

so could not be expressed in the SIF language. There is a hook to allow
”external” functions in SIF, and this worked, but was awkward. I designed
this API to replace the SIF decoder. It desigh the user to build up a problem

cumbersome forlarge problems), by subroutines which evaluate the function
(good for medium sized problems), and finally in LANCELOT’s group par-
tially separable form (designed for handling large problems, but needlessly

rc=NLVSetC(a,9,1.);

rc=NLPSetObjectiveGroupA(P,group,a);

rc=NLPSetObjectiveGroupB(P,group,5.);

NLFreeVector(a);

2.5 Solving a Problem

To invoke a solver the user creates a solver, e.g. an NLLancelot data struc-
ture. This has a set of parameters and a routines for invoking the solver.

(or constraint, since the same form is used for those) depends.This allows a
simple form of sparsity).

dF evaluates the partial derivatives of f, and has an additional integer
argument (the first argument), which indicates which partial derivative to
return. ddF evaluates the second partial derivatives, and has two additional
integer arguments (the first two).

Alternatively, the user can define the objective by means of a string con-
taining an expression:

NLPSetObjectiveByString(P,name,nv,v,

"[x1,x2,x3]",

int v[3];

double (*F)(int,double*,void*);

double (*dF)(int,int,double*,void*);

double (*ddF)(int,int,int,double*,void*);

void *data;

NLPSetInequalityConstraintGroupFunction

NLPSetInequalityConstraintGroupScale

NLPSetInequalityConstraintGroupA

NLPSetInequalityConstraintGroupB

NLPAddNonlinearElementToInequalityConstraintGroup

Inequality constraints can be evaluated using the routines:

int c;

double o;

NLVector v,g;

NLMatrix H;

o=NLPEvaluateInequalityConstraint(P,c,v);

g=NLCreate...Vecton(...);

void *data;

void (*freedata)(void*);

nv=3;v[0]=3;v[1]=10;v[2]=9;

l=1.;u=10.;

rc=NLPAddEqualityConstraint(P,nam2,nv,v,F,dF,ddF,

data,freedata);

The data

Inequalities are sometimes dealt with by introducing extra variables called
slacks. That is,

l ≤ f(x) ≤ u

is replaced by an equality constraint and simple bounds on the slack –

f(x) − s

NLPSetObjectiveGroupFunction(g,gf);

different GroupFunctions), and freedata is a routine that is 1, toled when the
GroupFunction is freed.

ef=NLCreateElementFunctionWithInitialHessian(P,"etype",

n,R,F,dF,ddF,

data,freedata,

ddF0);

ef=NLCreateElementFunctionByString(P,"etype",n,R,

"[x,y,z,w]",

"x**2+y**2-z*w");

Here, n is the number of element variables, R the range transformation (or
NULL), F, dF, and ddF are routines which evalute F and its derivatives (ddF
may be NULL). If ddF is NULL, ddF0 gives an initial guess at the Hessian

NLPAddNonlinearElementToEqualityConstraintGroup(P,c,g,w,N):

NLPAddNonlinearElementToInequalityConstraintGroup(P,c,g,w,N):

3.1.8 Matrices

releases the storage. It calls NLFree.. for all of the groups, element func-
tions, and so on which are stored in the problem. When the user creates
one of these data structures a ”reference count” associated with it is set to
”1”. When the problem stores a pointer to the data structure the reference
count is increased by one. The ”NLFree...” routines decreases the reference
count by one and if the count is zero, releases the memory used by the data
structure. For example:

g=NLCreateGroupFunction(...); ref count = 1

NLPSetObjectiveGroupFunction(...); ref count = 2

NLFreeGroupFunction(...); ref count = 1 not yet

The severity is 4, 8 or 12, the Routine is the routine which issued the error,
and the line and file give the line of source code where it was issued. The

2 Example

We will develop the code for c9eating and solving HS65. HS65 is the problem:

minimize

(x

NLPSetSimpleBounds(P,1,-4.5,4.5);

function as the group function, but element functions, unlike groups, which
take a scalar argument, take a vector as argument.

First we include the API prototypes:

#include <NLPAPI.h>

Then define two sets of three functions, which will be used for the group and
element functions and their derivatives.

double gSq(double x){return(x*x);}

double dgSq(double x){return(2*x);}

double ddgSq(double x){return(2);}

double fSq(int n,double *x){return(x[0]*x[0]);}

double dfSq(int i,int n,double *x){return(2*x[0]);}

double ddfSq(int i,int j,int n,double *x){return(2);}

The main program and declarations –

int main(int argc,char *argv[])

{

NLProblem P;

NLGroupFunction g;

NLElementFunction f;

NLNonlinearElement ne;

int group;

NLVector a;

double x0[3];

NLLancelot Lan;

double x[3];

int constraint;

int element;

int v[1];

int i;

int rc;

We are now ready to create the problem and a group and element function

P=NLCreateProblem("HS65",3);

g=NLCreateGroupFunction(P,"L2",gSq,dgSq,ddgSq,NULL,NULL);

f=NLCreateElementFunction(P,"fSq",1,NULL,fSq,dfSq,ddfSq,NULL,NULL);

26

rc=NLPSetObjectiveGroupA(P,group,a);

rc=NLPSetObjectiveGroupB(P,group,5.);

NLFreeVector(a);

Next come bounds on the variables:

rc=NLPSetSimpleBounds(P,0,-4.5,4.5);

rc=NLPSetSimpleBounds(P,1,-4.5,4.5);

rc=NLPSetSimpleBounds(P,2,-5.,5.);

object, then set the initial guess and ask for the minimization to be per-
formed.

NLF2 123eo.158 654.247 cm
BT
/F21 11.f4 upFf4 unf4 ctf4 ionf4 (gf4);

