapack++ had a bug which was resolved in 2.4.1.

21

Chapter 3

Using OBOE

Now we take a look at the software implementation of the ACCPM method
in OBOE. OBOE supports optimization of the following function

min{f(y) = f1(y) + f2(y) | y ∈ Y1 ∩ Y2}, (3.1)

where f1 and f2 are convex functions on Rn and Yi ⊂ Rn, i = 1, 2, The func-
tion f1 and the set Y1 are revealed by a first order oracle, and f2 is a convex
twice continuous differentiable function. In the current implementation Y2

can be composed of the following set of constraints:

1. Linear inequality constraints

2. Simple ball constraints ||y − yc|| ≤ R

3. Box constraints βl ≤ y ≤ βu

4. Linear equality constraints of the form {y | DT y = d}.

We will later see how to specify the above forms of Y2.

3.1 C++ callable library

OBOE is distributed as a bunch of C++ libraries which need to be linked
in by the user to create the final executable.

3.1.1 OBOE classes

In this section we look at the API provided with OBOE to enable users to
incorporate OBOE functionality in their code. The main classes of interest
to the user are

1. Oracle

22

2. Parameters

3. QpGenerator

Oracle. This class is designed to allow the user to specify the ”oracle” for
their problem. Both the non-smooth f1(.) and smooth f2(.) functions are
implemented using the class OracleFunction. The Oracle object keeps a
handle to the OracleFunction objects created by the user.

OracleFuntion. This is an abstract class designed to allow the user to spec-
ify the ”oracle functions”. This class can be used for providing both smooth
and non-smooth function information. Let us now recall what information
needs to be provided for each of the functions.

Non-smooth function. For the non-smooth function f1(.) OBOE calls
the user oracle with a query point ȳ and expects the following information

• Is the query point ȳ feasible

• The cut information of the form

aT (y − ȳ) + c ≤ 0.

Whether the cut information is of the feasibility kind(ȳ is not a feasible
point) or optimality we can find a hyperplane which separates the
current query point from the current localization set. This successively
reduces the size of the localization set. The oracle needs to specify the
values a and c. If the function f1(.) is disaggregated a is a matrix
containing the cuts for each function and c a vector of compatible
dimension. Otherwise a is simply a vector and c a scalar value.

The user provides this information by subclassing from OracleFunction and
defining the OracleFunction::eval function. For example, the user defines
the following class,

class MyOracleFunction : public OracleFunction {

public:

virtual int eval(const AccpmVector &y,

AccpmVector &functionValue,

AccpmGenMatrix &subGradients,

AccpmGenMatrix *info);

};

Smooth function. The OracleFunction class is also used to specify the
smooth function. Recall that for the smooth function f2(.) the user needs to

23

give the function value, the gradient value and the hessian at the query point
ȳ. The user provides the above information via the OracleFunction::eval

function.

Refer to Oracle.h to see the exact syntax and usage of eval function.

Parameters. The Parameters object is used for specifying the control pa-
rameters for OBOE. This class provides a set of functions to regulate the
various parameters. Refer to Parameters.h to get a detailed description of
the provided functions. For ease of use it also allows the user to read in
a text file which can specify int, double, and string valued parameters.
The format of this file is very simple, each line contains the following
Name Type Value

where Name is the name of the parameter, Type is the type of the parameter
and Value is the value to be assigned to the parameter. For example to set
maximum number of outer iterations the user can place the following line
in the parameter file
MaxOuterIterations Int 200
This will limit the number of calls to the oracle to 200.
The same can be done using the Parameters class function

setIntParameter("MaxOuterIterations", 200);

In section 3.2 we will look at the different parameters and control functions
provided by the Parameters class.

QpGenerator. This is the main interface to OBOE. This class is respon-
sible for generating query points and subsequently calling the oracle. A
QpGenerator object is initialized by providing a handle to the above two
objects, the Oracle object and the Parameters object. After initialization
the user can use the QpGenerator object to generate query points via the
run method. Each call of run method generates a query point and calls the
OracleFucntion::eval function defined by the user’s OracleFunction object
and returns the status of these operations. Typically the user would call run

as long as it does not return a 0 value. A 0 signals termination of the query
point generation process and could be caused due to one of the following:

1. Maximum number of outer iterations reached, or

2. Relative Gap is below the specified Tolerance, or

3. User asked the QpGenerator to stop by returning a 1 in the Oracle-

Function::eval function.

