
PYSP Version 1.11

User Documentation

Jean-Paul Watson
Sandia National Laboratories

Discrete Math and Complex Systems Department
P.O. Box 5800, MS 1318

Albuquerque, NM 87185-1318 USA
jwatson@sandia.gov

David L. Woodruff
Graduate School of Management
University of California, Davis

Davis, CA 95616-8609 USA
dlwoodruff@ucdavis.edu

September 30, 2010

1 Overview

The pysp package extends the pyomo modeling language to support multi-stage
stochastic programs with enumerated scenarios. Pyomo and pysp are Python version
2.6 programs. In order to specify a program, the user must provide a reference model
and a scenario tree.

Provided and the necessary paths have been communicated to the operating system,
the command to execute the pysp package is of the form:

runph

It is possible, and generally necessary, to provide command line arguments. The
simplest argument causes the program to output help text:

runph --help

but notice that there are two dashes before the word “help.” Command line argu-
ments are summarized in Section 3.

1

The underlying algorithm in pysp is based on Progressive Hedging (PH) [5], which
decomposes the problem into sub-problems, one for each scenario. The algorithm
progressively computes weights corresponding to each variable to force convergence
and also makes use of a proximal term that provides a penalty for the squared
deviation from the mean solution from the last PH iteration.

1.1 Reference Model

The reference model describes the problem for a canonical scenario. It does not make
use of, or describe, a scenario index or any information about uncertainty. Typically,
it is just the model that would be used if there were only a single scenario. It is
given as a pyomo file. Data from an arbitrary scenario is needed to instantiate.

The objective function needs to be separated by stages. The term for each stage
should be “assigned” (i.e., constrained to be equal to) a variable. These variable
names are reported in ScenarioStructure.dat so that they can be used for reporting
purposes.

1.2 Scenario Tree

The scenario tree provides information about the time stages and the nature of the
uncertainties. In order to specify a tree, we must indicate the time stages at which
information becomes available. We also specify the nodes of a tree to indicate which
variables are associated with which realization at each stage. The data for each
scenario is provided in separate data files, one for each scenario.

2 File Structure

• ReferenceModel.py (A pyomo model file)

• ReferenceModel.dat (data for an arbitrary scenario)

• ScenarioStructure.dat (among other things: the scenario names: Sname)

• *Sname.dat (full data for now) one file for each scenario

In this list we use “Sname” as the generic scenario name. The file ScenarioStructure.dat
gives the names of all the scenarios and for each scenario there is a data file with
the same name and the suffix “.dat” that contains the full specification of data for
the scenario.

2.1 ScenarioStructure.dat

The file ScenarioStucture.dat contains the following data:

2

• set Scenarios: List of the names of the scenarios. These names will subse-
quently be used as indices in this data file and these names will also be used
as the root file names for the scenario data files (each of these will have a .dat
extension) if the parameter ScenarioBasedData is set to True, which is the
default.

• set Stages: List of the names of the time stages, which must be given in time
order. In the sequel we will use StageName to represent a node name used
as an index.

• set Nodes: List of the names of the nodes in the scenario tree. In the sequel
we will use NodeName to represent a node name used as an index.

• param NodeStage: A list of pairs of nodes and stages to indicate the stage for
each node.

• param Parent: A list of node pairs to indicate the parent of each node that
has a parent (the root node will not be listed).

• set Children[NodeName]: For each node that has children, provide the list
of children. No sets will be give for leaf nodes.

• param ConditionalProbability: For each node in the scenario tree, give the
conditional probability. For the root node it must be given as 1 and for the
children of any node with children, the conditional probabilities must sum to
1.

• param ScenarioLeafNode: A list of scenario and node pairs to indicate the leaf
node for each scenario.

• set StageVariables[StageName]: For each stage, list the pyomo model vari-
ables associated with that stage.

Data to instantiate these sets and parameters is provided by users in the file Sce-
narioStructure.dat, which can be given in AMPL [1] format.

The default behavior is one file per scenario and each file has the full data for the
scenario. An alternative is to specify just the data that changes from the root
node in one file per tree node. To select this option, add the following line to
ScenarioStructure.dat:

param ScenarioBasedData := False ;

This will set it up to want a per-node file, something along the lines of what’s in
examples/pysp/farmer/NODEDATA.

Advanced users may be interested in seeing the file coopr/pysp/utils/scenariomodels.py,
which defines the python sets and parameters needed to describe stochastic elements.
This file should not be edited.

3

3 Command Line Arguments

The basic PH algorithm is controlled by parameters that are set as command line
arguments. Note that options begin with a double dash.

• -h, --help
Show help message and exit.

• --model-directory=MODEL DIRECTORY
The directory in which all model (reference and scenario) definitions are stored.
I.e., the “.py” files. Default is ”.”.

• --instance-directory=INSTANCE DIRECTORY
The directory in which all instance (reference and scenario) definitions are
stored. I.e., the “.dat” files. Default is ”.”.

• --verbose

Generate verbose output for both initialization and execution. Default is False.

• --report-solutions

Always report PH solutions after each iteration. Enabled if –verbose is en-
abled. Default is False.

• --report-weights

Always report PH weights prior to each iteration. Enabled if –verbose is
enabled. Default is False.

• --report-only-statistics

When reporting solutions (i.e. if –report-solutions has been selected), only
output per-variable statistics - not the individual scenario values. Default is
False.

• --solver=SOLVER TYPE
The type of solver used to solve scenario sub-problems. Default is cplex.

• --solver-manager=SOLVER MANAGER TYPE
The type of solver manager used to coordinate scenario sub-problem solves.
Default is serial. This option is changed in parallel applications as described
in Section 8.

• --max-iterations=MAX ITERATIONS
The maximal number of PH iterations. Default is 100.

• --default-rho=DEFAULT RHO
The default (global) rho for all blended variables. Default is 1.

• --rho-cfgfile=RHO CFGFILE
The name of a configuration script to compute PH rho values. Default is None.

4

• --enable-termdiff-convergence
Terminate PH based on the termdiff convergence metric. The convergcne
metric is the unscaled sum of differences between variable values and the mean.
Default is True.

• --enable-normalized-termdiff-convergence
Terminate PH based on the normalized termdiff convergence metric. Each
term in the termdiff sum is normalized by the average value (NOTE: it is
NOT normalized by the number of scenarios). Default is False.

• --termdiff-threshold=TERMDIFF THRESHOLD
The convergence threshold used in the term-diff and normalized term-diff con-
vergence criteria. Default is 0.01, which is too low for most problems.

• --enable-free-discrete-count-convergence

Terminate PH based on the free discrete variable count convergence metric.
Default is False.

