Cbc
275

Generated by Doxygen 1.7.4

Wed Nov 9 2011 10:27:17

CONTENTS

Contents
1 Class Index

1.1 ClassHierarchy o
2 Class Index

21 ClassList
3 File Index

3.1 FileList e
4 Class Documentation

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

ampl_info Struct Reference L.
4.1.1 Detailed Description
CbcGenCtIBlk::babState_struct Struct Reference
4.2.1 Detailed Description L.
CbcBaseModel Class Reference
4.3.1 Detailed Description oo
CbcBranchAllDifferent Class Reference
4.41 Detailed Description oo
4.42 Member Data Documentation.
CbcBranchCut Class Reference
451 Detailed Description L.
452 Member Function Documentation
CbcBranchDecision Class Reference
4.6.1 Detailed Description L L o
4.6.2 Member Function Documentation
CbcBranchDefaultDecision Class Reference
471 Detailed Description L oL
4.7.2 Member Function Documentation
CbcBranchDynamicDecision Class Reference
4.8.1 Detailed Description L.
4.8.2 Member Function Documentation
CbcBranchingObject Class Reference

4.9.1 Detailed Description L o

12
12

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS i

4.9.2 Member Function Documentation 32
4.9.3 Member Data Documentation. 35
4.10 CbcBranchToFixLots Class Reference 35
4.10.1 Detailed Description 37
4.10.2 Constructor & Destructor Documentation. 38
4.10.3 Member Data Documentation. 38
4.11 CbcBranchUserDecision Class Reference 38
4.11.1 Detailed Description L. 39
4.11.2 Member Function Documentation 39
4.12 CbcCbcParam Class Reference 40
4.12.1 Detailed Description oL 41
4.12.2 Member Enumeration Documentation 42
4.12.3 Constructor & Destructor Documentation. 42
4.13 CbcClique Class Reference 43
4.13.1 Detailed Description L. 45
4.13.2 Constructor & Destructor Documentation. 45
4.13.3 Member Function Documentation 45
4.13.4 Member Data Documentation. 46
4.14 CbcCliqueBranchingObject Class Reference 47
4.14.1 Detailed Description 48
4.14.2 Member Function Documentation 48
4.15 CbcCompare Class Reference 49
4.15.1 Detailed Description L L oL 49
4.16 CbcCompareBase Class Reference 50
4.16.1 Detailed Description L. 51
4.16.2 Member Function Documentation 51
4.17 CbcCompareDefault Class Reference 52
4.17.1 Detailed Description L. 54
4.18 CbcCompareDepth Class Reference 54
4.18.1 Detailed Description L oL 55
4.19 CbcCompareEstimate Class Reference 55
4.19.1 Detailed Description Lo 56
4.20 CbcCompareObjective Class Reference 57
4.20.1 Detailed Description oL 58

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS iii

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

CbcCompareUser Class Reference 58
4.21.1 Detailed Description oL 59
4.21.2 Member Function Documentation 59
CbcConsequence Class Reference 59
4.22.1 Detailed Description L. 60
4.22.2 Member Function Documentation 60
CbcCountRowCut Class Reference 61
4.23.1 Detailed Description oL 62
4.23.2 Constructor & Destructor Documentation. 62
4.23.3 Member Function Documentation 62
CbcCutBranchingObject Class Reference 63
4.24.1 Detailed Description oL oo 64
4.24.2 Constructor & Destructor Documentation. 65
4.24.3 Member Function Documentation 65
CbcCutGenerator Class Reference 65
4.25.1 Detailed Description L L o 69
4.25.2 Member Function Documentation 69
CbcCutModifier Class Reference 70
4.26.1 Detailed Description L oL 71
CbcCutSubsetModifier Class Reference 71
4.27.1 Detailed Description L. 73
CbcDummyBranchingObject Class Reference 73
4.28.1 Detailed Description L oo 75
4.28.2 Member Function Documentation 75
CbcDynamicPseudoCostBranchingObject Class Reference 75
4.29.1 Detailed Description L oL 77
4.29.2 Constructor & Destructor Documentation. 78
4.29.3 Member Function Documentation 78
CbcEventHandler Class Reference 78
4.30.1 Detailed Description L o 80
4.30.2 Member Enumeration Documentation 81
4.30.3 Constructor & Destructor Documentation. 81
4.30.4 Member Function Documentation 82
CbcFathom Class Reference 82

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS iv

4.31.1 Detailed Description 84
4.31.2 Member Function Documentation 84
4.32 CbcFathomDynamicProgramming Class Reference 84
4.32.1 Detailed Description o 87
4.32.2 Member Function Documentation 87
4.33 CbcFeasibilityBase Class Reference 87
4.33.1 Detailed Description o 88
4.33.2 Member Function Documentation 88
4.34 CbcFixingBranchingObject Class Reference 88
4.34.1 Detailed Description L oL 89
4.34.2 Member Function Documentation 89
4.35 CbcFixVariable Class Reference 90
4.35.1 Detailed Description L. 92
4.35.2 Member Function Documentation 92
4.36 CbcFollowOn Class Reference 92
4.36.1 Detailed Description 94
4.37 CbcFollowOn2 Class Reference 94
4.37.1 Detailed Description L o 96
4.37.2 Member Function Documentation 96
4.38 CbcFullNodelnfo Class Reference 96
4.38.1 Detailed Description 98
4.38.2 Member Function Documentation 99
4.38.3 Member Data Documentation. 99
4.39 CbcGenCtIBlk Class Reference 100
4.39.1 Detailed Description L oL 106
4.39.2 Member Enumeration Documentation 106
4.39.3 Member Function Documentation 108
4.39.4 Member Data Documentation. 112
4.40 CbcGeneral ClassReference 114
4.40.1 Detailed Description L Lo 116
4.41 CbcGenParam Class Reference 116
4.41.1 Detailed Description L. 118
4.41.2 Member Enumeration Documentation 118
4.41.3 Constructor & Destructor Documentation. 119

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS v

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

4.51

4.52

CbcHeuristic Class Reference 119
4.42.1 Detailed Description o 124
4.42.2 Member Function Documentation 124
4.42.3 Member Data Documentation. 125
CbcHeuristicCrossover Class Reference 126
4.43.1 Detailed Description 128
4.43.2 Member Function Documentation 128
CbcHeuristicDINS Class Reference 128
4.441 Detailed Descriptiono oL 130
4.44.2 Member Function Documentation 130
CbcHeuristicDive Class Reference 130
4.451 Detailed Description oL oL 133
4.45.2 Member Function Documentation 133
CbcHeuristicDiveCoefficient Class Reference 133
4.46.1 Detailed Description L. 135
4.46.2 Member Function Documentation 135
CbcHeuristicDiveFractional Class Reference 135
4.471 Detailed Description L o 137
4.47.2 Member Function Documentation 137
CbcHeuristicDiveGuided Class Reference 137
4.48.1 Detailed Description 139
4.48.2 Member Function Documentation 139
CbcHeuristicDiveLineSearch Class Reference 139
4.49.1 Detailed Description Lo 141
4.49.2 Member Function Documentation 141
CbcHeuristicDivePseudoCost Class Reference 141
4.50.1 Detailed Description 143
4.50.2 Member Function Documentation 143
CbcHeuristicDiveVectorLength Class Reference 143
4.51.1 Detailed Description 145
4.51.2 Member Function Documentation 145
CbcHeuristicDynamic3 Class Reference 145
4.52.1 Detailed Description oL 147
4.52.2 Member Function Documentation 147

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS vi

4.53

454

4.55

4.56

4.57

4.58

4.59

4.60

4.61

4.62

4.63

4.64

CbcHeuristicFPump Class Reference 147
4.53.1 Detailed Description L oL 151
4.53.2 Member Function Documentation 151
4.53.3 Member Data Documentation. 152
CbcHeuristicGreedyCover Class Reference 152
4.54.1 Detailed Description 154
4.54.2 Member Function Documentation 154
CbcHeuristicGreedyEquality Class Reference 154
4.55.1 Detailed Description L Lo 156
4.55.2 Member Function Documentation 156
CbcHeuristicGreedySOS Class Reference 156
4.56.1 Detailed Description oL 158
4.56.2 Member Function Documentation 158
CbcHeuristicJustOne Class Reference 158
4.57.1 Detailed Description L. 159
4.57.2 Member Function Documentation 160
CbcHeuristicLocal Class Reference 160
4.58.1 Detailed Description o 162
4.58.2 Member Function Documentation 162
CbcHeuristicNaive Class Reference 162
4.59.1 Detailed Description 163
4.59.2 Member Function Documentation 164
CbcHeuristicNode Class Reference 164
4.60.1 Detailed Description L. 164
CbcHeuristicNodeList Class Reference 165
4.61.1 Detailed Description 165
CbcHeuristicPartial Class Reference 165
4.62.1 Detailed Description L. 167
CbcHeuristicPivotAndFix Class Reference 167
4.63.1 Detailed Description L oL 168
4.63.2 Member Function Documentation 168
CbcHeuristicRandRound Class Reference 169
4.64.1 Detailed Description L oL 170
4.64.2 Member Function Documentation 170

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS vii

4.65

4.66

4.67

4.68

4.69

4.70

4.71

4.72

4.73

4.74

CbcHeuristicRENS Class Reference 170
4.65.1 Detailed Description oL 172
4.65.2 Member Function Documentation 172
CbcHeuristicRINS Class Reference 172
4.66.1 Detailed Description 174
4.66.2 Member Function Documentation 174
4.66.3 Member Data Documentation. 175
CbcHeuristicVND Class Reference 175
4.67.1 Detailed Description L oL 177
4.67.2 Member Function Documentation 177
CbclintegerBranchingObject Class Reference 177
4.68.1 Detailed Description L oL 180
4.68.2 Constructor & Destructor Documentation. 180
4.68.3 Member Function Documentation 180
CbclntegerPseudoCostBranchingObject Class Reference 181
4.69.1 Detailed Description oL 183
4.69.2 Constructor & Destructor Documentation. 184
4.69.3 Member Function Documentation 184
CbcLink Class Reference 184
4.70.1 Detailed Description 186
4.70.2 Constructor & Destructor Documentation. 186
CbcLinkBranchingObject Class Reference 187
4.71.1 Detailed Description oL 188
4.71.2 Member Function Documentation 188
CbcLongCliqueBranchingObject Class Reference 188
4.72.1 Detailed Description L L oo 190
4.72.2 Member Function Documentation 190
CbclLotsize Class Reference 190
4.73.1 Detailed Description 192
4.73.2 Member Function Documentation 193
CbclotsizeBranchingObject Class Reference 194
4.741 Detailed Description L oo 195
4.74.2 Constructor & Destructor Documentation. 196
4.74.3 Member Function Documentation 196

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS viii

4.75

4.76

4.77

4.78

4.79

4.80

4.81

4.82

4.83

4.84

CbcMessage Class Reference 196
4.75.1 Detailed Description L oo 196
CbcModel Class Reference 197
4.76.1 Detailed Description L. 214
4.76.2 Member Enumeration Documentation 215
4.76.3 Constructor & Destructor Documentation. 217
4.76.4 Member Function Documentation 217
CbcNode Class Reference 228
4.771 Detailed Description oL o 231
4.77.2 Member Function Documentation 231
CbcNodelnfo Class Reference 234
4.78.1 Detailed Description L L oL 237
4.78.2 Constructor & Destructor Documentation. 238
4.78.3 Member Function Documentation 238
4.78.4 Member Data Documentation. 239
CbcNWay Class Reference 239
4.79.1 Detailed Description oL 241
CbcNWayBranchingObject Class Reference 242
4.80.1 Detailed Description L o 243
4.80.2 Constructor & Destructor Documentation. 243
4.80.3 Member Function Documentation 243
CbcObject Class Reference 245
4.81.1 Detailed Description oL 248
4.81.2 Member Function Documentation 248
4.81.3 Member Data Documentation. 250
CbcObjectUpdateData Class Reference 251
4.82.1 Detailed Description o 252
4.82.2 Member Data Documentation. 252
CbcOsiParam Class Reference 252
4.83.1 Detailed Description L o 253
4.83.2 Member Enumeration Documentation 253
4.83.3 Constructor & Destructor Documentation. 254
CbcParam Class Reference 254
4.84.1 Detailed Description L. 257

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS ix

4.85

4.86

4.87

4.88

4.89

4.90

4.91

4.92

4.93

4.94

4.95

4.96

4.97

CbcGenCtIBlk::cbcParamslinfo_struct Struct Reference 258
4.85.1 Detailed Description L L oL 258
CbcPartialNodelnfo Class Reference 258
4.86.1 Detailed Description 260
4.86.2 Member Function Documentation 260
CbcRounding Class Reference 260
4.87.1 Detailed Description L o 262
CbcSerendipity Class Reference 262
4.88.1 Detailed Description L oL 263
4.88.2 Member Function Documentation 263
CbcSimplelnteger Class Reference 264
4.89.1 Detailed Description L oL 266
4.89.2 Member Function Documentation 266
4.89.3 Member Data Documentation. 267
CbcSimplelntegerDynamicPseudoCost Class Reference 267
4.90.1 Detailed Description L o 273
4.90.2 Member Function Documentation 273
4.90.3 Member Data Documentation. 274
CbcSimplelntegerFixed Class Reference 274
4.91.1 Detailed Description 275
4.91.2 Member Function Documentation 275
CbcSimplelntegerPseudoCost Class Reference 276
4.92.1 Detailed Description oL oo 278
4.92.2 Member Data Documentation. 278
CbcSolver Class Reference, 278
4.93.1 Detailed Description L oL 281
4.93.2 Member Function Documentation 281
CbcSolver2 Class Reference 282
4.94.1 Detailed Description L. 283
CbcSolver3 Class Reference 283
4.95.1 Detailed Description oL 284
CbcSolverLongThin Class Reference 285
4.96.1 Detailed Description L. 286
CbcSolverUsefulData Struct Reference 286

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS X

4.97.1 Detailed Description L. 286
498 CbcSOSClassReference, 286
4.98.1 Detailed Description L oL 289
4.98.2 Constructor & Destructor Documentation. 289
4.98.3 Member Function Documentation 289
4.99 CbcSOSBranchingObject Class Reference 290
4.99.1 Detailed Description L L oo 291
4.99.2 Member Function Documentation 291
4.100CbcStatistics Class Reference 292
4.100.1 Detailed Description 293
4.101CbcStopNow Class Reference 293
4.101.1 Detailed Description 294
4.101.2 Member Function Documentation 294
4.102CbcStrategy Class Reference 294
4.102.1 Detailed Description L. 296
4.102.2 Member Function Documentation 296
4.102.3 Member Data Documentation. 296
4.103CbcStrategyDefault Class Reference 297
4.103.1 Detailed Description 298
4.104CbcStrategyDefaultSubTree Class Reference 298
4.104.1 Detailed Description 300
4.105CbcStrategyNull Class Reference 300
4.105.1 Detailed Description 301
4.106CbcStrongInfo Struct Reference 301
4.106.1 Detailed Description 302
4.107CbcThread Class Reference 302
4.107.1 Detailed Description 302
4.108CbcTree Class Reference 302
4.108.1 Detailed Description 306
4.108.2 Member Function Documentation 306
4.109CbcTreeLocal Class Reference 307
4.109.1 Detailed Description 308
4.110CbcTreeVariable Class Reference 309
4.110.1 Detailed Description 310

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS Xi

4111CbcUser Class Reference 310
4.111.1 Detailed Description 312
4.111.2 Member Function Documentation 312

4.112CglTemporary Class Reference 313
4.112.1 Detailed Description 313
4.112.2 Member Function Documentation 314

4.113CbcGenCtIBlk::chooseStrongCitl_struct Struct Reference 314
4.113.1 Detailed Description L. 314

4.114CIlpAmplObjective Class Reference 314
4.114.1 Detailed Description 315
4.114.2 Member Function Documentation 316

4.115CIpConstraintAmpl Class Reference 316
4.115.1 Detailed Description 317
4.115.2 Member Function Documentation 317

4.116ClpQuadinterface Class Reference 318
4.116.1 Detailed Description 319
4.116.2 Member Function Documentation 319

4.117CbcGenCtIBlk::debugSolinfo_struct Struct Reference 319
4.117.1 Detailed Description 319

4.118CbcGenCtIBIk::djFixCtl_struct Struct Reference 319
4.118.1 Detailed Description 319

4.119CbcGenCtIBlk::genParamsinfo_struct Struct Reference 320
4.119.1 Detailed Description 320

4.1200siBiLinear Class Reference 320
4.120.1 Detailed Description 324
4.120.2 Member Function Documentation 324
4.120.3 Member Data Documentation. 324

4.1210siBiLinearBranchingObject Class Reference 325
4.121.1 Detailed Description 325

4.1220siBiLinearEquality Class Reference 325
4.122.1 Detailed Description L. 327

4.1230siCbcSolverinterface Class Reference 327
4.123.1 Detailed Description 335
4.123.2 Member Function Documentation 335

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS xii

4.123.3 Friends And Related Function Documentation 341
4.1240siChooseStrongSubset Class Reference 342
4.124.1 Detailed Description L oL 342
4.124.2 Member Function Documentation 343
4.1250siLink Class Reference 343
4.125.1 Detailed Description 345
4.125.2 Constructor & Destructor Documentation. 345
4.125.3 Member Function Documentation 345
4.1260siLinkBranchingObject Class Reference 346
4.126.1 Detailed Description 346
4.1270siLinkedBound Class Reference 346
4.127.1 Detailed Description L oo 347
4.1280si0ldLink Class Reference 347
4.128.1 Detailed Description 348
4.128.2 Constructor & Destructor Documentation. 348
4.128.3 Member Function Documentation 349
4.1290si0ldLinkBranchingObject Class Reference 349
4.129.1 Detailed Description 349
4.1300siOnelLink Class Reference 350
4.130.1 Detailed Description 351
4.130.2 Constructor & Destructor Documentation. 351
4.130.3 Member Data Documentation. 351
4.131CbcGenCtIBlk::osiParamsinfo_struct Struct Reference 351
4.131.1 Detailed Description 351
4.1320siSimpleFixedinteger Class Reference 351
4.132.1 Detailed Description o 352
4.132.2 Member Function Documentation 352
4.1330siSolverLinearizedQuadratic Class Reference 353
4.133.1 Detailed Description 354
4.1340siSolverLink Class Reference 354
4.134.1 Detailed Description L. 358
4.134.2 Constructor & Destructor Documentation. 358
4.134.3 Member Function Documentation 358
4.134.4 Member Data Documentation. 359

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

1 Class Index 1

4.1350siUsesBiLinear Class Reference 359
4.135.1 Detailed Description 360
4.135.2 Member Function Documentation 360

4.136PseudoReducedCost Struct Reference 361
4.136.1 Detailed Description 361

5 File Documentation 361

5.1 CbcEventHandler.hpp File Reference 361
5.1.1 Detailed Description oL 362

5.2 CbcGenMessages.hpp File Reference 363
5.2.1 Detailed Description oL 363
5.2.2 Enumeration Type Documentation 363

5.3 CbcSolver.hpp File Reference 363
5.3.1 Detailed Description 364

5.4 CbcSolverAnalyze.hpp File Reference 365
5.4.1 Detailed Description L L oL 365

5.5 CbcSolverExpandKnapsack.hpp File Reference 365
5.5.1 Detailed Description oL 365

5.6 CbcSolverHeuristics.hpp File Reference 365
5.6.1 Detailed Description 365

1 Class Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
ampl_info 16

CbcGenCitiBlk::babState_struct 16
std::basic_fstream< char >
std::basic_fstream< wchar_t >
std::basic_ifstream< char >
std::basic_ifstream< wchar_t >
std::basic_ios< char >
std::basic_ios< wchar_t >
std::basic_iostream< char >
std::basic_iostream< wchar t >
std::basic_istream< char >
std::basic_istream< wchar_t >

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

1.1 Class Hierarchy 2
std::basic_istringstream< char >
std::basic_istringstream< wchar_t >
std::basic_ofstream< char >
std::basic_ofstream< wchar t >
std::basic_ostream< char >
std::basic_ostream< wchar_t >
std::basic_ostringstream< char >
std::basic_ostringstream< wchar_t >
std::basic_string< char >
std::basic_string< wchar_t >
std::basic_stringstream< char >
std::basic_stringstream< wchar_t >
CbcBaseModel 17
ChbhcBranchDecision 22
CbcBranchDefaultDecision 25
CbcBranchDynamicDecision 27
ChcBranchUserDecision 38
CbcBranchingObject 29
CbcCliqueBranchingObject 47
CbhcCutBranchingObject 63
CbcDummyBranchingObject 73
CbcFixingBranchingObject 88
CbclintegerBranchingObject 177
CbcDynamicPseudoCostBranchingObject 75
CbclintegerPseudoCostBranchingObject 181
CbcLinkBranchingObject 187
CbcLongCliqueBranchingObject 188
CbcLotsizeBranchingObject 194
CbcNWayBranchingObject 242
CbcSOSBranchingObject 290
CbcCbcParam 40
CbcCompare 49

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

1.1 Class Hierarchy 3
CbcCompareBase 50
CbcCompareDefault 52
CbcCompareDepth 54
CbcCompareEstimate 55
CbcCompareObjective 57
CbcCompareUser 58
CbcConsequence 59
CbcFixVariable 90
CbcCountRowCut 61
CbcCutGenerator 65
CbcCutModifier 70
CbcCutSubsetModifier 71
CbcEventHandler 78
CbcFathom 82
CbcFathomDynamicProgramming 84
CbcFeasibilityBase 87
CbcGenCtiBlk 100
CbcGenParam 116
CbcHeuristic 119
CbcHeuristicCrossover 126
CbcHeuristicDINS 128
CbcHeuristicDive 130
CbcHeuristicDiveCoefficient 133
CbcHeuristicDiveFractional 135
CbcHeuristicDiveGuided 137
CbcHeuristicDiveLineSearch 139
CbcHeuristicDivePseudoCost 141

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

1.1 Class Hierarchy 4

CbcHeuristicDiveVectorLength 143
CbcHeuristicDynamic3 145
CbcHeuristicFPump 147
CbcHeuristicGreedyCover 152
CbcHeuristicGreedyEquality 154
CbcHeuristicGreedySOS 156
CbcHeuristicJustOne 158
CbcHeuristicLocal 160
CbcHeuristicNaive 162
CbcHeuristicPartial 165
CbcHeuristicPivotAndFix 167
CbcHeuristicRandRound 169
CbcHeuristicRENS 170
CbcHeuristicRINS 172
CbcHeuristicVND 175
CbcRounding 260
CbcSerendipity 262
CbcHeuristicNode 164
CbcHeuristicNodeL.ist 165
CbcMessage 196
CbcModel 197
CbcNode 228
CbcNodelnfo 234

CbcFuliNodelnfo 96

CbcPartialNodelnfo 258
CbcObject 245

CbcBranchCut 19

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

1.1 Class Hierarchy 5

CbcBranchAllDifferent 17
CbcBranchToFixLots 35
CbcClique 43
CbcFollowOn 92
CbcFollowOn2 94
CbcGeneral 114
CbcLink 184
CbcLotsize 190
CbcNWay 239
CbcSimplelnteger 264
CbcSimplelntegerDynamicPseudoCost 267
ChcSimplelntegerFixed 274
CbcSimplelntegerPseudoCost 276
CbcSOS 286
CbcObjectUpdateData 251
CbcOsiParam 252
CbcParam 254
CbcGenCtiBlk::cbcParamsinfo_struct 258
CbcSolver 278
CbcSolver2 282
CbcSolver3 283
CbcSolverLongThin 285
CbcSolverUsefulData 286
CbcStatistics 292
CbcStopNow 293
CbcStrategy 294
CbcStrategyDefault 297

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

1.1 Class Hierarchy 6

CbcStrategyDefaultSubTree 298

CbcStrategyNull 300
CbcStronginfo 301
CbcThread 302
CbcTree 302

CbcTreeLocal 307

CbcTreeVariable 309
CbcUser 310
CglTemporary 313
CbcGenCtiBlk::chooseStrongCtl_struct 314
ClpAmplObjective 314
ClpConstraintAmpl 316
ClpQuadinterface 318
CbcGenCtiBlk::debugSolinfo_struct 319
CbcGenCtiBIk::djFixCtl_struct 319
CbcGenCitiBlk::genParamsinfo_struct 320
OsiBilLinear 320

OsiBiLinearEquality 325
OsiBiLinearBranchingObject 325
OsiCbcSolverinterface 327
OsiChooseStrongSubset 342
OsiLink 343
OsiLinkBranchingObject 346
OsiLinkedBound 346
OsiOldLink 347
OsiOldLinkBranchingObiject 349
OsiOneLink 350

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

2 Class Index 7
CbcGenCtiBlk::osiParamsinfo_struct 351
OsiSimpleFixedInteger 351
OsiSolverLinearizedQuadratic 353
OsiSolverLink 354
OsiUsesBiLinear 359
PseudoReducedCost 361

2 Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:
ampl_info 16
CbcGenCtiBlk::babState_struct (State of branch-and-cut) 16
CbcBaseModel (Base model) 17
CbcBranchAllDifferent (Define a branch class that branches so that it is

only satsified if all members have different values So cut is x <= y-1

orx >=y+1) 17
CbcBranchCut (Define a cut branching class) 19
CbcBranchDecision 22
CbcBranchDefaultDecision (Branching decision default class) 25
CbcBranchDynamicDecision (Branching decision dynamic class) 27
CbcBranchingObject (Abstract branching object base class Now just dif-

ference with OsiBranchingObject) 29
CbcBranchToFixLots (Define a branch class that branches so that one

way variables are fixed while the other way cuts off that solution) 35
CbcBranchUserDecision (Branching decision user class) 38
CbcCbcParam (Class for control parameters that act on a CbcModel ob-

ject) 40
CbcClique (Branching object for cliques) 43
CbcCliqueBranchingObject (Branching object for unordered cliques) 47

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

2.1 Class List 8

CbcCompare 49
CbcCompareBase 50
CbcCompareDefault 52
CbcCompareDepth 54
CbcCompareEstimate 55
CbcCompareObjective 57
CbcCompareUser 58
CbcConsequence (Abstract base class for consequent bounds) 59
CbcCountRowCut (OsiRowCut augmented with bookkeeping) 61
CbcCutBranchingObject (Cut branching object) 63

CbcCutGenerator (Interface between Cbc and Cut Generation Library) 65

CbcCutModifier (Abstract cut modifier base class) 70
CbcCutSubsetModifier (Simple cut modifier base class) 71
CbcDummyBranchingObject (Dummy branching object) 73
CbcDynamicPseudoCostBranchingObject (Simple branching object for

an integer variable with pseudo costs) 75
CbcEventHandler (Base class for Cbc event handling) 78
CbcFathom (Fathom base class) 82

CbcFathomDynamicProgramming (FathomDynamicProgramming class) 84

CbcFeasibilityBase 87
CbcFixingBranchingObject (General Branching Obiject class) 88
CbcFixVariable (Class for consequent bounds) 90
CbcFollowOn (Define a follow on class) 92
CbcFollowOn2 (Define a follow on class) 94

CbcFullNodelnfo (Information required to recreate the subproblem at this

node) 96
CbcGenCtiBlk 100
CbcGeneral (Define a catch all class) 114

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

2.1 Class List 9
CbcGenParam (Class for cbc-generic control parameters) 116
CbcHeuristic (Heuristic base class) 119
CbcHeuristicCrossover (Crossover Search class) 126
CbcHeuristicDINS 128
CbcHeuristicDive (Dive class) 130
CbcHeuristicDiveCoefficient (DiveCoefficient class) 133
CbcHeuristicDiveFractional (DiveFractional class) 135
CbcHeuristicDiveGuided (DiveGuided class) 137
CbcHeuristicDiveLineSearch (DiveLineSearch class) 139
CbcHeuristicDivePseudoCost (DivePseudoCost class) 141
CbcHeuristicDiveVectorLength (DiveVectorLength class) 143
CbcHeuristicDynamic3 (Heuristic - just picks up any good solution) 145
CbcHeuristicFPump (Feasibility Pump class) 147
CbcHeuristicGreedyCover (Greedy heuristic classes) 152
CbcHeuristicGreedyEquality 154
CbcHeuristicGreedySOS (Greedy heuristic for SOS and L rows (and pos-

itive elements)) 156
CbcHeuristicJustOne (Just One class - this chooses one at random) 158
CbcHeuristicLocal (LocalSearch class) 160
CbcHeuristicNaive (Naive class a) Fix all ints as close to zero as possible

b) Fix all ints with nonzero costs and < large to zero c¢) Put bounds

round continuous and Uls and maximize) 162
CbcHeuristicNode (A class describing the branching decisions that were

made to get to the node where a heuristic was invoked from) 164
CbcHeuristicNodelList 165
CbcHeuristicPartial (Partial solution class If user knows a partial solution

this tries to get an integer solution it uses hotstart information) 165
CbcHeuristicPivotAndFix (LocalSearch class) 167
CbcHeuristicRandRound (LocalSearch class) 169

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

2.1 Class List 10

CbcHeuristicRENS (LocalSearch class) 170
CbcHeuristicRINS (LocalSearch class) 172
CbcHeuristicVND (LocalSearch class) 175
CbcintegerBranchingObject (Simple branching object for an integer vari-
able) 177
CbclntegerPseudoCostBranchingObject (Simple branching object for an
integer variable with pseudo costs) 181
CbcLink (Define Special Linked Ordered Sets) 184

CbcLinkBranchingObject (Branching object for Special ordered sets) 187

CbcLongCliqueBranchingObject (Unordered Clique Branching Object class

) 188
CbcLotsize (Lotsize class) 190
CbcLotsizeBranchingObject (Lotsize branching object) 194
CbcMessage 196
CbcModel (Simple Branch and bound class) 197
CbcNode (Information required while the node is live) 228

CbcNodelnfo (Information required to recreate the subproblem at this

node) 234
CbcNWay (Define an n-way class for variables) 239
CbcNWayBranchingObject (N way branching Object class) 242
CbcObject 245
CbcObjectUpdateData 251
CbcOsiParam (Class for control parameters that act on a OsiSolverinter-

face object) 252
CbcParam (Very simple class for setting parameters) 254

CbcGenCitiBlk::cbcParamsinfo_struct (Start and end of CbcModel param-
eters in parameter vector) 258

CbcPartialNodelnfo (Holds information for recreating a subproblem by
incremental change from the parent) 258

CbcRounding (Rounding class) 260

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

2.1 Class List 1

CbcSerendipity (Heuristic - just picks up any good solution found by
solver - see OsiBabSolver) 262

CbcSimplelnteger (Define a single integer class) 264

CbcSimplelntegerDynamicPseudoCost (Define a single integer class but
with dynamic pseudo costs) 267

CbcSimplelntegerFixed (Define a single integer class where branching is
forced until fixed) 274

CbcSimplelntegerPseudoCost (Define a single integer class but with pseudo
costs) 276

CbcSolver (This allows the use of the standalone solver in a flexible man-
ner) 278

CbcSolver2 (This is to allow the user to replace initialSolve and resolve) 282
CbcSolver3 (This is to allow the user to replace initialSolve and resolve) 283

CbcSolverLongThin (This is to allow the user to replace initialSolve and
resolve) 285

CbcSolverUsefulData (Structure to hold useful arrays) 286
CbcSOS (Branching object for Special Ordered Sets of type 1 and 2) 286

CbcSOSBranchingObject (Branching object for Special ordered sets) 290

CbcStatistics (For gathering statistics) 292
CbcStopNow (Support the use of a call back class to decide whether to

stop) 293
CbcStrategy (Strategy base class) 294
CbcStrategyDefault (Default class) 297
CbcStrategyDefaultSubTree (Default class for sub trees) 298
CbcStrategyNull (Null class) 300
CbcStronginfo (Abstract base class for ‘objects’) 301
CbcThread (A class to encapsulate thread stuff) 302
CbcTree (Using MS heap implementation) 302
CbcTreelLocal 307
CbcTreeVariable 309

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

2.1 Class List 12
CbcUser (A class to allow the use of unknown user functionality) 310
CglTemporary (Stored Temporary Cut Generator Class - destroyed after

first use) 313
CbcGenCtiBlk::chooseStrongCtl_struct (Control variables for a strong

branching method) 314
ClpAmplObjective (Ampl Objective Class) 314
ClpConstraintAmpl (Ampl Constraint Class) 316
ClpQuadinterface (This is to allow the user to replace initialSolve and

resolve) 318
CbcGenCtiBlk::debugSolinfo_struct (Array of primal variable values for

debugging) 319
CbcGenCitIBIk::djFixCtl_struct (Control use of reduced cost fixing prior

to B&C) 319
CbcGenCtiBlk::genParamsinfo_struct (Start and end of cbc-generic pa-

rameters in parameter vector) 320
OsiBiLinear (Define BiLinear objects) 320
OsiBiLinearBranchingObject (Branching object for BiLinear objects) 325
OsiBiLinearEquality (Define Continuous BiLinear objects for an == bound

) 325
OsiCbcSolverinterface (Cbc Solver Interface) 327
OsiChooseStrongSubset (This class chooses a variable to branch on) 342
OsiLink (Define Special Linked Ordered Sets) 343
OsiLinkBranchingObject (Branching object for Linked ordered sets) 346
OsiLinkedBound (List of bounds which depend on other bounds) 346
OsiOldLink 347
OsiOldLinkBranchingObject (Branching object for Linked ordered sets) 349
OsiOneLink (Define data for one link) 350
CbcGenCitiBIk::osiParamsinfo_struct (Start and end of OsiSolverinter-

face parameters in parameter vector) 351
OsiSimpleFixedInteger (Define a single integer class - but one where you

keep branching until fixed even if satisfied) 351

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

3 File Index 13
OsiSolverLinearizedQuadratic (This is to allow the user to replace initial-
Solve and resolve) 353
OsiSolverLink (This is to allow the user to replace initialSolve and re-
solve This version changes coefficients) 354
OsiUsesBiLinear (Define a single variable class which is involved with
OsiBiLinear objects) 359
PseudoReducedCost 361
3 File Index
3.1 File List
Here is a list of all documented files with brief descriptions:
Cbc_ampl.h ??
Cbc_C_Interface.h ??
CbcBranchActual.hpp ?2?
CbcBranchAllDifferent.hpp ??
CbcBranchBase.hpp ??
CbcBranchCut.hpp ??
CbcBranchDecision.hpp ??
CbcBranchDefaultDecision.hpp ??
CbcBranchDynamic.hpp ??
CbcBranchFollow2.hpp ??
CbcBranchingObject.hpp ?2?
CbcBranchLink.hpp 22
CbcBranchLotsize.hpp ??
CbcBranchToFixLots.hpp ??
CbcBranchUser.hpp ??
CbcClique.hpp ??
?2?