24

3.1.2 Linear inequality constraints

The linear inequality constraints can be added as feasibility cuts by the
oracle at the beginning. The oracle needs to ensure that the constraint is
represented in the form

aT (y − ȳ) + c ≤ 0,

where ȳ is the query point at which the oracle is called. So a linear constraint
of the form

dT y ≤ d

will have to be written as

dT (y − ȳ) + dT ȳ − d ≤ 0.

The orcale will return the values vector d and scalar value dT ȳ − d.

3.1.3 Ball and box constraints

Box constraints Box constraints are used to specify bounds on the vari-
ables, for example l ≤ y ≤ u. The lower bound on variables can be
specified by the function

bool Parameters::setVariableLB(const StdRealVector& v);

Similarly, the upper bound on variables can be specified by the function

bool Parameters::setVariablerUB(const StdRealVector& v);

Ball constraints These constraints of the form

||y − yr||2 ≤ R2

are specified by providing the center of the ball yr via the function

bool Parameters::setCenterBall(const StdRealVector& v);

The radius, R, is specified via the double parameter RadiusBall.

3.1.4 Linear equality constraints

For some applications the y variables need to satify {y | DT y = d}.
These constraints can be specified by the following function

void Parameters::addEqualityConstraints(const AccpmGenMatrix &constraints,

const AccpmVector &rhs);

The matrix constraints should contain the matrix D and the vector
rhs specifies the values of d.

25

3.2 Parameter Listing

Here we provide the various control parameters for OBOE, used for tuning
the behaviour of the algorithm. The table gives the names of control param-
eters defined in the header file Parameters.h), their type, default values,
and descriptions.

ProblemName type: String, default: OBOE General Problem
Symbolic name for the problem being solved by the user.

OptimizationType type: String, default: Min
Min: Minimize the objective function or
Max: Maximize the objective function or

NumVariables type: Integer, default: 0
Number of variables in the problem.
This needs to be set by the user.

NumProblems type: Integer, default: 1
Number of functions in non-smooth f1(.) function.
If f1(.) is disaggregated into sum of functions
this parameter specifies the number of such functions.

MaxOuterIterations type: Integer, default: 1000
Limit on the number of iterations performed by OBOE.
This is the miximum number of query points generated.

MaxInnerIterations type: Integer, default: 50
Maximum number of inner iterations performed by OBOE.
This limits the number of iterations performed to solve
the Newton system internally, in every outer iteration.
Typically, the average number of inner iterations is about
2-3 times the number of outer iterations.

ObjectiveLB type: Double, default: ACCPM MINUS INF (defined in
AccpmDefs.h)
Lower bound on the objective function value.

ObjectiveUB type: Double, default: ACCPM PLUS INF (defined in AccpmDefs.h)
Upper bound on the objective function value.

ComputeLowerBound type: Integer, default: 1
If OBOE should compute a lower bound for minimization problems
internally.
Otherwise, OBOE will depend on the user for providing a valid lower
bound via Oracle::getLowerBound()).
If you are not sure of how to provide a lower bound of the problem,
do not change this parameter setting.

26

Verbosity type: Integer, default: 0
Controls the amount of information provided by OBOE.
1 : Prints function value information received from the Oracle.
2 : Also prints the Relative Gap information.
3 and higher : Useful for debugging.

Tolerance type: Double, default: 10−6

This specifies the convergence criterion.
OBOE terminates when the Relative Gap reduces to value less than
the Tolerance.

Rho type: Double, default: 1.0
The weight on the proximal term 1/2(y − ȳ)TQ(y − ȳ).

DynamicRho type: Integer, default: 0
0 : Do not update the value of Rho.
1 : Update the value of Rho at every iteration. OBOE uses an internal
strategy to control the value of parameter Rho.

RhoMax type: Double, default: 100
If DynamicRho is 1 then we can limit the maximum value Rho can take
by specifying the value of this parameter.

RhoMin type: Double, default: 10−6

If DynamicRho is 1 then we can limit the minimum value Rho can take
by specifying the value of this parameter.