• --free-discrete-count-threshold=FREE DISCRETE COUNT THRESHOLD
The convergence threshold used in the criterion based on when the free discrete
variable count convergence criterion. Default is 20.

• --enable-ww-extensions

Enable the Watson-Woodruff PH extensions plugin. Default is False.

• --ww-extension-cfgfile=WW EXTENSION CFGFILE
The name of a configuration file for the Watson-Woodruff PH extensions plu-
gin. Default is wwph.cfg.

• --ww-extension-suffixfile=WW EXTENSION SUFFIXFILE
The name of a variable suffix file for the Watson-Woodruff PH extensions
plugin. Default is wwph.suffixes.

• --user-defined-extension=EXTENSIONFILE
Here, ”EXTENSIONFILE” is the module name, which is in either the current
directory (most likely) or somewhere on your PYTHONPATH. A simple ex-
ample is ”testphextension” plugin that simply prints a message to the screen
for each callback. The file testphextension.py can be found in the sources di-
rectory and is shown in Section 4.3. A test of this would be to specify ”-user-
defined-extension=testphextension”, assuming testphextension.py is in your
PYTHONPATH or current directory. Note that both PH extensions (WW
PH and your own) can co-exist; however, the WW plugin will be invoked first.

• --scenario-solver-options

The options are specified just as in pyomo, e.g., --scenario-solver-options="mip_tolerances_mipgap=0.2"
to set the mipgap for all scenario sub-problem solves to 20% for the CPLEX
solver. The options are specified in a quote deliminted string that is passed to
the sub-problem solver. Whatever options specified are persistent across all
solves.

5

• --ef-solver-options

The options are specified just as in pyomo, e.g., --scenario-solver-options="mip_tolerances_mipgap=0.2"
to set the mipgap for all scenario sub-problem solves to 20% for the CPLEX
solver. The options are specified in a quote deliminted string that is passed to
the EF problem solver.

• --write-ef

Upon termination, write the extensive form of the model - accounting for all
fixed variables.

• --solve-ef

Following write of the extensive form model, solve it.

• --ef-output-file=EF OUTPUT FILE
The name of the extensive form output file (currently only LP format is sup-
ported), if writing of the extensive form is enabled. Default is efout.lp.

• --suppress-continuous-variable-output

Eliminate PH-related output involving continuous variables. Default: no out-
put.

• --keep-solver-files

Retain temporary input and output files for scenario sub-problem solves. De-
fault: files not kept.

• --output-solver-logs

Output solver logs during scenario sub-problem solves. Default: no output.

• --output-scenario-tree-solution

Report the full solution (including the leaves) in scenario tree format upon
termination. Values at non-leaf nodes represent averages. Default is False.

• --output-ef-solver-log

Output solver log during the extensive form solve. Default: no output.

• --output-solver-results

Output solutions obtained after each scenario sub-problem solve. Default: no
output.

• --output-times

Output timing statistics for various PH components. Default: no output.

• --disable-warmstarts

Disable warm-start of scenario sub-problem solves in PH iterations ¿= 1. De-
fault=False (i.e., warm starts are the default).

• --drop-proximal-terms

Eliminate proximal terms (i.e., the quadratic penalty terms) from the weighted
PH objective. Default=False (i.e., but default, the proximal terms are in-
cluded).

6

• --retain-quadratic-binary-terms

Do not linearize PH objective terms involving binary decision variables. De-
fault=False (i.e., the proximal term for binary variables is linearized by default;
this can have some impact on the relaxations during the branch and bound
solution process).

• --linearize-nonbinary-penalty-terms=BPTS
Approximate the PH quadratic term for non-binary variables with a piece-
wise linear function. The argument BPTS gives the number of breakpoints
in the linear approximation. The default=0. Reasonable non-zero values are
usually in the range of 3 to 7. Note that if a breakpoint would be very close
to a variable bound, then the break point is ommited. IMPORTANT: this
option requires that all variables have bounds that are either established in
the reference model or by code specfied using the bounds-cfgfile command line
option. See Section 7 for more information about linearizing the proximal
term.

• --breakpoint-strategy=BREAKPOINT STRATEGY
Specify the strategy to distribute breakpoints on the [lb, ub] interval of each
variable when linearizing. 0 indicates uniform distribution. 1 indicates break-
points at the node min and max, uniformly in- between. 2 indicates more
aggressive concentration of breakpoints near the observed node min/max.

• --bounds-cfgfile=BOUNDS CFGFILE
The argument BOUNDS CFGFILE specifies the name of an executable pyomo
file that sets bounds. The devault is that there is no file. When specified, the
code in this file is executed after the initialization of scenario data so the
bounds can be based on data from all scenarios. The config subdirectory of
the farmer example contains a simple example of such a file (boundsetter.cfg).

• --ef-mipgap=MIPGAP
Specifies the mipgap for the EF solve (if there is an ef solve).

• --checkpoint-interval

The number of iterations between writing of a checkpoint file. Default is 0,
indicating never.

• --restore-from-checkpoint

The name of the checkpoint file from which PH should be initialized. Default
is not to restore from a checkpoint.

• --profile=PROFILE

Enable profiling of Python code. The value of this option is the number of
functions that are summarized. The default is no profiling.

• --enable-gc

Enable the python garbage collecter. The default is no garbage collection.

7

4 Extensions via Callbacks

Basic PH can converge slowly, so it is usually advisable to extend it or modify it. In
pysp, this is done via the pyomo plug-in mechanism. The basic PH implementation
provides callbacks that enable access to the data structures used by the algorithm.
In §4.1 we describe extensions that are provided with the release. In §4.3, we provide
information to power users who may wish to modify or replace the extensions.

4.1 Watson and Woodruff Extensions

Watson and Woodruff describe innovations for accelerating PH [6], most of which
are generalized and implemented in the file wwextension.py, but users generally
do not need to know this file name. To invoke the program with these additional
features, invoke the software with a command of the form:

runph --enable-ww-extensions

Many of the examples described in §5 use this plug-in. The main concept is that
some integer variables should be fixed as the algorithm progresses for two reasons:

• Convergence detection: A detailed analysis of PH algorithm behavior on a
variety of problem indicates that individual decision variables frequently con-
verge to specific, fixed values scenarios in early PH iterations. Further, despite
interactions among the the variables, the value frequently does not change in
subsequent PH iterations. Such variable “fixing” behaviors lead to a poten-
tially powerful, albeit obvious, heuristic: once a particular variable has been
the same in all scenarios for some number of iterations, fix it to that value.
For problems where the constraints effectively limit x from both sides, these
methods may result in PH encountering infeasible scenario sub-problems even
though the problem is ultimately feasible.