CbcCompare.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

3.1 File List 14

CbcCompareActual.hpp ??
CbcCompareBase.hpp ??
CbcCompareDefault.hpp ??
CbcCompareDepth.hpp ??
CbcCompareEstimate.hpp ??
CbcCompareObjective.hpp 2?
CbcCompareUser.hpp ??
CbcConfig.h 22
CbcConsequence.hpp ?2?
CbcCountRowCut.hpp ??
CbcCutGenerator.hpp ??
CbcCutModifier.hpp 2?
CbcCutSubsetModifier.hpp ??
CbcDummyBranchingObject.hpp ?2?
CbcEventHandler.hpp (Event handling for cbc) 361
CbcFathom.hpp ??
CbcFathomDynamicProgramming.hpp ??
CbcFeasibilityBase.hpp ??
CbcFixVariable.hpp ??
CbcFollowOn.hpp ??
CbcFuliNodelnfo.hpp ??
CbcGenCbcParam.hpp ??
CbcGenCtiBlk.hpp 22
CbcGeneral.hpp ??
CbcGeneralDepth.hpp ??
CbcGenMessages.hpp (This file contains the enum that defines symbolic
names for for cbc-generic messages) 363
CbcGenOsiParam.hpp ??

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

3.1 File List 15
CbcGenParam.hpp ??
CbcHeuristic.hpp ??
CbcHeuristicDINS.hpp ??
CbcHeuristicDive.hpp ??
CbcHeuristicDiveCoefficient.hpp ??
CbcHeuristicDiveFractional.hpp 2?
CbcHeuristicDiveGuided.hpp ??
CbcHeuristicDiveLineSearch.hpp ??
CbcHeuristicDivePseudoCost.hpp ??
CbcHeuristicDiveVectorLength.hpp ??
CbcHeuristicFPump.hpp ??
CbcHeuristicGreedy.hpp 2?
CbcHeuristicLocal.hpp ??
CbcHeuristicPivotAndFix.hpp ??
CbcHeuristicRandRound.hpp ??
CbcHeuristicRENS.hpp ??
CbcHeuristicRINS.hpp ??
CbcHeuristicVND.hpp ??
CbcLinked.hpp ??
CbcMessage.hpp ??
CbcModel.hpp ??
CbcNode.hpp ??
CbcNodelnfo.hpp ??
CbcNWay.hpp ??
CbcObject.hpp ??
CbcObjectUpdateData.hpp ??

?2?

CbcParam.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

3.1 File List 16

CbcPartialNodelnfo.hpp ??
CbcSimplelnteger.hpp ??
CbcSimplelntegerDynamicPseudoCost.hpp ??
CbcSimplelntegerPseudoCost.hpp ??
CbcSolver.hpp (Defines CbcSolver, the proposed top-level class for the
new-style cbc solver) 363
CbcSolver2.hpp 2?
CbcSolver3.hpp ??

CbcSolverAnalyze.hpp (Look to see if a constraint is all-integer (vari-
ables & coeffs), or could be all integer) 365

CbcSolverExpandKnapsack.hpp (Expanding possibilities of xxy, where

xxy are both integers, constructing a knapsack constraint) 365
CbcSolverHeuristics.hpp (Routines for doing heuristics) 365
CbcSolverLongThin.hpp ??
CbcSOS.hpp ??
CbcStatistics.hpp ??
CbcStrategy.hpp ??
CbcSubProblem.hpp ??
CbcThread.hpp ??
CbcTree.hpp ??
CbcTreeLocal.hpp ??
ClpAmplObjective.hpp ??
ClpConstraintAmpl.hpp ?2?
ClpQuadinterface.hpp ??
Cbc/src/config.h ??
ThirdParty/Glpk/config.h ??
config_cbc.h ??
config_cbc_default.h 2?

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4 Class Documentation 17

config_default.h 2?
configall_system.h 2?
configall_system_msc.h ??
OsiCbcSolverinterface.hpp ??

4 Class Documentation

4.1 ampl_info Struct Reference
41.1 Detailed Description

Definition at line 11 of file Cbc_ampl.h.

The documentation for this struct was generated from the following file:

+ Cbc_ampl.h

4.2 CbcGenCtiBlk::babState_struct Struct Reference

State of branch-and-cut.

#include <CbcGenCtlBlk.hpp>

421 Detailed Description

State of branch-and-cut.

Major and minor status codes, and a solver holding the answer, assuming we have a
valid answer. See the documentation with the BACMajor, BACMinor, and BACWhere
enums for the meaning of the codes.

Definition at line 718 of file CbcGenCtIBlk.hpp.

The documentation for this struct was generated from the following file:

» CbcGenCtIBlk.hpp

4.3 CbcBaseModel Class Reference

Base model.

#include <CbcThread.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.4 CbcBranchAllDifferent Class Reference 18

4.3.1 Detailed Description

Base model.
Definition at line 429 of file CbcThread.hpp.

The documentation for this class was generated from the following file:

» CbcThread.hpp

4.4 CbcBranchAllDifferent Class Reference

Define a branch class that branches so that it is only satsified if all members have
different values So cut is x <=y-1 or x >=y+1.

#include <CbcBranchAllDifferent.hpp>

Inheritance diagram for CbcBranchAllDifferent:

CbcObject

CbcBranchCut

CbcBranchAllDifferent

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.4 CbcBranchAllDifferent Class Reference 19

Collaboration diagram for CbcBranchAlIDifferent:

Public Member Functions

CbcBranchAlIDifferent (CbcModel xmodel, int number, const int xwhich)

Useful constructor - passed set of integer variables which must all be different.
virtual CbcObject * clone () const

Clone.

virtual double infeasibility (const OsiBranchingInformation xinfo, int &preferred-
Way) const

Infeasibility - large is 0.5.

virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface *solver, const
OsiBranchinglnformation xinfo, int way)

Creates a branching object.

Protected Attributes

* int numberinSet_

data
* int * which_

Which variables.

4.41 Detailed Description

Define a branch class that branches so that it is only satsified if all members have
different values So cut is x <=y-1 or x >=y+1.

Definition at line 22 of file CbcBranchAlIDifferent.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.5 CbcBranchCut Class Reference

20

4.4.2 Member Data Documentation

4421 int CbcBranchAllDifferent::numberinSet_ [protected]

data
Number of entries
Definition at line 57 of file CbcBranchAlIDifferent.hpp.

The documentation for this class was generated from the following file:

+ CbcBranchAllDifferent.hpp

4.5 CbcBranchCut Class Reference

Define a cut branching class.
#include <CbcBranchCut.hpp>

Inheritance diagram for CbcBranchCut:

CbcObject

CbcBranchCut

CbcBranchAllDifferent CbcBranchToFixLots

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.5 CbcBranchCut Class Reference 21

Collaboration diagram for CbcBranchCut:

Public Member Functions

CbcBranchCut (CbcModel xmodel)
In to maintain normal methods.
virtual CbcObject * clone () const
Clone.
virtual double infeasibility (const OsiBranchingInformation xinfo, int &preferred-
Way) const
Infeasibility.
virtual void feasibleRegion ()
Set bounds to contain the current solution.
virtual bool boundBranch () const

Return true if branch created by object should fix variables.
virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface *solver, const
OsiBranchinglnformation xinfo, int way)
Creates a branching object.
virtual CbcBranchingObject * preferredNewFeasible () const
Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in the good direction.
virtual CbcBranchingObject * notPreferredNewFeasible () const
Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in a bad direction.
virtual void resetBounds ()

Reset original upper and lower bound values from the solver.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.5 CbcBranchCut Class Reference 22

4.5.1 Detailed Description

Define a cut branching class.
At present empty - all stuff in descendants

Definition at line 17 of file CbcBranchCut.hpp.

4.5.2 Member Function Documentation

4,5.2.1 Vvirtual void CbcBranchCut::feasibleRegion() [virtual]

Set bounds to contain the current solution.

More precisely, for the variable associated with this object, take the value given in the
current solution, force it within the current bounds if required, then set the bounds to fix
the variable at the integer nearest the solution value.

At present this will do nothing
Implements CbcObject.

4,5.2.2 virtual CbcBranchingObject: CbcBranchCut::preferredNewFeasible () const
[virtual]

Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in the good direction.

The preferred branching object will force the variable to be +/-1 from its current value,
depending on the reduced cost and objective sense. If movement in the direction which
improves the objective is impossible due to bounds on the variable, the branching object
will move in the other direction. If no movement is possible, the method returns NULL.

Only the bounds on this variable are considered when determining if the new point is
feasible.

At present this does nothing
Reimplemented from CbcObject.

4,5.2.3 virtual CbcBranchingObject: CbcBranchCut::notPreferredNewFeasible () const
[virtual]

Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in a bad direction.

As for preferredNewFeasible(), but the preferred branching object will force movement
in a direction that degrades the objective.

At present this does nothing

Reimplemented from CbcObject.
4.5.2.4 virtual void CbcBranchCut::iresetBounds () [virtual]

Reset original upper and lower bound values from the solver.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.6 CbcBranchDecision Class Reference 23

Handy for updating bounds held in this object after bounds held in the solver have been
tightened.

The documentation for this class was generated from the following file:

» CbcBranchCut.hpp

4.6 CbcBranchDecision Class Reference

Inheritance diagram for CbcBranchDecision:

CbcBranchDecision

CbcBranchDefaultDecision CbcBranchDynamicDecision CbcBranchUserDecision

Collaboration diagram for CbcBranchDecision:

Public Member Functions

+ CbcBranchDecision ()

Default Constructor.
« virtual ~CbcBranchDecision ()

Destructor.
« virtual CbcBranchDecision * clone () const =0

Clone.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.6 CbcBranchDecision Class Reference 24

virtual void initialize (CbcModel xmodel)=0

Initialize e.g. before starting to choose a branch at a node.
virtual int betterBranch (CbcBranchingObject «thisOne, CbcBranchingObject xbestSoFar,
double changeUp, int numberInfeasibilitiesUp, double changeDown, int number-
InfeasibilitiesDown)=0

Compare two branching objects.
virtual int bestBranch (CbcBranchingObject xxobjects, int numberObjects, int num-
berUnsatisfied, double xchangeUp, int xnumberinfeasibilitiesUp, double xchangeDown,
int xnumberlInfeasibilitiesDown, double objectiveValue)

Compare N branching objects.
virtual int whichMethod ()

Says whether this method can handle both methods - 1 better, 2 best, 3 both.
virtual void saveBranchingObject (OsiBranchingObject)

Saves a clone of current branching object.
virtual void updatelnformation (OsiSolverInterface *, const CbcNode)

Pass in information on branch just done.
virtual void setBestCriterion (double)

Sets or gets best criterion so far.
virtual void generateCpp (FILE x)

Create C++ lines to get to current state.
CbcModel * cbcModel () const

Model.
void setChooseMethod (const OsiChooseVariable &method)

Set (clone) chooseMethod.

Protected Attributes

4.6.1

CbcModel * model_

Pointer to model.

Detailed Description

Definition at line 28 of file CbcBranchDecision.hpp.

4.6.2

4.6.2.1

Member Function Documentation

virtual int CbcBranchDecision::betterBranch (CbcBranchingObject thisOne,
CbcBranchingObject « bestSoFar, double changeUp, int numberinfeasibilitiesUp,
double changeDown, int numberinfeasibilitiesDown) [pure virtual]

Compare two branching objects.

Return nonzero if branching using t hi sOne is better than branching using be st SoFar.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.7 CbcBranchDefaultDecision Class Reference 25

If best SoFar is NULL, the routine should return a nonzero value. This routine is used
only after strong branching. Either this or bestBranch is used depending which user
wants.

Implemented in CbcBranchUserDecision, CbcBranchDefaultDecision, and CbcBranch-
DynamicDecision.

4.6.2.2 virtual int CbcBranchDecision::bestBranch (CbcBranchingObject
objects, int numberObjects, int numberUnsatisfied, double x changeUp, int x
numberlnfeasibilitiesUp, double = changeDown, int x numberinfeasibilitiesDown,
double objectiveValue) [virtuall]

Compare N branching objects.

Return index of best and sets way of branching in chosen object.

Either this or betterBranch is used depending which user wants.

Reimplemented in CbcBranchUserDecision, and CbcBranchDefaultDecision.

4.6.2.3 virtual void CbcBranchDecision::saveBranchingObject (OsiBranchingObject +)
[inline, virtual]

Saves a clone of current branching object.

Can be used to update information on object causing branch - after branch

Reimplemented in CbcBranchDynamicDecision.

Definition at line 80 of file CbcBranchDecision.hpp.

4.6.2.4 Vvirtual void CbcBranchDecision::updatelnformation (OsiSolverinterface x , const
CbcNode +) [inline, virtual]

Pass in information on branch just done.

assumes object can get information from solver

Reimplemented in CbcBranchDynamicDecision.

Definition at line 83 of file CbcBranchDecision.hpp.

The documentation for this class was generated from the following file:

» CbcBranchDecision.hpp

4,7 CbcBranchDefaultDecision Class Reference

Branching decision default class.

#include <CbcBranchDefaultDecision.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.7 CbcBranchDefaultDecision Class Reference 26

Inheritance diagram for CbcBranchDefaultDecision:

CbcBranchDecision

CbcBranchDefaultDecision

Collaboration diagram for CbcBranchDefaultDecision:

Public Member Functions

« virtual CbcBranchDecision * clone () const

Clone.
virtual void initialize (CbcModel xmodel)

Initialize, e.g. before the start of branch selection at a node.
virtual int betterBranch (CbcBranchingObject xthisOne, CbcBranchingObject xbestSoFar,
double changeUp, int numinfUp, double changeDn, int numInfDn)

Compare two branching objects.
« virtual void setBestCriterion (double value)
Sets or gets best criterion so far.

« virtual int bestBranch (CbcBranchingObject *xobjects, int numberObjects, int num-
berUnsatisfied, double xchangeUp, int xnumberinfeasibilitiesUp, double xchangeDown,
int xnumberlInfeasibilitiesDown, double objectiveValue)

Compare N branching objects.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.7 CbcBranchDefaultDecision Class Reference 27

4,71 Detailed Description

Branching decision default class.

This class implements a simple default algorithm (betterBranch()) for choosing a branch-
ing variable.

Definition at line 18 of file CbcBranchDefaultDecision.hpp.

4.7.2 Member Function Documentation

4.7.2.1 virtual int ChcBranchDefaultDecision::betterBranch (CbcBranchingObject
thisOne, CbcBranchingObject * bestSoFar, double changeUp, int numinfUp,
double changeDn, int numinfDn) [virtual]

Compare two branching objects.

Return nonzero if thisOne is better than best SoFar.

The routine compares branches using the values supplied in numInfUp and numInfDn
until a solution is found by search, after which it uses the values supplied in changeUp
and changeDn. The best branching object seen so far and the associated parameter
values are remembered in the CbcBranchDefaultDecision object. The nonzero
return value is +1 if the up branch is preferred, -1 if the down branch is preferred.

As the names imply, the assumption is that the values supplied for numInfUp and
numInfDn will be the number of infeasibilities reported by the branching object, and
changeUp and changeDn will be the estimated change in objective. Other measures
can be used if desired.

Because an CbcBranchDefaultDecision object remembers the current best
branching candidate (#bestObject_) as well as the values used in the comparison, the
parameter best SoFar is redundant, hence unused.

Implements CbcBranchDecision.

4.7.2.2 virtual int CbcBranchDefaultDecision::bestBranch (CbcBranchingObject xx
objects, int numberObjects, int numberUnsatisfied, double x changeUp, int
numberlnfeasibilitiesUp, double « changeDown, int x numberinfeasibilitiesDown,
double objectiveValue) [virtuall]

Compare N branching objects.

Return index of best and sets way of branching in chosen object.

This routine is used only after strong branching.

Reimplemented from CbcBranchDecision.

The documentation for this class was generated from the following file:

+ CbcBranchDefaultDecision.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.8 CbcBranchDynamicDecision Class Reference 28

4.8 CbcBranchDynamicDecision Class Reference

Branching decision dynamic class.
#include <CbcBranchDynamic.hpp>

Inheritance diagram for CbcBranchDynamicDecision:

CbcBranchDecision

CbcBranchDynamicDecision

Collaboration diagram for CbcBranchDynamicDecision:

Public Member Functions

« virtual CbcBranchDecision * clone () const
Clone.
virtual void initialize (CbcModel xmodel)

Initialize, e.g. before the start of branch selection at a node.
virtual int betterBranch (CbcBranchingObject xthisOne, CbcBranchingObject xbestSoFar,
double changeUp, int numinfUp, double changeDn, int numInfDn)

Compare two branching objects.
virtual void setBestCriterion (double value)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.8 CbcBranchDynamicDecision Class Reference 29

Sets or gets best criterion so far.
+ virtual int whichMethod ()

Says whether this method can handle both methods - 1 better, 2 best, 3 both.
« virtual void saveBranchingObject (OsiBranchingObject xobject)

Saves a clone of current branching object.
+ virtual void updatelnformation (OsiSolverinterface *solver, const CbcNode xnode)

Pass in information on branch just done.

4.8.1 Detailed Description

Branching decision dynamic class.

This class implements a simple algorithm (betterBranch()) for choosing a branching
variable when dynamic pseudo costs.

Definition at line 19 of file CbcBranchDynamic.hpp.

4.8.2 Member Function Documentation

4.8.2.1 virtual int CbcBranchDynamicDecision::betterBranch (CbcBranchingObject
thisOne, CbcBranchingObject * bestSoFar, double changeUp, int numinfUp,
double changeDn, int numinfDn) [virtual]

Compare two branching objects.

Return nonzero if thisOne is better than best SoFar.

The routine compares branches using the values supplied in numInfUp and numInfDn
until a solution is found by search, after which it uses the values supplied in changeUp
and changeDn. The best branching object seen so far and the associated parameter
values are remembered in the CbcBranchDynamicDecision object. The nonzero
return value is +1 if the up branch is preferred, -1 if the down branch is preferred.

As the names imply, the assumption is that the values supplied for numInfUp and
numInfDn will be the number of infeasibilities reported by the branching object, and
changeUp and changeDn will be the estimated change in objective. Other measures
can be used if desired.

Because an CbcBranchDynamicDecision object remembers the current best
branching candidate (#bestObject_) as well as the values used in the comparison, the
parameter best SoFar is redundant, hence unused.

Implements CbcBranchDecision.

4.8.2.2 virtual void ChcBranchDynamicDecision::saveBranchingObject (OsiBranchingObject
object) [virtual]

Saves a clone of current branching object.

Can be used to update information on object causing branch - after branch

Reimplemented from CbcBranchDecision.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.9 CbcBranchingObject Class Reference 30

4.8.2.3 virtual void CbcBranchDynamicDecision::updatelnformation (OsiSolverinterface
solver, const CbcNode « node) [virtual]

Pass in information on branch just done.
assumes object can get information from solver
Reimplemented from CbcBranchDecision.

The documentation for this class was generated from the following file:

+ CbcBranchDynamic.hpp

4.9 CbcBranchingObject Class Reference

Abstract branching object base class Now just difference with OsiBranchingObiject.
#include <CbcBranchingObject.hpp>

Inheritance diagram for CbcBranchingObject:

| CbcCliqueBranchingObject |

| CbcCutBranchingObject |

| CbcDummyBranchingObject |

| CbcFixingBranchingObject |

CbcDynamicPseudoCostBranchingObject |

CbclntegerBranchingObject

4.
CbcBranchingObject

CbclntegerPseudoCostBranchingObject |

CocLinkBranchingObiject |

CbcLongCliqueBranchingObject |

| CbcLotsizeBranchingObject |

| CbcNWayBranchingObject |

| CbcSOSBranchingObject |

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.9 CbcBranchingObject Class Reference 31

Collaboration diagram for CbcBranchingObject:

Public Member Functions

CbcBranchingObiject ()

Default Constructor.
CbcBranchingObject (CbcModel xmodel, int variable, int way, double value)

Constructor.
CbcBranchingObject (const CbcBranchingObject &)

Copy constructor.
CbcBranchingObject & operator= (const CbcBranchingObject &rhs)

Assignment operator.
virtual CbcBranchingObject * clone () const =0

Clone.
virtual ~CbcBranchingObiject ()

Destructor.
virtual int fill[Stronglnfo (CbcStronginfo &)

Some branchingObjects may claim to be able to skip strong branching.
void resetNumberBranchesLeft ()

Reset number of branches left to original.
+ void setNumberBranches (int value)

Set number of branches to do.
« virtual double branch ()=0

Execute the actions required to branch, as specified by the current state of the branch-
ing object, and advance the object’s state.
« virtual double branch (OsiSolverInterface *)

Execute the actions required to branch, as specified by the current state of the branch-
ing object, and advance the object’s state.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.9 CbcBranchingObject Class Reference 32

virtual void fix (OsiSolverlnterface *, double *, double *, int) const
Update bounds in solver as in ‘branch’ and update given bounds.
virtual bool tighten (OsiSolverinterface)
Change (tighten) bounds in object to reflect bounds in solver.
virtual void previousBranch ()
Reset every information so that the branching object appears to point to the previous
child.
virtual void print () const
Print something about branch - only if log level high.
int variable () const
Index identifying the associated CbcObject within its class.
int way () const
Get the state of the branching object.
void way (int way)
Set the state of the branching object.
void setModel (CbcModel xmodel)
update model
CbcModel x model () const
Return model.
CbcObject * object () const
Return pointer back to object which created.
void setOriginalObject (CbcObject xobject)
Set pointer back to object which created.
virtual CbcBranchObjType type () const =0
Return the type (an integer identifier) of t his.
virtual int compareQOriginalObject (const CbcBranchingObject xbrObj) const
Compare the original object of t hi s with the original object of brOb ;.
virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
*brObj, const bool replacelfOverlap=false)=0
Compare the this with brobj.

Protected Attributes

CbcModel * model_

The model that owns this branching object.
CbcObject * originalCbcObject

Pointer back to object which created.
int variable

Branching variable (0 is first integer)
int way_

The state of the branching object.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.9 CbcBranchingObject Class Reference 33

4.9.1 Detailed Description

Abstract branching object base class Now just difference with OsiBranchingObiject.

In the abstract, an CbcBranchingObject contains instructions for how to branch. We
want an abstract class so that we can describe how to branch on simple objects (e.g.,
integers) and more exotic objects (e.g., cliques or hyperplanes).

The branch() method is the crucial routine: it is expected to be able to step through a
set of branch arms, executing the actions required to create each subproblem in turn.
The base class is primarily virtual to allow for a wide range of problem modifications.

See CbcObject for an overview of the three classes (CbcObject, CbcBranchingObject,
and CbcBranchDecision) which make up cbc’s branching model.

Definition at line 53 of file CbcBranchingObject.hpp.

4.9.2 Member Function Documentation

4.9.2.1 virtual int CbcBranchingObject::fillStronginfo (CbcStronginfo&) [inline,
virtual]
Some branchingObjects may claim to be able to skip strong branching.

If so they have to fill in CbcStronglinfo. The object mention in incoming CbcStronginfo
must match. Returns nonzero if skip is wanted

Reimplemented in CbcDynamicPseudoCostBranchingObject.

Definition at line 79 of file CbcBranchingObject.hpp.
4.9.2.2 virtual double CbcBranchingObject::branch() [pure virtual]

Execute the actions required to branch, as specified by the current state of the branching
object, and advance the object’s state.

Mainly for diagnostics, whether it is true branch or strong branching is also passed.
Returns change in guessed objective on next branch

Implemented in CbcLinkBranchingObject, CbcCutBranchingObject, CbcDynamicPseu-
doCostBranchingObject, CbclLotsizeBranchingObject, CbcCliqueBranchingObject, Cb-
cLongCliqueBranchingObject, CocDummyBranchingObject, CbcFixingBranchingObiject,
CbcNWayBranchingObject, CbclntegerBranchingObject, CbclntegerPseudoCostBranchin-
gObject, and CbcSOSBranchingObject.

4.9.2.3 virtual double CbcBranchingObject::branch (OsiSolverinterface x) [inline,
virtual]

Execute the actions required to branch, as specified by the current state of the branching
object, and advance the object’s state.

Mainly for diagnostics, whether it is true branch or strong branching is also passed.
Returns change in guessed objective on next branch

Definition at line 105 of file CbcBranchingObject.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.9 CbcBranchingObject Class Reference 34

4.9.2.4 virtual void CbcBranchingObject::fix (OsiSolverinterface =, double * , double x, int)
const [inline, virtual]

Update bounds in solver as in ’branch’ and update given bounds.

branchState is -1 for 'down’ +1 for 'up’

Reimplemented in CbclntegerBranchingObject, and CbcSOSBranchingObject.
Definition at line 110 of file CbcBranchingObject.hpp.

4.9.2.5 virtual bool ChcBranchingObject::tighten (OsiSolverinterface «+) [inline,
virtual]

Change (tighten) bounds in object to reflect bounds in solver.
Return true if now fixed
Reimplemented in CbclntegerBranchingObject.

Definition at line 116 of file CbcBranchingObject.hpp.
4.9.2.6 virtual void ChcBranchingObject::previousBranch() [inline, virtual]

Reset every information so that the branching object appears to point to the previous
child.

This method does not need to modify anything in any solver.
Reimplemented in CbcSOSBranchingObject.
Definition at line 121 of file CbcBranchingObject.hpp.

4.9.2.7 int CbcBranchingObject::variable ()const [inline]

Index identifying the associated CbcObject within its class.

The name is misleading, and typically the index will not refer directly to a variable.
Rather, it identifies an CbcObject within the class of similar CbcObjects

E.g., for an CbcSimplelnteger, variable() is the index of the integer variable in the set of
integer variables (not the index of the variable in the set of all variables).

Definition at line 143 of file CbcBranchingObject.hpp.
4.9.2.8 int CbcBranchingObject::way ()const [inline]

Get the state of the branching object.

Returns a code indicating the active arm of the branching object. The precise meaning
is defined in the derived class.

See also

way_

Definition at line 154 of file CbcBranchingObject.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.9 CbcBranchingObject Class Reference 35

4.9.2.9 void ChcBranchingObject::way (intway) [inline]

Set the state of the branching object.
See way()

Definition at line 162 of file CbcBranchingObject.hpp.

4,9.2.10 virtual CbcBranchObjType ChcBranchingObject::type () const [pure
virtual]

Return the type (an integer identifier) of this.
See definition of CbcBranchObjType above for possibilities

Implemented in CbcLinkBranchingObject, CbcCutBranchingObject, CbcDynamicPseu-
doCostBranchingObiject, CbclLotsizeBranchingObject, CbcCliqueBranchingObject, Cb-
cLongCliqueBranchingObject, CocDummyBranchingObject, CbcFixingBranchingObiject,
CbcNWayBranchingObject, CbclntegerBranchingObject, CbclntegerPseudoCostBranchin-
gObject, and CbcSOSBranchingObject.

4.9.2.11 virtual int CbcBranchingObject::compareOriginalObject (const
CbcBranchingObject « brObj)const [inline, virtual]

Compare the original object of this with the original object of brOb J.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented in CbcCutBranchingObject, CbcCliqueBranchingObject, CbcLongClique-
BranchingObject, CbcDummyBranchingObject, CbcFixingBranchingObject, CbcNWay-
BranchingObject, and CbcSOSBranchingObject.

Definition at line 199 of file CbcBranchingObject.hpp.

4.9.2.12 virtual ChcRangeCompare CbcBranchingObject::compareBranchingObject (const
CbcBranchingObject « brObj, const bool replacelfOverlap=false) [pure
virtual]

Compare the this with brObj.

this and brObj must be of the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CbcRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implemented in CbcLinkBranchingObject, CbcCutBranchingObject, CbcLotsizeBranchin-
gObject, CbcCliqueBranchingObject, CbcLongCliqueBranchingObject, CbcDummyBranchin-
gObject, CbcFixingBranchingObject, CocNWayBranchingObject, CbclntegerBranchin-
gObject, CbclntegerPseudoCostBranchingObject, and CbcSOSBranchingObject.

4.9.3 Member Data Documentation

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

410 CbcBranchToFixLots Class Reference 36

4.9.3.1 int CbcBranchingObject::way_ [protected]

The state of the branching object.

Specifies the active arm of the branching object. Coded as -1 to take the ‘down’ arm,
+1 for the ‘up’ arm. ‘Down’ and ‘up’ are defined based on the natural meaning (floor and
ceiling, respectively) for a simple integer. The precise meaning is defined in the derived
class.

Definition at line 232 of file CbcBranchingObject.hpp.

The documentation for this class was generated from the following file:

+ CbcBranchingObject.hpp

410 ChbcBranchToFixLots Class Reference

Define a branch class that branches so that one way variables are fixed while the other
way cuts off that solution.

#include <CbcBranchToFixLots.hpp>

Inheritance diagram for CbcBranchToFixLots:

CbcObject

CbcBranchCut

CbcBranchToFixLots

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

410 CbcBranchToFixLots Class Reference 37

Collaboration diagram for CbcBranchToFixLots:

Public Member Functions

CbcBranchToFixLots (CbcModel xmodel, double djTolerance, double fractionFixed,
int depth, int numberClean=0, const char xmark=NULL, bool alwaysCreate=false)

Useful constructor - passed reduced cost tolerance and fraction we would like fixed.
virtual CbcObject * clone () const

Clone.
int shallWe () const
Does a lot of the work, Returns 0 if no good, 1 if dj, 2 if clean, 3 if both FIXME: should
use enum or equivalent to make these numbers clearer.
virtual double infeasibility (const OsiBranchingInformation xinfo, int &preferred-
Way) const

Infeasibility for an integer variable - large is 0.5, but also can be infinity when known
infeasible.

virtual bool canDoHeuristics () const

Return true if object can take part in normal heuristics.
virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface xsolver, const
OsiBranchingInformation xinfo, int way)

Creates a branching object.
virtual void redoSequenceEtc (CbcModel xmodel, int numberColumns, const int
xoriginalColumns)

Redoes data when sequence numbers change.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

410 CbcBranchToFixLots Class Reference 38

Protected Attributes

+ double djTolerance__

data
+ double fractionFixed_

We only need to make sure this fraction fixed.
« char x mark__

Never fix ones marked here.
+ CoinPackedMatrix matrixByRow_

Matrix by row.
* int depth_

Do if depth multiple of this.
* int numberClean_

number of ==1 rows which need to be clean
* bool alwaysCreate_

If true then always create branch.