WeightEpigraphCutInit type: Double, default: 1.0
The weight s0 on the lograthmic barrier for the epigraph cut.
This value affects only once we have found feasible point and have
optimality cuts.

WeightEpigraphCutInc type: Double, default: 1.0
This parameter control the amount by which the parameter
WeightEpigraphCutInit should be increased in each iteration.
The default behaviour is to give the epigraph cut as much weight as
the number of cuts.

Ball type: Integer, default: 0
0 : No ball constraints.
1 : There are ball constraints which need to be satisfied by the query
point y.

RadiusBall type: Double, default: 105

This is the radius, R, of the ball constraint ||y − yr||2 ≤ R2.
The center of the ball must be specified by the function
setCenterBall(const StdRealVector &v);

27

Filter type: Integer, default: 1
0 : Keep duplicate cuts.
1 : If the user gives duplicate cuts, do not add them to the internal
matrices.

ConvexityCheck type: Integer, default: 0
Check if the optimality cuts given by the user respect convexity.
Incase there is a violation, OBOE prints a warning that the objective
function value is under or over estimated as the case may be.
This does not do any fixing, only warns the user of the violations if
they occur.

ConvexityFix type: Integer, default: 0
If ConvexityFix is set to 1, OBOE tries to internally correct the con-
vexity violation if it is possible.

type: , default:

The Parameters class(3.1.1) provides API for specifying the above param-
eters either in a text file or via the following function calls.

For int parameters the user can either specify in the input file

<name> I <value>

or use the function call:

bool setIntParameter(const char *name, int value);

The above mechanism is also used for setting bool parameters, with the
only difference that the value can be either 0 or 1.

For String parameters the user can either specify in the input file

<name> S <value>

or use the function call:

bool setStringParameter(const char *name, const string &value);

For Double parameters the user can either specify in the input file

<name> D <value>

or use the function call:

bool setRealParameter(const char *name, double value);

28

3.2.1 Retrieving parameter values

The scalar parameters have getTypeParameter functions similar to the
set<Type>Parameter functions.

For getting the value of int parameter

int getIntParameter(const char *name);

For getting the value of double parameter

double getRealParameter(const char *name);

For getting the value of string parameter

const string getStringParameter(const char *name);

3.2.2 Array parameter values

Below we describe some of the other API functionality provided by the
Parameters class.

bool setStartingPoint(const StdVector& v) function can be used to
set the first query point. It defaults to a zero vector.

The starting point can be retrieved by const AccpmVector *getStartingPoint() const.

bool setVariableLB(const StdRealVector& v) function can be used for
specifying the lower bound on the variables. It defaults to ACCPM_MINUS_INF.

The variable lower bound values can be retrieved by const AccpmVector *getVariableLB() const.

bool setVariableUB(const StdRealVector& v) function can be used for
specifying the upper bound on the variables. It defaults to ACCPM_PLUS_INF.

The variable upper bound values can be retrieved by const AccpmVector *getVariableUB() const.

bool setPi(const StdRealVector& v) function allows the user to specify
the weight π on the non-smooth function f1(.). The length of the vector v
should be equal to the NumSubProblems.

The π vector can be retrieved by const AccpmVector *getPi() const.

bool setB(const StdRealVector& v) and bool setB(const AccpmVector& v)

allow the user to specify the linear component of the objective function.
OBOE allows either the Oracle has a general smooth function or is com-
pletely linear in which case the vector b of bT y function is specified by the
above function. If the smooth function f2(.) has a linear component in ad-
dition to a non-linear part the user should specify it in the OracleFunction

itself.

29

The b vector can be retrieved by const AccpmVector *getB() const.

bool setCenterBall(const StdRealVector& v) function is useful for spec-
ifying the center yr of the ball constraint ||y − yr||2 ≤ R2.

The center of the ball constraint can be retrieved by const AccpmVector *getCenterBall() const.

3.3 Linear Algebra

OBOE uses LAPACK++ v. 2.0.x for underlying linear algebra operations.