• Cycle detection: When there are integer variables, cycling is sometimes en-
countered, consequently, cycle detection and avoidance mechanisms are re-
quired to force eventual convergence of the PH algorithm in the mixed-integer
case. To detect cycles, we focus on repeated occurrences of the weights, im-
plemented using a simple hashing scheme [7] to minimize impact on run-time.
Once a cycle in the weight vectors associated with any decision variable is
detected, the value of that variable is fixed.

Fixing variables aggressively can result in shorter solution times, but can also result
in solutions that are not as good. Furthermore, for some problems, aggressive fixing
can result in infeasible sub-problems even though the problem is ultimately feasible.
Many of the parameters discussed in the next subsections control fixing of variables.
This is discussed in a tutorial in section 6.

8

4.1.1 Variable Specific Parameters

The plug-in makes use of parameters to control behavior at the variable level. Global
defaults (to override the defaults stated here) should be set using methods described
in §4.2.1. Values for each variable should be set using methods described in §4.2.2.
Note that for variable fixing based on convergence detection, iteration zero is treated
separately. The parameters are as follows:

• fix continuous variables: True or False. If true, fixing applies to all variables.
If false, then fixing applies only to discrete variables.

• Iter0FixIfConvergedAtLB: 1 (True) or 0 (False). If 1, then discrete variables
that are at their lower bound in all scenarios after the iteration zero solves will
be fixed at that bound.

• Iter0FixIfConvergedAtUB: 1 (True) or 0 (False). If 1, then discrete variables
that are at their upper bound in all sce¡narios after the iteration zero solves
will be fixed at that bound.

• Iter0FixIfConvergedAtNB: = 1 1 (True) or 0 (False). If 1, then discrete vari-
ables that are at the same value in all scenarios after the iteration zero solves
will be fixed at that value, without regard to whether it is a bound. If this
is true, it takes precedence. A value of zero, on the other hand, implies that
variables will not be fixed at at a non-bound.

• FixWhenItersConvergedAtLB: The number of consecutive PH iterations that
discrete variables must be their lower bound in all scenarios before they will
be fixed at that bound. A value of zero implies that variables will not be fixed
at the bound.

• FixWhenItersConvergedAtUB: The number of consecutive PH iterations that
discrete variables must be their upper bound in all scenarios before they will
be fixed at that bound. A value of zero implies that variables will not be fixed
at the bound.

• FixWhenItersConvergedAtNB: The number of consecutive PH iterations that
discrete variables must be at the same, consistent value in all scenarios before
they will be fixed at that value, without regard to whether it is a bound. If
this is true, it takes precedence. A value of zero, on the other hand, implies
that variables will not be fixed at at a non-bound.

• FixWhenItersConvergedContinuous: The number of consecutive PH iterations
that continuous variables must be at the same, consistent value in all scenarios
before they will be fixed at that value. A value of zero implies that continuous
variables will not be fixed.

• CanSlamToLB: True or False. If True, then slamming can be to the lower
bound for any variable.

9

• CanSlamToMin: True or False. If True, then slamming can be to the minimum
across scenarios for any variable.

• CanSlamToAnywhere: True or False. If True, then slamming can be to any
value.

• CanSlamToMax: True or False. If True, then slamming can be to the maxi-
mum across scenarios for any variable.

• CanSlamToUB: True of False. If True, then slamming can be to the upper
bound for any variable.

• DisableCycleDetection: True or False. If True, then cycle detection and the
associated slamming are completely disabled. This cannot be changed to False
on the fly because a value of True at startup causes creation of the cycle
detection storage to be bypassed.

In the event that multiple slam targets are True, then Min and Max trump LB and
UB while Anywhere trumps all.

4.2 General Parameters

The plug-in also makes use of the following parameters, which should be set using
methods described in §4.2.1.

• Iteration0Mipgap: Gives the mipgap to be sent to the solver for iteration zero
solves. The default is zero, which causes nothing to be sent to the solver (i.e.,
the solver uses its default mipgap).

• InitalMipGap: Gives the mipgap to be sent to the solver for iteration one
solves. The default is zero, which causes nothing to be sent to the solver
(i.e., the solver uses its default mipgap). If not zero, then this gap will be
used as the starting point for the mipgap to change on each PH iteration in
proportion to the convergence termination criterion so that when the crite-
rion for termination is met the mipgap will be at (or near) the parameter
value of FinalMipGap. If the InitialMipGap is significantly higher than the
Iteration0MipGap parameter, the PH algorithm may perform poorly. This is
because the iteration k-1 solutions are used to warm start iteration k-1 solves.
If the iteration 1 mipgap is much higher than the iteration 0 mipgap, the
iteration zero solution, although not optimal for the iteration one objective,
might be within the mipgap. Default: 0.10.

• FinalMipGap: The target for the mipgap when PH has converged. Default:
0.001.

• PH Iters Between Cycle Slams: controls the number of iterations to wait after
a variable is slammed due to hash hits that suggest convergence. Zero indicates
unlimited slams per cycle. Default: 1.

10

• SlamAfterIter: Iteration number after which one variable every other iteration
will be slammed to force convergence. Default: the number of scenarios.

• hash hit len to slam: Ignore possible cycles for which the only evidence of a
cycle is less than this. Also, ignore cycles if any variables have been fixed
in the previous hash hit len to slam PH iterations. Default: the number of
scenarios. This default is often not a good choice. For many problems with a
lot of scenarios, a value like 10 or 20 might be a lot better if rapid convergence
is desired.

• W hash history len: This obscure parameter controls how far back the code
will look to see if there is a possible cycle. Default: max(100, number of
scenarios).

4.2.1 Setting Parameter Values

The parameters of PH and of any callbacks can be changed using the file wwph.cfg,
which is executed by the python interpreter after PH has initialized. This is a
potentially powerful and/or dangerous procedure because it gives an opportunity to
change anything using the full features of python and pyomo.

4.2.2 Setting Suffix Values

Suffixes are set using the data file named wwph.suffixes using this syntax:

VARSPEC SUFFIX VALUE

where VARSPEC is replaced by a variable specification, SUFFIX is replaced by a
suffix name and VALUE is replaced by the value of the suffix for that variable or
those variables. Here is an example:

Delta CanSlamToLB False

Gamma[*,Ano1] SlammingPriority 10

Gamma[*,Ano2] SlammingPriority 20

...

4.3 Callback Details

Most users of pysp can skip this subsection. A callback class definition named
iphextension is in the file iphextension.py and can be used to implement callbacks
at a variety of points in PH. For example, the method post iteration 0 solves is
called immediately after all iteration zero solves, but before averages and weights
have been computed while the method post iteration 0 is called after averages and

11

weights based on iteration zero have been computed. The file iphextension is in the
coopr/pysp directory and is not intended to be edited by users.