4,10.1 Detailed Description
Define a branch class that branches so that one way variables are fixed while the other
way cuts off that solution.

a) On reduced cost b) When enough ==1 or <=1 rows have been satisfied (not fixed -
satisfied)

Definition at line 23 of file CbcBranchToFixLots.hpp.

410.2 Constructor & Destructor Documentation

4.10.2.1 CbcBranchToFixLots::ChcBranchToFixLots (CbcModel + model, double
djTolerance, double fractionFixed, int depth, int numberClean = O, const char « mark
=NULL, bool alwaysCreate=false)

Useful constructor - passed reduced cost tolerance and fraction we would like fixed.

Also depth level to do at. Also passed number of 1 rows which when clean triggers fix
Always does if all 1 rows cleaned up and number>0 or if fraction columns reached Also
whether to create branch if can’t reach fraction.

4.10.3 Member Data Documentation

4.10.3.1 double CbcBranchToFixLots::djTolerance_ [protected]

data
Reduced cost tolerance i.e. dj has to be >= this before fixed

Definition at line 79 of file CbcBranchToFixLots.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.11 CbcBranchUserDecision Class Reference 39

The documentation for this class was generated from the following file:

+ CbcBranchToFixLots.hpp

4,11 CbcBranchUserDecision Class Reference

Branching decision user class.
#include <CbcBranchUser.hpp>

Inheritance diagram for CbcBranchUserDecision:

CbcBranchDecision

CbcBranchUserDecision

Collaboration diagram for CbcBranchUserDecision:

Public Member Functions

» virtual CbcBranchDecision * clone () const

Clone.
« virtual void initialize (CbcModel xmodel)

Initialize i.e. before start of choosing at a node.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

412 CbcCbcParam Class Reference 40

« virtual int betterBranch (CbcBranchingObject thisOne, CbcBranchingObject xbestSoFar,
double changeUp, int numberInfeasibilitiesUp, double changeDown, int number-
InfeasibilitiesDown)

Returns nonzero if branching on first object is "better" than on second (if second NULL
first wins).
« virtual int bestBranch (CbcBranchingObject xxobjects, int numberObjects, int num-
berUnsatisfied, double xchangeUp, int xnumberinfeasibilitiesUp, double xchangeDown,
int xnumberlnfeasibilitiesDown, double objectiveValue)

Compare N branching objects.

4111 Detailed Description

Branching decision user class.

Definition at line 14 of file CbcBranchUser.hpp.

4.11.2 Member Function Documentation

4.11.2.1 virtual int CbcBranchUserDecision::betterBranch (CbcBranchingObiject thisOne,
CbcBranchingObject « bestSoFar, double changeUp, int numberinfeasibilitiesUp,
double changeDown, int numberinfeasibilitiesDown) [virtual]

Returns nonzero if branching on first object is "better" than on second (if second NULL
first wins).

This is only used after strong branching. The initial selection is done by infeasibility() for
each CbcObject return code +1 for up branch preferred, -1 for down

Implements CbcBranchDecision.

4.11.2.2 virtual int CbcBranchUserDecision::bestBranch (CbcBranchingObject xx
objects, int numberObjects, int numberUnsatisfied, double x changeUp, int x
numberinfeasibilitiesUp, double x changeDown, int + numberinfeasibilitiesDown,
double objectiveValue) [virtuall

Compare N branching objects.

Return index of best and sets way of branching in chosen object.

This routine is used only after strong branching. This is reccommended version as it
can be more sophisticated

Reimplemented from CbcBranchDecision.

The documentation for this class was generated from the following file:

+ CbcBranchUser.hpp

4,12 CbcCbcParam Class Reference

Class for control parameters that act on a CbcModel object.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

412 CbcCbcParam Class Reference 41

#include <CbcGenCbcParam.hpp>

Collaboration diagram for CbcCbcParam:

Public Types

Subtypes

» enum CbcCbcParamCode
Enumeration for parameters that control a CbcModel object.

Public Member Functions

Constructors and Destructors

Be careful how you specify parameters for the constructors! There’s great
potential for confusion.

* CbcCbcParam ()
Default constructor.
» CbcCbcParam (CbcCbcParamCode code, std::string name, std::string help,
double lower, double upper, double dflt=0.0, bool display=true)
Constructor for a parameter with a double value.
» CbcCbcParam (CbcCbcParamCode code, std::string name, std::string help, int
lower, int upper, int dflt=0, bool display=true)
Constructor for a parameter with an integer value.
* CbcCbcParam (CbcCbcParamCode code, std::string name, std::string help,
std::string firstValue, int dflt, bool display=true)
Constructor for a parameter with keyword values.
» CbcCbcParam (CbcCbcParamCode code, std::string name, std::string help,
std::string dflt, bool display=true)
Constructor for a string parameter.
* CbcCbcParam (CbcCbcParamCode code, std::string name, std::string help,
bool display=true)
Constructor for an action parameter.
* CbcCbcParam (const CbcCbcParam &orig)
Copy constructor.
* CbcCbcParam * clone ()

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

412 CbcCbcParam Class Reference 42

Clone.
* CbcCbcParam & operator= (const CocCbcParam &rhs)

Assignment.
* ~CbcCbcParam ()

Destructor.

Methods to query and manipulate a parameter object

* CbcCbcParamCode paramCode () const

Get the parameter code.
« void setParamCode (CbcCbcParamCode code)

Set the parameter code.
* CbcModel * obj () const

Get the underlying CbcModel object.
+ void setObj (CbcModel *obj)

Set the underlying CbcModel object.

4121 Detailed Description

Class for control parameters that act on a CbcModel object.
Adds parameter type codes and push/pull functions to the generic parameter object.

Definition at line 31 of file CbcGenCbcParam.hpp.

412.2 Member Enumeration Documentation

412.21 enum CbcCbcParam::CbcCbcParamCode

Enumeration for parameters that control a CbcModel object.

These are parameters that control the operation of a CbcModel object. CBCCBC_-
FIRSTPARAM and CBCCBC_LASTPARAM are markers to allow convenient separation
of parameter groups.

Definition at line 45 of file CbcGenCbcParam.hpp.

4.12.3 Constructor & Destructor Documentation

412.3.1 ChcChcParam::CbcChcParam (CbcCbhcParamCode code, std::string name,
std::string help, double lower, double upper, double dflt=0 . O, bool display =t rue
)

Constructor for a parameter with a double value.

The default value is 0.0. Be careful to clearly indicate that 1ower and upper are
real (double) values to distinguish this constructor from the constructor for an integer
parameter.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.13 CbcClique Class Reference 43

4.12.3.2 CbcCbcParam::CbcChcParam (CbcCbcParamCode code, std::string name,
std::string help, int lower, int upper, int dflt = 0, bool display =t rue)

Constructor for a parameter with an integer value.

The default value is 0.

4.12.3.3 CbcChcParam::CbcCbcParam (CbcCbcParamCode code, std::string name,
std::string help, std::string firstValue, int dflt, bool display =t rue)

Constructor for a parameter with keyword values.

The string supplied as £irstValue becomes the first keyword. Additional keywords
can be added using appendKwd(). Keywords are numbered from zero. It's necessary to
specify both the first keyword (£irstValue) and the default keyword index (d£1t)in
order to distinguish this constructor from the string and action parameter constructors.

412.3.4 ChcChcParam::CbcChcParam (CbcChcParamCode code, std::string name,
std::string help, std::string dflt, bool display =t rue)
Constructor for a string parameter.

The default string value must be specified explicitly to distinguish a string constructor
from an action parameter constructor.

The documentation for this class was generated from the following file:

» CbcGenCbcParam.hpp

413 CbcClique Class Reference

Branching object for cliques.
#include <CbcClique.hpp>

Inheritance diagram for CbcClique:

CbcObject

CbcClique

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.13 CbcClique Class Reference 44

Collaboration diagram for CbcClique:

Public Member Functions

» CbcClique ()
Default Constructor.
+ CbcClique (CbcModel xmodel, int cliqueType, int numberMembers, const int xwhich,
const char xtype, int identifier, int slack=-1)
Useful constructor (which are integer indices) slack can denote a slack in set.
» CbcClique (const CbcClique &)
Copy constructor.
« virtual CbcObject * clone () const
Clone.
» CbcClique & operator= (const CbcClique &rhs)
Assignment operator.
« virtual ~CbcClique ()
Destructor.
« virtual double infeasibility (const OsiBranchinglnformation xinfo, int &preferred-
Way) const
Infeasibility - large is 0.5.
« virtual void feasibleRegion ()
This looks at solution and sets bounds to contain solution.
« virtual CbcBranchingObject * createCbcBranch (OsiSolverinterface xsolver, const
OsiBranchingInformation xinfo, int way)
Creates a branching object.
* int numberMembers () const

Number of members.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.13 CbcClique Class Reference 45

int numberNonSOSMembers () const

Number of variables with -1 coefficient.
+ const int x members () const

Members (indices in range 0 ... numberintegers_-1)
char type (int index) const

Type of each member, i.e., which way is strong.
int cliqueType () const

Clique type: 0 is <=, 1is ==.
virtual void redoSequenceEtc (CbcModel xmodel, int numberColumns, const int
xoriginalColumns)

Redoes data when sequence numbers change.

Protected Attributes

* int numberMembers_

data Number of members
* int numberNonSOSMembers__

Number of Non SOS members i.e. fixing to zero is strong.
* int x members_

Members (indices in range 0 ... numberintegers_-1)
* char x type_

Strong value for each member.
* int cliqueType_

Clique type.
* int slack

Slack variable for the clique.

4,13.1 Detailed Description

Branching object for cliques.

A clique is defined to be a set of binary variables where fixing any one variable to its
‘strong’ value fixes all other variables. An example is the most common SOS1 construc-
tion: a set of binary variables x_j s.t. SUM{j} x_j = 1. Setting any one variable to 1 forces
all other variables to 0. (See comments for CbcSOS below.)

Other configurations are possible, however: Consider x1-x2+x3 <= 0. Setting x1 (x3)
to 1 forces x2 to 1 and x3 (x1) to 0. Setting x2 to 0 forces x1 and x3 to 0.

The proper point of view to take when interpreting CbcClique is ‘generalisation of SOS1
on binary variables.’” To get into the proper frame of mind, here’s an example.

Consider the following sequence, where x_j = (1-y_j):

x1l + x2 + x3 <= 1 all strong at 1
xl - y2 + x3 <= 0 y2 strong at 0; x1, x3 strong at 1
-yl - y2 + x3 <= -1 yl, y2 strong at 0, x3 strong at 1
-yl - y2 - y3 <= -2 all strong at 0

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.13 CbcClique Class Reference 46

The first line is a standard SOS1 on binary variables.

Variables with +1 coefficients are ‘SOS-style’ and variables with -1 coefficients are ‘non-
SOS-style’. So numberNonSOSMembers_ simply tells you how many variables have -1
coefficients. The implicit rhs for a clique is 1-numberNonSOSMembers._.

Definition at line 41 of file CbcClique.hpp.

413.2 Constructor & Destructor Documentation

4.13.2.1 CbcClique::CbcClique (CbcModel « model, int cliqueType, int numberMembers,
const int which, const char x type, int identifier, int slack=—1)

Useful constructor (which are integer indices) slack can denote a slack in set.

If type == NULL then as if 1

4.13.3 Member Function Documentation

4.13.3.1 int CbcClique::numberNonSOSMembers ()const [inline]

Number of variables with -1 coefficient.

Number of non-SOS members, i.e., fixing to zero is strong. See comments at head of
class, and comments for type_.

Definition at line 86 of file CbcClique.hpp.
4.13.3.2 char CbcClique::type (int index)const [inline]

Type of each member, i.e., which way is strong.

This also specifies whether a variable has a +1 or -1 coefficient.

» 0 => -1 coefficient, 0 is strong value

* 1 => +1 coefficient, 1 is strong value If unspecified, all coefficients are assumed
to be positive.

Indexed as 0 .. numberMembers_-1
Definition at line 104 of file CbcClique.hpp.
4.13.4 Member Data Documentation

4.13.41 charx CbcClique::type_ [protected]

Strong value for each member.

This also specifies whether a variable has a +1 or -1 coefficient.

* 0 => -1 coefficient, 0 is strong value

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.14 CbcCliqueBranchingObject Class Reference 47

+ 1 => +1 coefficient, 1 is strong value If unspecified, all coefficients are assumed
to be positive.
Indexed as 0 .. numberMembers_-1

Definition at line 136 of file CbcClique.hpp.
4.13.4.2 int CbcClique::cliqueType_ [protected]

Clique type.

0 defines a <= relation, 1 an equality. The assumed value of the rhs is numberNonSOSMembers_-
+1. (See comments for the class.)

Definition at line 143 of file CbcClique.hpp.
4.13.43 int CbcClique::slack_ [protected]

Slack variable for the clique.

Identifies the slack variable for the clique (typically added to convert a <= relation to an
equality). Value is sequence number within clique menbers.

Definition at line 151 of file CbcClique.hpp.

The documentation for this class was generated from the following file:

» CbcClique.hpp

414 ChcCliqueBranchingObject Class Reference

Branching object for unordered cliques.
#include <CbcClique.hpp>

Inheritance diagram for CbcCliqueBranchingObiject:

CbcBranchingObject

CbcCliqueBranchingObject

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.14 CbcCliqueBranchingObject Class Reference 48

Collaboration diagram for CbcCliqueBranchingObject:

Public Member Functions

virtual CbcBranchingObject * clone () const

Clone.
virtual double branch ()

Does next branch and updates state.
virtual void print ()

Print something about branch - only if log level high.
virtual CbcBranchODbjType type () const

Return the type (an integer identifier) of this.
virtual int compareOriginalObject (const CbcBranchingObject xbrObj) const

Compare the original object of t hi s with the original object of brOb j.
virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
+brObj, const bool replacelfOverlap=false)

Compare the this with brObj.

4141 Detailed Description

Branching object for unordered cliques.

Intended for cliques which are long enough to make it worthwhile but <= 64 members.
There will also be ones for long cliques.

Variable_ is the clique id number (redundant, as the object also holds a pointer to the
clique.

Definition at line 162 of file CbcClique.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.15 CbcCompare Class Reference 49

4.14.2 Member Function Documentation

4.14.21 virtual int CbcCliqueBranchingObject::compareOriginalObject (const
CbhcBranchingObject « brObj)const [virtual]
Compare the original object of this with the original object of brOb J.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented from CbcBranchingObject.

4.14.2.2 virtual ChcRangeCompare CbcCliqueBranchingObject::compareBranchingObject (
const CbcBranchingObject + brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brObj.

this and brObj must be of the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CbcRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

» CbcClique.hpp

415 CbcCompare Class Reference

Collaboration diagram for CbcCompare:

CbcCompareBase “test_

}

test_
|
|

CbcCompare

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.16 CbcCompareBase Class Reference

50

Public Member Functions

* bool alternateTest (CbcNode *xx, CbcNode xy)

This is alternate test function.

» CbcCompareBase * comparisonObiject () const

return comparison object

4151 Detailed Description

Definition at line 11 of file CbcCompare.hpp.

The documentation for this class was generated from the following file:

» CbcCompare.hpp

416 ChcCompareBase Class Reference

Inheritance diagram for CocCompareBase:

CbcCompareBase

CbcCompareDefault

CbcCompareDepth

CbcCompareEstimate

CbcCompareObjective

CbcCompareUser

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.16 CbcCompareBase Class Reference 51

Collaboration diagram for CocCompareBase:

CbcCompareBase [®-test

Public Member Functions

« virtual bool newSolution (CbcModel *)

Reconsider behaviour after discovering a new solution.
« virtual bool newSolution (CbcModel *, double, int)

Reconsider behaviour after discovering a new solution.
« virtual bool fullScan () const

Returns true if wants code to do scan with alternate criterion NOTE - this is temporarily
disabled.

« virtual void generateCpp (FILE %)

Create C++ lines to get to current state.
+ virtual CbcCompareBase * clone () const

Clone.
« virtual bool test (CbcNode *, CbcNode)

This is test function.
« virtual bool alternateTest (CbcNode *x, CbcNode xy)

This is alternate test function.
* bool equalityTest (CbcNode *x, CbcNode *y) const

Further test if everything else equal.
+ void sayThreaded ()

Say threaded.

416.1 Detailed Description

Definition at line 27 of file CbcCompareBase.hpp.

4.16.2 Member Function Documentation

4.16.2.1 virtual bool CbcCompareBase::newSolution (CbcModel x) [inline,
virtual]

Reconsider behaviour after discovering a new solution.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.17 CbcCompareDefault Class Reference 52

This allows any method to change its behaviour. It is called after each solution.

The method should return true if changes are made which will alter the evaluation cri-
teria applied to a node. (So that in cases where the search tree is sorted, it can be
properly rebuilt.)

Definition at line 45 of file CbcCompareBase.hpp.

4.16.2.2 virtual bool ChcCompareBase::newSolution (CbcModel x , double, int)
[inline, virtual]

Reconsider behaviour after discovering a new solution.

This allows any method to change its behaviour. It is called after each solution.

The method should return true if changes are made which will alter the evaluation cri-
teria applied to a node. (So that in cases where the search tree is sorted, it can be
properly rebuilt.)

Reimplemented in CbcCompareUser, and CbcCompareDefault.
Definition at line 57 of file CbcCompareBase.hpp.

The documentation for this class was generated from the following file:

+ CbcCompareBase.hpp

417 CbcCompareDefault Class Reference

Inheritance diagram for CbcCompareDefault:

CbcCompareBase

CbcCompareDefault

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.17 CbcCompareDefault Class Reference 53

Collaboration diagram for CbcCompareDefault:

CbcCompareBase _<\ test

-

CbcCompareDefault

Public Member Functions

* CbcCompareDefault ()
Default Constructor.
» CbcCompareDefault (double weight)
Constructor with weight.
» CbcCompareDefault (const CbcCompareDefault &rhs)
Copy constructor.
» CbcCompareDefault & operator= (const CbcCompareDefault &rhs)
Assignment operator.
virtual CocCompareBase * clone () const

Clone.
virtual void generateCpp (FILE *fp)

Create C++ lines to get to current state.
virtual bool test (CbcNode *x, CbcNode xy)

This is test function.
virtual bool newSolution (CbcModel «model, double objectiveAtContinuous, int
numberlnfeasibilitiesAtContinuous)

This allows method to change behavior as it is called after each solution.
virtual bool every1000Nodes (CbcModel xmodel, int numberNodes)

This allows method to change behavior Return true if want tree re-sorted.
double getCutoff () const

Cutoff.
double getBestPossible () const

Best possible solution.
+ void setBreadthDepth (int value)

Depth above which want to explore first.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.17 CbcCompareDefault Class Reference 54

+ void startDive (CbcModel xmodel)

Start dive.
« void cleanDive ()

Clean up diving (i.e. switch off or prepare)

Protected Attributes

+ double weight_

Weight for each infeasibility.
+ double saveWeight_

Weight for each infeasibility - computed from solution.
+ double cutoff_

Curtoff.
» double bestPossible

Best possible solution.
* int numberSolutions_

Number of solutions.
* int treeSize

Tree size (at last check)
* int breadthDepth_

Depth above which want to explore first.
* int startNodeNumber_

Chosen node from estimated (-1 is off)
+ int afterNodeNumber_

Node number when dive started.
* bool setupForDiving_

Indicates doing setup for diving.

4171 Detailed Description

Definition at line 31 of file CbcCompareDefault.hpp.

The documentation for this class was generated from the following file:

+ CbcCompareDefault.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.18 CbcCompareDepth Class Reference

55

418 CbcCompareDepth Class Reference

Inheritance diagram for CbcCompareDepth:

CbcCompareBase

CbcCompareDepth

Collaboration diagram for CbcCompareDepth:

-

CbcCompareDepth

Public Member Functions

« virtual CbcCompareBase * clone () const

Clone.
« virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
« virtual bool test (CbcNode xx, CbcNode xy)

This is test function.

CbcCompareBase _“ test

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.19 CbcCompareEstimate Class Reference 56

4.18.1 Detailed Description

Definition at line 25 of file CbcCompareDepth.hpp.

The documentation for this class was generated from the following file:

» CbcCompareDepth.hpp

419 CbcCompareEstimate Class Reference

Inheritance diagram for CbcCompareEstimate:

CbcCompareBase

CbcCompareEstimate

Collaboration diagram for CocCompareEstimate:

-

CbcCompareBase _“test_

CbcCompareEstimate

Public Member Functions

« virtual CbcCompareBase * clone () const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.20 CbcCompareObjective Class Reference 57

Clone.
« virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
« virtual bool test (CbcNode *xx, CbcNode x*y)

This is test function.

4.19.1 Detailed Description

Definition at line 27 of file CbcCompareEstimate.hpp.

The documentation for this class was generated from the following file:

+ CbcCompareEstimate.hpp

4.20 ChcCompareObjective Class Reference

Inheritance diagram for CbcCompareObijective:

CbcCompareBase

CbcCompareObjective

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.20 CbcCompareObjective Class Reference

58

Collaboration diagram for CocCompareQObjective:

-

CbcCompareObijective

Public Member Functions

« virtual CbcCompareBase * clone () const

Clone.
« virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
« virtual bool test (CbcNode *xx, CbcNode x*y)

This is test function.

4.20.1 Detailed Description

Definition at line 26 of file CbcCompareObjective.hpp.

The documentation for this class was generated from the following file:

+ CbcCompareQObijective.hpp

CbcCompareBase _“ test

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.21 CbcCompareUser Class Reference 59

4.21 CbcCompareUser Class Reference

Inheritance diagram for CbcCompareUser:

CbcCompareBase

CbcCompareUser

Collaboration diagram for CbcCompareUser:

CbcCompareBase [test

-

CbcCompareUser

Public Member Functions

« virtual CbcCompareBase * clone () const
Clone.

« virtual bool test (CbcNode *x, CbcNode x*y)
This is test function.

« virtual bool alternateTest (CbcNode xx, CbcNode xy)
This is alternate test function.

« virtual bool newSolution (CbcModel xmodel, double objectiveAtContinuous, int
numberlnfeasibilitiesAtContinuous)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.22 CbcConsequence Class Reference 60

Reconsider behaviour after discovering a new solution.
« virtual bool fullScan () const

Returns true if wants code to do scan with alternate criterion.

4.21.1 Detailed Description

Definition at line 17 of file CbcCompareUser.hpp.

4.21.2 Member Function Documentation

4.21.2.1 virtual bool CbhcCompareUser::newSolution (CbcModel =, double, int)
[virtual]

Reconsider behaviour after discovering a new solution.
This allows any method to change its behaviour. It is called after each solution.

The method should return true if changes are made which will alter the evaluation cri-
teria applied to a node. (So that in cases where the search tree is sorted, it can be
properly rebuilt.)

Reimplemented from CbcCompareBase.

The documentation for this class was generated from the following file:

» CbcCompareUser.hpp

4.22 ChcConsequence Class Reference

Abstract base class for consequent bounds.
#include <CbcConsequence.hpp>

Inheritance diagram for CbcConsequence:

CbcConsequence

CbcFixVariable

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.23 CbcCountRowCut Class Reference 61

Public Member Functions

« virtual CbcConsequence * clone () const =0

Clone.
+ virtual ~CbcConsequence ()

Destructor.
« virtual void applyToSolver (OsiSolverinterface *solver, int state) const =0

Apply to an LP solver.

4.22.1 Detailed Description

Abstract base class for consequent bounds.

When a variable is branched on it normally interacts with other variables by means of
equations. There are cases where we want to step outside LP and do something more
directly e.g. fix bounds. This class is for that.

At present it need not be virtual as only instance is CbcFixVariable, but ...

Definition at line 22 of file CbcConsequence.hpp.

4.22.2 Member Function Documentation

4.22.2.1 virtual void CbcConsequence::applyToSolver (OsiSolverinterface * solver, int state)
const [pure virtual]

Apply to an LP solver.
Action depends on state
Implemented in CbcFixVariable.

The documentation for this class was generated from the following file:

» CbcConsequence.hpp

4.23 ChcCountRowCut Class Reference

OsiRowCut augmented with bookkeeping.

#include <CbcCountRowCut.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.23 CbcCountRowCut Class Reference

62

Collaboration diagram for CbcCountRowCut:

CbcCountRowCut

, |
, |
\cuts_ powner_

N /

CbcNodelnfo [parent_

|

\

/ \
\nodelnfo_ pwner_

NN

CbcNode

Public Member Functions

+ void increment (int change=1)

Increment the number of references.
* int decrement (int change=1)

Decrement the number of references and return the number left.

+ void setInfo (CbcNodelnfo *, int whichOne)

Set the information associating this cut with a node.
+ int numberPointingToThis ()

Number of other CbcNodelnfo objects pointing to this row cut.

« int whichCutGenerator () const

Which generator for cuts - as user order.

* bool canDropCut (const OsiSolverinterface xsolver, int row) const

Returns true if can drop cut if slack basic.

Constructors & destructors

* CbcCountRowCut ()

Default Constructor.
* CbcCountRowCut (const OsiRowCut &)

‘Copy’ constructor using an OsiRowCut

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.23 CbcCountRowCut Class Reference 63

» CbcCountRowCut (const OsiRowCut &, CbcNodelnfo *, int whichOne, int whichGenerator=-
1, int numberPointingToThis=0)

‘Copy’ constructor using an OsiRowCut and an CbcNodelnfo
« virtual ~CbcCountRowCut ()
Destructor.

4.23.1 Detailed Description

OsiRowCut augmented with bookkeeping.

CbcCountRowCut is an OsiRowCut object augmented with bookkeeping information: a
reference count and information that specifies the the generator that created the cut and
the node to which it's associated.

The general principles for handling the reference count are as follows:
* Once it's determined how the node will branch, increment the reference count

under the assumption that all children will use all cuts currently tight at the node
and will survive to be placed in the search tree.

» As this assumption is proven incorrect (a cut becomes loose, or a child is fath-
omed), decrement the reference count accordingly.

When all possible uses of a cut have been demonstrated to be unnecessary, the ref-
erence count (#numberPointingToThis_) will fall to zero. The CbcCountRowCut object
(and its included OsiRowCut object) are then deleted.

Definition at line 35 of file CbcCountRowCut.hpp.

4.23.2 Constructor & Destructor Documentation

4.23.2.1 virtual CbcCountRowCut::~CbhcCountRowCut () [virtual]
Destructor.

Note

The destructor will reach out (via #owner_) and NULL the reference to the cut in
the owner’s cuts_ list.

4.23.3 Member Function Documentation

4.23.3.1 void CbcCountRowCut::setinfo (CbcNodelnfo =, int whichOne)

Set the information associating this cut with a node.

An CbcNodelnfo object and an index in the cut set of the node. For locally valid cuts,
the node will be the search tree node where the cut was generated. For globally valid
cuts, it's the node where the cut was activated.

The documentation for this class was generated from the following file:

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.24 CbcCutBranchingObject Class Reference 64

+ CbcCountRowCut.hpp

4.24 CbhcCutBranchingObject Class Reference

Cut branching object.
#include <CbcBranchCut.hpp>

Inheritance diagram for CbcCutBranchingObject:

CbcBranchingObject

CbcCutBranchingObject

Collaboration diagram for CbcCutBranchingObject:

test_ st
GocComparcBase |

Public Member Functions

» CbcCutBranchingObject ()

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.24

CbcCutBranchingObject Class Reference 65

Default constructor.
CbcCutBranchingObject (CbcModel xmodel, OsiRowCut &down, OsiRowCut &up,
bool canFix)
Create a cut branching object.
CbcCutBranchingObiject (const CbcCutBranchingObject &)
Copy constructor.
CbcCutBranchingObject & operator= (const CbcCutBranchingObject &rhs)
Assignment operator.
virtual CbcBranchingObiject * clone () const
Clone.
virtual ~CbcCutBranchingObject ()
Destructor.
virtual double branch ()
Sets the bounds for variables or adds a cut depending on the current arm of the branch
and advances the object state to the next arm.
virtual void print ()
Print something about branch - only if log level high.
virtual bool boundBranch () const
Return true if branch should fix variables.
virtual CbcBranchObjType type () const
Return the type (an integer identifier) of this.
virtual int compareQOriginalObject (const CbcBranchingObject xbrObj) const
Compare the original object of t hi s with the original object of brOb j.
virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
xbrObj, const bool replacelfOverlap=false)
Compare the t his with brObj.

Protected Attributes

4.24.1

OsiRowCut down_

Cut for the down arm (way_ = -1)
OsiRowCut up_

Cut for the up arm (way_ = 1)
bool canFix_

True if one way can fix variables.

Detailed Description

Cut branching object.

This object can specify a two-way branch in terms of two cuts

Definition at line 108 of file CbcBranchCut.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.25 CbcCutGenerator Class Reference 66

4.24.2 Constructor & Destructor Documentation

4.24.2.1 CbcCutBranchingObject::CbcCutBranchingObject (CbcModel « model, OsiRowCut
& down, OsiRowCut & up, bool canFix)
Create a cut branching object.

Cut down will applied on way=-1, up on way==1 Assumed down will be first so way_ set
to -1

4.24.3 Member Function Documentation

4.24.3.1 virtual double CbcCutBranchingObject::branch() [virtual]

Sets the bounds for variables or adds a cut depending on the current arm of the branch

and advances the object state to the next arm.

Returns change in guessed objective on next branch

Implements CbcBranchingObject.

4.24.3.2 virtual int CbcCutBranchingObject::compareOriginalObject (const
CbcBranchingObject « brObj)const [virtual]

Compare the original object of this with the original object of brOb j.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented from CbcBranchingObject.

4.24.3.3 virtual CbhcRangeCompare CbhcCutBranchingObject::compareBranchingObject (
const CbcBranchingObject « brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brOb7j.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CocRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

+ CbcBranchCut.hpp

4,25 CbcCutGenerator Class Reference

Interface between Cbc and Cut Generation Library.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.25 CbcCutGenerator Class Reference 67

#include <CbcCutGenerator.hpp>

Collaboration diagram for CbcCutGenerator:

Public Member Functions

Generate Cuts

» bool generateCuts (OsiCuts &cs, int fullScan, OsiSolverinterface *solver, Cbc-
Node *node)
Generate cuts for the client model.

Constructors and destructors

» CbcCutGenerator ()
Default constructor.

» CbcCutGenerator (CbcModel xmodel, CglCutGenerator «generator, int howOften=1,
const char kxname=NULL, bool normal=true, bool atSolution=false, bool infea-
sible=false, int howOftenlnsub=-100, int whatDepth=-1, int whatDepthInSub=-
1, int switchOfflfLessThan=0)

Normal constructor.

» CbcCutGenerator (const CbcCutGenerator &)
Copy constructor.

* CbcCutGenerator & operator= (const CbcCutGenerator &rhs)
Assignment operator.

* ~CbcCutGenerator ()

Destructor.

Gets and sets

« void refreshModel (CbcModel xmodel)
Set the client model.

« const char * cutGeneratorName () const
return name of generator

« void generateTuning (FILE xfp)
Create C++ lines to show how to tune.