LAPACK++ [7] is a library for high performance linear algebra computa-
tions. It wraps BLAS and LAPACK functionality in C++ classes. It is
provided under Lesser GPL licensing scheme. Note: There were some errors
in post 2.1 release which were fixed in 2.4.1. OBOE has been tested with
2.1.0 and 2.4.2. We have not yet tested the recent releases so it is upto the
user if they want to get a recent release of Lapack++.

The BLAS and LAPACK libraries have a huge impact on the performance
of OBOE. We recommend the user to obtain the most efficient BLAS and
LAPACK libraries for their system. Fine tuned blas and lapack libraries
are provided by ATLAS [1], which aims at creating highly efficient libraries
depending on the system parameters.

3.4 Serialization

OBOE has support for serialization on Linux platform. It uses the serial-
ization libraries provided by boost

http : //www.rrsd.com/boost/libs/serialization/doc/index.html

By default the support for these libraries is turned off, but can be enabled
by

configure --enable-serialization=yes

These libraries enable the save and load facilty for OBOE, incase the user
wants to save the state and restart OBOE.

30

Chapter 4

Benchmark for OBOE

4.1 Introduction

In this section we solve a set of problems using OBOE. The objective here is
to illustrate the performance and robustness of OBOE. Also, we would like
to show the wide variety of problems that fit within the nondifferentiable
convex optimization framework.

• The cutting stock problem

• The quadratically constrained quadratic programming problem

• The traveling salesman problem

• Linear support vector machine

4.2 The cutting stock problem

4.2.1 Description of the problem

The cutting stock problem[4] arises from many physical applications in in-
dustry. For instance, in the paper cutting division of a given paper mill, there
is a number of rolls of paper of fixed width waiting to be cut, and different
manufacturers want different numbers of rolls of various-sized widths. The
problem here is to find how to cut the rolls so that the least amount of
left-overs are wasted. This problem can be formulated as an integer linear
programming problem[3]

31

4.2.2 Mathematical formulation

Consider the previous paper cutting instance, each valid cutting of a roll is
called a pattern. For each width, we have to produce the quantity ordered.
A pattern gives the number of pieces for each width involved, and there are
several possible patterns for a roll.

We can consider the problem to be an integer linear program, where the
variables are the number of each pattern to cut. The objective function is
to minimize the number of rolls that are cut. The constraints in the problem
require that we cut enough rolls with certain patterns to fulfill the orders.

Let aij be the number of times the order width i is produced in pattern j.
Let xj be the number of times the pattern j is used. Let bi be the demand
for the width i, and m is the number of such demands. Let n be the number
of patterns in the model. The problem can be formulated as [3] :































min
n

∑

j=1

xj

subject to

n
∑

j=1

aijxj ≥ bi

xj ≥ 0,

(4.1)

with the initial set of patterns. Since this set of patterns may not immedi-
ately gives the solution of the problem, we need to generate new patterns
to get better solution.

4.2.3 Solving with OBOE

To solve the problem 4.1 we consider the LP dual of the above problem:































max

m
∑

i=1

yibi

subject to
m

∑

i=1

aijyi ≤ 1

yi ≥ 0.

(4.2)

As mentioned before we do not have all the patterns to start with. We need
to generate new patterns to reduce the number of rolls used. To generate
these patterns we solve another optimization problem such that we get a
pattern with negative reduce cost while ensuring that it does not exceed the
width of the roll L. For this purpose, the dual variables of problem (4.1)

32

are used in the knapsack problem below :































max Z =

m
∑

i=1

yizi

subject to
m

∑

i=1

wizi ≤ L

zj integer.

(4.3)

Both the main linear problem (4.1) and the associated knapsack (4.3) are
solved consecutively until there are no more patterns to include in the main
problem. For more details refer to website:

http://www-fp.mcs.anl.gov/otc/Guide/CaseStudies/cutting/math.html

If the knapsack problem 4.3 returns a value Z ≤ 1, the oracle returns an
optimality cut otherwise we return a feasibility cut which is the new pattern,
z generated as the solution to the knapsack problem.

4.3 The quadratically constrained quadratic pro-

gramming problem

4.3.1 Description of the problem

The quadratic problem of our concern here can be expressed as follows:































min

n
∑

j=1

(ajyj − bj)
2

subject to
n

∑

j=1

(cijyj − eij)
2 ≤ fi, i = 1, 2, · · · ,m

Ay ≤ ℓ.