The user defines a class derived from SingletonPlugin that implements iphextension.
Its name is given to ph as an option. This class will be automatically instantiated
by ph. It has access to data and methods in the PH class, which are defined in the
file ph.py. An example of such a class is in the file named testphextension.py in the
pysp example directory.

A user defined extension file can be incorporated by using the command line op-
tion: --user-defined-extension=EXTENSIONFILE. Here, ”EXTENSIONFILE” is
the module name, which is in either the current directory (most likely) or somewhere
on your PYTHONPATH. A simple example is ”testphextension” plugin that simply
prints a message to the screen for each callback. The file testphextension.py can be
found in the sources directory and given in Section 4. An easy test of this would be
to specify ”-user-defined-extension=testphextension” and you should note the the
“.py” file extension is not included on the runph command line.

Both your own extension and the WWPH extensions can co-exist; however, the WW
plugin will be invoked first at each callback point if both are included.

Here are the callbacks:

• post ph initialization: Called after PH data structures have been intialized
but before iteration zero solves.

• post iteration 0 solves: Called after iteration zero solutions and some statistics
such as averages have been computed, but before weights are updated.

• post iteration 0: Called after all processing for iteration zero is complete.

• post iteration k solves: Called after solutions some statistics such as averages
have been computed, but before weights are updated for iterations after iter-
ation zero.

• post iteration k: Called after all processing for each iteration after iteration 0
is complete.

• post ph execution: Called execution is complete.

Users interested in writing their own extensions will probably want to refer to the
source file ph.py to get a deeper understanding of when the callback occur.

5 Examples

A number of examples are provided with pysp.

12

5.1 Farmer Example

This two-stage example is composed of models and data for the ”Farmer” stochastic
program, introduced in Section 1.1 of ”Introduction to Stochastic Programming” by
Birge and Louveaux [2].

• ReferenceModel.py: a single-scenario model for the SP

• ReferenceModel.dat: a single-scenario data file for the SP (any scenario will
do - used to flush out variable and constraint index sets)

• ScenarioStructure.dat: data file defining the scenario tree.

• AboveAverageScenario.dat: one of the scenario data files.

• BelowAverageScenario.dat: one of the scenario data files.

• AverageScenario.dat: one of the scenario data files.

The command runph executes PH, assuming the ReferenceModel.* and Scenar-
ioStructure.* files are present and correct. This example is probably in a directory
with a name something like:

coopr\examples\pysp\farmer

The data is in a subdirectory called scenariodata and the model is in the models
subdirectory. To invoke PH for this problem, connect to this farmer directory and
use the command:

runph --model-directory=models --instance-directory=scenariodata

5.2 Sizes Example

This two-stage example is composed of models and data for the ”Sizes” stochastic
program [3, 4], which consists of the following files:

• wwph.cfg: replace default algorithm parameter values for the Watson and
Woodruff extensions.

• wwph.suffixes: sets algorithm parameter values at the variables level for the
Watson and Woodruff extensions.

• ReferenceModel.py: a single-scenario model for the SP

• ReferenceModel.dat: a single-scenario data file for the SP (any scenario will
do - used to flush out variable and constraint index sets)

13

• ScenarioStructure.dat: data file defining the scenario tree.

• Scenario1.dat: one of the scenario data files.

• Scenario2.dat: one of the scenario data files.

• ...

This example is probably in a directory with a name something like:

coopr\packages\coopr\examples\pysp\sizes

The data for a three scenario version is in a subdirectory called SIZES3 and a ten
scenario dataset is in SIZES10.

To invoke PH for the 10 scenario problem, connect to the sizes directory and use
the command:

runph --model-directory=models --instance-directory=SIZES10

5.3 Forestry Example

This four-stage example is composed of models and data for the “forestry” stochastic
program [], which consists of the following files:

• wwph.cfg: replace default algorithm parameter values for the Watson and
Woodruff extensions.

• wwph.suffixes: sets algorithm parameter values at the variables level for the
Watson and Woodruff extensions.

• ReferenceModel.py: a single-scenario model for the SP

• ReferenceModel.dat: a single-scenario data file for the SP (any scenario will
do - used to flush out variable and constraint index sets)

• ScenarioStructure.dat: data file defining the scenario tree.

• Scenario1.dat: one of the scenario data files.

• Scenario2.dat: one of the scenario data files.

• ...

This example is probably in a directory with a name something like:

coopr\packages\coopr\examples\pysp\forestry

14

There are two families of instances: “Chile” and “Davis,” each with four stages and
eighteen scenarios. This is also a small two-stage, four scenario instances in the
subdirectory DAVIS2STAGE.

This full 18 scenario problem instance takes too long without the Watson Woodruff
extensions, but to invoke PH for this problem without them, connect to the forestry
directory and use the command:

runph --models-directory=models --instancs-directory=chile

and to run with the extensions, use

runph --model-directory=models --instance-directory=davis \

--enable-ww-extensions --ww-extension-cfgfile=config/wwph.cfg \

--ww-extension-suffixfile=config/wwph.suffixes

6 Tutorial: Parameters for Watson and Woodruff PH
Extensions

The parameters for the PH extensions in WWPHExtensions.py provide the user
with considerable control over how and under what conditions variables are fixed
during the PH algorithm execution. Often, some variables converge to consistent
values during early iterations and can be fixed at these values without affecting
quality very much and without affecting feasibility at all. Also, the algorithm may
need to fix some variables during execution in order to break cycles. In both cases,
guidance from the user concerning which classes of variables can and/or should be
fixed under various circumstances can be very helpful.

The overarching goal is to support industrial and government users who solve the
same model repeatedly with different, but somewhat similar, data each time. In
such settings, it behooves the modeler to consider tradeoffs between speed, solution
quality and feasibility and create at least one good set of directives and parameters
for the PH algorithm. In some cases, a user may want more than one set of directives
and parameters depending on whether speed of execution or quality of solution are
more important. Iteration zero is controlled separately because often the absence
of the quadratic term results in faster solves for this iteration and fixing variables
after the iteration has the maximum possible impact on speedup.

In order to discuss these issues, we consider an example.

6.1 Sizes Example

The Sizes example is simple and small. In fact, the instances that we will consider
are so small that there is really no need to use the PH algorithm since the extensive

15

form can be solved directly in a few minutes. However, it serves as a vehicle for
introducing the concepts.

This description and formulation comes from the original paper by Jorjani, Scott
and Woodruff [3].