« void setHowOften (int value)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.25

CbcCutGenerator Class Reference 68

Set the cut generation interval.
int howOften () const

Get the cut generation interval.
int howOftenInSub () const

Get the cut generation interval.in sub tree.
int inaccuracy () const

Get level of cut inaccuracy (0 means exact e.g. cliques)
void setlnaccuracy (int level)

Set level of cut inaccuracy (0 means exact e.g. cliques)
void setWhatDepth (int value)
Set the cut generation depth.
void setWhatDepthInSub (int value)
Set the cut generation depth in sub tree.
int whatDepth () const
Get the cut generation depth criterion.
int whatDepthInSub () const

Get the cut generation depth criterion.in sub tree.
int switches () const

Get switches (for debug)
bool normal () const

Get whether the cut generator should be called in the normal place.
void setNormal (bool value)

Set whether the cut generator should be called in the normal place.
bool atSolution () const

Get whether the cut generator should be called when a solution is found.
void setAtSolution (bool value)

Set whether the cut generator should be called when a solution is found.

bool whenlinfeasible () const
Get whether the cut generator should be called when the subproblem is found to
be infeasible.

void setWhenlInfeasible (bool value)
Set whether the cut generator should be called when the subproblem is found to be
infeasible.

bool timing () const
Get whether the cut generator is being timed.

void setTiming (bool value)

Set whether the cut generator is being timed.
double timelnCutGenerator () const

Return time taken in cut generator.
void incrementTimelnCutGenerator (double value)
CglCutGenerator * generator () const
Get the CglCutGenerator corresponding to this CbcCut Generator.
int numberTimesEntered () const
Number times cut generator entered.
void setNumberTimesEntered (int value)
void incrementNumberTimesEntered (int value=1)
int numberCutsInTotal () const

Total number of cuts added.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.25

CbcCutGenerator Class Reference 69

void setNumberCutsinTotal (int value)
void incrementNumberCutsinTotal (int value=1)
int numberElementsinTotal () const
Total number of elements added.
void setNumberElementsinTotal (int value)
void incrementNumberElementsinTotal (int value=1)
int numberColumnCuts () const
Total number of column cuts.
void setNumberColumnCuts (int value)
void incrementNumberColumnCuts (int value=1)
int numberCutsActive () const
Total number of cuts active after (at end of n cut passes at each node)
void setNumberCutsActive (int value)
void incrementNumberCutsActive (int value=1)
void setSwitchOfflfLessThan (int value)
int switchOfflfLessThan () const
bool needsOptimalBasis () const
Say if optimal basis needed.
void setNeedsOptimalBasis (bool yesNo)
Set if optimal basis needed.
bool mustCallAgain () const
Whether generator MUST be called again if any cuts (i.e. ignore break from loop)
void setMustCallAgain (bool yesNo)
Set whether generator MUST be called again if any cuts (i.e. ignore break from
loop)
bool switchedOff () const
Whether generator switched off for moment.
void setSwitchedOff (bool yesNo)
Set whether generator switched off for moment.
bool ineffectualCuts () const
Whether last round of cuts did little.
void setlneffectualCuts (bool yesNo)
Set whether last round of cuts did little.
bool whetherToUse () const
Whether to use if any cuts generated.
void setWhetherToUse (bool yesNo)
Set whether to use if any cuts generated.
bool whetherlnMustCallAgainMode () const
Whether in must call again mode (or after others)
void setWhetherInMustCallAgainMode (bool yesNo)
Set whether in must call again mode (or after others)
bool whetherCallAtEnd () const
Whether to call at end.
void setWhetherCallAtEnd (bool yesNo)
Set whether to call at end.
int numberCutsAtRoot () const
Number of cuts generated at root.

void setNumberCutsAtRoot (int value)
int numberActiveCutsAtRoot () const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.25 CbcCutGenerator Class Reference 70

Number of cuts active at root.
 void setNumberActiveCutsAtRoot (int value)
« int numberShortCutsAtRoot () const

Number of short cuts at root.
« void setModel (CbcModel xmodel)

Set model.
* bool globalCutsAtRoot () const

Whether global cuts at root.
+ void setGlobalCutsAtRoot (bool yesNo)

Set whether global cuts at root.
* bool globalCuts () const

Whether global cuts.
+ void setGlobalCuts (bool yesNo)

Set whether global cuts.

4.25.1 Detailed Description

Interface between Cbc and Cut Generation Library.

CbcCutGenerator is intended to provide an intelligent interface between Cbc and

the cutting plane algorithms inthe CGL. A CbcCutGeneratorisboundtoaCglCutGenerator
and to an CbcModel. It contains parameters which control when and how the generateCuts

method of the CglCutGenerator will be called.

The builtin decision criteria available to use when deciding whether to generate cuts are
limited: every X nodes, when a solution is found, and when a subproblem is found to be
infeasible. The idea is that the class will grow more intelligent with time.

Definition at line 49 of file CbcCutGenerator.hpp.

4.25.2 Member Function Documentation

4.25.2.1 bool CbcCutGenerator::generateCuts (OsiCuts & cs, int fullScan, OsiSolverinterface x
solver, CbcNode * node)
Generate cuts for the client model.

Evaluate the state of the client model and decide whether to generate cuts. The gener-
ated cuts are inserted into and returned in the collection of cuts cs.

If fullScan is =0, the generator is obliged to call the CGL generateCuts routine.
Otherwise, it is free to make a local decision. Negative fullScan says things like at
integer solution The current implementation uses whenCutGenerator_ to decide.

The routine returns true if reoptimisation is needed (because the state of the solver
interface has been modified).

If node then can find out depth
4.25.2.2 void CbcCutGenerator::refreshModel (CbcModel « model)

Set the client model.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.26 CbcCutModifier Class Reference 71

In addition to setting the client model, refreshModel also calls the refreshSolver
method of the CglCutGenerator object.

4.25.2.3 void CbcCutGenerator::setHowOften (int value)

Set the cut generation interval.

Set the number of nodes evaluated between calls to the Cgl object's generateCuts
routine.

If value is positive, cuts will always be generated at the specified interval. If value is
negative, cuts will initially be generated at the specified interval, but Cbc may adjust the
value depending on the success of cuts produced by this generator.

A value of -100 disables the generator, while a value of -99 means just at root.
4.25.2.4 void CbcCutGenerator::setWhatDepth (int value)

Set the cut generation depth.

Set the depth criterion for calls to the Cgl object’s generateCut s routine. Only active
if > 0.

If whenCutGenerator is positive and this is positive then this overrides. If whenCutGen-
erator is -1 then this is used as criterion if any cuts were generated at root node. If
whenCutGenerator is anything else this is ignored.

The documentation for this class was generated from the following file:

+ CbcCutGenerator.hpp

426 CbcCutModifier Class Reference

Abstract cut modifier base class.
#include <CbcCutModifier.hpp>

Inheritance diagram for CbcCutModifier:

CbcCutModifier

CbcCutSubsetModifier

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.27 CbcCutSubsetModifier Class Reference 72

Public Member Functions

» CbcCutModifier ()
Default Constructor.

virtual ~CbcCutModifier ()
Destructor.

» CbcCutModifier & operator= (const CbcCutModifier &rhs)
Assignment.

virtual CbcCutModifier * clone () const =0

Clone.
virtual int modify (const OsiSolverinterface xsolver, OsiRowCut &cut)=0

Returns 0 unchanged 1 strengthened 2 weakened 3 deleted.
virtual void generateCpp (FILE x)

Create C++ lines to get to current state.

4.26.1 Detailed Description

Abstract cut modifier base class.

In exotic circumstances - cuts may need to be modified a) strengthened - changed b)
weakened - changed c) deleted - set to NULL d) unchanged

Definition at line 27 of file CbcCutModifier.hpp.

The documentation for this class was generated from the following file:

+ CbcCutModifier.hpp

4,27 CbcCutSubsetModifier Class Reference

Simple cut modifier base class.

#include <CbcCutSubsetModifier.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.27 CbcCutSubsetModifier Class Reference 73

Inheritance diagram for CbcCutSubsetModifier:

CbcCutModifier

CbcCutSubsetModifier

Collaboration diagram for CbcCutSubsetModifier:

CbcCutModifier

CbcCutSubsetModifier

Public Member Functions

+ CbcCutSubsetModifier ()

Default Constructor.
» CbcCutSubsetModifier (int firstOdd)

Useful Constructor.
+ virtual ~CbcCutSubsetModifier ()

Destructor.
» CbcCutSubsetModifier & operator= (const CbcCutSubsetModifier &rhs)

Assignment.
« virtual CbcCutModifier x clone () const

Clone.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.28 CbcDummyBranchingObject Class Reference 74

« virtual int modify (const OsiSolverinterface *solver, OsiRowCut &cut)

Returns 0 unchanged 1 strengthened 2 weakened 3 deleted.
« virtual void generateCpp (FILE %)

Create C++ lines to get to current state.

Protected Attributes

« int firstOdd_

data First odd variable

4.27.1 Detailed Description

Simple cut modifier base class.

In exotic circumstances - cuts may need to be modified a) strengthened - changed b)
weakened - changed c) deleted - set to NULL d) unchanged

initially get rid of cuts with variables >= k could weaken
Definition at line 31 of file CbcCutSubsetModifier.hpp.

The documentation for this class was generated from the following file:

+ CbcCutSubsetModifier.hpp

4.28 ChcDummyBranchingObject Class Reference

Dummy branching object.
#include <CbcDummyBranchingObject.hpp>

Inheritance diagram for CbcDummyBranchingObject:

CbcBranchingObject

CbcDummyBranchingObject

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.28 CbcDummyBranchingObject Class Reference 75

Collaboration diagram for CocDummyBranchingObject:

Public Member Functions

+ CbcDummyBranchingObject (CbcModel xmodel=NULL)
Default constructor.
» CbcDummyBranchingObject (const CocDummyBranchingObject &)
Copy constructor.
* CbcDummyBranchingObject & operator= (const CocDummyBranchingObject &rhs)

Assignment operator.
« virtual CbcBranchingObiject * clone () const
Clone.
+ virtual ~CbcDummyBranchingObject ()
Destructor.
« virtual double branch ()
Dummy branch.
« virtual void print ()
Print something about branch - only if log level high.
« virtual CbcBranchObjType type () const
Return the type (an integer identifier) of this.
« virtual int compareOriginalObject (const CbcBranchingObject xbrObj) const
Compare the original object of t hi s with the original object of brOb j.
« virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
+brObj, const bool replacelfOverlap=false)
Compare the this with brObj.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.29 CbcDynamicPseudoCostBranchingObject Class Reference 76

4.28.1 Detailed Description

Dummy branching object.

This object specifies a one-way dummy branch. This is so one can carry on branching
even when it looks feasible

Definition at line 18 of file CbcDummyBranchingObject.hpp.

4.28.2 Member Function Documentation

4.28.2.1 virtual int CbcDummyBranchingObject::compareOriginalObject (const
CbcBranchingObject « brObj)const [virtual]
Compare the original object of this with the original object of brOb j.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented from CbcBranchingObject.

4.28.2.2 virtual CbocRangeCompare CbcDummyBranchingObject::compareBranchingObject (
const CbcBranchingObject « brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brOb7j.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CocRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

+ CbcDummyBranchingObject.hpp

4.29 ChcDynamicPseudoCostBranchingObject Class Reference

Simple branching object for an integer variable with pseudo costs.

#include <CbcBranchDynamic.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.29 CbcDynamicPseudoCostBranchingObject Class Reference 77

Inheritance diagram for CbcDynamicPseudoCostBranchingObject:

CbcBranchingObject

CbclntegerBranchingObject

CbcDynamicPseudoCostBranchingObject

Collaboration diagram for CbcDynamicPseudoCostBranchingObject:

Public Member Functions

» CbcDynamicPseudoCostBranchingObject ()

Default constructor.
» CbcDynamicPseudoCostBranchingObject (CbcModel xmodel, int variable, int way,
double value, CbcSimplelntegerDynamicPseudoCost *object)
Create a standard floor/ceiling branch object.
» CbcDynamicPseudoCostBranchingObject (CbcModel xmodel, int variable, int way,
double lowerValue, double upperValue)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.29 CbcDynamicPseudoCostBranchingObject Class Reference 78

Create a degenerate branch object.
+ CbcDynamicPseudoCostBranchingObiject (const CbcDynamicPseudoCostBranchin-
gObject &)
Copy constructor.
» CbcDynamicPseudoCostBranchingObject & operator= (const CbcDynamicPseu-
doCostBranchingObject &rhs)

Assignment operator.
virtual CbcBranchingObject * clone () const

Clone.
virtual ~CbcDynamicPseudoCostBranchingObiject ()

Destructor.
void fillPart (int variable, int way, double value, CbcSimplelntegerDynamicPseu-
doCost *xobject)
Does part of constructor.
virtual double branch ()
Sets the bounds for the variable according to the current arm of the branch and ad-
vances the object state to the next arm.
virtual int fillStrongInfo (CbcStronglinfo &info)
Some branchingObjects may claim to be able to skip strong branching.
double changelnGuessed () const

Change in guessed.
void setChangelnGuessed (double value)

Set change in guessed.
CbcSimplelntegerDynamicPseudoCost * object () const

Return object.
void setObject (CbcSimplelntegerDynamicPseudoCost *object)

Set object.
virtual CbcBranchObjType type () const

Return the type (an integer identifier) of t his.

Protected Attributes

 double changelnGuessed_

Change in guessed objective value for next branch.
» CbcSimplelntegerDynamicPseudoCost * object_

Pointer back to object.

4.29.1 Detailed Description

Simple branching object for an integer variable with pseudo costs.

This object can specify a two-way branch on an integer variable. For each arm of the
branch, the upper and lower bounds on the variable can be independently specified.

Variable_ holds the index of the integer variable in the integerVariable_ array of the
model.

Definition at line 111 of file CbcBranchDynamic.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.30 CbcEventHandler Class Reference 79

4.29.2 Constructor & Destructor Documentation

4.29.2.1 ChcDynamicPseudoCostBranchingObject::CbcDynamicPseudoCostBranchingObject
(CbcModel x model, int variable, int way, double value,
CbcSimplelntegerDynamicPseudoCost * object)

Create a standard floor/ceiling branch object.

Specifies a simple two-way branch. Let value = xx. One arm of the branch will be is
Ib <= x <= floor(xx), the other ceil(xx) <= x <= ub. Specify way = -1 to set the object
state to perform the down arm first, way = 1 for the up arm.

4.29.2.2 CbcDynamicPseudoCostBranchingObject::CbcDynamicPseudoCostBranchingObject (
CbcModel « model, int variable, int way, double lowerValue, double upperValue)

Create a degenerate branch object.

Specifies a ‘one-way branch’. Calling branch() for this object will always result in lower-
Value <= x <= upperValue. Used to fix a variable when lowerValue = upperValue.

4.29.3 Member Function Documentation

4.29.3.1 virtual double CbcDynamicPseudoCostBranchingObject::branch() [virtuall]

Sets the bounds for the variable according to the current arm of the branch and ad-

vances the object state to the next arm.

This version also changes guessed objective value

Reimplemented from CbclntegerBranchingObject.

4.29.3.2 virtual int ChcDynamicPseudoCostBranchingObject::fillStronginfo (CbcStronginfo
&info) [virtuall]

Some branchingObjects may claim to be able to skip strong branching.

If so they have to fill in CbcStronginfo. The object mention in incoming CbcStronglnfo
must match. Returns nonzero if skip is wanted

Reimplemented from CbcBranchingObject.

The documentation for this class was generated from the following file:

+ CbcBranchDynamic.hpp

430 CbcEventHandler Class Reference

Base class for Cbc event handling.

#include <CbcEventHandler.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.30 CbcEventHandler Class Reference 80

Collaboration diagram for CbcEventHandler:

Public Types

» enum CbcEvent {
node = 200, treeStatus, solution, heuristicSolution,
beforeSolution1, beforeSolution2, afterHeuristic, endSearch }
Events known to cbc.
+ enum CbcAction {
noAction = -1, stop = 0, restart, restartRoot,
addCuts, killSolution }

Action codes returned by the event handler.
« typedef std::map< CbcEvent, CbcAction > eaMapPair

Data type for event/action pairs.

Public Member Functions

Event Processing

« virtual CbcAction event (CbcEvent whichEvent)
Return the action to be taken for an event.

Constructors and destructors

» CbcEventHandler (CbcModel xmodel=0)

Default constructor.
» CbcEventHandler (const CbcEventHandler &orig)

Copy constructor.
» CbcEventHandler & operator= (const CbcEventHandler &rhs)

Assignment.
virtual CbcEventHandler * clone () const

Clone (virtual) constructor.
virtual ~CbcEventHandler ()

Destructor.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.30 CbcEventHandler Class Reference 81

Set/Get methods

« void setModel (CbcModel xmodel)

Set model.
+ const CbcModel * getModel () const

Get model.
« void setDfltAction (CbcAction action)

Set the default action.
« void setAction (CbcEvent event, CbcAction action)

Set the action code associated with an event.

Protected Attributes

Data members

Protected (as opposed to private) to allow access by derived classes.

» CbcModel * model_

Pointer to associated CbcModel.
» CbcAction dfltAction_

Default action.
» eaMapPair x eaMap_

Pointer to a map that holds non-default event/action pairs.

4.30.1 Detailed Description

Base class for Cbc event handling.

Up front: We're not talking about unanticipated events here. We're talking about an-
ticipated events, in the sense that the code is going to make a call to event() and is
prepared to obey the return value that it receives.

The general pattern for usage is as follows:
1. Create a CbcEventHandler object. This will be initialised with a set of default
actions for every recognised event.
2. Attach the event handler to the CbcModel object.

3. When execution reaches the point where an event occurs, call the event handler
as CbcEventHandler::event(the event). The return value will specify what the
code should do in response to the event.

The return value associated with an event can be changed at any time.

Definition at line 81 of file CbcEventHandler.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.30 CbcEventHandler Class Reference 82

4.30.2 Member Enumeration Documentation

4.30.2.1 enum CbcEventHandler::CbcEvent
Events known to cbc.

Enumerator:

node Processing of the current node is complete.

treeStatus A tree status interval has arrived.

solution A solution has been found.

heuristicSolution A heuristic solution has been found.

beforeSolution1 A solution will be found unless user takes action (first check).

beforeSolution2 A solution will be found unless user takes action (thorough check).

afterHeuristic After failed heuristic.
endSearch End of search.
Definition at line 87 of file CbcEventHandler.hpp.
4.30.2.2 enum CbcEventHandler::CbcAction

Action codes returned by the event handler.

Specific values are chosen to match ClpEventHandler return codes.

Enumerator:

noAction Continue --- no action required.

stop Stop --- abort the current run at the next opportunity.

restart Restart --- restart branch-and-cut search; do not undo root node process-
ing.

restartRoot RestartRoot --- undo root node and start branch-and-cut afresh.

addCuts Add special cuts.

killSolution Pretend solution never happened.

Definition at line 110 of file CbcEventHandler.hpp.

4.30.3 Constructor & Destructor Documentation

4.30.3.1 ChcEventHandler::ChcEventHandler (CbcModel « model = 0)
Default constructor.
4.30.3.2 CbcEventHandler::ChcEventHandler (const CbcEventHandler & orig)

Copy constructor.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.31 CbcFathom Class Reference 83

4.30.3.3 virtual CbcEventHandler::~ChcEventHandler () [virtual]

Destructor.

4.30.4 Member Function Documentation

4.30.4.1 virtual CbcAction CbhcEventHandler::event (CbcEvent whichEvent)
[virtual]

Return the action to be taken for an event.

Return the action that should be taken in response to the event passed as the parame-
ter. The default implementation simply reads a return code from a map.

4.30.4.2 CbcEventHandler& ChcEventHandler::operator= (const CbcEventHandler & rhs
)

Assignment.

4.30.4.3 virtual CbcEventHandlerx ChcEventHandler::clone ()const [virtual]
Clone (virtual) constructor.

4.30.4.4 void ChcEventHandler::setModel (CbcModel « model) [inline]

Set model.

Definition at line 176 of file CbcEventHandler.hpp.
4.30.4.5 const CbcModel: CbcEventHandler::getModel ()const [inline]

Get model.
Definition at line 182 of file CbcEventHandler.hpp.

The documentation for this class was generated from the following file:

+ CbcEventHandler.hpp

4.31 CbcFathom Class Reference

Fathom base class.

#include <CbcFathom.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.31 CbcFathom Class Reference 84

Inheritance diagram for CbcFathom:

CbcFathom

CbcFathomDynamicProgramming

Collaboration diagram for CbcFathom:

Public Member Functions

« virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
« virtual CbcFathom = clone () const =0

Clone.
« virtual void resetModel (CbcModel xmodel)=0

Resets stuff if model changes.
« virtual int fathom (double *&newSolution)=0

returns 0 if no fathoming attempted, 1 fully fathomed, 2 incomplete search, 3 incom-
plete search but treat as complete.

Protected Attributes

» CbcModel x« model_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.32 CbcFathomDynamicProgramming Class Reference 85

Model.
* bool possible_

Possible - if this method of fathoming can be used.

4.31.1 Detailed Description

Fathom base class.

The idea is that after some branching the problem will be effectively smaller than the
original problem and maybe there will be a more specialized technique which can com-
pletely fathom this branch quickly.

One method is to presolve the problem to give a much smaller new problem and then
do branch and cut on that. Another might be dynamic programming.

Definition at line 32 of file CbcFathom.hpp.

4.31.2 Member Function Documentation

4.31.2.1 virtual int ChcFathom::fathom (double <& newSolution) [pure virtual]

returns 0 if no fathoming attempted, 1 fully fathomed, 2 incomplete search, 3 incomplete
search but treat as complete.

If solution then newSolution will not be NULL and will be freed by CbcModel. It is
expected that the solution is better than best so far but CbcModel will double check.

If returns 3 then of course there is no guarantee of global optimum
Implemented in CbcFathomDynamicProgramming.

The documentation for this class was generated from the following file:

» CbcFathom.hpp

4.32 ChcFathomDynamicProgramming Class Reference

FathomDynamicProgramming class.

#include <CbcFathomDynamicProgramming.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.32

CbcFathomDynamicProgramming Class Reference 86

Inheritance diagram for CbcFathomDynamicProgramming:

CbcFathom

CbcFathomDynamicProgramming

Collaboration diagram for CbcFathomDynamicProgramming:

Public Member Functions

virtual void setModel (CbcModel sxmodel)
update model (This is needed if cliques update matrix etc)
virtual CbcFathom x clone () const
Clone.
virtual void resetModel (CbcModel xmodel)
Resets stuff if model changes.
virtual int fathom (double *x&newSolution)

returns 0 if no fathoming attempted, 1 fully fathomed , 2 incomplete search, 3 incom-
plete search but treat as complete.

int maximumSize () const

Maximum size allowed.
int checkPossible (int allowableSize=0)

Returns type of algorithm and sets up arrays.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.32 CbcFathomDynamicProgramming Class Reference 87
* bool tryColumn (int numberElements, const int xrows, const double xcoefficients,
double cost, int upper=COIN_INT_MAX)
Tries a column returns true if was used in making any changes.
+ const double * cost () const
Returns cost array.
» const int x back () const
Returns back array.
« int target () const
Gets bit pattern for target result.
+ void setTarget (int value)
Sets bit pattern for target result.
Protected Attributes

int size_
Size of states (power of 2 unless just one constraint)
int type_
Type - 0 coefficients and rhs all 1, 1 - coefficients > 1 orrhs > 1.
double * cost_
Space for states.
int x back_
Which state produced this cheapest one.
int *x lookup_
Some rows may be satisified so we need a lookup.
int x indices__
Space for sorted indices.
int numberActive_
Number of active rows.
int maximumSizeAllowed
Maximum size allowed.
int x startBit_
Start bit for each active row.
int x numberBits__
Number bits for each active row.
int x rhs_
Effective rhs.
int x coefficients_
Space for sorted coefficients.
int target_
Target pattern.
int numberNonOne
Number of Non 1 rhs.
int bitPattern_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.33 CbcFeasibilityBase Class Reference 88

Current bit pattern.
* int algorithm_

Current algorithm.

4.32.1 Detailed Description

FathomDynamicProgramming class.

The idea is that after some branching the problem will be effectively smaller than the
original problem and maybe there will be a more specialized technique which can com-
pletely fathom this branch quickly.

This is a dynamic programming implementation which is very fast for some specialized
problems. It expects small integral rhs, an all integer problem and positive integral
coefficients. At present it can not do general set covering problems just set partitioning.
It can find multiple optima for various rhs combinations.

The main limiting factor is size of state space. Each 1 rhs doubles the size of the
problem. 2 or 3 rhs quadruples, 4,5,6,7 by 8 etc.

Definition at line 28 of file CbcFathomDynamicProgramming.hpp.

4.32.2 Member Function Documentation

4.32.2.1 virtual int CbcFathomDynamicProgramming::fathom (double & newSolution)
[virtual]

returns 0 if no fathoming attempted, 1 fully fathomed , 2 incomplete search, 3 incomplete
search but treat as complete.

If solution then newSolution will not be NULL and will be freed by CbcModel. It is
expected that the solution is better than best so far but CbcModel will double check.

If returns 3 then of course there is no guarantee of global optimum
Implements CbcFathom.

The documentation for this class was generated from the following file:

+ CbcFathomDynamicProgramming.hpp

4.33 ChcFeasibilityBase Class Reference

Public Member Functions

« virtual int feasible (CbcModel x, int)

On input mode: 0 - called after a solve but before any cuts.
« virtual CbcFeasibilityBase * clone () const

Clone.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.34 CbcFixingBranchingObject Class Reference 89

4.33.1 Detailed Description

Definition at line 22 of file CbcFeasibilityBase.hpp.

4.33.2 Member Function Documentation

4.33.2.1 virtual int CbcFeasibilityBase::feasible (CbcModel x, int) [inline,
virtual]

On input mode: 0 - called after a solve but before any cuts.

-1 - called after strong branching Returns : 0 - no opinion -1 pretend infeasible 1 pretend
integer solution

Definition at line 36 of file CbcFeasibilityBase.hpp.

The documentation for this class was generated from the following file:

+ CbcFeasibilityBase.hpp

4.34 CbcFixingBranchingObject Class Reference

General Branching Object class.
#include <CbcFollowOn.hpp>

Inheritance diagram for CbcFixingBranchingObject:

CbcBranchingObject

CbcFixingBranchingObject

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.34 CbcFixingBranchingObject Class Reference 90

Collaboration diagram for CbcFixingBranchingObiject:

GocFlxingBranchingObect

mmmmmm

,,, - N S =
\\\\\\\\

Public Member Functions

+ virtual CbcBranchingObject * clone () const

Clone.
« virtual double branch ()

Does next branch and updates state.
« virtual void print ()

Print something about branch - only if log level high.
« virtual CbcBranchObjType type () const

Return the type (an integer identifier) of t his.
« virtual int compareOriginalObject (const CbcBranchingObject xbrObj) const

Compare the original object of t hi s with the original object of brOb j.
+ virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
xbrObj, const bool replacelfOverlap=false)

Compare the this with brObj.

4,341 Detailed Description

General Branching Object class.
Each way fixes some variables to lower bound

Definition at line 72 of file CbcFollowOn.hpp.

4.34.2 Member Function Documentation

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.35 CbcFixVariable Class Reference 91

4.34.2.1 virtual int CbcFixingBranchingObject::compareOriginalObject (const
CbcBranchingObject « brObj)const [virtual]
Compare the original object of this with the original object of brOb j.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented from CbcBranchingObject.

4.34.2.2 virtual ChcRangeCompare ChcFixingBranchingObject::compareBranchingObject (
const CbcBranchingObject « brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brObj.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CocRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

+ CbcFollowOn.hpp

4,35 CbcFixVariable Class Reference

Class for consequent bounds.
#include <CbcFixVariable.hpp>

Inheritance diagram for CbcFixVariable:

CbcConsequence

CbcFixVariable

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.35 CbcFixVariable Class Reference

92

Collaboration diagram for CbcFixVariable:

CbcConsequence

CbcFixVariable

Public Member Functions

« virtual CbcConsequence * clone () const

Clone.
« virtual ~CbcFixVariable ()

Destructor.
« virtual void applyToSolver (OsiSolverinterface *solver, int state) const

Apply to an LP solver.

Protected Attributes

* int numberStates

Number of states.
* int x states

Values of integers for various states.
* int x startLower_

Start of information for each state (setting new lower)
« int x startUpper_

Start of information for each state (setting new upper)
 double * newBound

For each variable new bounds.
* int x variable_

Variable.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.36 CbcFollowOn Class Reference 93

4.35.1 Detailed Description

Class for consequent bounds.

When a variable is branched on it normally interacts with other variables by means of
equations. There are cases where we want to step outside LP and do something more
directly e.g. fix bounds. This class is for that.

A state of -9999 means at LB, +9999 means at UB, others mean if fixed to that value.

Definition at line 22 of file CbcFixVariable.hpp.

4.35.2 Member Function Documentation

4.35.2.1 virtual void ChcFixVariable::applyToSolver (OsiSolverinterface * solver, int state)
const [virtual]

Apply to an LP solver.
Action depends on state
Implements CbcConsequence.

The documentation for this class was generated from the following file:

+ CbcFixVariable.hpp

4,36 CbcFollowOn Class Reference

Define a follow on class.
#include <CbcFollowOn.hpp>

Inheritance diagram for CbcFollowOn:

CbcObject

CbcFollowOn

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.36 CbcFollowOn Class Reference

94

Collaboration diagram for CbcFollowOn:

CocBasettoce B

e

Consratetcs

ConCuGansator

——]
Daeneres. T Guranehbesson

Public Member Functions

CbcFollowOn (CbcModel xmodel)
Useful constructor.

virtual CbcObject * clone () const
Clone.

virtual double infeasibility (const OsiBranchingInformation xinfo, int &preferred-
Way) const

Infeasibility - large is 0.5.
virtual void feasibleRegion ()

This looks at solution and sets bounds to contain solution.
« virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface *solver, const
OsiBranchingInformation xinfo, int way)

Creates a branching object.

virtual int gutsOfFollowOn (int &otherRow, int &preferredWay) const

As some computation is needed in more than one place - returns row.

Protected Attributes

» CoinPackedMatrix matrix_
data Matrix

» CoinPackedMatrix matrixByRow_
Matrix by row.
e intxrhs_

Possible rhs (if 0 then not possible)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.37 CbcFollowOn2 Class Reference 95

4.36.1 Detailed Description

Define a follow on class.

The idea of this is that in air-crew scheduling problems crew may fly in on flight A and
out on flight B or on some other flight. A useful branch is one which on one side fixes all
which go out on flight B to 0, while the other branch fixes all those that do NOT go out
on flight B to 0.

This branching rule should be in addition to normal rules and have a high priority.
Definition at line 23 of file CbcFollowOn.hpp.

The documentation for this class was generated from the following file:

+ CbcFollowOn.hpp

4.37 CbcFollowOn2 Class Reference

Define a follow on class.
#include <CbcBranchFollow2.hpp>

Inheritance diagram for CbcFollowOn2:

CbcObject

CbcFollowOn2

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.37 CbcFollowOn2 Class Reference 96

Collaboration diagram for CbcFollowOn2:

Public Member Functions

+ CbcFollowOn2 (CbcModel xmodel)

Useful constructor.
« virtual CbcObject * clone () const

Clone.
« virtual double infeasibility (int &preferredWay) const

Infeasibility - large is 0.5.
+ virtual void feasibleRegion ()

This looks at solution and sets bounds to contain solution.
« virtual CbcBranchingObject * createBranch (int way)

Creates a branching object.
« virtual int gutsOfFollowOn2 (int &otherRow, int &preferredWay, int &effectiveRhs)
const

As some computation is needed in more than one place - returns row.
+ int maximumRhs () const

get and set for maximum rhws (affects cuts as branch)

Protected Attributes

» CoinPackedMatrix matrix_
data Matrix

+ CoinPackedMatrix matrixByRow_
Matrix by row.

e intxrhs_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.38 CbcFullNodelnfo Class Reference 97

Possible rhs (if 0 then not possible)
 int maximumRhs__

If > 1 then allow cuts if effective rhs <= this.

4.37.1 Detailed Description

Define a follow on class.

The idea of this is that in air-crew scheduling problems crew may fly in on flight A and
out on flight B or on some other flight. A useful branch is one which on one side fixes all
which go out on flight B to 0, while the other branch fixes all those that do NOT go out
on flight B to 0.

This tries to generalize so that cuts are produced with sum aij xj <= bi on each side.
It should be intelligent enough to fix if things can be fixed. We also need to make sure
branch cuts work properly (i.e. persistence).

This branching rule should be in addition to normal rules and have a high priority.

Definition at line 26 of file CbcBranchFollow2.hpp.

4.37.2 Member Function Documentation

4.37.2.1 virtual int CbcFollowOn2::gutsOfFollowOn2 (int & otherRow, int & preferredWay, int &
effectiveRhs)const [virtuall]

As some computation is needed in more than one place - returns row.
Also returns other row and effective rhs (so we can know if cut)

The documentation for this class was generated from the following file:

+ CbcBranchFollow2.hpp

4,38 CbcFullNodelnfo Class Reference

Information required to recreate the subproblem at this node.

#include <CbcFullNodeInfo.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.38 CbcFullNodelnfo Class Reference 98

Inheritance diagram for CbcFullNodelnfo:

CbcNodelnfo

CbcFullNodelnfo

Collaboration diagram for CbcFullNodelnfo:

CbcNodelnfo [parent_

_\/
T ‘ RS
N
7 | A N
(nodelnfo_ pwner_ ~ owner_ \cuts_

RN B |

CbcFullNodelnfo CbcNode CbcCountRowCut

Public Member Functions

« virtual void applyToModel (CbcModel *model, CoinWarmStartBasis *x&basis, Cbc-
CountRowCut *xaddCuts, int ¤tNumberCuts) const

Modify model according to information at node.
« virtual int applyBounds (int iColumn, double &lower, double &upper, int force)

Just apply bounds to one variable - force means overwrite by lower,upper (1=>infeasible)
« virtual CbcNodelnfo * buildRowBasis (CoinWarmStartBasis &basis) const

Builds up row basis backwards (until original model).
» CbcFullNodelnfo (CbcModel xmodel, int numberRowsAtContinuous)

Constructor from continuous or satisfied.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.38 CbcFullNodelnfo Class Reference 99

« virtual CbcNodelnfo * clone () const

Clone.
 const double * lower () const

Lower bounds.
+ const double x upper () const

Upper bounds.