(4.4)

Problem (4.4) extend the standard one commonly encountered the littera-
ture
(see http://www.numerical.rl.ac.uk/qp/qp.html) in the following form :







min 1
2y

TQy
subject to Ay ≤ L

Ey = G.
(4.5)

Dealing with quadratic constraints is one of the advantage of the cutting
plane method. Moreover, we can exploit the feature of disaggregation to
speed the optimization process, since the objective function is structurally
disaggregated (and also separable in this case).

33

4.3.2 Solving with OBOE

Using OBOE to solve the QP, the Oracle checks whether or not the query
point is feasible.

Optimality Cuts

For query point ȳ if

n
∑

j=1

(cijyj − eij)
2 ≤ fi, i = 1, 2, · · · ,m

then we give optimality cuts using the convexity of the objective function If
we use the disaggregated form and consider f1(.) to be sum of n functions,
we get the following cuts

(2a. ∗ (a. ∗ y − b)). ∗ (y − ȳ) + (a. ∗ y − b)2 ≤ 0,

where .∗ is the component-wise vector multiplication.

Feasibility Cuts

For query point ȳ if for constraint i

n
∑

j=1

(cijyj − eij)
2 ≥ fi

then we give feasibility cuts using the convexity of the constraints. For each
constraint i which is not feasible with respect to ȳ we have a feasibility cut
given by

(2ci. ∗ (ci. ∗ y − ei))
T (y − ȳ) + (ci. ∗ y − ei)

2 − fi ≤ 0,

where .∗ is the component-wise vector multiplication.

4.4 The traveling salesman problem

4.4.1 Description of the problem

An illustrative defintion of the traveling salesman problem, or TSP for short,
is this: given a finite number of ”cities” along with the cost of travel between
each pair of them, find the cheapest way of visiting all the cities and return-
ing to your starting point. For more detailed information on TSP problem
we refer to the website

http://www.math.princeton.edu/tsp/index.html

34

4.4.2 Algebraic description

Consider a weigthed graph G = (V,A,W), where V is the set of vertex,
A ⊂ V ×V the set of arcs, and W : u ∈ A→W (u) ∈ R the weight function.
The Traveling Salesman Problem (TSP) consist in finding a hamiltonian

cycle in G with a minimum cost. A hamiltonian cycle in G can be defined
by a bijection σ : V → V such that

∀v ∈ V, (v, σ(v)) ∈ A. (4.6)

Given an hamiltonian cycle in G defined by σ, the associated cost is defined
by

C(G,σ) =
∑

v∈V

W ((v, σ(v)). (4.7)

The problem is known to be NP-Complete[5] and has many significant ap-
plications including those in transport and logistics.

4.4.3 Mathematical formulation

Given the symmetric cost matrix C = (cij) of the graph G of order n, the
TSP can be formulated as follows:



























min
∑

i,j

xijcij

subject to

n
∑

j=1

xij = 2,∀i ∈ {1, · · · , n}

xij ∈ {0, 1}

(4.8)

A straightforward relaxed formulation is :

{

max
λ

min
x∈B(G)

∑

i,j

xijcij +
n

∑

i=1

λi(
n

∑

j=1

xij − 2) (4.9)

which is equivalent to

{

max
λ

min
x∈B(G)

n
∑

i=1

[−2λi +
1

2

n
∑

j=1

xij(cij + λi + λj)] (4.10)

where B(G) is a one-tree built over the cost matrix defined by

C
(λ)
ij = cij + λi + λj . (4.11)

Since B(G) is not equivalent to the set of tours in G, problem (4.10) gives a
lower (and sometimes upper) bound of the original problem, which can then
be solved using the branch and bound paradigm.

35

4.5 Linear support vector machine

4.5.1 Description of the problem

The purpose of linear separation is to find a linear function to separate
multi-attribute instances that are partitioned into two subsets. The goal of
the linear separation is to find a linear form in the space of the attributes
that leaves the two subsets on opposite sides. In general it is not possible
to achieve perfect separation. One has to look for a surrogate objective.
A natural one is to minimize the total number of misclassified instances.
Unfortunately this leads to a mixed integer programming problem, which
may be very hard even for moderate size data. A more tractable approach
[9] consists of minimizing the total deviation (or gap) of the misclassified
instances. This problem is a convex non-differentiable problem for which
there exists solution methods with polynomial complexity estimates.