If demand constraints for the current period are based on firm orders but future
demands are based on forecasts or conjecture, then they should not be treated in
the same fashion. We must recognize that future demand constraints are stochastic.
That is to say that they should be modeled as random variables. It may not be
reasonable or useful to consider the entire demand probability distribution functions.
It may not be reasonable because there may not be sufficient data to estimate an
entire distribution. It may not be useful because the essence of the stochastics may
be captured by specifying a small number of representative scenarios. We assume
that scenarios are specified by giving a full set of random variable realizations and
a corresponding probability. We index the scenario set, L, by ` and refer to the
probability of occurrence of ` (or, more accurately, a realization “near” scenario `)
as Pr(`). We refer to solution systems that satisfy constraints with probability one
as admissible.

In addition to modeling stochastics, we would like to model recourse as well. That is,
we would like to model the ability of decision makers to make use of new information
(e.g., orders) at the start of each planning period. We allow our solution vectors to
depend on the scenario that is realized, but we do not want to assume prescience.
We refer to a system of solution vectors as implementable if for all decision times
t, the solution vector elements corresponding to period 1, . . . , t are constant with
respect to information that becomes available only after stage t. We refer to the set
of implementable solutions as NL. It is possible to require implementable solutions
by adding non-anticipatitivity constraints, but we will instead make use of solution
procedures that implicitly guarantee implementable solutions.

In the stochastic, multi-period formulation that follows the objective is to minimize
expected costs. We invoke the network equivalence given earlier to drop the explicit
requirement that x and y be integers. Variables and data are subscripted with
a period index t that takes on values up to T . To model the idea that sleeves
produced in one period can be used as-is or cut in subsequent periods, we use xijt
to indicate that sleeves of length index i are to be used without cutting in period
t if i = j and with cutting otherwise. The y vector gives production quantities for
each length in each period without regard to the period in which they will be used
(and perhaps cut). The formulation is essentially an extension of ILP except that a
capacity constraint must be added in the multiple period formulation. Holding costs
could be added, but an additional subscript becomes necessary without the benefit
of any additional insight. As an aside, note that the addition of holding costs would
add a large number of continuous variables, but no new integers so the impact on
computational performance would not be catastrophic.

16

min
∑
`∈L

Pr(`)
T∑
t

 N∑
i=1

(szit` + piyit`) + r
∑
j<i

xijt`

 (SMIP)

subject to ∑
j≥i

xijt` ≥ dit` ` ∈ L, i = 1, . . . , N, t = 1, . . . , T (1)

∑
t′≤t

∑
j≤i

xijt′` − yit′`

 ≤ 0 ` ∈ L, i = 1, . . . , N, t = 1, . . . , T (2)

yit` −Mzit` ≤ 0 ` ∈ L, i = 1, . . . , N, t = 1, . . . , T (3)
N∑
i=1

yit` ≤ ct` ` ∈ L, t = 1, . . . , T (4)

zit` ∈ {0, 1} ` ∈ L, i = 1, . . . , N, t = 1, . . . , T (5)

x,y, z ∈ NL (6)

Bear in mind that solution vector elements corresponding to periods two through
T are not actually intended for use, they are computed just to see the effect that
period 1 (the current period) decision would have on future optimal behavior. At
the start of period 2 – or at any other time – the decision maker would run the model
again with updated demands for the current period and new scenario estimates.

6.2 ReferenceModel.py

Here is the single scenario reference model:

#

This is the two-period version of the SIZES optimization model.

#

from coopr.pyomo import *

#

Model

#

model = Model()

#

Parameters

#

the number of product sizes.

model.NumSizes = Param(within=NonNegativeIntegers)

17

def product_sizes_rule(model):

ans = set()

for i in range(1, model.NumSizes()+1):

ans.add(i)

return ans

the set of sizes, labeled 1 through NumSizes.

model.ProductSizes = Set(initialize=product_sizes_rule)

the deterministic demands for product at each size.

model.DemandsFirstStage = Param(model.ProductSizes, within=NonNegativeIntegers)

model.DemandsSecondStage = Param(model.ProductSizes, within=NonNegativeIntegers)

the unit production cost at each size.

model.UnitProductionCosts = Param(model.ProductSizes, within=NonNegativeReals)

the setup cost for producing any units of size i.

model.SetupCosts = Param(model.ProductSizes, within=NonNegativeReals)

the unit penalty cost of meeting demand for size j with larger size i.

model.UnitPenaltyCosts = Param(model.ProductSizes, within=NonNegativeReals)

the cost to reduce a unit i to a lower unit j.

model.UnitReductionCost = Param(within=NonNegativeReals)

a cap on the overall production within any time stage.

model.Capacity = Param(within=PositiveReals)

a derived set to constrain the NumUnitsCut variable domain.

def num_units_cut_domain_rule(model):

ans = set()

for i in range(1,model.NumSizes()+1):

for j in range(1, i+1):

ans.add((i,j))

return ans

model.NumUnitsCutDomain = Set(initialize=num_units_cut_domain_rule, dimen=2)

#

Variables

#

are any products at size i produced?

model.ProduceSizeFirstStage = Var(model.ProductSizes, domain=Boolean)

model.ProduceSizeSecondStage = Var(model.ProductSizes, domain=Boolean)

NOTE: The following (num-produced and num-cut) variables are implicitly integer

under the normal cost objective, but with the PH cost objective, this isn’t

the case.

18

the number of units at each size produced.

model.NumProducedFirstStage = Var(model.ProductSizes, domain=NonNegativeIntegers)

model.NumProducedSecondStage = Var(model.ProductSizes, domain=NonNegativeIntegers)

the number of units of size i cut (down) to meet demand for units of size j.

model.NumUnitsCutFirstStage = Var(model.NumUnitsCutDomain, domain=NonNegativeIntegers)

model.NumUnitsCutSecondStage = Var(model.NumUnitsCutDomain, domain=NonNegativeIntegers)

stage-specific cost variables for use in the pysp scenario tree / analysis.

model.FirstStageCost = Var(domain=NonNegativeReals)

model.SecondStageCost = Var(domain=NonNegativeReals)

#

Constraints

#

ensure that demand is satisfied in each time stage, accounting for cut-downs.

def demand_satisfied_first_stage_rule(i, model):

return (0.0, \

sum(model.NumUnitsCutFirstStage[j,i] \

for j in model.ProductSizes if j >= i) - model.DemandsFirstStage[i], \

None)

def demand_satisfied_second_stage_rule(i, model):

return (0.0, \

sum(model.NumUnitsCutSecondStage[j,i] \

for j in model.ProductSizes if j >= i) - model.DemandsSecondStage[i], \

None)

model.DemandSatisfiedFirstStage = \

Constraint(model.ProductSizes, rule=demand_satisfied_first_stage_rule)

model.DemandSatisfiedSecondStage = \

Constraint(model.ProductSizes, rule=demand_satisfied_second_stage_rule)

ensure that you don’t produce any units if the decision has been made to disable production.