Protected Attributes

» CoinWarmStartBasis * basis__

Full basis.

4.38.1 Detailed Description

Information required to recreate the subproblem at this node.

When a subproblem is initially created, it is represented by a CbcNode object and an
attached CbcNodelnfo object.

The CbcNode contains information needed while the subproblem remains live. The
CbcNode is deleted when the last branch arm has been evaluated.

The CbcNodelnfo contains information required to maintain the branch-and-cut search
tree structure (links and reference counts) and to recreate the subproblem for this node
(basis, variable bounds, cutting planes). A CbcNodelnfo object remains in existence
until all nodes have been pruned from the subtree rooted at this node.

The principle used to maintain the reference count is that the reference count is always
the sum of all potential and actual children of the node. Specifically,

* Once it's determined how the node will branch, the reference count is set to the
number of potential children (i.e., the number of arms of the branch).

 As each child is created by CbcNode::branch() (converting a potential child to the
active subproblem), the reference count is decremented.

« If the child survives and will become a node in the search tree (converting the
active subproblem into an actual child), increment the reference count.

Notice that the active subproblem lives in a sort of limbo, neither a potential or an actual
node in the branch-and-cut tree.

CbcNodelnfo objects come in two flavours. A CbcFullNodelnfo object contains a full
record of the information required to recreate a subproblem. A CbcPartialNodelnfo
object expresses this information in terms of differences from the parent.Holds complete
information for recreating a subproblem.

A CbcFullNodelnfo object contains all necessary information (bounds, basis, and cuts)
required to recreate a subproblem.

Definition at line 81 of file CbcFullNodelnfo.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.38 CbcFullNodelnfo Class Reference 100

4.38.2 Member Function Documentation

4.38.2.1 virtual void ChcFullNodelnfo::applyToModel (CbcModel « model,
CoinWarmStartBasis x& basis, CbcCountRowCut «x* addCuts, int &
currentNumberCuts)const [virtual]

Modify model according to information at node.

The routine modifies the model according to bound information at node, creates a new
basis according to information at node, but with the size passed in through basis, and
adds any cuts to the addCuts array.

Note

The basis passed in via basis is solely a vehicle for passing in the desired basis
size. It will be deleted and a new basis returned.

Implements CbcNodelnfo.

4.38.2.2 virtual CbcNodelnfo: ChcFullNodelnfo::buildRowBasis (CoinWarmStartBasis &
basis)const [virtuall]

Builds up row basis backwards (until original model).

Returns NULL or previous one to apply . Depends on Free being 0 and impossible for
cuts

Implements CbcNodelnfo.

4.38.3 Member Data Documentation

4.38.3.1 CoinWarmStartBasis:x CbcFullNodelnfo::basis_ [protected]

Full basis.

This MUST BE A POINTER to avoid cutting extra information in derived warm start
classes.

Definition at line 137 of file CbcFullNodelnfo.hpp.

The documentation for this class was generated from the following file:

» CbcFullNodelnfo.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 101

4.39 CbcGenCtiBlk Class Reference

Collaboration diagram for CbcGenCtIBlk:

-
_ T ™ Cocbrancnbecsion N
o« CbeGenCHBIk: docalTreeCtl_struct
e
- statistics_

modl

probiomFoasibi

— e
houisic

e T—

B——
o oPoto | CooGenCuBik::greedyCoverCl_struct ==
= - — —| CoeGenCHBl:roudingOl strct e — - _ _ ___"ndng
heuristicName_ .~
.
- lastipsin
veson. GocGonCiBH: womiH siruct - — _ o
s .
L.
CocGenCiBik gonParamsiio st | b
\ b
CboGenCtiBlk::cbcParamsinfo_stnuct T e
CocGenCHBK:miCH_struct probing.
CooGonCUB:robgCsinet. 4~ ~ s
S -
-
- ‘chooseStrong.
o
—
-
T Sayuser

d

e ——)

ConGenGHBk: FonGHLstnct

ConGenCiBiciueCH stuet
- or /
osParams

:

Classes

« struct babState_struct

State of branch-and-cut.
struct cbcParamsinfo_struct

Start and end of CbcModel parameters in parameter vector.
struct chooseStrongCtl_struct

Control variables for a strong branching method.
struct cliqueCtl_struct
Control variable and prototype for clique cut generator.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39

CbcGenCtIBIk Class Reference

102

struct combineCtl_struct

Control variable and prototype for combine heuristic.
struct debugSolinfo_struct

Array of primal variable values for debugging.
struct djFixCtl_struct

Control use of reduced cost fixing prior to B&C.
struct flowCtl_struct

Control variable and prototype for flow cover cut generator.
struct fpumpCtl_struct

Control variable and prototype for feasibility pump heuristic.
struct genParamsinfo_struct

Start and end of cbc-generic parameters in parameter vector.
struct gomoryCtl_struct

Control variable and prototype for Gomory cut generator.
struct greedyCoverCtl_struct

Control variable and prototype for greedy cover heuristic.
struct greedyEqualityCtl_struct

Control variable and prototype for greedy equality heuristic.
struct knapsackCtl_struct

Control variable and prototype for knapsack cover cut generator.
struct localTreeCtl_struct

Control variables for local tree.
struct mirCtl_struct

Control variable and prototype for MIR cut generator.
struct oddHoleCtl_struct

Control variable and prototype for odd hole cut generator.
struct osiParamsinfo_struct

Start and end of OsiSolverinterface parameters in parameter vector.
struct probingCtl_struct

Control variable and prototype for probing cut generator.
struct redSplitCtl_struct

Control variable and prototype for reduce-and-split cut generator.
struct roundingCtl_struct

Control variable and prototype for simple rounding heuristic.
struct twomirCtl_struct

Control variable and prototype for Two-MIR cut generator.

Public Types

Enumeration types used for chc-generic control variables

« enum IPPControl

Codes to control integer preprocessing.
» enum CGControl

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 103

Codes to control the use of cut generators and heuristics.
» enum BPControl

Codes to specify the assignment of branching priorities.
enum BACMajor

Major status codes for branch-and-cut.
enum BACMinor

Minor status codes.
enum BACWhere

Codes to specify where branch-and-cut stopped.

Public Member Functions

Constructors and destructors

» CbcGenCitiBlk ()
Default constructor.

* ~CbcGenCtIBIk ()
Destructor.

Access and Control Functions for Cut Generators and Heuristics

Control functions, plus lazy creation functions for cut generators and heuristics

cbe-generic avoids creating objects for cut generators and heuristics unless they're
actually used. For cut generators, a prototype is created and reused. For heuristics,
the default is to create a new object with each call, because the model may have
changed. The object is returned through the reference parameter. The return value
of the function is the current action state.

Cut generator and heuristic objects created by these calls will be deleted with the
destruction of the CbcGenCtIBlk object.

« int getCutDepth ()
Get cut depth setting.

« void setCutDepth (int cutDepth)
Set cut depth setting.

» IPPControl getiPPAction ()

« void setIPPAction (IPPControl action)
Set action state for use of integer preprocessing.

» CGControl getProbing (CglCutGenerator x&gen)
Obtain a prototype for a probing cut generator.

« void setProbingAction (CGControl action)
Set action state for use of probing cut generator.

» CGControl getClique (CglCutGenerator x&gen)
Obtain a prototype for a clique cut generator.

« void setCliqueAction (CGControl action)
Set action state for use of clique cut generator.

» CGControl getFlow (CglCutGenerator x&gen)
Obtain a prototype for a flow cover cut generator.

« void setFlowAction (CGControl action)
Set action state for use of flow cover cut generator.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39

CbcGenCtIBIk Class Reference 104

CGControl getGomory (CglCutGenerator x&gen)
Obtain a prototype for a Gomory cut generator.
void setGomoryAction (CGControl action)
Set action state for use of Gomory cut generator.
CGControl getkKnapsack (CglCutGenerator x&gen)
Obtain a prototype for a knapsack cover cut generator.
void setKnapsackAction (CGControl action)
Set action state for use of knapsack cut generator.
CGControl getMir (CglCutGenerator *&gen)
Obtain a prototype for a mixed integer rounding (MIR) cut generator.
void setMirAction (CGControl action)
Set action state for use of MIR cut generator.
CGControl getRedSplit (CglCutGenerator x&gen)
Obtain a prototype for a reduce and split cut generator.
void setRedSplitAction (CGControl action)
Set action state for use of reduce and split cut generator.
CGControl getTwomir (CglCutGenerator *&gen)
Obtain a prototype for a 2-MIR cut generator.
void setTwomirAction (CGControl action)
Set action state for use of 2-MIR cut generator.
CGControl getFPump (CbcHeuristic «&gen, CbcModel xmodel, bool alwaysCre-
ate=true)
Obtain a feasibility pump heuristic.
void setFPumpAction (CGControl action)
Set action state for use of feasibility pump heuristic.
CGControl getCombine (CbcHeuristic «&gen, CbcModel xmodel, bool alwaysCre-
ate=true)
Obtain a local search/combine heuristic.
void setCombineAction (CGControl action)
Set action state for use of local search/combine heuristic.
CGControl getGreedyCover (CbcHeuristic x*&gen, CbcModel xmodel, bool al-
waysCreate=true)
Obtain a greedy cover heuristic.
void setGreedyCoverAction (CGControl action)
Set action state for use of greedy cover heuristic.
CGControl getGreedyEquality (CbcHeuristic x&gen, CbcModel xmodel, bool
alwaysCreate=true)
Obtain a greedy equality heuristic.
void setGreedyEqualityAction (CGControl action)
Set action state for use of greedy equality heuristic.
CGControl getRounding (CbcHeuristic x*&gen, CbcModel xmodel, bool alwaysCre-
ate=true)
Obtain a simple rounding heuristic.
void setRoundingAction (CGControl action)
Set action state for use of simple rounding heuristic.
CGControl getTreeLocal (CbcTreeLocal x&localTree, CbcModel xmodel, bool
alwaysCreate=true)
Obtain a local search tree object.
void setTreeLocalAction (CGControl action)
Set action state for use of local tree.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 105

Status Functions
Convenience routines for status codes.

+ void setBaBStatus (BACMajor majorStatus, BACMinor minorStatus, BACWhere
where, bool haveAnswer, OsiSolverinterface xanswerSolver)
Set the result of branch-and-cut search.
« void setBaBStatus (const CbcModel xmodel, BACWhere where, bool haveAn-
swer=false, OsiSolverinterface xanswerSolver=0)

Set the result of branch-and-cut search.
» BACMajor translateMajor (int status)

Translate CbcModel major status to BACMajor.
* BACMinor translateMinor (int status)

Translate CbcModel minor status to BACMinor.

» BACMinor translateMinor (const OsiSolverinterface *osi)
Translate OsiSolverinterface status to BACMinor.

« void printBaBStatus ()

Print the status block.

Public Attributes

Parameter parsing and input/output.

« std::string version_
cbc-generic version
« std::string dfltDirectory
Default directory prefix.
* std::string lastMpsin_
Last MPS input file.
* bool allowlmportErrors_
Allow/disallow errors when importing a model.
* std::string lastSolnOut_
Last solution output file.
« int printMode__
Solution printing mode.
* std::string printMask_
Print mask.
» CoinParamVec * paramVec_
The parameter vector.
« struct CbcGenCilIBlk::genParamsinfo_struct genParams__
« struct CbcGenCtIBlk::cbcParamslinfo_struct cbcParams_
« struct CbcGenCitlBIk::osiParamsinfo_struct osiParams_
* int verbose_
Verbosity level for help messages.
* int paramsProcessed_
Number of parameters processed.
« std::vector< bool > setByUser_
Record of parameters changed by user command.
bool defaultSettings_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 106

False if the user has made nontrivial modifications to the default control settings.
* std::string debugCreate_

Control debug file creation.
« std::string debugFile_
Last debug input file.
« struct CbcGenCitIBIk::debugSolinfo_struct debugSol_

» double totalTime_

Total elapsed time for this run.

Models of various flavours

¢ CbcModel * model_

The reference CbcModel object.
» OsiSolverInterface * dfltSolver_

The current default LP solver.
* bool goodModel_

True if we have a valid model loaded, false otherwise.
« struct CbcGenCtIBlk::babState struct bab_

Various algorithm control variables and settings
« struct CbcGenCilIBIk::djFixCtl_struct djFix_
» BPControl priorityAction_
Control the assignment of branching priorities to integer variables.

Branching Method Control

Usage control and prototypes for branching methods.

Looking to the future, this covers only OsiChoose methods.

« struct CbcGenCilIBlk::chooseStrongCitl_struct chooseStrong_

Messages and statistics

* int printOpt_
When greater than 0, integer presolve gives more information and branch-and-cut
provides statistics.
+ CoinMessageHandler & message (CbcGenMsgCode inID)
Print a message.
+ void passIinMessageHandler (CoinMessageHandler xhandler)
Supply a new message handler.
+ CoinMessageHandler * messageHandler () const
Return a pointer to the message handler.
+ void setMessages (CoinMessages::Language lang=CoinMessages::us_en)

Set up messages in the specified language.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 107

+ void setLogLevel (int Ivl)

Set log level.
« int logLevel () const

Get log level.

4.39.1 Detailed Description

Definition at line 67 of file CbcGenCilIBIk.hpp.

4.39.2 Member Enumeration Documentation

4.39.2.1 enum CbcGenCitlIBIk::IPPControl

Codes to control integer preprocessing.

 IPPO(f: Integer preprocessing is off.

» IPPOn: Integer preprocessing is on.

» IPPSave: IPPOn, plus preprocessed system will be saved to presolved.mps.
» IPPEqual: IPPOn, plus ‘<=’ cliques are converted to ‘=’ cliques.

» IPPSOS: IPPOn, plus will create SOS sets (see below).

» IPPTrySOS: IPPOnN, plus will create SOS sets (see below).

« IPPEqualAll: IPPOn, plus turns all valid inequalities into equalities with integer
slacks.

+ |IPPStrategy: look to CbcStrategy object for instructions.
IPPSOS will create SOS sets if all binary variables (except perhaps one) can be covered

by SOS sets with no overlap between sets. IPPTrySOS will allow any number of binary
variables to be uncovered.

Definition at line 99 of file CbcGenCtIBIk.hpp.
4.39.2.2 enum CbcGenCtIBIk::CGControl

Codes to control the use of cut generators and heuristics.

» CGOff: the cut generator will not be installed

+ CGOn: the cut generator will be installed; exactly how often it’s activated depends
on the settings at installation

» CGRoot: the cut generator will be installed with settings that restrict it to activation
at the root node only.

+ CGlfMove: the cut generator will be installed with settings that allow it to remain
active only so long as it’'s generating cuts that tighten the relaxation.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 108

» CGForceOn: the cut generator will be installed with settings that force it to be
called at every node

» CGForceBut: the cut generator will be installed with settings that force it to be
called at every node, but more active at root (probing only)

* CGMarker: a convenience to mark the end of the codes.

The same codes are used for heuristics.

Definition at line 129 of file CbcGenCtIBIk.hpp.
4.39.2.3 enum CbcGenCtIBIk::BPControl

Codes to specify the assignment of branching priorities.

« BPO(ff: no priorities are passed to cbc
« BPCost: a priority vector is constructed based on objective coefficients
« BPOrder: a priority vector is constructed based on column order

» BPEXxt: the user has provided a priority vector

Definition at line 141 of file CbcGenCitIBIk.hpp.
4.39.2.4 enum CbcGenCtlBlk::BACMajor

Major status codes for branch-and-cut.

» BACInvalid: status not yet set

» BACNOotRun: branch-and-cut has not yet run for the current problem
» BACFinish: branch-and-cut has finished normally

» BACStop: branch-and-cut has stopped on a limit

« BACAbandon: branch-and-cut abandoned the problem

« BACUser: branch-and-cut stopped on user signal

Consult minorStatus_ for details.

These codes are (mostly) set to match the codes used by CbcModel. Additions to
CbcModel codes should be reflected here and in translateMajor.

Definition at line 158 of file CbcGenCtIBIk.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 109

4.39.2.5 enum CbcGenCtIBlk::BACMinor

Minor status codes.

« BACminvalid status not yet set
+ BACmPFinish search exhausted the tree; optimal solution found
+ BACminfeas problem is infeasible
+ BACmUbnd problem is unbounded
+ BACmGap stopped on integrality gap
+ BACmNodeLimit stopped on node limit
+ BACmTimeLimit stopped on time limit
+ BACmSolnLimit stopped on number of solutions limit
+ BACmUser stopped due to user event
+ BACmOther nothing else is appropriate
It's not possible to make these codes agree with CbcModel. The meaning varies ac-

cording to context: if the BACWhere code specifies a relaxation, then the minor status
reflects the underlying OSI solver. Otherwise, it reflects the integer problem.

Definition at line 181 of file CbcGenCitIBIk.hpp.
4.39.2.6 enum CbcGenCtIBlk::BACWhere

Codes to specify where branch-and-cut stopped.

+ BACwNotStarted stopped before we ever got going

« BACwBareRoot stopped after initial solve of root relaxation

» BACWIPP stopped after integer preprocessing

+ BACwIPPRelax stopped after initial solve of preprocessed problem

+ BACWBAC stopped at some point in branch-and-cut

Definition at line 195 of file CbcGenCtIBIk.hpp.

4.39.3 Member Function Documentation

4.39.3.1 int CbcGenCtIBlk::getCutDepth() [inline]

Get cut depth setting.

The name is a bit of a misnomer. Essentially, this overrides the ‘every so many nodes
control with ‘execute when (depth in tree) mod (cut depth) == 0’.

Definition at line 236 of file CbcGenCtIBlk.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 110

4.39.3.2 void CbcGenCtIBlk::setCutDepth (int cutDepth) [inline]

Set cut depth setting.
See comments for getCutDepth().

Definition at line 245 of file CbcGenCtIBIk.hpp.

4.39.3.3 CGControl ChcGenCtiBlk::getProbing (CglCutGenerator & gen)
Obtain a prototype for a probing cut generator.

4.39.3.4 void ChcGenCtIBIk::setProbingAction (CGControl action) [inline]

Set action state for use of probing cut generator.

Definition at line 267 of file CbcGenCtIBlk.hpp.

4.39.3.5 CGControl CbcGenCtIBlk::getClique (CglCutGenerator «& gen)
Obtain a prototype for a clique cut generator.

4.39.3.6 void ChcGenCtlIBlk::setCliqueAction (CGControl action) [inline]

Set action state for use of clique cut generator.

Definition at line 277 of file CbcGenCtIBlk.hpp.

4.39.3.7 CGControl CbcGenCtIBIk::getFlow (CglCutGenerator <& gen)
Obtain a prototype for a flow cover cut generator.

4.39.3.8 void CbcGenCtiBlk::setFlowAction (CGControl action) [inline]

Set action state for use of flow cover cut generator.

Definition at line 287 of file CbcGenCtIBIk.hpp.

4.39.3.9 CGControl ChcGenCtiBlk::getGomory (CglCutGenerator <& gen)

Obtain a prototype for a Gomory cut generator.

4.39.3.10 void CbcGenCtIBlk::setGomoryAction (CGControl action) [inline]

Set action state for use of Gomory cut generator.

Definition at line 297 of file CbcGenCtIBIk.hpp.

4.39.3.11 CGControl CbcGenCtlIBlk::getKnapsack (CglCutGenerator & gen)
Obtain a prototype for a knapsack cover cut generator.

4.39.3.12 void CbcGenCtiBIk::setKnapsackAction (CGControl action) [inline]

Set action state for use of knapsack cut generator.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 111

Definition at line 307 of file CbcGenCitIBlk.hpp.
4.39.3.13 void ChcGenCtiBlk::setMirAction (CGControl action) [inline]

Set action state for use of MIR cut generator.

Definition at line 329 of file CbcGenCtIBIk.hpp.

4.39.3.14 CGControl CbcGenCtlIBlk::getRedSplit (CglCutGenerator & gen)
Obtain a prototype for a reduce and split cut generator.

4.39.3.15 void CbcGenCtIBlk::setRedSplitAction (CGControl action) [inline]

Set action state for use of reduce and split cut generator.

Definition at line 339 of file CbcGenCitIBIk.hpp.

4.39.3.16 CGControl CbhcGenCtIBlk::getTwomir (CglCutGenerator <& gen)
Obtain a prototype for a 2-MIR cut generator.

4.39.3.17 void CbcGenCtlBIk::setTwomirAction (CGControl action) [inline]

Set action state for use of 2-MIR cut generator.

Definition at line 349 of file CbcGenCitIBlk.hpp.

4.39.3.18 CGControl CbcGenCitIBlk::getFPump (CbcHeuristic <& gen, CbcModel
model, bool alwaysCreate =t rue)

Obtain a feasibility pump heuristic.

By default, any existing object is deleted and a new object is created and loaded with
model. Set alwaysCreate = false to return an existing object if one exists.

4.39.3.19 void ChcGenCtIBlk::setFPumpAction (CGControl action) [inline]

Set action state for use of feasibility pump heuristic.

Definition at line 366 of file CbcGenCtIBlk.hpp.

4.39.3.20 CGControl CbcGenCtIBlk::getCombine (CbcHeuristic «& gen, CbcModel
model, bool alwaysCreate =t rue)

Obtain a local search/combine heuristic.

By default, any existing object is deleted and a new object is created and loaded with
model. Set alwaysCreate = false to return an existing object if one exists.

4.39.3.21 void ChcGenCtIBlk::setCombineAction (CGControl action) [inline]

Set action state for use of local search/combine heuristic.

Definition at line 382 of file CbcGenCtIBIk.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 112

4.39.3.22 CGControl CbcGenCtIBlk::getGreedyCover (CbcHeuristic <& gen, CbcModel
* model, bool alwaysCreate =t rue)

Obtain a greedy cover heuristic.

By default, any existing object is deleted and a new object is created and loaded with
model. Set alwaysCreate = false to return an existing object if one exists.

4.39.3.23 void CbcGenCtiBlk::setGreedyCoverAction (CGControl action) [inline]

Set action state for use of greedy cover heuristic.

Definition at line 398 of file CbcGenCtIBlk.hpp.

4.39.3.24 CGControl CbhcGenCtIBlk::getGreedyEquality (CbcHeuristic <& gen,
CbcModel « model, bool alwaysCreate =t rue)

Obtain a greedy equality heuristic.

By default, any existing object is deleted and a new object is created and loaded with
model. Set alwaysCreate = false to return an existing object if one exists.

4.39.3.25 void CbcGenCtIBlk::setGreedyEqualityAction (CGControl action) [inline]

Set action state for use of greedy equality heuristic.

Definition at line 414 of file CbcGenCtIBIk.hpp.

4.39.3.26 CGControl CbcGenCtiBlk::getRounding (CbcHeuristic <& gen, CbcModel
model, bool alwaysCreate =t rue)

Obtain a simple rounding heuristic.

By default, any existing object is deleted and a new object is created and loaded with
model. Set alwaysCreate = false to return an existing object if one exists.

4.39.3.27 void CbcGenCtiBlk::setRoundingAction (CGControl action) [inline]

Set action state for use of simple rounding heuristic.

Definition at line 430 of file CbcGenCitIBIk.hpp.

4.39.3.28 CGControl CbcGenCtIBlk::getTreeLocal (CbcTreeLocal & localTree,
CbcModel * model, bool alwaysCreate =t rue)

Obtain a local search tree object.

By default, any existing object is deleted and a new object is created and loaded with
model. Set alwaysCreate = false to return an existing object if one exists.

4.39.3.29 void CbcGenCtiBlk::setTreeLocalAction (CGControl action) [inline]

Set action state for use of local tree.

Definition at line 446 of file CbcGenCtIBIk.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 113

4.39.3.30 void ChcGenCtiBlk::setBaBStatus (const CbcModel « model, BACWhere where,
bool haveAnswer = false, OsiSolverinterface « answerSolver =0)

Set the result of branch-and-cut search.

This version will extract the necessary information from the CbcModel object and set
appropriate status based on the value passed for where.

4.39.3.31 BACMajor ChcGenCtIBlk::translateMajor (int status)

Translate CbcModel major status to BACMajor.

See the BACMajor enum for details.
4.39.3.32 BACMinor CbhcGenCtlBlk::translateMinor (int status)

Translate CbcModel minor status to BACMinor.

See the BACMinor enum for details.
4.39.3.33 BACMinor CbcGenCtlBIk::translateMinor (const OsiSolverinterface * osi)

Translate OsiSolverinterface status to BACMinor.
See the BACMinor enum for details. Optimal, infeasible, and unbounded get their own
codes; everything else maps to BACmOther.

4.39.3.34 CoinMessageHandler& CbcGenCilBlk::message (CbcGenMsgCode iniD)

Print a message.

Uses the current message handler and messages.
4.39.3.35 void CbcGenCtlBIk::passinMessageHandler (CoinMessageHandler x handler)

Supply a new message handler.
Replaces the current message handler. The current handler is destroyed if ourMsgHandler_-
is true, and the call will set ourMsgHandler_ = true.

4.39.3.36 void ChcGenCtIBlk::setMessages (CoinMessages::Language lang =
CoinMessages::us_en)

Set up messages in the specified language.

Building a set of messages in a given language implies rebuilding the whole set of
messages, for reasons explained in the body of the code. Hence there’'s no separate
setLanguage routine. Use this routine for the initial setup of messages and any subse-
quent change in language. Note that the constructor gives you a message handler by
default, but not messages. You need to call setMessages explicitly.

The default value specified here for lang effectively sets the default language.

4.39.4 Member Data Documentation

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 114

4.39.4.1 int CbcGenCtlBIk::printMode_

Solution printing mode.

Controls the amount of information printed when printing a solution. Coding is set by
the keyword declarations for the printingOptions command.

Definition at line 583 of file CbcGenCitIBIk.hpp.
4.39.4.2 std::string CbcGenCtlBIk::printMask_

Print mask.

Used to specify row/column names to be printed. Not implemented as of 060920.
Definition at line 590 of file CbcGenCtIBlk.hpp.

4.39.4.3 int CbcGenCtiBlk::verbose

Verbosity level for help messages.

Interpretation is bitwise:

* (0): short help
* (1): long help
* (2): unused (for compatibility with cbc; indicates AMPL)

* (3): show parameters with display = false.
Definition at line 628 of file CbcGenCtIBIk.hpp.
4.39.4.4 bool CbcGenCtIBlk::defaultSettings__

False if the user has made nontrivial modifications to the default control settings.

Initially true. Specifying DJFIX, TIGHTENFACTOR, or any cut or heuristic parameter
will set this to false.

Definition at line 644 of file CbcGenCtIBIk.hpp.
4.39.4.5 std::string CbcGenCtlBlk::debugCreate_

Control debug file creation.

At the conclusion of branch-and-cut, dump the full solution in a binary format to de-
bug.file in the current directory. When set to "createAfterPre", the solution is dumped
before integer presolve transforms are removed. When set to "create", the solution is
dumped after integer presolve transforms are backed out.

Definition at line 654 of file CbcGenCtIBlk.hpp.
4.39.4.6 std::string CbcGenCitlBlk::debugFile_

Last debug input file.

The file is expected to be in a binary format understood by activateRowCutDebugger.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.40 CbcGeneral Class Reference 115

Definition at line 662 of file CbcGenCtIBlk.hpp.
4.39.4.7 double CbcGenCtIBlk::totalTime_

Total elapsed time for this run.

Definition at line 680 of file CbcGenCtIBlk.hpp.
4.39.48 CbcModelx CbcGenCtlBlk::model_

The reference CbcModel object.

This is the CbcModel created when cbc-generic boots up. It holds the default solver
with the current constraint system. CbcCbcParam parameters are applied here, and
CbcOsiParam parameters are applied to the solver. Major modifications for branch-and-
cut (integer preprocessing, installation of heuristics and cut generators) are performed
on a clone. The solution is transferred back into this object.

Definition at line 697 of file CbcGenCtIBIk.hpp.
4.39.4.9 OsiSolverinterfacex CbcGenCtlIBIk::dfltSolver_

The current default LP solver.

This is a pointer to a reference copy. If you want the solver associated with model_, ask
for it directly.

Definition at line 705 of file CbcGenCitIBIk.hpp.
4.39.4.10 bool CbcGenCtIBIk::goodModel_

True if we have a valid model loaded, false otherwise.
Definition at line 709 of file CbcGenCtIBlk.hpp.

The documentation for this class was generated from the following file:

+ CbcGenCtIBIk.hpp

4.40 CbcGeneral Class Reference

Define a catch all class.

#include <CbcGeneral.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.40 CbcGeneral Class Reference 116

Inheritance diagram for CbcGeneral:

CbcObject

CbcGeneral

Collaboration diagram for CbcGeneral:

evertandir.
SRR powm—r——

/ - GocCuaGanarior
, e R
T e o
Chcrarsichon N - Farnt

Public Member Functions

» CbcGeneral (CbcModel xmodel)

Useful constructor Just needs to point to model.
« virtual CbcObiject * clone () const =0
Clone.

+ virtual double infeasibility (const OsiBranchinglnformation xinfo, int &preferred-
Way) const

Infeasibility - large is 0.5.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.41 CbcGenParam Class Reference 117

virtual void feasibleRegion ()=0

This looks at solution and sets bounds to contain solution.
virtual CbcBranchingObject * createCbcBranch (OsiSolverInterface *solver, const
OsiBranchingInformation xinfo, int way)

Creates a branching object.
virtual void redoSequenceEtc (CbcModel xmodel, int numberColumns, const int
xoriginalColumns)=0

Redoes data when sequence numbers change.

4.40.1 Detailed Description

Define a catch all class.
This will create a list of subproblems
Definition at line 17 of file CbcGeneral.hpp.

The documentation for this class was generated from the following file:

» CbcGeneral.hpp

4.41 CbcGenParam Class Reference

Class for cbc-generic control parameters.

#include <CbcGenParam.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.41 CbcGenParam Class Reference

118

Collaboration diagram for CbcGenParam:

Public Types

Subtypes

* enum CbcGenParamCode

Enumeration for cbc-generic parameters.

Public Member Functions

Constructors and Destructors

L onaee

rowang

CocGonGuB: oG st ¥ < =
CocGenCHBl e st

e T——

e r—

CocGanCiBlro3SpiCI et

Be careful how you specify parameters for the constructors! There’s great

potential for confusion.

* CbcGenParam ()
Default constructor.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.41 CbcGenParam Class Reference 119

» CbcGenParam (CbcGenParamCode code, std::string name, std::string help,
double lower, double upper, double dflt=0.0, bool display=true)
Constructor for a parameter with a double value.
» CbcGenParam (CbcGenParamCode code, std::string name, std::string help,
int lower, int upper, int dflt=0, bool display=true)
Constructor for a parameter with an integer value.
* CbcGenParam (CbcGenParamCode code, std::string name, std::string help,
std::string firstValue, int dflt, bool display=true)
Constructor for a parameter with keyword values.
» CbcGenParam (CbcGenParamCode code, std::string name, std::string help,
std::string dflt, bool display=true)
Constructor for a string parameter.
* CbcGenParam (CbcGenParamCode code, std::string name, std::string help,
bool display=true)
Constructor for an action parameter.
» CbcGenParam (const CbcGenParam &orig)

Copy constructor.
* CbcGenParam clone ()

Clone.
* CbcGenParam & operator= (const CocGenParam &rhs)

Assignment.
* ~CbcGenParam ()

Destructor.

Methods to query and manipulate a parameter object

* CbcGenParamCode paramCode () const

Get the parameter code.
« void setParamCode (CbcGenParamCode code)

Set the parameter code.
* CbcGenCilIBlk * obj () const

Get the underlying cbc-generic control object.
« void setObj (CbcGenCiIBlk *obj)

Set the underlying cbc-generic control object.

4.41.1 Detailed Description

Class for cbc-generic control parameters.
Adds parameter type codes and push/pull functions to the generic parameter object.

Definition at line 34 of file CbcGenParam.hpp.