4.5.2 Mathematical formulation

Given a set of points A = {ai ∈ Rn, i = 1, 2, · · · ,N}, and a partition S1∪S2

of the set of indices S = {1, 2, · · · ,N}, we wish to find w ∈ Rn and γ ∈ R
such that the hyperplane {x | wTx = γ} separates the two subsets A(S1)
and A(S2), where

A(S1) = {ai ∈ A | i ∈ S1}, (4.12)

A(S2) = {ai ∈ A | i ∈ S2}. (4.13)

For typographical convenience, we will write (w, γ) instead of (wT , γ).

Actually, one looks for a strong separation. Thus, given a separation margin

ν > 0, we hope to achieve the separation properties (4.14-4.15) displayed
bellow

∀ai ∈ A(S1) wT ai ≥ γ + ν, (4.14)

∀ai ∈ A(S2) wT ai ≤ γ − ν. (4.15)

In general, there is no guarantee that the two sets can be strongly separated.
Therefore, for any choice of w and γ, we might observe misclassification

errors, which we define as follows

e1i = max(−wT ai + γ + ν, 0), i ∈ S1, (4.16)

e2i = max(wT ai − γ + ν, 0), i ∈ S2. (4.17)

The linear separation problem can be formulated as the following minimiza-
tion problem in R\+∞:

min
(ω,γ)∈R\×R

F (ω, γ) =
1

|S1|
∑

i

e1i +
1

|S2|
∑

i

e2i (4.18)

36

4.5.3 Linear separation oracle

Let A′
1 and A′

2 define the set of misclassified points for A(S1) and A(S2)
respectively. Hence,

A′
1 = {i : ai ∈ A(S1), e

1
i > 0},

A′
2 = {i : ai ∈ A(S2), e

2
i > 0}.

Differentiating (4.18) in (ω, γ) yields (−ai, 1) for the misclassified points of
A(S1), and (ai,−1) for the misclassified points of A(S2). Thus, for any
feasible point (ω, γ), the gradient for the oracle is defined by g = g1 + g2,
where

g1 = 1
|A1|

∑

i∈A′
1

(−ai, 1),

g2 = 1
|A2|

∑

i∈A′
2

(ai,−1).

For details on the use of ACCPM for solving the separation problem with
more general quadratic separation functions, we refer to [11].

37

Bibliography

[1] Atlas. Available at the web http://math-atlas.sourceforge.net.

[2] Automake. A tool for automatically generating Makefiles files
compliant with the GNU Coding Standards. For details refer to:
http://sources.redhat.com/automake/.

[3] V. Chvatal, Linear Programming, Series of Books in the Mathematical
Sciences, W. H. Freeman Compagny, 1983.

[4] Z. Degrave and M. Peeters, Benchmark results for the cutting

stock and bin packing problem, Tech. Rep. Research Report No 9820,
Quantitative Methods Group, Louvain, Belgique, 1998.

[5] M. R. Garey and D. S. Johnson, Computer and Intractability - A

Guide to the Theory of NP-Completeness, W. H. Freeman, New-York,
USA, 1979.

[6] Lapack. Linear algebra library based on BLAS. For details refer to
http://www.netlib.org/lapack.

[7] Lapack++ library. Available at http://www.sourceforge.net/projects/lapackpp.

[8] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Blas, basic

linear algebra subprograms for fortran. Applications for Computing
Machinery Transactions on Mathematical Software, 1979. For details
refer to http://www.netlib.org/blas.

[9] O. L. Mangasarian, W. N. Street, and W. H. Wolberg, Breast

cancer diagnosis and prognosis via linear programming, Operations Re-
search, 43 (1995), pp. 570–577.

[10] Mingw32. Free compiler and shell system for Windows. Available at
the web http://www.mingw.org.

[11] O. Peton, N. Sawhney, and J. P. Vial, Linear and nonlinear dis-

crimination via the analytic center cutting plane method, presented at
workshop on Datamining at McMaster University, Hamilton, (2006).

38