def enforce_production_first_stage_rule(i, model):

The production capacity per time stage serves as a simple upper bound for "M".

return (None, \

model.NumProducedFirstStage[i] - model.Capacity * model.ProduceSizeFirstStage[i], \

0.0)

def enforce_production_second_stage_rule(i, model):

The production capacity per time stage serves as a simple upper bound for "M".

return (None, \

model.NumProducedSecondStage[i] - model.Capacity * model.ProduceSizeSecondStage[i], \

0.0)

model.EnforceProductionBinaryFirstStage = \

Constraint(model.ProductSizes, rule=enforce_production_first_stage_rule)

model.EnforceProductionBinarySecondStage = \

Constraint(model.ProductSizes, rule=enforce_production_second_stage_rule)

19

ensure that the production capacity is not exceeded for each time stage.

def enforce_capacity_first_stage_rule(model):

return (None, \

sum(model.NumProducedFirstStage[i] for i in model.ProductSizes) - model.Capacity, \

0.0)

def enforce_capacity_second_stage_rule(model):

return (None, \

sum(model.NumProducedSecondStage[i] for i in model.ProductSizes) - model.Capacity, \

0.0)

model.EnforceCapacityLimitFirstStage = Constraint(rule=enforce_capacity_first_stage_rule)

model.EnforceCapacityLimitSecondStage = Constraint(rule=enforce_capacity_second_stage_rule)

ensure that you can’t generate inventory out of thin air.

def enforce_inventory_first_stage_rule(i, model):

return (None, \

sum(model.NumUnitsCutFirstStage[i,j] \

for j in model.ProductSizes if j <= i) - model.NumProducedFirstStage[i], \

0.0)

def enforce_inventory_second_stage_rule(i, model):

return (None, \

sum(model.NumUnitsCutFirstStage[i,j] \

for j in model.ProductSizes \

if j <= i) + sum(model.NumUnitsCutSecondStage[i,j] \

for j in model.ProductSizes if j <= i) \

- model.NumProducedFirstStage[i] - model.NumProducedSecondStage[i], \

0.0)

model.EnforceInventoryFirstStage = \

Constraint(model.ProductSizes, rule=enforce_inventory_first_stage_rule)

model.EnforceInventorySecondStage = \

Constraint(model.ProductSizes, rule=enforce_inventory_second_stage_rule)

stage-specific cost computations.

def first_stage_cost_rule(model):

production_costs = \

sum(model.SetupCosts[i] * model.ProduceSizeFirstStage[i] \

+ model.UnitProductionCosts[i] * model.NumProducedFirstStage[i] \

for i in model.ProductSizes)

cut_costs = \

sum(model.UnitReductionCost * model.NumUnitsCutFirstStage[i,j] \

for (i,j) in model.NumUnitsCutDomain if i != j)

return (model.FirstStageCost - production_costs - cut_costs) == 0.0

model.ComputeFirstStageCost = Constraint(rule=first_stage_cost_rule)

def second_stage_cost_rule(model):

production_costs = \

20

sum(model.SetupCosts[i] * model.ProduceSizeSecondStage[i] \

+ model.UnitProductionCosts[i] * model.NumProducedSecondStage[i] \

for i in model.ProductSizes)

cut_costs = \

sum(model.UnitReductionCost * model.NumUnitsCutSecondStage[i,j] \

for (i,j) in model.NumUnitsCutDomain if i != j)

return (model.SecondStageCost - production_costs - cut_costs) == 0.0

model.ComputeSecondStageCost = Constraint(rule=second_stage_cost_rule)

#

Objective

#

def total_cost_rule(model):

return (model.FirstStageCost + model.SecondStageCost)

model.TotalCostObjective = Objective(rule = total_cost_rule, sense=minimize)

6.3 ReferenceModel.dat

This file establishes the data for a representative instance. The main thing to notice
is that the indexes for sizes happen to be given as integers, which is not required:
they could have been strings.

#ReferenceModel.dat

param NumSizes := 10 ;

param Capacity := 200000 ;

param DemandsFirstStage := 1 2500 2 7500 3 12500 4 10000 5 35000

6 25000 7 15000 8 12500 9 12500 10 5000 ;

param DemandsSecondStage := 1 2500 2 7500 3 12500 4 10000 5 35000

6 25000 7 15000 8 12500 9 12500 10 5000 ;

param UnitProductionCosts := 1 0.748 2 0.7584 3 0.7688 4 0.7792 5 0.7896

6 0.8 7 0.8104 8 0.8208 9 0.8312 10 0.8416 ;

param SetupCosts := 1 453 2 453 3 453 4 453 5 453 6 453 7 453 8 453 9 453 10 453 ;

param UnitReductionCost := 0.008 ;

6.4 ScenarioStucture.dat

Here is the data file that describes the stochastics:

IMPORTANT - THE STAGES ARE ASSUMED TO BE IN TIME-ORDER.

21

set Stages := FirstStage SecondStage ;

set Nodes := RootNode

Scenario1Node

Scenario2Node

Scenario3Node

Scenario4Node

Scenario5Node

Scenario6Node

Scenario7Node

Scenario8Node

Scenario9Node

Scenario10Node ;

param NodeStage := RootNode FirstStage

Scenario1Node SecondStage

Scenario2Node SecondStage

Scenario3Node SecondStage

Scenario4Node SecondStage

Scenario5Node SecondStage

Scenario6Node SecondStage

Scenario7Node SecondStage

Scenario8Node SecondStage

Scenario9Node SecondStage

Scenario10Node SecondStage ;

set Children[RootNode] := Scenario1Node

Scenario2Node

Scenario3Node

Scenario4Node

Scenario5Node

Scenario6Node

Scenario7Node

Scenario8Node

Scenario9Node

Scenario10Node ;

param ConditionalProbability := RootNode 1.0

Scenario1Node 0.10

Scenario2Node 0.10

Scenario3Node 0.10

Scenario4Node 0.10

Scenario5Node 0.10

Scenario6Node 0.10

Scenario7Node 0.10

Scenario8Node 0.10

Scenario9Node 0.10

Scenario10Node 0.10 ;

set Scenarios := Scenario1

22

Scenario2

Scenario3

Scenario4

Scenario5

Scenario6

Scenario7

Scenario8

Scenario9

Scenario10 ;

param ScenarioLeafNode := Scenario1 Scenario1Node

Scenario2 Scenario2Node

Scenario3 Scenario3Node

Scenario4 Scenario4Node

Scenario5 Scenario5Node

Scenario6 Scenario6Node

Scenario7 Scenario7Node

Scenario8 Scenario8Node

Scenario9 Scenario9Node

Scenario10 Scenario10Node ;

set StageVariables[FirstStage] := ProduceSizeFirstStage[*]