4.41.2 Member Enumeration Documentation

441.2.1 enum CbcGenParam::CbcGenParamCode

Enumeration for cbc-generic parameters.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42 CbcHeuristic Class Reference 120

These are parameters that control the operation of the cbc-generic main program by op-
erating on a CbcGenCitIBlk object. CBCGEN_FIRSTPARAM and CBCGEN_LASTPARM
are markers to allow convenient separation of parameter groups.

Definition at line 49 of file CbcGenParam.hpp.

4.41.3 Constructor & Destructor Documentation

4.41.3.1 CbcGenParam::CbcGenParam (CbcGenParamCode code, std::string name,
std::string help, double lower, double upper, double dflt=0 . O, bool display =t rue

)
Constructor for a parameter with a double value.

The default value is 0.0. Be careful to clearly indicate that 1ower and upper are
real (double) values to distinguish this constructor from the constructor for an integer
parameter.

4.41.3.2 CbcGenParam::CbcGenParam (CbcGenParamCode code, std::string name,
std::string help, int lower, int upper, int dflt = 0, bool display =t rue)
Constructor for a parameter with an integer value.

The default value is 0.

4.41.3.3 CbcGenParam::CbcGenParam (CbcGenParamCode code, std::string name,
std::string help, std::string firstValue, int dflt, bool display =t rue)
Constructor for a parameter with keyword values.

The string supplied as £irstValue becomes the first keyword. Additional keywords
can be added using appendKwd(). Keywords are numbered from zero. It's necessary to
specify both the first keyword (firstvalue) and the default keyword index (df1t)in
order to distinguish this constructor from the string and action parameter constructors.

4.41.3.4 CbcGenParam::ChcGenParam (CbcGenParamCode code, std::string name,
std::string help, std::string dflt, bool display =t rue)

Constructor for a string parameter.

The default string value must be specified explicitly to distinguish a string constructor
from an action parameter constructor.

The documentation for this class was generated from the following file:

* CbcGenParam.hpp

4.42 CbcHeuristic Class Reference

Heuristic base class.

#include <CbcHeuristic.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42 CbcHeuristic Class Reference

121

Inheritance diagram for CbcHeuristic:

| CbcHeuristicDiveCoefficient |

| CbcHeuristicCrossover |

| CbcHeuristicDiveFractional |

CbcHeuristicDINS

_ CbcHeuristicDiveGuided |

CbcHeuristicDive F

SN

CbcHeuristicDivelLineSearch |

| CbcHeuristicDynamic3 |

| CbcHeuristicDivePseudoCost |

CbcHeuristicFPump |

| CbcHeuristicDiveVectorLength |

| CbcHeuristicGreedyCover |

| CbcHeuristicGreedy Equality |

CbcHeuristicGreedySOS |

| CbcHeuristicJustOne |

CbcHeuristic
"N

CbcHeuristicLocal

CbcHeuristicNaive

CbcHeuristicPartial

CbcHeuristicPivotAndFix |

CbcHeuristicRandRound |

CbcHeuristicRENS

CbcHeuristicRINS

CbcHeuristicVND

CbcRounding

CbcSerendipity

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42 CbcHeuristic Class Reference 122

Collaboration diagram for CbcHeuristic:

Public Member Functions

« virtual CbcHeuristic * clone () const =0
Clone.
+ CbcHeuristic & operator= (const CbcHeuristic &rhs)
Assignment operator.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual void resetModel (CbcModel xmodel)=0

Resets stuff if model changes.
virtual int solution (double &objectiveValue, double xnewSolution)=0

returns 0 if no solution, 1 if valid solution with better objective value than one passed
in Sets solution values if good, sets objective value This is called after cuts have been
added - so can not add cuts

virtual int solution2 (double &, double *, OsiCuts &)

returns 0 if no solution, 1 if valid solution, -1 if just returning an estimate of best possible
solution with better objective value than one passed in Sets solution values if good,
sets objective value (only if nonzero code) This is called at same time as cut generators
- s0 can add cuts Default is do nothing

virtual void validate ()

Validate model i.e. sets when_ to 0 if necessary (may be NULL)
void setWhen (int value)

Sets "when" flag - 0 off, 1 at root, 2 other than root, 3 always.
int when () const

Gets "when" flag - 0 off, 1 at root, 2 other than root, 3 always.
+ void setNumberNodes (int value)
Sets number of nodes in subtree (default 200)
int numberNodes () const

Gets number of nodes in a subtree (default 200)
void setSwitches (int value)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42

CbcHeuristic Class Reference 123

Switches (does not apply equally to all heuristics) 1 bit - stop once allowable gap on
objective reached 2 bit - always do given number of passes 4 bit - weaken cutoff by 5%
every 50 passes? 8 bit - if has cutoff and suminf bobbling for 20 passes then first try
halving distance to best possible then try keep halving distance to known cutoff 1024
bit - stop all heuristics on max time.
int switches () const

Switches (does not apply equally to all heuristics) 1 bit - stop once allowable gap on
objective reached 2 bit - always do given number of passes 4 bit - weaken cutoff by 5%
every 50 passes? 8 bit - if has cutoff and suminf bobbling for 20 passes then first try
halving distance to best possible then try keep halving distance to known cutoff 1024
bit - stop all heuristics on max time.

bool exitNow (double bestObjective) const
Whether to exit at once on gap.
void setFeasibilityPumpOptions (int value)
Sets feasibility pump options (-1 is off)
int feasibilityPumpOptions () const
Gets feasibility pump options (-1 is off)
void setModelOnly (CbcModel xmodel)
Just set model - do not do anything else.
void setFractionSmall (double value)
Sets fraction of new(rows+columns)/old(rows+columns) before doing small branch and
bound (default 1.0)
double fractionSmall () const
Gets fraction of new(rows+columns)/old(rows+columns) before doing small branch
and bound (default 1.0)
int numberSolutionsFound () const
Get how many solutions the heuristic thought it got.
void incrementNumberSolutionsFound ()
Increment how many solutions the heuristic thought it got.
int smallBranchAndBound (OsiSolverinterface *solver, int numberNodes, dou-
ble xnewSolution, double &newSolutionValue, double cutoff, std::string name)
const
Do mini branch and bound - return 0 not finished - no solution 1 not finished - solution
2 finished - no solution 3 finished - solution (could add global cut if finished)
virtual void generateCpp (FILE x)
Create C++ lines to get to current state.
void generateCpp (FILE *fp, const char xheuristic)
Create C++ lines to get to current state - does work for base class.
virtual bool canDealWithOdd () const
Returns true if can deal with "odd" problems e.g. sos type 2.
const char * heuristicName () const
return name of heuristic
void setHeuristicName (const char xname)
set name of heuristic
void setSeed (int value)

Set random number generator seed.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42

CbcHeuristic Class Reference 124

void setDecayFactor (double value)

Sets decay factor (for howOften) on failure.
void setlnputSolution (const double *solution, double objValue)

Set input solution.
void setShallowDepth (int value)

Upto this depth we call the tree shallow and the heuristic can be called multiple times.
void setHowOftenShallow (int value)

How often to invoke the heuristics in the shallow part of the tree.
void setMinDistanceToRun (int value)
How "far" should this node be from every other where the heuristic was run in order to
allow the heuristic to run in this node, too.
virtual bool shouldHeurRun (int whereFrom)
Check whether the heuristic should run at all 0 - before cuts at root node (or from

doHeuristics) 1 - during cuts at root 2 - after root node cuts 3 - after cuts at other nodes
4 - during cuts at other nodes 8 added if previous heuristic in loop found solution.

bool shouldHeurRun_randomChoice ()

Check whether the heuristic should run this time.
int numRuns () const

how many times the heuristic has actually run
int numCouldRun () const

How many times the heuristic could run.
OsiSolverinterface * cloneBut (int type)

Clone, but ...

Protected Attributes

CbcModel * model
Model.
int when_
When flag - 0 off, 1 at root, 2 other than root, 3 always.
int numberNodes
Number of nodes in any sub tree.
int feasibilityPumpOptions_
Feasibility pump options (-1 is off)
double fractionSmall_
Fraction of new(rows+columns)/old(rows+columns) before doing small branch and bound.
CoinThreadRandom randomNumberGenerator_
Thread specific random number generator.
std::string heuristicName__
Name for printing.
int howOften__
How often to do (code can change)
double decayFactor_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42 CbcHeuristic Class Reference 125

How much to increase how often.
* int switches_

Switches (does not apply equally to all heuristics) 1 bit - stop once allowable gap on
objective reached 2 bit - always do given number of passes 4 bit - weaken cutoff by 5%
every 50 passes? 8 bit - if has cutoff and suminf bobbling for 20 passes then first try
halving distance to best possible then try keep halving distance to known cutoff 1024
bit - stop all heuristics on max time.

+ int shallowDepth_

Upto this depth we call the tree shallow and the heuristic can be called multiple times.
* int howOftenShallow

How often to invoke the heuristics in the shallow part of the tree.
* int numinvocationsinShallow__

How many invocations happened within the same node when in a shallow part of the
tree.

+ int numlinvocationsinDeep_

How many invocations happened when in the deep part of the tree.
« int lastRunDeep_

After how many deep invocations was the heuristic run last time.
* int numRuns_

how many times the heuristic has actually run
* int minDistanceToRun__

How "far" should this node be from every other where the heuristic was run in order to
allow the heuristic to run in this node, too.

» CbcHeuristicNodeList runNodes_

The description of the nodes where this heuristic has been applied.
* int numCouldRun_

How many times the heuristic could run.
* int numberSolutionsFound_

How many solutions the heuristic thought it got.

4.42.1 Detailed Description

Heuristic base class.

Definition at line 77 of file CbcHeuristic.hpp.

4.42.2 Member Function Documentation

4.42.2.1 void CbcHeuristic::setWhen (intvalue) [inline]

Sets "when" flag - 0 off, 1 at root, 2 other than root, 3 always.

If 10 added then don’t worry if validate says there are funny objects as user knows it will
be fine

Definition at line 134 of file CbcHeuristic.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42 CbcHeuristic Class Reference 126

4.42.2.2 int CbcHeuristic::smallBranchAndBound (OsiSolverinterface * solver, int
numberNodes, double « newSolution, double & newSolutionValue, double cutoff,
std::string name) const

Do mini branch and bound - return 0 not finished - no solution 1 not finished - solution 2
finished - no solution 3 finished - solution (could add global cut if finished)

-1 returned on size -2 time or user event
4.42.2.3 void CbcHeuristic::setShallowDepth (intvalue) [inline]

Upto this depth we call the tree shallow and the heuristic can be called multiple times.

That is, the test whether the current node is far from the others where the jeuristic was
invoked will not be done, only the frequency will be tested. After that depth the heuristic
will can be invoked only once per node, right before branching. That's when it'll be
tested whether the heur should run at all.

Definition at line 263 of file CbcHeuristic.hpp.
4.42.2.4 void CbcHeuristic::setMinDistanceToRun (intvalue) [inline]

How "far" should this node be from every other where the heuristic was run in order to
allow the heuristic to run in this node, too.

Currently this is tested, but we may switch to avgDistanceToRun_ in the future.

Definition at line 273 of file CbcHeuristic.hpp.
4.42.2.5 OsiSolverinterfacex CbhcHeuristic::cloneBut (int type)

Clone, but ...

If type is

0 clone the solver for the model,

1 clone the continuous solver for the model

Add 2 to say without integer variables which are at low priority

Add 4 to say quite likely infeasible so give up easily (clp only).

4.42.3 Member Data Documentation

4.42.3.1 int CbcHeuristic::shallowDepth_ [protected]

Upto this depth we call the tree shallow and the heuristic can be called multiple times.

That is, the test whether the current node is far from the others where the jeuristic was
invoked will not be done, only the frequency will be tested. After that depth the heuristic
will can be invoked only once per node, right before branching. That's when it’ll be
tested whether the heur should run at all.

Definition at line 354 of file CbcHeuristic.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.43 CbcHeuristicCrossover Class Reference 127

4.42.3.2 int CbcHeuristic::numinvocationsinShallow_ [protected]

How many invocations happened within the same node when in a shallow part of the
tree.

Definition at line 359 of file CbcHeuristic.hpp.
4.42.3.3 int CbcHeuristic::numinvocationsinDeep_ [protected]

How many invocations happened when in the deep part of the tree.
For every node we count only one invocation.

Definition at line 362 of file CbcHeuristic.hpp.
4.42.3.4 int CbcHeuristic::minDistanceToRun_ [protected]

How "far" should this node be from every other where the heuristic was run in order to
allow the heuristic to run in this node, too.

Currently this is tested, but we may switch to avgDistanceToRun_ in the future.
Definition at line 370 of file CbcHeuristic.hpp.

The documentation for this class was generated from the following file:

+ CbcHeuristic.hpp

4.43 CbcHeuristicCrossover Class Reference

Crossover Search class.
#include <CbcHeuristicLocal.hpp>

Inheritance diagram for CbcHeuristicCrossover:

CbcHeuristic

CbcHeuristicCrossover

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.43 CbcHeuristicCrossover Class Reference 128

Collaboration diagram for CbcHeuristicCrossover:

Public Member Functions

« virtual CbcHeuristic * clone () const
Clone.
» CbcHeuristicCrossover & operator= (const CbcHeuristicCrossover &rhs)
Assignment operator.
virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.
+ void setNumberSolutions (int value)

Sets number of solutions to use.

Protected Attributes

+ std::vector< double > attempts_

Attempts.
» double random_ [10]

Random numbers to stop same search happening.
* int numberSolutions_

Number of solutions so we only do after new solution.
* int useNumber_

Number of solutions to use.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.44 CbcHeuristicDINS Class Reference 129

4.43.1 Detailed Description

Crossover Search class.

Definition at line 151 of file CbcHeuristicLocal.hpp.

4.43.2 Member Function Documentation

4.43.2.1 virtual int CbcHeuristicCrossover::solution (double & objectiveValue, double x
newSolution) [virtuall]

returns 0 if no solution, 1 if valid solution.

Fix variables if agree in useNumber__ solutions when_ 0 off, 1 only at new solutions, 2
also every now and then add 10 to make only if agree at lower bound

Implements CbcHeuristic.

The documentation for this class was generated from the following file:

+ CbcHeuristicLocal.hpp

4.44 CbcHeuristicDINS Class Reference

Inheritance diagram for CbcHeuristicDINS:

CbcHeuristic

CbcHeuristicDINS

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.44 CbcHeuristicDINS Class Reference 130

Collaboration diagram for CbcHeuristicDINS:

Public Member Functions

virtual CbcHeuristic * clone () const
Clone.

» CbcHeuristicDINS & operator= (const CbcHeuristicDINS &rhs)
Assignment operator.

virtual void generateCpp (FILE *fp)

Create C++ lines to get to current state.
virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.
int solutionFix (double &objectiveValue, double xnewSolution, const int xkeep)

This version fixes stuff and does IP.
void setHowOften (int value)

Sets how often to do it.
void setMaximumKeep (int value)

Sets maximum number of solutions kept.
void setConstraint (int value)

Sets tightness of extra constraint.

Protected Attributes

* int numberSolutions_

Number of solutions so we can do something at solution.
* int howOften_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.45 CbcHeuristicDive Class Reference 131

How often to do (code can change)
+ int numberSuccesses_

Number of successes.
* int numberTries_

Number of tries.
* int maximumKeepSolutions_

Maximum number of solutions to keep.
* int numberKeptSolutions_

Number of solutions kept.
* int numberintegers_

Number of integer variables.
« int localSpace_

Local parameter.
* int x* values_

Values of integer variables.

4.44.1 Detailed Description

Definition at line 14 of file CbcHeuristicDINS.hpp.

4.44.2 Member Function Documentation

4.44.2.1 virtual int CbcHeuristicDINS::solution (double & objectiveValue, double x newSolution
) [virtual]

returns 0 if no solution, 1 if valid solution.

Sets solution values if good, sets objective value (only if good) This does Relaxation
Induced Neighborhood Search

Implements CbcHeuristic.

The documentation for this class was generated from the following file:

+ CbcHeuristicDINS.hpp

4.45 CbcHeuristicDive Class Reference

Dive class.

#include <CbcHeuristicDive.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.45 CbcHeuristicDive Class Reference 132

Inheritance diagram for CbcHeuristicDive:

CbcHeuristicDiveCoefficient

CbcHeuristicDiveFractional

CbcHeuristicDiveGuided

CbcHeuristic («@——— CbcHeuristicDive

CbcHeuristicDivelLineSearch

CbcHeuristicDivePseudoCost

CbcHeuristicDiveVectorLength

Collaboration diagram for CbcHeuristicDive:

Public Member Functions

« virtual CbcHeuristicDive * clone () const =0

Clone.
» CbcHeuristicDive & operator= (const CbcHeuristicDive &rhs)

Assignment operator.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.45 CbcHeuristicDive Class Reference 133

virtual void generateCpp (FILE x)

Create C++ lines to get to current state.
« void generateCpp (FILE *fp, const char xheuristic)

Create C++ lines to get to current state - does work for base class.
virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution with better objective value than one passed
in Sets solution values if good, sets objective value (only if good) This is called after
cuts have been added - so can not add cuts This does Fractional Diving

virtual void validate ()

Validate model i.e. sets when_ to 0 if necessary (may be NULL)
void selectBinaryVariables ()

Select candidate binary variables for fixing.
+ void setPercentageToFix (double value)
Set percentage of integer variables to fix at bounds.
+ void setMaxlterations (int value)
Set maximum number of iterations.
void setMaxSimplexIterations (int value)

Set maximum number of simplex iterations.
void setMaxSimplexIterationsAtRoot (int value)

Set maximum number of simplex iterations at root node.
void setMaxTime (double value)

Set maximum time allowed.
virtual bool canHeuristicRun ()

Tests if the heuristic can run.
virtual bool selectVariableToBranch (OsiSolverinterface *xsolver, const double xnewSolution,
int &bestColumn, int &bestRound)=0

Selects the next variable to branch on Returns true if all the fractional variables can be

trivially rounded.
virtual void initializeData ()

Initializes any data which is going to be used repeatedly in selectVariableToBranch.
int reducedCostFix (OsiSolverlnterface xsolver)

Perform reduced cost fixing on integer variables.
virtual int fixOtherVariables (OsiSolverinterface *solver, const double *solution,
PseudoReducedCost xcandidate, const double xrandom)

Fix other variables at bounds.

Protected Attributes

» double x downArray__

Extra down array (number Integers long)
+ double *x upArray

Extra up array (number Integers long)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.46 CbcHeuristicDiveCoefficient Class Reference 134

4451 Detailed Description

Dive class.

Definition at line 19 of file CbcHeuristicDive.hpp.

4.45.2 Member Function Documentation

4.45.2.1 virtual bool CbcHeuristicDive::selectVariableToBranch (OsiSolverinterface x solver,
const double « newSolution, int & bestColumn, int & bestRound) [pure
virtuall]

Selects the next variable to branch on Returns true if all the fractional variables can be
trivially rounded.

Returns false, if there is at least one fractional variable that is not trivially roundable. In
this case, the bestColumn returned will not be trivially roundable.

Implemented in CbcHeuristicDiveCoefficient, CbcHeuristicDiveFractional, CbcHeuris-
ticDiveGuided, CbcHeuristicDiveLineSearch, CbcHeuristicDivePseudoCost, and CbcHeuris-
ticDiveVectorLength.

The documentation for this class was generated from the following file:

+ CbcHeuristicDive.hpp

4.46 CbcHeuristicDiveCoefficient Class Reference

DiveCoefficient class.

#include <CbcHeuristicDiveCoefficient.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.46 CbcHeuristicDiveCoefficient Class Reference 135

Inheritance diagram for CbcHeuristicDiveCoefficient:

CbcHeuristic

CbcHeuristicDive

CbcHeuristicDiveCoefficient

Collaboration diagram for CbcHeuristicDiveCoefficient:

Public Member Functions

« virtual CbcHeuristicDiveCoefficient * clone () const

Clone.
» CbcHeuristicDiveCoefficient & operator= (const CbcHeuristicDiveCoefficient &rhs)

Assignment operator.
« virtual void generateCpp (FILE xfp)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.47 CbcHeuristicDiveFractional Class Reference 136

Create C++ lines to get to current state.

« virtual bool selectVariableToBranch (OsiSolverinterface xsolver, const double xnewSolution,
int &bestColumn, int &bestRound)

Selects the next variable to branch on.

4.46.1 Detailed Description

DiveCoefficient class.

Definition at line 14 of file CbcHeuristicDiveCoefficient.hpp.

4.46.2 Member Function Documentation

4.46.2.1 virtual bool CbcHeuristicDiveCoefficient::selectVariableToBranch (OsiSolverinterface
x solver, const double « newSolution, int & bestColumn, int & bestRound)
[virtual]

Selects the next variable to branch on.

Returns true if all the fractional variables can be trivially rounded. Returns false, if
there is at least one fractional variable that is not trivially roundable. In this case, the
bestColumn returned will not be trivially roundable.

Implements CbcHeuristicDive.

The documentation for this class was generated from the following file:

+ CbcHeuristicDiveCoefficient.hpp

4,47 CbcHeuristicDiveFractional Class Reference

DiveFractional class.

#include <CbcHeuristicDiveFractional.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.47 CbcHeuristicDiveFractional Class Reference 137

Inheritance diagram for CbcHeuristicDiveFractional:

CbcHeuristic

CbcHeuristicDive

CbcHeuristicDiveFractional

Collaboration diagram for CbcHeuristicDiveFractional:

Public Member Functions

« virtual CbcHeuristicDiveFractional * clone () const

Clone.
» CbcHeuristicDiveFractional & operator= (const CbcHeuristicDiveFractional &rhs)

Assignment operator.
« virtual void generateCpp (FILE xfp)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.48 CbcHeuristicDiveGuided Class Reference 138

Create C++ lines to get to current state.

« virtual bool selectVariableToBranch (OsiSolverinterface xsolver, const double xnewSolution,
int &bestColumn, int &bestRound)

Selects the next variable to branch on.

4,471 Detailed Description

DiveFractional class.

Definition at line 14 of file CbcHeuristicDiveFractional.hpp.

4.47.2 Member Function Documentation

4.47.2.1 virtual bool CbcHeuristicDiveFractional::selectVariableToBranch (OsiSolverinterface
x solver, const double « newSolution, int & bestColumn, int & bestRound)
[virtual]

Selects the next variable to branch on.

Returns true if all the fractional variables can be trivially rounded. Returns false, if
there is at least one fractional variable that is not trivially roundable. In this case, the
bestColumn returned will not be trivially roundable.

Implements CbcHeuristicDive.

The documentation for this class was generated from the following file:

+ CbcHeuristicDiveFractional.hpp

4.48 CbcHeuristicDiveGuided Class Reference

DiveGuided class.

#include <CbcHeuristicDiveGuided.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.48 CbcHeuristicDiveGuided Class Reference 139

Inheritance diagram for CbcHeuristicDiveGuided:

CbcHeuristic

CbcHeuristicDive

CbcHeuristicDiveGuided

Collaboration diagram for CbcHeuristicDiveGuided:

Public Member Functions

« virtual CbcHeuristicDiveGuided * clone () const

Clone.
» CbcHeuristicDiveGuided & operator= (const CbcHeuristicDiveGuided &rhs)

Assignment operator.
« virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.49 CbcHeuristicDiveLineSearch Class Reference 140

« virtual bool canHeuristicRun ()

Tests if the heuristic can run.
« virtual bool selectVariableToBranch (OsiSolverinterface xsolver, const double xnewSolution,
int &bestColumn, int &bestRound)

Selects the next variable to branch on.

4.48.1 Detailed Description

DiveGuided class.

Definition at line 14 of file CbcHeuristicDiveGuided.hpp.

4.48.2 Member Function Documentation

4.48.2.1 virtual bool ChcHeuristicDiveGuided::selectVariableToBranch (OsiSolverinterface
x solver, const double « newSolution, int & bestColumn, int & bestRound)
[virtual]

Selects the next variable to branch on.

Returns true if all the fractional variables can be trivially rounded. Returns false, if
there is at least one fractional variable that is not trivially roundable. In this case, the
bestColumn returned will not be trivially roundable.

Implements CbcHeuristicDive.

The documentation for this class was generated from the following file:

+ CbcHeuristicDiveGuided.hpp

4.49 CbcHeuristicDiveLineSearch Class Reference

DivelLineSearch class.

#include <CbcHeuristicDiveLineSearch.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.49 CbcHeuristicDiveLineSearch Class Reference 141

Inheritance diagram for CbcHeuristicDiveLineSearch:

CbcHeuristic

CbcHeuristicDive

CbcHeuristicDivelineSearch

Collaboration diagram for CbcHeuristicDiveLineSearch:

Public Member Functions

« virtual CbcHeuristicDiveLineSearch * clone () const

Clone.
» CbcHeuristicDivelLineSearch & operator= (const CbcHeuristicDiveLineSearch &rhs)

Assignment operator.
« virtual void generateCpp (FILE xfp)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.50 CbcHeuristicDivePseudoCost Class Reference 142

Create C++ lines to get to current state.

« virtual bool selectVariableToBranch (OsiSolverinterface xsolver, const double xnewSolution,
int &bestColumn, int &bestRound)

Selects the next variable to branch on.

4.49.1 Detailed Description

DiveLineSearch class.

Definition at line 14 of file CbcHeuristicDiveLineSearch.hpp.

4.49.2 Member Function Documentation

4.49.2.1 virtual bool CbcHeuristicDiveLineSearch::selectVariableToBranch (OsiSolverinterface
x solver, const double « newSolution, int & bestColumn, int & bestRound)
[virtual]

Selects the next variable to branch on.

Returns true if all the fractional variables can be trivially rounded. Returns false, if
there is at least one fractional variable that is not trivially roundable. In this case, the
bestColumn returned will not be trivially roundable.

Implements CbcHeuristicDive.

The documentation for this class was generated from the following file:

+ CbcHeuristicDiveLineSearch.hpp

4,50 CbcHeuristicDivePseudoCost Class Reference

DivePseudoCost class.

#include <CbcHeuristicDivePseudoCost.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.50 CbcHeuristicDivePseudoCost Class Reference 143

Inheritance diagram for CbcHeuristicDivePseudoCost:

CbcHeuristic

CbcHeuristicDive

CbcHeuristicDivePseudoCost

Collaboration diagram for CbcHeuristicDivePseudoCost:

Public Member Functions

« virtual CbcHeuristicDivePseudoCost * clone () const
Clone.

» CbcHeuristicDivePseudoCost & operator= (const CbcHeuristicDivePseudoCost
&rhs)

Assignment operator.
« virtual void generateCpp (FILE xfp)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.51 CbcHeuristicDiveVectorLength Class Reference 144

Create C++ lines to get to current state.
virtual bool selectVariableToBranch (OsiSolverinterface *xsolver, const double xnewSolution,
int &bestColumn, int &bestRound)

Selects the next variable to branch on.
virtual void initializeData ()

Initializes any data which is going to be used repeatedly in selectVariable ToBranch.
virtual int fixOtherVariables (OsiSolverinterface *solver, const double xsolution,
PseudoReducedCost xcandidate, const double xrandom)

Fix other variables at bounds.

4,50.1 Detailed Description

DivePseudoCost class.

Definition at line 14 of file CbcHeuristicDivePseudoCost.hpp.

4.50.2 Member Function Documentation

4.50.2.1 virtual bool CbcHeuristicDivePseudoCost::selectVariableToBranch (OsiSolverinterface
x solver, const double « newSolution, int & bestColumn, int & bestRound)
[virtual]

Selects the next variable to branch on.

Returns true if all the fractional variables can be trivially rounded. Returns false, if
there is at least one fractional variable that is not trivially roundable. In this case, the
bestColumn returned will not be trivially roundable.

Implements CbcHeuristicDive.

The documentation for this class was generated from the following file:

+ CbcHeuristicDivePseudoCost.hpp

4.51 ChbcHeuristicDiveVectorLength Class Reference

DiveVectorLength class.

#include <CbcHeuristicDiveVectorLength.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.51 CbcHeuristicDiveVectorLength Class Reference 145

Inheritance diagram for CbcHeuristicDiveVectorLength:

CbcHeuristic

CbcHeuristicDive

CbcHeuristicDiveVectorLength

Collaboration diagram for CbcHeuristicDiveVectorLength:

Public Member Functions

« virtual CbcHeuristicDiveVectorLength * clone () const
Clone.

» CbcHeuristicDiveVectorLength & operator= (const CbcHeuristicDiveVectorLength
&rhs)

Assignment operator.
« virtual void generateCpp (FILE xfp)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.52 CbcHeuristicDynamic3 Class Reference 146

Create C++ lines to get to current state.

« virtual bool selectVariableToBranch (OsiSolverinterface xsolver, const double xnewSolution,
int &bestColumn, int &bestRound)

Selects the next variable to branch on.

4511 Detailed Description

DiveVectorLength class.

Definition at line 14 of file CbcHeuristicDiveVectorLength.hpp.

4.51.2 Member Function Documentation

4.51.2.1 virtual bool CbcHeuristicDiveVectorLength::selectVariableToBranch (
OsiSolverinterface * solver, const double « newSolution, int & bestColumn, int &
bestRound) [virtual]

Selects the next variable to branch on.

Returns true if all the fractional variables can be ftrivially rounded. Returns false, if
there is at least one fractional variable that is not trivially roundable. In this case, the
bestColumn returned will not be trivially roundable.

Implements CbcHeuristicDive.

The documentation for this class was generated from the following file:

+ CbcHeuristicDiveVectorLength.hpp

4.52 ChcHeuristicDynamic3 Class Reference

heuristic - just picks up any good solution

#include <CbcLinked.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.52 CbcHeuristicDynamic3 Class Reference 147

Inheritance diagram for CbcHeuristicDynamic3:

CbcHeuristic

CbcHeuristicDynamic3

Collaboration diagram for CbcHeuristicDynamic3:

Public Member Functions

« virtual CbcHeuristic * clone () const

Clone.
« virtual void setModel (CbcModel xmodel)

update model
« virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.
« virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.
« virtual bool canDealWithOdd () const

Returns true if can deal with "odd" problems e.g. sos type 2.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.53 CbcHeuristicFPump Class Reference 148

4,521 Detailed Description

heuristic - just picks up any good solution

Definition at line 379 of file CbcLinked.hpp.

4.52.2 Member Function Documentation

4.52.2.1 virtual int CbcHeuristicDynamic3::solution (double & objectiveValue, double x
newSolution) [virtuall]
returns 0 if no solution, 1 if valid solution.

Sets solution values if good, sets objective value (only if good) We leave all variables
which are at one at this node of the tree to that value and will initially set all others to
zero. We then sort all variables in order of their cost divided by the number of entries
in rows which are not yet covered. We randomize that value a bit so that ties will be
broken in different ways on different runs of the heuristic. We then choose the best one
and set it to one and repeat the exercise.

Implements CbcHeuristic.

The documentation for this class was generated from the following file:

+ CbcLinked.hpp

4,53 CbcHeuristicFPump Class Reference

Feasibility Pump class.
#include <CbcHeuristicFPump.hpp>

Inheritance diagram for CbcHeuristicFPump:

CbcHeuristic

CbcHeuristicFPump

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.53 CbcHeuristicFPump Class Reference 149

Collaboration diagram for CbcHeuristicFPump:

Public Member Functions

» CbcHeuristicFPump & operator= (const CbcHeuristicFPump &rhs)
Assignment operator.
« virtual CbcHeuristic * clone () const
Clone.
« virtual void generateCpp (FILE xfp)
Create C++ lines to get to current state.
+ virtual void resetModel (CbcModel xmodel)
Resets stuff if model changes.
« virtual void setModel (CbcModel xmodel)
update model (This is needed if cliques update matrix etc)
« virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution with better objective value than one passed
in Sets solution values if good, sets objective value (only if good) This is called after
cuts have been added - so can not add cuts.