NumProducedFirstStage[*]

NumUnitsCutFirstStage[*,*] ;

set StageVariables[SecondStage] := ProduceSizeSecondStage[*]

NumProducedSecondStage[*]

NumUnitsCutSecondStage[*,*] ;

param StageCostVariable := FirstStage FirstStageCost

SecondStage SecondStageCost ;

6.5 wwph.cfg

This file overrides default values for the suffixes used by WW PH Extension. Even
when most of them will be overridden at the variable level, it makes sense to provide
instance specific defaults. For this problem, it does not seem helpful or prudent to
do any fixing of continuous variables since they only used to compute the objective
function terms. The ProduceSizeFirstStage variables are binary and fixing their
values would seem to determine the value of the other values. The other first stage
variables are general integers. The ProduceSizeFirstStage can safely be fixed
because provided that the largest size is not fixed at zero, there is little risk of
infeasibility since larger sizes can be cut (at a cost) to meet demand for smaller
sizes. Consequently, it is safe to let the algorithm slam those variables as needed.
Slamming the other variables is riskier because they could get slammed to values
that don’t make sense given the values of the ProduceSizeFirstStage variables.

Fixing variables that have converged will speed the algorithm, perhaps resulting
in a less desirable objective function value. It would make sense to tend to fix

23

the ProduceSizeFirstStage before fixing the others to avoid inconsistencies and
because the The ProduceSizeFirstStage variables have a strong tendency to imply
values for the other variables.

Here is a sensible and internally consistent, if a bit conservative, wwph.cfg file:

wwph.cfg

python commands that are executed by the wwphextensions.py file

to set parameters and parameter defaults

self.fix_continuous_variables = False

self.Iteration0MipGap = 0.02

self.InitialMipGap = 0.10

self.FinalMipGap = 0.001

for all six of these, zero means don’t do it.

self.Iter0FixIfConvergedAtLB = 0 # 1 or 0

self.Iter0FixIfConvergedAtUB = 0 # 1 or 0

self.Iter0FixIfConvergedAtNB = 0 # 1 or 0 (converged to a non-bound)

self.FixWhenItersConvergedAtLB = 0

self.FixWhenItersConvergedAtUB = 25

self.FixWhenItersConvergedAtNB = 0 # converged to a non-bound

self.FixWhenItersConvergedContinuous = 0

"default" slamming parms

True and False are the options (case sensitive)

self.CanSlamToLB = False

self.CanSlamToMin = False

self.CanSlamToAnywhere = False

self.CanSlamToMax = True

self.CanSlamToUB = False

self.PH_Iters_Between_Cycle_Slams = 5

the next line will try to force at least one variable to be

fixed every other iteration after iteration 50

if anything can be slammed

self.SlamAfterIter = 50

self.hash_hit_len_to_slam = 50

self.W_hash_history_len = 100

There are a number of things to notice about the contents of this file. Since it
is executed as python code, the syntax matters. Users should changes values of
numbers of change True to False, but everything else should not be edited with the
exception of comments, which is any text after a sharp sign (sometimes called a
pound sign). Changes to this file should be tested incrementally because errors are
trapped by the python interpreter and may be difficult for non-python programmers
to decipher.

24

This particular example file allows variables to be fixed if all scenarios have agreed
on the upper bound for five iterations in a row. Since the ProduceSizeFirstStage

variables are the only discrete variables in the first stage with an upper bound, they
are the only variables affected by this.

This example allows slamming, but only to the max across scenarios. This is different
than the upper bound, even for binary variables, because a variable could be selected
for slamming for which all scenarios have agreed on the same value (which could be
the lower lower bound). Data providing an override for this default as well as control
over the selection priority for variables to slam are provided in the wwph.suffixes
file.

6.6 wwph.suffixes

Optional suffixes to help control PH

Text triples specifying (variable/variable-index, suffix-name, suffix-value)

tuples.

override the defaults given in wwph.cfg as needed

If no scenario needs the smallest size to be produced, then just forget it

ProduceSizeFirstStage[1] Iter0FixIfConvergedAtLB 1

if all scenarios need either of the two largest sizes, just lock them in

ProduceSizeFirstStage[9] Iter0FixIfConvergedAtUB 1

ProduceSizeFirstStage[10] Iter0FixIfConvergedAtUB 1

and be aggressive with the smallest size after iteration 0

ProduceSizeFirstStage[1] FixWhenItersConvergedAtLB 8

if the production quantities have been fixed a long time, fix them

NumProducedFirstStage[*] FixWhenItersConvergedAtNB 20

don’t allow slamming of variables other than ProduceSize

for completeness, disallow all slamming destinations

NumProducedFirstStage[*] CanSlamToLB False

NumProducedFirstStage[*] CanSlamToMin False

NumProducedFirstStage[*] CanSlamToAnywhere False

NumProducedFirstStage[*] CanSlamToMax False

NumProducedFirstStage[*] CanSlamToUB False

NumUnitsCutFirstStage[*,*] CanSlamToLB False

NumUnitsCutFirstStage[*,*] CanSlamToMin False

NumUnitsCutFirstStage[*,*] CanSlamToAnywhere False

NumUnitsCutFirstStage[*,*] CanSlamToMax False

NumUnitsCutFirstStage[*,*] CanSlamToUB False

higher priority means slam these first

25

ProduceSizeFirstStage[1] SlammingPriority 1

ProduceSizeFirstStage[2] SlammingPriority 2

ProduceSizeFirstStage[3] SlammingPriority 3

ProduceSizeFirstStage[4] SlammingPriority 4

ProduceSizeFirstStage[5] SlammingPriority 5

ProduceSizeFirstStage[6] SlammingPriority 6

ProduceSizeFirstStage[7] SlammingPriority 7

ProduceSizeFirstStage[8] SlammingPriority 8

ProduceSizeFirstStage[9] SlammingPriority 9

ProduceSizeFirstStage[10] SlammingPriority 10

The first thing to notice is that this is a data file and not a file of Python comments.
Consequently, simpler messages are provided if there are errors, but the file can be
verbose and a computer program or spreadsheet might be required to produce this
data file. The next thing to notice is that indexes can be specified either using valid
index values, or wildcards.

This file overrides the defaults to allow some fixing after iteration zero. Fixing the
smallest size (index 1) to zero cannot result in infeasibility because larger sizes can
be cut to satisfy demand for that size. Along the same lines, aggressively fixing the
production indicator for larger sizes to 1 is also safe and perhaps not sub-optimal if
all scenarios “want” those sizes anyway.

6.7 rhosetter.cfg

rhosetter.cfg

users probably want this line intact so they can use model_instance

model_instance = self._model_instance

MyRhoFactor = 0.1

for i in model_instance.ProductSizes:

self.setRhoAllScenarios(model_instance.ProduceSizeFirstStage[i], model_instance.SetupCosts[i] * MyRhoFactor)

self.setRhoAllScenarios(model_instance.NumProducedFirstStage[i], model_instance.UnitProductionCosts[i] * MyRhoFactor)

for j in model_instance.ProductSizes:

if j <= i:

self.setRhoAllScenarios(model_instance.NumUnitsCutFirstStage[i,j], model_instance.UnitReductionCost * MyRhoFactor)

6.8 Execution

To run this example, connect to the sizes directory, which is something like:

26

coopr\examples\pysp\sizes

Then use

runph --model-directory=models --instance-directory=SIZES10 \

--enable-ww-extensions --ww-extension-cfgfile=config/wwph.cfg \

--ww-extension-suffixfile=config/wwph.suffixes \

--rho-cfgfile=config/rhosetter.cfg

Since this instance is so small by modern standards, the enhancement are not needed
and may even increase the total solution time. It is provided to illustrate the features
of the extensions, not to illustrate why you might need them. Much larger instances
are are required for that.

7 Linearizing the Proximal Term

7.1 Introduction

For a decision variable x the proximal term added to the objective function for each
scenario subproblem at PH iteration k is(

x− x̄(k−1)
)2

where x̄(k−1) is the average over the scenarios from the last iteration. Expanding the
square reveals that the only quadratic term is x2. For binary variables, this is equal
to x, although this is not the case when a relaxation is solved. For binary variables,
the default behaviour is to replace the quadratic term with x, but an option allows
the quadratic to be retained because this can effect the subproblem solution time
due to the use of the quadratic term when the relaxations are solved as part of the
branch and bound process.

For non-binary variables an option exists to replace the x2 term with a piece-wise
approximation and the number of breakpoints in the approximation is under user
control. This can have a significant effect on CPU time required to solve sub-
problems because the presence of the quadratic term increases the solution times
significantly. However, linearization results in a time-quality tradeoff because in-
creasing the number of breakpoints increases the fidelity but each breakpoint intro-
duces another (unseen) binary variable so solution times are generally increased.

A few strategies for placing the breakpoints are supported as command a line op-
tions: --breakpoint-strategy=BREAKPOINT STRATEGY. A value of 0 indi-
cates uniform distribution. 1 indicates breakpoints at the min and max for the node
in the scenario tree, uniformly in- between. A value of 2 indicates more aggressive
concentration of breakpoints near the observed node min/max.

27

Upper and lower bounds for variables must be specified when the linearization option
is chosen. This can be done by specifying bounds in the reference model or by using
the bounds-cfgfile command line option. It is, of course, best to use meaningful
bounds provided in the reference model; however, the modeller must be careful not
use estimated bounds that are too tight since that could preclude an optimal (or
even a feasible) solution to the overall stochastic problem even though it might not
cut off any optimal solutions for the particular scenario. The use of a bounds cfgfile
is an advanced topic, but enables the modeller to use bounds that cannot create
infeasibilities.

7.2 Bounds-cfgfile

Using a bounds cfgfile is an advanced topic. The modeler is writing python/pyomo
code that will be executed by the ph.py file that is the core of the PH algorithm.
The first executable line in a bounds file is typically:

model_instance = self._model_instance

This establishes a local variable called “model instance” that can be used to refer
to the model (of course, a different name can be used, such as MODINS). The ob-
ject “self” on the right hand side of this assignment refers to the core PH object.
The model, in turn contains the parameters and variables defined in the Reference-
Model.py file that can be accessed by name. For example, with the Farmer model,
the cfg file sets the uppter bound on DevotedAcreage to be value of the paramter
TOTAL ACREAGE at intialization (since this is Python, the parentheses after TO-
TAL ACREAGE cause the value in TOTAL ACREAGE to be assigned rather than
the name of the parameter object:

only need to set upper bounds on first-stage variables, i.e., those being

blended.

model_instance = self._model_instance

the values supplied to the method

upper_bound = float(model_instance.TOTAL_ACREAGE())

for index in model_instance.CROPS:

the lower and upper bounds are expected to be floats, and trigger an

exception if not.

self.setVariableBoundsAllScenarios("DevotedAcreage", index, 0.0, upper_bound)

The same thing could be accomplished by setting the upper bound in the model file,
but it does serve as a simple example of a bounds cfg file.

28

8 Solving sub-problems in Parallel

Pyomo makes use of the pyro facility to enable sub-problems to easily be assigned to
be solved in parallel. This capability is suppored by pysp. We will refer to a single
master computer and multiple slave computers in the discussion here, but actually,
the master computing processes can (and for synchronous parallel, should) be on a
processor that also runs a slave process.

Here are the commands in order:

1. On the master: coopr-ns

2. On the master: dispatch_srvr

3. On each slave: pyro_mip_server

4. On the master: runph ... --solver-manager=pyro ...

Note that the command coopr-ns and the argument solver-manger have a dash in
the middle, while the commands dispatch_srvr and pyro_mip_server have under-
scores. The first three commands launch processes that have no internal mechanism
for termination; i.e., they will be terminated only if they crash or if they are killed by
an external process. It is common to launch these processes with output redirection,
such as coopr-ns >& cooprns.log. The runph command is a normal runph com-
mand with the usual arguments with the additional specification that subproblem
solves should be directed to the pyro solver manager.

References

[1] AMPL home page. http://www.ampl.com/, 2008.

[2] J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer,
1997.

[3] S. Jorjani, C.H. Scott, and D.L. Woodruff. Selection of an optimal subset of
sizes. International journal of production research, 37:3697–3710, 1999.

[4] A. Løkketangen and D.L. Woodruff. Progressive hedging and tabu search applied
to mixed-integer (0,1) multistage stochastic programming. Journal of Heuristics,
2:111–128, 1996.

[5] R.T. Rockafellar and R. J-B. Wets. Scenarios and policy aggregation in opti-
mization under uncertainty. Mathematics of Operations Research, pages 119–147,
1991.

[6] J-P Watson and D.L. Woodruff. Progressive hedging innovations for a class of
stochastic mixed-integer resource allocation problems. Computational Manage-
ment Science, page to appear, 2010.

29

[7] D.L. Woodruff and E. Zemel. Hashing vectors for tabu search. Annals of Oper-
ations Research, 41:123–137, 1993.

Acknowledgments

Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-
Martin Company, for the United States Department of Energy under contract DE-
AC04-94AL85000.

30