+ void setMaximumTime (double value)

Set maximum Time (default off) - also sets starttime to current.
+ double maximumTime () const

Get maximum Time (default 0.0 == time limit off)
+ void setFakeCutoff (double value)

Set fake cutoff (default COIN_DBL_MAX == off)
+ double fakeCutoff () const

Get fake cutoff (default 0.0 == off)
+ void setAbsolutelncrement (double value)

Set absolute increment (default 0.0 == off)
+ double absolutelncrement () const

Get absolute increment (default 0.0 == off)
+ void setRelativelncrement (double value)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.53

CbcHeuristicFPump Class Reference

150

Set relative increment (default 0.0 == off)
double relativelncrement () const
Get relative increment (default 0.0 == off)
void setDefaultRounding (double value)
Set default rounding (default 0.5)
double defaultRounding () const
Get default rounding (default 0.5)
void setlnitialWeight (double value)
Set initial weight (default 0.0 == off)
double initialWeight () const
Get initial weight (default 0.0 == off)
void setWeightFactor (double value)
Set weight factor (default 0.1)
double weightFactor () const
Get weight factor (default 0.1)
void setArtificialCost (double value)

Set threshold cost for using original cost - even on continuous (default infinity)

double artificialCost () const

Get threshold cost for using original cost - even on continuous (default infinity)

double iterationRatio () const
Get iteration to size ratio.
void setlterationRatio (double value)
Set iteration to size ratio.
void setMaximumPasses (int value)
Set maximum passes (default 100)
int maximumPasses () const
Get maximum passes (default 100)
void setMaximumRetries (int value)
Set maximum retries (default 1)
int maximumRetries () const
Get maximum retries (default 1)
void setAccumulate (int value)

Set use of multiple solutions and solves 0 - do not reuse solves, do not accumulate
integer solutions for local search 1 - do not reuse solves, accumulate integer solutions
for local search 2 - reuse solves, do not accumulate integer solutions for local search
3 - reuse solves, accumulate integer solutions for local search If we add 4 then use
second form of problem (with extra rows and variables for general integers) At some

point (date?), | added.
int accumulate () const

Get accumulation option.
void setFixOnReducedCosts (int value)

Set whether to fix variables on known solution 0 - do not fix 1 - fix integers on reduced

costs 2 - fix integers on reduced costs but only on entry.

int fixOnReducedCosts () const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.53 CbcHeuristicFPump Class Reference 151

Get reduced cost option.

« void setReducedCostMultiplier (double value)
Set reduced cost multiplier 1.0 as normal < 1.0 (x) - pretend gap is xx actual gap - just
for fixing.

+ double reducedCostMultiplier () const

Get reduced cost multiplier.

Protected Attributes

 double startTime__

Start time.
+ double maximumTime_

Maximum Cpu seconds.
+ double fakeCutoff_

Fake cutoff value.
» double absolutelncrement_

If positive carry on after solution expecting gain of at least this.
« double relativelncrement__

If positive carry on after solution expecting gain of at least this times objective.
+ double defaultRounding_

Default is round up if > this.
+ double initialWeight_

Initial weight for true objective.
+ double weightFactor_

Factor for decreasing weight.
+ double artificialCost_

Threshold cost for using original cost - even on continuous.
» double iterationRatio

If iterationRatio >0 use instead of maximumPasses_ test is iterations > ratiox(2xnrow+ncol)
+ double reducedCostMultiplier_
Reduced cost multiplier 1.0 as normal < 1.0 (x) - pretend gap is x* actual gap - just for
fixing.
* int maximumPasses_
Maximum number of passes.
* int maximumRetries__

Maximum number of retries if we find a solution.
* int accumulate

Set use of multiple solutions and solves 0 - do not reuse solves, do not accumulate
integer solutions for local search 1 - do not reuse solves, accumulate integer solutions
for local search 2 - reuse solves, do not accumulate integer solutions for local search
3 - reuse solves, accumulate integer solutions for local search If we add 4 then use
second form of problem (with extra rows and variables for general integers) If we do
not accumulate solutions then no mini branch and bounds will be done reuse - refers
to initial solve after adding in new "cut" If we add 8 then can run after initial cuts (if no
solution)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.53 CbcHeuristicFPump Class Reference 152

« int fixOnReducedCosts_
Set whether to fix variables on known solution 0 - do not fix 1 - fix integers on reduced
costs 2 - fix integers on reduced costs but only on entry.

* bool roundExpensive_

If true round to expensive.

4.53.1 Detailed Description

Feasibility Pump class.

Definition at line 15 of file CbcHeuristicFPump.hpp.

4.53.2 Member Function Documentation

4.53.2.1 virtual int CbcHeuristicFPump::solution (double & objectiveValue, double
newSolution) [virtual]

returns 0 if no solution, 1 if valid solution with better objective value than one passed in
Sets solution values if good, sets objective value (only if good) This is called after cuts
have been added - so can not add cuts.

It may make sense for user to call this outside Branch and Cut to get solution. Or
normally is just at root node.

new meanings for when_ - on first try then set back to 1 11 - at end fix all integers at
same bound throughout 12 - also fix all integers staying at same internal integral value
throughout 13 - also fix all continuous variables staying at same bound throughout 14
- also fix all continuous variables staying at same internal value throughout 15 - as 13
but no internal integers And beyond that, it's apparently possible for the range to be
between 21 and 25, in which case it's reduced on entry to solution() to be between 11
and 15 and allSlack is set to true. Then, if we're not processing general integers, we’ll
use an all-slack basis to solve ... what? Don’t see that yet.

Implements CbcHeuristic.
4.53.2.2 void CbcHeuristicFPump::setAccumulate (intvalue) [inline]

Set use of multiple solutions and solves 0 - do not reuse solves, do not accumulate
integer solutions for local search 1 - do not reuse solves, accumulate integer solutions
for local search 2 - reuse solves, do not accumulate integer solutions for local search
3 - reuse solves, accumulate integer solutions for local search If we add 4 then use
second form of problem (with extra rows and variables for general integers) At some
point (date?), | added.

And then there are a few bit fields: 4 - something about general integers So my (lh)
guess for 4 was at least in the ballpark, but I'll have to rethink 8 entirely (and it may well
not mean the same thing as it did when | added that comment. 8 - determines whether
we process general integers

And on 090831, John added

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.54 CbcHeuristicGreedyCover Class Reference 153

If we add 4 then use second form of problem (with extra rows and variables for general
integers) If we add 8 then can run after initial cuts (if no solution)

Definition at line 175 of file CbcHeuristicFPump.hpp.

4.53.3 Member Data Documentation

4.53.3.1 double CbcHeuristicFPump::fakeCutoff _ [protected]

Fake cutoff value.
If set then better of real cutoff and this used to add a constraint

Definition at line 215 of file CbcHeuristicFPump.hpp.
4.53.3.2 int CbcHeuristicFPump::maximumRetries_ [protected]

Maximum number of retries if we find a solution.
If negative we clean out used array
Definition at line 241 of file CbcHeuristicFPump.hpp.

The documentation for this class was generated from the following file:

+ CbcHeuristicFPump.hpp

4,54 CbcHeuristicGreedyCover Class Reference

Greedy heuristic classes.
#include <CbcHeuristicGreedy.hpp>

Inheritance diagram for CbcHeuristicGreedyCover:

CbcHeuristic

CbcHeuristicGreedyCover

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.54 CbcHeuristicGreedyCover Class Reference 154

Collaboration diagram for CbcHeuristicGreedyCover:

Public Member Functions

« virtual CbcHeuristic * clone () const
Clone.
» CbcHeuristicGreedyCover & operator= (const CbcHeuristicGreedyCover &rhs)
Assignment operator.
virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.
virtual void validate ()

Validate model i.e. sets when_ to 0 if necessary (may be NULL)
virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.

Protected Member Functions
+ void gutsOfConstructor (CbcModel xmodel)
Guts of constructor from a CbcModel.
Protected Attributes

* int numberTimes__

Do this many times.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.55 CbcHeuristicGreedyEquality Class Reference 155

4,541 Detailed Description

Greedy heuristic classes.

Definition at line 13 of file CbcHeuristicGreedy.hpp.

4.54.2 Member Function Documentation

4.54.2.1 virtual int CbcHeuristicGreedyCover::solution (double & objectiveValue, double
newSolution) [virtuall]
returns 0 if no solution, 1 if valid solution.

Sets solution values if good, sets objective value (only if good) We leave all variables
which are at one at this node of the tree to that value and will initially set all others to
zero. We then sort all variables in order of their cost divided by the number of entries
in rows which are not yet covered. We randomize that value a bit so that ties will be
broken in different ways on different runs of the heuristic. We then choose the best one
and set it to one and repeat the exercise.

Implements CbcHeuristic.

The documentation for this class was generated from the following file:

+ CbcHeuristicGreedy.hpp

4,55 CbcHeuristicGreedyEquality Class Reference

Inheritance diagram for CbcHeuristicGreedyEquality:

CbcHeuristic

CbcHeuristicGreedy Equality

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.55 CbcHeuristicGreedyEquality Class Reference 156

Collaboration diagram for CbcHeuristicGreedyEquality:

Public Member Functions

« virtual CbcHeuristic * clone () const

Clone.
» CbcHeuristicGreedyEquality & operator= (const CbcHeuristicGreedyEquality &rhs)

Assignment operator.
virtual void generateCpp (FILE *fp)

Create C++ lines to get to current state.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.
« virtual void validate ()

Validate model i.e. sets when_ to 0 if necessary (may be NULL)
« virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.
Protected Member Functions
+ void gutsOfConstructor (CbcModel xmodel)
Guts of constructor from a CbcModel.
Protected Attributes

* int numberTimes__

Do this many times.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.56 CbcHeuristicGreedySOS Class Reference 157

4.55.1 Detailed Description

Definition at line 98 of file CbcHeuristicGreedy.hpp.

4.55.2 Member Function Documentation

4.55.2.1 virtual int CbcHeuristicGreedyEquality::solution (double & objectiveValue, double x
newSolution) [virtuall]

returns 0 if no solution, 1 if valid solution.

Sets solution values if good, sets objective value (only if good) We leave all variables
which are at one at this node of the tree to that value and will initially set all others to
zero. We then sort all variables in order of their cost divided by the number of entries
in rows which are not yet covered. We randomize that value a bit so that ties will be
broken in different ways on different runs of the heuristic. We then choose the best one
and set it to one and repeat the exercise.

Implements CbcHeuristic.

The documentation for this class was generated from the following file:

+ CbcHeuristicGreedy.hpp

4.56 CbcHeuristicGreedySOS Class Reference

Greedy heuristic for SOS and L rows (and positive elements)
#include <CbcHeuristicGreedy.hpp>

Inheritance diagram for CbcHeuristicGreedySOS:

CbcHeuristic

CbcHeuristicGreedySOS

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.56 CbcHeuristicGreedySOS Class Reference 158

Collaboration diagram for CbcHeuristicGreedySOS:

o |

Public Member Functions

virtual CbcHeuristic * clone () const
Clone.

» CbcHeuristicGreedySOS & operator= (const CbcHeuristicGreedySOS &rhs)
Assignment operator.

virtual void generateCpp (FILE *fp)

Create C++ lines to get to current state.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.
virtual void validate ()

Validate model i.e. sets when_ to 0 if necessary (may be NULL)
virtual void resetModel (CbcModel sxmodel)

Resets stuff if model changes.

Protected Member Functions
+ void gutsOfConstructor (CbcModel xmodel)
Guts of constructor from a CbcModel.
Protected Attributes

* int numberTimes__

Do this many times.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.57 CbcHeuristicJustOne Class Reference 159

4.56.1 Detailed Description

Greedy heuristic for SOS and L rows (and positive elements)

Definition at line 193 of file CbcHeuristicGreedy.hpp.

4.56.2 Member Function Documentation

4.56.2.1 virtual int CbcHeuristicGreedySOS::solution (double & objectiveValue, double
newSolution) [virtuall]
returns 0 if no solution, 1 if valid solution.

Sets solution values if good, sets objective value (only if good) We leave all variables
which are at one at this node of the tree to that value and will initially set all others to
zero. We then sort all variables in order of their cost divided by the number of entries
in rows which are not yet covered. We randomize that value a bit so that ties will be
broken in different ways on different runs of the heuristic. We then choose the best one
and set it to one and repeat the exercise.

Implements CbcHeuristic.

The documentation for this class was generated from the following file:

+ CbcHeuristicGreedy.hpp

4,57 CbcHeuristicJustOne Class Reference

Just One class - this chooses one at random.
#include <CbcHeuristic.hpp>

Inheritance diagram for CbcHeuristicJustOne:

CbcHeuristic

CbcHeuristicJustOne

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.57 CbcHeuristicJustOne Class Reference 160

Collaboration diagram for CbcHeuristicJustOne:

Public Member Functions

« virtual CbcHeuristicJustOne * clone () const

Clone.
CbcHeuristicJustOne & operator= (const CbcHeuristicJustOne &rhs)

Assignment operator.
virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution with better objective value than one passed
in Sets solution values if good, sets objective value (only if good) This is called after
cuts have been added - so can not add cuts This does Fractional Diving

virtual void resetModel (CbcModel *model)

Resets stuff if model changes.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual bool selectVariableToBranch (OsiSolverinterface *, const double x, int &,
int &)

Selects the next variable to branch on.
virtual void validate ()

Validate model i.e. sets when_ to 0 if necessary (may be NULL)
+ void addHeuristic (const CbcHeuristic *heuristic, double probability)

Adds an heuristic with probability.
+ void normalizeProbabilities ()

Normalize probabilities.

4.57.1 Detailed Description

Just One class - this chooses one at random.

Definition at line 589 of file CbcHeuristic.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.58 CbcHeuristicLocal Class Reference 161

4.57.2 Member Function Documentation

4.57.2.1 virtual bool ChcHeuristicJustOne::selectVariableToBranch (OsiSolverinterface ,
const double %, int&, int&) [inline, virtual]

Selects the next variable to branch on.

Returns true if all the fractional variables can be trivially rounded. Returns false, if
there is at least one fractional variable that is not trivially roundable. In this case, the
bestColumn returned will not be trivially roundable. This is dummy as never called

Definition at line 633 of file CbcHeuristic.hpp.

The documentation for this class was generated from the following file:

+ CbcHeuristic.hpp

4.58 ChcHeuristicLocal Class Reference

LocalSearch class.
#include <CbcHeuristicLocal.hpp>

Inheritance diagram for CbcHeuristicLocal:

CbcHeuristic

CbcHeuristicLocal

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.58

CbcHeuristicLocal Class Reference 162

Collaboration diagram for CbcHeuristicLocal:

Public Member Functions

virtual CbcHeuristic * clone () const

Clone.
CbcHeuristicLocal & operator= (const CbcHeuristicLocal &rhs)

Assignment operator.
virtual void generateCpp (FILE *fp)

Create C++ lines to get to current state.
virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.
int solutionFix (double &objectiveValue, double xnewSolution, const int xkeep)

This version fixes stuff and does IP.
void setSearchType (int value)

Sets type of search.
int x used () const

Used array so we can set.

Protected Attributes

int x used

Whether a variable has been in a solution (also when)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.59 CbcHeuristicNaive Class Reference 163

4.58.1 Detailed Description

LocalSearch class.

Definition at line 13 of file CbcHeuristicLocal.hpp.

4.58.2 Member Function Documentation

4.58.2.1 virtual int CbcHeuristicLocal::solution (double & objectiveValue, double « newSolution
) [virtual]
returns 0 if no solution, 1 if valid solution.

Sets solution values if good, sets objective value (only if good) This is called after cuts
have been added - so can not add cuts First tries setting a variable to better value. If
feasible then tries setting others. If not feasible then tries swaps

This first version does not do LP’s and does swaps of two integer variables. Later
versions could do Lps.

Implements CbcHeuristic.

The documentation for this class was generated from the following file:

+ CbcHeuristicLocal.hpp

4.59 CbcHeuristicNaive Class Reference

Naive class a) Fix all ints as close to zero as possible b) Fix all ints with nonzero costs
and < large to zero c) Put bounds round continuous and Uls and maximize.

#include <CbcHeuristicLocal.hpp>

Inheritance diagram for CbcHeuristicNaive:

CbcHeuristic

A

CbcHeuristicNaive

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.59 CbcHeuristicNaive Class Reference 164

Collaboration diagram for CbcHeuristicNaive:

Public Member Functions

« virtual CbcHeuristic * clone () const
Clone.
» CbcHeuristicNaive & operator= (const CbcHeuristicNaive &rhs)
Assignment operator.
virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.
void setLargeValue (double value)

Sets large cost value.
double largeValue () const

Gets large cost value.

Protected Attributes
 double large_

Data Large value.

4.59.1 Detailed Description

Naive class a) Fix all ints as close to zero as possible b) Fix all ints with nonzero costs
and < large to zero c¢) Put bounds round continuous and Uls and maximize.

Definition at line 94 of file CbcHeuristicLocal.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.60 CbcHeuristicNode Class Reference 165

4.59.2 Member Function Documentation

4.59.2.1 virtual int CbcHeuristicNaive::solution (double & objectiveValue, double « newSolution
) [virtual]

returns 0 if no solution, 1 if valid solution.
Sets solution values if good, sets objective value (only if good)
Implements CbcHeuristic.

The documentation for this class was generated from the following file:

+ CbcHeuristicLocal.hpp

4.60 ChbcHeuristicNode Class Reference

A class describing the branching decisions that were made to get to the node where a
heuristic was invoked from.
#include <CbcHeuristic.hpp>

Collaboration diagram for CbcHeuristicNode:

4.60.1 Detailed Description

A class describing the branching decisions that were made to get to the node where a
heuristic was invoked from.
Definition at line 28 of file CbcHeuristic.hpp.

The documentation for this class was generated from the following file:

+ CbcHeuristic.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.61 CbcHeuristicNodeList Class Reference 166

4.61 CbcHeuristicNodeList Class Reference

Collaboration diagram for CbcHeuristicNodelList:

aaaaaaaa

4.61.1 Detailed Description

Definition at line 52 of file CbcHeuristic.hpp.

The documentation for this class was generated from the following file:

+ CbcHeuristic.hpp

4,62 CbcHeuristicPartial Class Reference

Partial solution class If user knows a partial solution this tries to get an integer solution
it uses hotstart information.

#include <CbcHeuristic.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.62 CbcHeuristicPartial Class Reference 167

Inheritance diagram for CbcHeuristicPartial:

CbcHeuristic

CbcHeuristicPartial

Collaboration diagram for CbcHeuristicPartial:

Public Member Functions

 CbcHeuristicPartial (CbcModel &model, int fixPriority=10000, int numberNodes=200)

Constructor with model - assumed before cuts Fixes all variables with priority <= given
and does given number of nodes.

» CbcHeuristicPartial & operator= (const CbcHeuristicPartial &rhs)
Assignment operator.
virtual CbcHeuristic * clone () const

Clone.
virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
« virtual void resetModel (CbcModel xmodel)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.63 CbcHeuristicPivotAndFix Class Reference 168

Resets stuff if model changes.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution with better objective value than one passed
in Sets solution values if good, sets objective value (only if good) This is called after
cuts have been added - so can not add cuts

virtual void validate ()

Validate model i.e. sets when_ to 0 if necessary (may be NULL)
void setFixPriority (int value)

Set priority level.
virtual bool shouldHeurRun (int whereFrom)

Check whether the heuristic should run at all.

4.62.1 Detailed Description

Partial solution class If user knows a partial solution this tries to get an integer solution
it uses hotstart information.
Definition at line 477 of file CbcHeuristic.hpp.

The documentation for this class was generated from the following file:

+ CbcHeuristic.hpp

4.63 CbcHeuristicPivotAndFix Class Reference

LocalSearch class.
#include <CbcHeuristicPivotAndFix.hpp>

Inheritance diagram for CbcHeuristicPivotAndFix:

CbcHeuristic

CbcHeuristicPivotAndFix

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.63 CbcHeuristicPivotAndFix Class Reference 169

Collaboration diagram for CbcHeuristicPivotAndFix:

Public Member Functions

virtual CbcHeuristic * clone () const
Clone.

» CbcHeuristicPivotAndFix & operator= (const CbcHeuristicPivotAndFix &rhs)
Assignment operator.

virtual void generateCpp (FILE *fp)

Create C++ lines to get to current state.
virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.
« virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
« virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.

4.63.1 Detailed Description

LocalSearch class.

Definition at line 13 of file CbcHeuristicPivotAndFix.hpp.

4.63.2 Member Function Documentation

4.63.2.1 virtual int CbcHeuristicPivotAndFix::solution (double & objectiveValue, double
newSolution) [virtuall]

returns 0 if no solution, 1 if valid solution.
Sets solution values if good, sets objective value (only if good) needs comments

Implements CbcHeuristic.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.64 CbcHeuristicRandRound Class Reference 170

The documentation for this class was generated from the following file:

+ CbcHeuristicPivotAndFix.hpp

4.64 CbcHeuristicRandRound Class Reference

LocalSearch class.
#include <CbcHeuristicRandRound.hpp>

Inheritance diagram for CbcHeuristicRandRound:

CbcHeuristic

CbcHeuristicRandRound

Collaboration diagram for CbcHeuristicRandRound:

Public Member Functions

« virtual CbcHeuristic * clone () const

Clone.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.65 CbcHeuristicRENS Class Reference 171

» CbcHeuristicRandRound & operator= (const CbcHeuristicRandRound &rhs)

Assignment operator.
virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.

4.64.1 Detailed Description

LocalSearch class.

Definition at line 13 of file CbcHeuristicRandRound.hpp.

4.64.2 Member Function Documentation

4.64.2.1 virtual int CbcHeuristicRandRound::solution (double & objectiveValue, double
newSolution) [virtual]

returns 0 if no solution, 1 if valid solution.
Sets solution values if good, sets objective value (only if good) needs comments
Implements CbcHeuristic.

The documentation for this class was generated from the following file:

+ CbcHeuristicRandRound.hpp

4.65 CbcHeuristicRENS Class Reference

LocalSearch class.

#include <CbcHeuristicRENS.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.65 CbcHeuristicRENS Class Reference 172

Inheritance diagram for CbcHeuristicRENS:

CbcHeuristic

CbcHeuristicRENS

Collaboration diagram for CbcHeuristicRENS:

Public Member Functions

« virtual CbcHeuristic * clone () const

Clone.
» CbcHeuristicRENS & operator= (const CbcHeuristicRENS &rhs)

Assignment operator.
« virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.
« virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
« virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.
+ void setRensType (int value)

Set type.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.66 CbcHeuristicRINS Class Reference 173

Protected Attributes

* int numberTries_

Number of tries.
* int rensType_

Type 0 - fix at LB 1 - fix on dj 2 - fix at UB as well 3 - fix on 0.01xaverage dj add 16 to
allow two tries.

4.65.1 Detailed Description

LocalSearch class.

Definition at line 16 of file CbcHeuristicRENS.hpp.

4.65.2 Member Function Documentation

4.65.2.1 virtual int CbcHeuristicRENS::solution (double & objectiveValue, double
newSolution) [virtuall

returns 0 if no solution, 1 if valid solution.

Sets solution values if good, sets objective value (only if good) This does Relaxation
Extension Neighborhood Search Does not run if when_<2 and a solution exists

Implements CbcHeuristic.

The documentation for this class was generated from the following file:

+ CbcHeuristicRENS.hpp

4,66 CbcHeuristicRINS Class Reference

LocalSearch class.

#include <CbcHeuristicRINS.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.66 CbcHeuristicRINS Class Reference 174

Inheritance diagram for CbcHeuristicRINS:

CbcHeuristic

CbcHeuristicRINS

Collaboration diagram for CbcHeuristicRINS:

Public Member Functions

« virtual CbcHeuristic * clone () const
Clone.
» CbcHeuristicRINS & operator= (const CbcHeuristicRINS &rhs)
Assignment operator.
« virtual void generateCpp (FILE xfp)
Create C++ lines to get to current state.
« virtual void resetModel (CbcModel xmodel)
Resets stuff if model changes.
« virtual void setModel (CbcModel xmodel)
update model (This is needed if cliques update matrix etc)
« virtual int solution (double &objectiveValue, double xnewSolution)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.66 CbcHeuristicRINS Class Reference 175

returns 0 if no solution, 1 if valid solution.
« int solutionFix (double &objectiveValue, double xnewSolution, const int xkeep)

This version fixes stuff and does IP.
+ void setHowOften (int value)

Sets how often to do it.
» char x used () const

Used array so we can set.
+ void setLastNode (int value)

Resets lastNode.

Protected Attributes

* int numberSolutions_

Number of solutions so we can do something at solution.
¢ int howOften_

How often to do (code can change)
* int numberSuccesses_

Number of successes.
* int numberTries_

Number of tries.
+ int stateOfFixing_

State of fixing continuous variables - 0 - not tried +n - this divisor makes small enough.
* int lastNode__

Node when last done.
 char % used_

Whether a variable has been in a solution.

4.66.1 Detailed Description

LocalSearch class.

Definition at line 17 of file CbcHeuristicRINS.hpp.

4.66.2 Member Function Documentation

4.66.2.1 virtual int CbcHeuristicRINS::solution (double & objectiveValue, double x newSolution
) [virtual]
returns 0 if no solution, 1 if valid solution.

Sets solution values if good, sets objective value (only if good) This does Relaxation
Induced Neighborhood Search

Implements CbcHeuristic.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.67 CbcHeuristicVND Class Reference 176

4.66.3 Member Data Documentation

4.66.3.1 int CbcHeuristicRINS::stateOfFixing_ [protected]

State of fixing continuous variables - 0 - not tried +n - this divisor makes small enough.
-n - this divisor still not small enough
Definition at line 91 of file CbcHeuristicRINS.hpp.

The documentation for this class was generated from the following file:

+ CbcHeuristicRINS.hpp

4,67 CbcHeuristicVND Class Reference

LocalSearch class.
#include <CbcHeuristicVND.hpp>

Inheritance diagram for CbcHeuristicVND:

CbcHeuristic

CbcHeuristicVND

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.67 CbcHeuristicVND Class Reference 177

Collaboration diagram for CbcHeuristicVND:

Public Member Functions

» virtual CbcHeuristic * clone () const
Clone.
» CbcHeuristicVND & operator= (const CbcHeuristicVND &rhs)
Assignment operator.
virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.
int solutionFix (double &objectiveValue, double «xnewSolution, const int xkeep)

This version fixes stuff and does IP
void setHowOften (int value)

Sets how often to do it.
+ double x baseSolution () const

base solution array so we can set

Protected Attributes

* int numberSolutions_

Number of solutions so we can do something at solution.
* int howOften_

How often to do (code can change)
* int numberSuccesses_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.68 CbclIntegerBranchingObject Class Reference 178

Number of successes.
* int numberTries_

Number of tries.
* int lastNode__

Node when last done.
* int stepSize_

Step size for decomposition.
+ double x baseSolution_

Base solution.

4.67.1 Detailed Description

LocalSearch class.

Definition at line 17 of file CbcHeuristicVND.hpp.

4.67.2 Member Function Documentation

4.67.2.1 virtual int CbcHeuristicVND::solution (double & objectiveValue, double x newSolution
) [virtual]

returns 0 if no solution, 1 if valid solution.

Sets solution values if good, sets objective value (only if good) This does Relaxation
Induced Neighborhood Search

Implements CbcHeuristic.

The documentation for this class was generated from the following file:

+ CbcHeuristicVND.hpp

4.68 ChbcintegerBranchingObject Class Reference

Simple branching object for an integer variable.

#include <CbcSimpleInteger.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.68 CbclIntegerBranchingObject Class Reference

179

Inheritance diagram for CbclntegerBranchingObject:

CbcBranchingObject

ChbclntegerBranchingObject

CbcDynamicPseudoCostBranchingObject

ChbclntegerPseudoCostBranchingObject

Collaboration diagram for CbclntegerBranchingObject:

.
, e
rrrrr v S .
""""""
e
-
.
,,,,,,,,

o[CocOboctUpoteData

777777777

T \\

nodeComparo

,, onghalCoeQbject. __ _ _ _ _ _

Public Member Functions
 CbcintegerBranchingObiject ()
Default constructor.

» CbclntegerBranchingObject (CbcModel xmodel, int variable, int way, double value)

Create a standard floor/ceiling branch object.

+ CbcintegerBranchingObject (CbcModel sxmodel, int variable, int way, double low-
erValue, double upperValue)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.68 CbclIntegerBranchingObject Class Reference 180

Create a degenerate branch object.
ChbclntegerBranchingObject (const CbclntegerBranchingObject &)

Copy constructor.
CbclntegerBranchingObject & operator= (const CbclntegerBranchingObject &rhs)

Assignment operator.
virtual CbcBranchingObiject * clone () const

Clone.
virtual ~CbclntegerBranchingObject ()

Destructor.
void fillPart (int variable, int way, double value)

Does part of constructor.
virtual double branch ()

Sets the bounds for the variable according to the current arm of the branch and ad-
vances the object state to the next arm.
virtual void fix (OsiSolverInterface xsolver, double xlower, double xupper, int branch-
State) const

Update bounds in solver as in 'branch’ and update given bounds.
virtual bool tighten (OsiSolverInterface)

Change (tighten) bounds in object to reflect bounds in solver.
virtual void print ()

Print something about branch - only if log level high.
const double * downBounds () const

Lower and upper bounds for down branch.
const double * upBounds () const

Lower and upper bounds for up branch.
+ void setDownBounds (const double bounds[2])
Set lower and upper bounds for down branch.
void setUpBounds (const double bounds([2])

Set lower and upper bounds for up branch.
virtual CbcBranchObjType type () const

Return the type (an integer identifier) of this.
virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
+brObj, const bool replacelfOverlap=false)

Compare the this with brobj.

Protected Attributes

+ double down_ [2]

Lower [0] and upper [1] bounds for the down arm (way_ = -1)
+ double up_ [2]
Lower [0] and upper [1] bounds for the up arm (way_ = 1)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.68 CbclIntegerBranchingObject Class Reference 181

4.68.1 Detailed Description

Simple branching object for an integer variable.

This object can specify a two-way branch on an integer variable. For each arm of the
branch, the upper and lower bounds on the variable can be independently specified.

Variable_ holds the index of the integer variable in the integerVariable_ array of the
model.

Definition at line 21 of file CbcSimplelnteger.hpp.

4.68.2 Constructor & Destructor Documentation

4.68.2.1 CbcintegerBranchingObject::CbcintegerBranchingObject (CbcModel +« model, int
variable, int way, double value)
Create a standard floor/ceiling branch object.

Specifies a simple two-way branch. Let value = xx. One arm of the branch will be Ib
<= x <= floor(xx), the other ceil(xx) <= x <= ub. Specify way = -1 to set the object
state to perform the down arm first, way = 1 for the up arm.

4.68.2.2 CbcintegerBranchingObject::CbcintegerBranchingObject (CbcModel + model, int
variable, int way, double lowerValue, double upperValue)
Create a degenerate branch object.

Specifies a ‘one-way branch’. Calling branch() for this object will always result in lower-
Value <= x <= upperValue. Used to fix a variable when lowerValue = upperValue.

4.68.3 Member Function Documentation

4.68.3.1 virtual double ChcintegerBranchingObject::branch() [virtual]

Sets the bounds for the variable according to the current arm of the branch and ad-
vances the object state to the next arm.

Returns change in guessed objective on next branch
Implements CbcBranchingObject.

Reimplemented in CbcDynamicPseudoCostBranchingObject, and CbclntegerPseudo-
CostBranchingObject.

4.68.3.2 virtual void CbclntegerBranchingObject::fix (OsiSolverinterface x solver, double x
lower, double * upper, int branchState)const [virtual]

Update bounds in solver as in ’branch’ and update given bounds.
branchState is -1 for 'down’ +1 for 'up’

Reimplemented from CbcBranchingObject.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.69 CbclntegerPseudoCostBranchingObject Class Reference 182

4.68.3.3 virtual bool CbcintegerBranchingObject::tighten (OsiSolverinterface *«)
[virtual]

Change (tighten) bounds in object to reflect bounds in solver.

Return true if now fixed

Reimplemented from CbcBranchingObject.

4.68.3.4 virtual ChocRangeCompare ChclntegerBranchingObject::compareBranchingObject (
const CbcBranchingObiject x brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brObj.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CbcRangeCompare
value (first argument being the sub/superset if that’s the case). In case of overlap (and
if replaceIlfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.
Reimplemented in CbclntegerPseudoCostBranchingObject.

The documentation for this class was generated from the following file:

» CbcSimplelnteger.hpp

4.69 ChbcintegerPseudoCostBranchingObject Class Reference

Simple branching object for an integer variable with pseudo costs.

#include <CbcSimpleIntegerDynamicPseudoCost.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.69 CbclntegerPseudoCostBranchingObject Class Reference 183

Inheritance diagram for CbclntegerPseudoCostBranchingObject:

CbcBranchingObject

CbclntegerBranchingObject

CbclntegerPseudoCostBranchingObject

Collaboration diagram for CbclntegerPseudoCostBranchingObject:

Public Member Functions

+ CbclntegerPseudoCostBranchingObiject ()

Default constructor.
+ CbclntegerPseudoCostBranchingObject (CbcModel xmodel, int variable, int way,
double value)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.69 CbclntegerPseudoCostBranchingObject Class Reference 184

Create a standard floor/ceiling branch object.
CbclIntegerPseudoCostBranchingObject (CbcModel xmodel, int variable, int way,
double lowerValue, double upperValue)

Create a degenerate branch object.
CbclntegerPseudoCostBranchingObject (const CbclntegerPseudoCostBranchin-
gObject &)

Copy constructor.
CbclntegerPseudoCostBranchingObject & operator= (const CbclntegerPseudo-
CostBranchingObject &rhs)

Assignment operator.
virtual CbcBranchingObject * clone () const

Clone.
virtual ~CbclntegerPseudoCostBranchingObiject ()

Destructor.
virtual double branch ()

Sets the bounds for the variable according to the current arm of the branch and ad-
vances the object state to the next arm.

double changelnGuessed () const

Change in guessed.
void setChangelnGuessed (double value)

Set change in guessed.
virtual CbcBranchObjType type () const

Return the type (an integer identifier) of t his.
virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
+brObj, const bool replacelfOverlap=false)

Compare the this with brObj.

Protected Attributes

 double changelnGuessed_

Change in guessed objective value for next branch.

4.69.1 Detailed Description

Simple branching object for an integer variable with pseudo costs.

This object can specify a two-way branch on an integer variable. For each arm of the
branch, the upper and lower bounds on the variable can be independently specified.

Variable_ holds the index of the integer variable in the integerVariable_ array of the
model.

Definition at line 389 of file CbcSimplelntegerDynamicPseudoCost.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.70 CbcLink Class Reference 185

4.69.2 Constructor & Destructor Documentation

4.69.2.1 ChbcintegerPseudoCostBranchingObject::ChcintegerPseudoCostBranchingObject (
CbcModel « model, int variable, int way, double value)
Create a standard floor/ceiling branch object.

Specifies a simple two-way branch. Let value = xx. One arm of the branch will be is
b <= x <= floor(xx), the other ceil(xx) <= x <= ub. Specify way = -1 to set the object
state to perform the down arm first, way = 1 for the up arm.

4.69.2.2 CbcintegerPseudoCostBranchingObject::ChcintegerPseudoCostBranchingObject (
CbcModel « model, int variable, int way, double lowerValue, double upperValue)
Create a degenerate branch object.

Specifies a ‘one-way branch’. Calling branch() for this object will always result in lower-
Value <= x <= upperValue. Used to fix a variable when lowerValue = upperValue.

4.69.3 Member Function Documentation

4.69.3.1 virtual double ChclntegerPseudoCostBranchingObject::branch() [virtuall
Sets the bounds for the variable according to the current arm of the branch and ad-
vances the object state to the next arm.

This version also changes guessed objective value

Reimplemented from CbclntegerBranchingObject.

4.69.3.2 virtual CbcRangeCompare ChcintegerPseudoCostBranchingOb-
ject::compareBranchingObject (const CbcBranchingObject « brObj, const bool
replacelfOverlap = false) [virtual]

Compare the this with brObj.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CbcRangeCompare
value (first argument being the sub/superset if that’s the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Reimplemented from CbclntegerBranchingObject.

The documentation for this class was generated from the following file:

» CbcSimplelntegerDynamicPseudoCost.hpp

4,70 CbcLink Class Reference

Define Special Linked Ordered Sets.
#include <CbcBranchLink.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.70 CbcLink Class Reference 186

Inheritance diagram for CbcLink:

CbcObject

CbcLink

Collaboration diagram for CbcLink:

st

Public Member Functions

» CbcLink (CbcModel xmodel, int numberMembers, int numberLinks, int first, const
double xweights, int setNumber)
Useful constructor - A valid solution is if all variables are zero apart from kxnumberLink
to (k+1)xnumberLink-1 where k is 0 through numberinSet-1.
+ CbcLink (CbcModel xmodel, int numberMembers, int numberLinks, int typeSOS,
const int *which, const double xweights, int setNumber)

Useful constructor - A valid solution is if all variables are zero apart from ksxnumberLink
to (k+1)xnumberLink-1 where k is 0 through numberInSet-1.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.70 CbcLink Class Reference 187

virtual CbcObject * clone () const

Clone.
virtual double infeasibility (int &preferredWay) const

Infeasibility - large is 0.5.
virtual void feasibleRegion ()

This looks at solution and sets bounds to contain solution.
virtual CbcBranchingObject * createBranch (int way)

Creates a branching object.
int numberMembers () const

Number of members.
int numberLinks () const

Number of links for each member.
» const int x which () const
Which variables.
const double * weights () const

Array of weights.

4.70.1 Detailed Description

Define Special Linked Ordered Sets.
Definition at line 16 of file CbcBranchLink.hpp.

4,70.2 Constructor & Destructor Documentation

4.70.2.1 ChbcLink::ChcLink (CbcModel « model, int numberMembers, int numberLinks, int
first, const double x weights, int setNumber)

Useful constructor - A valid solution is if all variables are zero apart from kxnumberLink
to (k+1)xnumberLink-1 where k is 0 through numberinSet-1.
The length of weights array is numberInSet. For this constructor the variables in matrix

are the numberInSetxnumberLink starting at first. If weights null then 0,1,2..

4.70.2.2 ChbcLink::ChcLink (CbcModel x model, int numberMembers, int numberLinks, int
typeSOS, const int x which, const double x weights, int setNumber)

Useful constructor - A valid solution is if all variables are zero apart from kxnumberLink
to (k+1)xnumberLink-1 where k is 0 through numberinSet-1.

The length of weights array is numberinSet. For this constructor the variables are given
by list - grouped. If weights null then 0,1,2..

The documentation for this class was generated from the following file:

+ CbcBranchLink.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.71 CbcLinkBranchingObject Class Reference 188

471 CbcLinkBranchingObject Class Reference

Branching object for Special ordered sets.
#include <CbcBranchLink.hpp>

Inheritance diagram for CbcLinkBranchingObject:

CbcBranchingObject

CbcLinkBranchingObject

Collaboration diagram for CbcLinkBranchingObject:

GostnkBranchegOoct

Public Member Functions

« virtual CbcBranchingObiject * clone () const
Clone.
« virtual double branch ()

Does next branch and updates state.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.72 CbcLongCliqueBranchingObject Class Reference 189

« virtual void print ()

Print something about branch - only if log level high.
« virtual CbcBranchObjType type () const

Return the type (an integer identifier) of this.
« virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
+brObj, const bool replacelfOverlap=false)

Compare the this with brobj.

4.71.1 Detailed Description

Branching object for Special ordered sets.
Variable_ is the set id number (redundant, as the object also holds a pointer to the set.

Definition at line 98 of file CbcBranchLink.hpp.

4.71.2 Member Function Documentation

4.71.2.1 virtual CbcRangeCompare ChcLinkBranchingObject::compareBranchingObject (
const CbcBranchingObiject x brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brObj.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CbcRangeCompare
value (first argument being the sub/superset if that’s the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

» CbcBranchLink.hpp

4.72 CbcLongCliqueBranchingObject Class Reference

Unordered Clique Branching Object class.

#include <CbcClique.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.72 CbcLongCliqueBranchingObject Class Reference 190

Inheritance diagram for CbcLongCliqueBranchingObject:

CbcBranchingObject

CbcLongCliqueBranchingObject

Collaboration diagram for CbcLongCliqueBranchingObject:

CoelonpCiqmBrmehnoote

Public Member Functions

virtual CbcBranchingObject * clone () const

Clone.
virtual double branch ()

Does next branch and updates state.
« virtual void print ()
Print something about branch - only if log level high.
+ virtual CbcBranchObjType type () const
Return the type (an integer identifier) of this.
« virtual int compareOriginalObject (const CbcBranchingObject xbrObj) const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.73 CbcLotsize Class Reference 191

Compare the original object of t hi s with the original object of brOb j.
« virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
*xbrObj, const bool replacelfOverlap=false)

Compare the this with brObj.

4,721 Detailed Description

Unordered Cligue Branching Object class.
These are for cliques which are > 64 members Variable is number of clique.

Definition at line 234 of file CbcClique.hpp.

4.72.2 Member Function Documentation

4,72.2.1 virtual int CbcLongCliqueBranchingObject::compareOriginalObject (const
CbcBranchingObject x« brObj) const [virtual]
Compare the original object of this with the original object of brOb J.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented from CbcBranchingObject.

4.72.2.2 virtual CbcRangeCompare ChcLongCliqueBranchingObject::compareBranchingObject (
const CbcBranchingObject + brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brObj.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CbcRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

» CbcClique.hpp

4,73 CbcLotsize Class Reference

Lotsize class.

#include <CbcBranchLotsize.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.73 CbcLotsize Class Reference 192

Inheritance diagram for CbcLotsize:

CbcObject

Cbclotsize

Collaboration diagram for CbcLotsize:

evertandir.
SR owm—r——

ConCuGansator

Public Member Functions

+ virtual CbcObject * clone () const

Clone.
« virtual double infeasibility (const OsiBranchinglnformation xinfo, int &preferred-
Way) const
Infeasibility - large is 0.5.
« virtual void feasibleRegion ()

Set bounds to contain the current solution.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.73

CbcLotsize Class Reference 193

4,731

virtual CbcBranchingObject * createCbcBranch (OsiSolverinterface *solver, const
OsiBranchinglnformation *info, int way)
Creates a branching object.
virtual CbcBranchingObject * preferredNewFeasible () const
Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in the good direction.
virtual CbcBranchingObject * notPreferredNewFeasible () const
Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in a bad direction.
virtual void resetBounds (const OsiSolverinterface xsolver)
Reset original upper and lower bound values from the solver.
bool findRange (double value) const
Finds range of interest so value is feasible in range range_ or infeasible between
hifrange_] and lo[range_+1].
virtual void floorCeiling (double &floorLotsize, double &ceilingLotsize, double value,
double tolerance) const
Returns floor and ceiling.
int modelSequence () const
Model column number.
void setModelSequence (int value)
Set model column number.
virtual int columnNumber () const
Column number if single column object -1 otherwise, so returns >= 0 Used by heuris-
tics.
double originalLowerBound () const
Original variable bounds.
int rangeType () const
Type - 1 points, 2 ranges.
int numberRanges () const
Number of points.
double x bound () const
Ranges.
virtual bool canDoHeuristics () const

Return true if object can take part in normal heuristics.

Detailed Description

Lotsize class.

Definition at line 13 of file CbcBranchLotsize.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.73 CbcLotsize Class Reference 194

4.73.2 Member Function Documentation

4.73.2.1 virtual void ChcLotsize::feasibleRegion() [virtual]

Set bounds to contain the current solution.

More precisely, for the variable associated with this object, take the value given in the
current solution, force it within the current bounds if required, then set the bounds to fix
the variable at the integer nearest the solution value.

Implements CbcObject.

4.73.2.2 virtual CbcBranchingObject: ChcLotsize::preferredNewFeasible () const
[virtual]

Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in the good direction.

The preferred branching object will force the variable to be +/-1 from its current value,
depending on the reduced cost and objective sense. If movement in the direction which
improves the objective is impossible due to bounds on the variable, the branching object
will move in the other direction. If no movement is possible, the method returns NULL.

Only the bounds on this variable are considered when determining if the new point is
feasible.

Reimplemented from CbcObject.

4.73.2.3 virtual CbcBranchingObject: ChcLotsize::notPreferredNewFeasible () const
[virtual]

Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in a bad direction.

As for preferredNewFeasible(), but the preferred branching object will force movement
in a direction that degrades the objective.

Reimplemented from CbcObject.

4.73.2.4 virtual void CbcLotsize::resetBounds (const OsiSolverinterface x solver)
[virtual]

Reset original upper and lower bound values from the solver.

Handy for updating bounds held in this object after bounds held in the solver have been
tightened.

Reimplemented from CbcObject.
4.73.2.5 bool CbcLotsize::findRange (double value) const

Finds range of interest so value is feasible in range range_ or infeasible between hi[range_-
] and lo[range_+1].

Returns true if feasible.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.74 CbcLotsizeBranchingObject Class Reference 195

The documentation for this class was generated from the following file:

+ CbcBranchLotsize.hpp

4,74 CbcLotsizeBranchingObject Class Reference

Lotsize branching object.
#include <CbcBranchLotsize.hpp>

Inheritance diagram for CbcLotsizeBranchingObject:

CbcBranchingObject

CbcLotsizeBranchingObject

Collaboration diagram for CbcLotsizeBranchingObject:

oiocr.] CocObictUpcateDua

‘‘‘‘‘‘

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.74 CbcLotsizeBranchingObject Class Reference 196

Public Member Functions

CbcLotsizeBranchingObiject ()

Default constructor.
» CbclotsizeBranchingObject (CbcModel xmodel, int variable, int way, double value,
const CbcLotsize xlotsize)
Create a lotsize floor/ceiling branch object.

CbcLotsizeBranchingObject (CbcModel xmodel, int variable, int way, double low-
erValue, double upperValue)

Create a degenerate branch object.
CbcLotsizeBranchingObject (const CbcLotsizeBranchingObject &)

Copy constructor.
» CbcLotsizeBranchingObject & operator= (const CbcLotsizeBranchingObject &rhs)

Assignment operator.
virtual CbcBranchingObject * clone () const

Clone.
virtual ~CbcLotsizeBranchingObiject ()

Destructor.
virtual double branch ()

Sets the bounds for the variable according to the current arm of the branch and ad-
vances the object state to the next arm.
virtual void print ()

Print something about branch - only if log level high.
virtual CbcBranchObjType type () const

Return the type (an integer identifier) of this.
virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
+brObj, const bool replacelfOverlap=false)

Compare the this with brObj.

Protected Attributes

+ double down_ [2]

Lower [0] and upper [1] bounds for the down arm (way_ = -1)
* double up_[2]

Lower [0] and upper [1] bounds for the up arm (way_ = 1)

4,741 Detailed Description

Lotsize branching object.

This object can specify a two-way branch on an integer variable. For each arm of the
branch, the upper and lower bounds on the variable can be independently specified.

Variable_ holds the index of the integer variable in the integerVariable_ array of the
model.

Definition at line 166 of file CbcBranchLotsize.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.75 CbcMessage Class Reference 197

4,74.2 Constructor & Destructor Documentation

4.74.21 ChcLotsizeBranchingObject::ChcLotsizeBranchingObject (CbcModel « model, int
variable, int way, double value, const CbcLotsize x lotsize)

Create a lotsize floor/ceiling branch object.

Specifies a simple two-way branch. Let value = xx. One arm of the branch will be is
Ib <= x <= valid range below(xx), the other valid range above(x*) <= x <= ub. Specify
way = -1 to set the object state to perform the down arm first, way = 1 for the up arm.

4.74.2.2 CbcLotsizeBranchingObject::ChcLotsizeBranchingObject (CbcModel « model, int
variable, int way, double lowerValue, double upperValue)

Create a degenerate branch object.

Specifies a ‘one-way branch’. Calling branch() for this object will always result in lower-
Value <= x <= upperValue. Used to fix in valid range

4.74.3 Member Function Documentation

4,74.3.1 virtual ChcRangeCompare ChcLotsizeBranchingObject::compareBranchingObject (
const CbcBranchingObject « brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brOb7j.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CocRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

+ CbcBranchLotsize.hpp

475 CbcMessage Class Reference

Public Member Functions

Constructors etc

» CbcMessage (Language language=us_en)
Constructor.

4,751 Detailed Description

Definition at line 80 of file CbcMessage.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 198

The documentation for this class was generated from the following file:

» CbcMessage.hpp

4.76 CbcModel Class Reference

Simple Branch and bound class.
#include <CbcModel.hpp>

Collaboration diagram for CbcModel:

Public Types

+ enum CbcIntParam {
CbcMaxNumNode = 0, CbcMaxNumSol, CbcFathomDiscipline, CbcPrinting,

CbcNumberBranches, CbclLastIintParam }
+ enum CbcDblParam {

CbclintegerTolerance = 0, CbclnfeasibilityWeight, CbcCutofflncrement, CbcAllow-
ableGap,

CbcAllowableFractionGap, CbcMaximumSeconds, CbcCurrentCutoff, CbcOpti-
mizationDirection,

CbcCurrentObjectiveValue, CbcCurrentMinimizationObjectiveValue, CbcStartSec-
onds, CbcHeuristicGap,

CbcHeuristicFractionGap, CbcSmallestChange, CbcSumChange, CbclLargestChange,
CbcSmallChange, CbcLastDblParam }

Public Member Functions

Presolve methods

» CbcModel * findCliques (bool makeEquality, int atLeastThisMany, int lessThanThis,
int defaultValue=1000)

Identify cliques and construct corresponding objects.
* CbcModel x integerPresolve (bool weak=false)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76

CbcModel Class Reference 199

Do integer presolve, creating a new (presolved) model.
» bool integerPresolveThisModel (OsiSolverinterface xoriginalSolver, bool weak=false)

Do integer presolve, modifying the current model.
« void originalModel (CbcModel xpresolvedModel, bool weak)
Put back information into the original model after integer presolve.
* bool tightenVubs (int type, bool allowMultipleBinary=false, double useCutoff=1.0e50)

For variables involved in VUB constraints, see if we can tighten bounds by solving
Ip’s.
* bool tightenVubs (int numberVubs, const int «xwhich, double useCutoff=1.0e50)

For variables involved in VUB constraints, see if we can tighten bounds by solving
Ip’s.
« void analyzeObjective ()
Analyze problem to find a minimum change in the objective function.
 void AddIntegers ()
Add additional integers.
« void saveModel (OsiSolverinterface xsaveSolver, double xcheckCutoffForRestart,
bool *feasible)

Save copy of the model.

Object manipulation routines

See OsiObject for an explanation of ‘object’ in the context of CbcModel.

* int numberObjects () const
Get the number of objects.
« void setNumberObjects (int number)
Set the number of objects.
» OsiObject *x objects () const
Get the array of objects.
» const OsiObject * object (int which) const
Get the specified object.
» OsiObject * modifiableObject (int which) const
Get the specified object.
+ void setOptionallnteger (int index)
« void deleteObjects (bool findIntegers=true)
Delete all object information (and just back to integers if true)
« void addObjects (int numberObjects, OsiObject *xobjects)

Add in object information.
« void addObjects (int numberObjects, CbcObject *xobjects)

Add in object information.
+ void synchronizeModel ()
Ensure attached objects point to this model.
« void findIntegers (bool startAgain, int type=0)
Identify integer variables and create corresponding objects.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 200

Parameter set/get methods

The set methods return true if the parameter was set to the given value, false if the
value of the parameter is out of range.

The get methods return the value of the parameter.

* bool setintParam (CbcIntParam key, int value)
Set an integer parameter.
* bool setDblParam (CbcDblParam key, double value)
Set a double parameter.
« int getIntParam (CbclntParam key) const
Get an integer parameter.
 double getDblParam (CbcDblParam key) const
Get a double parameter.
« void setCutoff (double value)
Set cutoff bound on the objective function.
» double getCutoff () const
Get the cutoff bound on the objective function - always as minimize.
* bool setMaximumNodes (int value)
Set the maximum node limit .
« int getMaximumNodes () const
Get the maximum node limit .
* bool setMaximumSolutions (int value)
Set the maximum number of solutions desired.
* int getMaximumSolutions () const
Get the maximum number of solutions desired.
* bool setPrintingMode (int value)
Set the printing mode.
« int getPrintingMode () const
Get the printing mode.
* bool setMaximumSeconds (double value)
Set the maximum number of seconds desired.
+ double getMaximumSeconds () const
Get the maximum number of seconds desired.
* double getCurrentSeconds () const
Current time since start of branchAndbound.
» bool maximumSecondsReached () const
Return true if maximum time reached.
* bool setIntegerTolerance (double value)
Set the integrality tolerance .
» double getintegerTolerance () const
Get the integrality tolerance .
» bool setInfeasibilityWeight (double value)
Set the weight per integer infeasibility .
» double getinfeasibilityWeight () const
Get the weight per integer infeasibility .
* bool setAllowableGap (double value)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76

CbcModel Class Reference 201

Set the allowable gap between the best known solution and the best possible
solution.

double getAllowableGap () const
Get the allowable gap between the best known solution and the best possible
solution.

bool setAllowableFractionGap (double value)
Set the fraction allowable gap between the best known solution and the best pos-
sible solution.

double getAllowableFractionGap () const
Get the fraction allowable gap between the best known solution and the best pos-
sible solution.

bool setAllowablePercentageGap (double value)
Set the percentage allowable gap between the best known solution and the best
possible solution.

double getAllowablePercentageGap () const
Get the percentage allowable gap between the best known solution and the best
possible solution.

bool setHeuristicGap (double value)
Set the heuristic gap between the best known solution and the best possible solu-
tion.

double getHeuristicGap () const
Get the heuristic gap between the best known solution and the best possible solu-
tion.

bool setHeuristicFractionGap (double value)
Set the fraction heuristic gap between the best known solution and the best possi-
ble solution.

double getHeuristicFractionGap () const
Get the fraction heuristic gap between the best known solution and the best possi-
ble solution.

bool setCutoffincrement (double value)
Set the CbcModel::CbcCutoffincrement desired.

double getCutofflncrement () const
Get the CbcModel::CbcCutofflncrement desired.

void setHotstartSolution (const double xsolution, const int xpriorities=NULL)
Pass in target solution and optional priorities.

void setMinimumDrop (double value)
Set the minimum drop to continue cuts.

double getMinimumDrop () const
Get the minimum drop to continue cuts.

void setMaximumCutPassesAtRoot (int value)
Set the maximum number of cut passes at root node (default 20) Minimum drop
can also be used for fine tuning.

int getMaximumCutPassesAtRoot () const
Get the maximum number of cut passes at root node.

void setMaximumCutPasses (int value)
Set the maximum number of cut passes at other nodes (default 10) Minimum drop
can also be used for fine tuning.

int getMaximumCutPasses () const

Get the maximum number of cut passes at other nodes (default 10)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76

CbcModel Class Reference 202

int getCurrentPassNumber () const
Get current cut pass number in this round of cuts.
void setNumberStrong (int number)
Set the maximum number of candidates to be evaluated for strong branching.
int numberStrong () const
Get the maximum number of candidates to be evaluated for strong branching.
void setPreferredWay (int value)
Set global preferred way to branch.
int getPreferredWay () const
Get the preferred way to branch (default 0)
int whenCuts () const
Get at which depths to do cuts.
void setWhenCuts (int value)
Set at which depths to do cuts.
bool doCutsNow (int allowForTopOfTree) const
Return true if we want to do cuts If allowForTopOfTree zero then just does on mul-
tiples of depth if 1 then allows for doing at top of tree if 2 then says if cuts allowed
anywhere apart from root.
void setNumberBeforeTrust (int number)
Set the number of branches before pseudo costs believed in dynamic strong branch-
ing.
int numberBeforeTrust () const
get the number of branches before pseudo costs believed in dynamic strong branch-
ing.
void setNumberPenalties (int number)
Set the number of variables for which to compute penalties in dynamic strong
branching.
int numberPenalties () const
get the number of variables for which to compute penalties in dynamic strong
branching.
void setNumberAnalyzelterations (int number)
Number of analyze iterations to do.
int numberAnalyzelterations () const
double penaltyScaleFactor () const
Get scale factor to make penalties match strong.
void setPenaltyScaleFactor (double value)
Set scale factor to make penalties match strong.
void setProblemType (int number)
Problem type as set by user or found by analysis.
int problemType () const
int currentDepth () const
Current depth.
void setHowOftenGlobalScan (int number)
Set how often to scan global cuts.
int howOftenGlobalScan () const
Get how often to scan global cuts.
int % originalColumns () const
Original columns as created by integerPresolve or preprocessing.
void setOriginalColumns (const int xoriginalColumns)
Set original columns as created by preprocessing.
void setPrintFrequency (int number)
Set the print frequency.
int printFrequency () const
Get the print frequency.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 203

Methods returning info on how the solution process terminated

bool isAbandoned () const
Are there a numerical difficulties?
bool isProvenOptimal () const
Is optimality proven?
bool isProveninfeasible () const
Is infeasiblity proven (or none better than cutoff)?
bool isContinuousUnbounded () const
Was continuous solution unbounded.
bool isProvenDuallnfeasible () const
Was continuous solution unbounded.
bool isNodeLimitReached () const
Node limit reached?
bool isSecondsLimitReached () const
Time limit reached?
bool isSolutionLimitReached () const
Solution limit reached?
int getlterationCount () const
Get how many iterations it took to solve the problem.
void incrementlterationCount (int value)
Increment how many iterations it took to solve the problem.
int getNodeCount () const
Get how many Nodes it took to solve the problem (including those in complete
fathoming B&B inside CLP).
void incrementNodeCount (int value)
Increment how many nodes it took to solve the problem.
int getExtraNodeCount () const
Get how many Nodes were enumerated in complete fathoming B&B inside CLP,
int status () const
Final status of problem Some of these can be found out by is......
void setProblemStatus (int value)
int secondaryStatus () const
Secondary status of problem.
void setSecondaryStatus (int value)
bool islnitialSolveAbandoned () const
Are there numerical difficulties (for initialSolve) ?
bool isInitialSolveProvenOptimal () const
Is optimality proven (for initialSolve) ?
bool islnitialSolveProvenPrimalinfeasible () const
Is primal infeasiblity proven (for initialSolve) ?
bool islnitialSolveProvenDuallnfeasible () const

Is dual infeasiblity proven (for initialSolve) ?

Problem information methods

These methods call the solver’s query routines to return information about the prob-
lem referred to by the current object.

Querying a problem that has no data associated with it result in zeros for the number
of rows and columns, and NULL pointers from the methods that return vectors.

Const pointers returned from any data-query method are valid as long as the data
is unchanged and the solver is not called.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76

CbcModel Class Reference 204

* int numberRowsAtContinuous () const

Number of rows in continuous (root) problem.
+ int getNumCaols () const

Get number of columns.
« int getNumRows () const

Get number of rows.
» CoinBiglndex getNumElements () const

Get number of nonzero elements.
* int numberintegers () const

Number of integers in problem.
« const int * integerVariable () const
« char integerType (int i) const

Whether or not integer.
» const char * integerType () const

Whether or not integer.
» const double * getColLower () const

Get pointer to array[getNumCols()] of column lower bounds.
« const double * getColUpper () const

Get pointer to array[getNumCols()] of column upper bounds.
+ const char x getRowSense () const

Get pointer to array[getNumRows()] of row constraint senses.
 const double * getRightHandSide () const

Get pointer to array[getNumRows()] of rows right-hand sides.
» const double x getRowRange () const

Get pointer to array[getNumRows()] of row ranges.
» const double x getRowLower () const

Get pointer to array[getNumRows()] of row lower bounds.
 const double x getRowUpper () const

Get pointer to array[getNumRows()] of row upper bounds.
« const double * getObjCoefficients () const

Get pointer to array[getNumCols()] of objective function coefficients.
» double getObjSense () const

Get objective function sense (1 for min (default), -1 for max)
* bool isContinuous (int colindex) const

Return true if variable is continuous.
» bool isBinary (int collndex) const

Return true if variable is binary.
* bool isInteger (int collndex) const

Return true if column is integer.
» bool isintegerNonBinary (int collndex) const

Return true if variable is general integer.
» bool isFreeBinary (int collndex) const

Return true if variable is binary and not fixed at either bound.
« const CoinPackedMatrix * getMatrixByRow () const

Get pointer to row-wise copy of matrix.
+ const CoinPackedMatrix * getMatrixByCol () const

Get pointer to column-wise copy of matrix.
* double getinfinity () const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 205

Get solver’s value for infinity.
 const double * getCbcColLower () const

Get pointer to array[getNumCols()] (for speed) of column lower bounds.
» const double x getCbcColUpper () const

Get pointer to array[getNumCols()] (for speed) of column upper bounds.
 const double x getCbcRowLower () const

Get pointer to array[getNumRows()] (for speed) of row lower bounds.
 const double x getCbcRowUpper () const

Get pointer to array[getNumRows()] (for speed) of row upper bounds.
 const double * getCbcColSolution () const

Get pointer to array[getNumCols()] (for speed) of primal solution vector.
 const double * getCbcRowPrice () const

Get pointer to array[getNumRows()] (for speed) of dual prices.
» const double * getCbcReducedCost () const

Get a pointer to array[getNumCols()] (for speed) of reduced costs.
 const double x getCbcRowActivity () const

Get pointer to array[getNumRows()] (for speed) of row activity levels.

Methods related to querying the solution

 double * continuousSolution () const
Holds solution at continuous (after cuts if branchAndBound called)
* int * usedInSolution () const
Array marked whenever a solution is found if non-zero.
+ void incrementUsed (const double *solution)
Increases usedInSolution for nonzeros.
« void setBestSolution (CBC_Message how, double &objectiveValue, const dou-
ble xsolution, int fixVariables=0)
Record a new incumbent solution and update objectiveValue.
« void setBestObjectiveValue (double objectiveValue)
Just update objective Value.
» CbcEventHandler::CbcAction dealWithEventHandler (CbcEventHandler::CbcEvent
event, double objValue, const double xsolution)
Deals with event handler and solution.
» double checkSolution (double cutoff, double xsolution, int fixVariables, double
originalObjValue)
Call this to really test if a valid solution can be feasible Solution is number columns
in size.
» bool feasibleSolution (int &numberintegerinfeasibilities, int &humberObjectin-
feasibilities) const
Test the current solution for feasiblility.
» double * currentSolution () const
Solution to the most recent Ip relaxation.
 const double x testSolution () const
For testing infeasibilities - will point to currentSolution_ or solver-->getColSolution()
+ void setTestSolution (const double *solution)
+ void reserveCurrentSolution (const double xsolution=NULL)

Make sure region there and optionally copy solution.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76

CbcModel Class Reference 206

const double x getColSolution () const

Get pointer to array[getNumCols()] of primal solution vector.
const double * getRowPrice () const

Get pointer to array[getNumRows()] of dual prices.
const double * getReducedCost () const

Get a pointer to array[getNumCols()] of reduced costs.
const double * getRowActivity () const

Get pointer to array[getNumRows()] of row activity levels.
double getCurrentObjValue () const

Get current objective function value.
double getCurrentMinimizationObjValue () const

Get current minimization objective function value.
double getMinimizationObjValue () const

Get best objective function value as minimization.
void setMinimizationObjValue (double value)

Set best objective function value as minimization.
double getObjValue () const

Get best objective function value.
double getBestPossibleObjValue () const

Get best possible objective function value.
void setObjValue (double value)

Set best objective function value.
double getSolverObjValue () const

Get solver objective function value (as minimization)
double * bestSolution () const

The best solution to the integer programming problem.
void setBestSolution (const double xsolution, int numberColumns, double ob-
jectiveValue, bool check=false)

User callable setBestSolution.
int getSolutionCount () const

Get number of solutions.
void setSolutionCount (int value)

Set number of solutions (so heuristics will be different)
int numberSavedSolutions () const

Number of saved solutions (including best)
int maximumSavedSolutions () const

Maximum number of extra saved solutions.
void setMaximumSavedSolutions (int value)

Set maximum number of extra saved solutions.
const double * savedSolution (int which) const

Return a saved solution (O==best) - NULL if off end.
double savedSolutionObijective (int which) const

Return a saved solution objective (O==best) - COIN_DBL_MAX if off end.
int phase () const

Current phase (so heuristics etc etc can find out).
int getNumberHeuristicSolutions () const

Get number of heuristic solutions.
void setNumberHeuristicSolutions (int value)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference

207

Set number of heuristic solutions.
void setObjSense (double s)

Set objective function sense (1 for min (default), -1 for max,)
double getContinuousObjective () const

Value of objective at continuous.
void setContinuousObjective (double value)
« int getContinuousinfeasibilities () const

Number of infeasibilities at continuous.
void setContinuousinfeasibilities (int value)
double rootObjectiveAfterCuts () const

Value of objective after root node cuts added.
double sumChangeObjective () const

Sum of Changes to objective by first solve.
int numberGlobalViolations () const
Number of times global cuts violated.
void clearNumberGlobalViolations ()
bool resolveAfterTakeOffCuts () const

Whether to force a resolve after takeOffCuts.

void setResolveAfterTakeOffCuts (bool yesNo)
* int maximumRows () const

Maximum number of rows.
» CoinWarmStartBasis & workingBasis ()
Work basis for temporary use.
int getStopNumberlterations () const

Get number of "iterations" to stop after.
void setStopNumberlterations (int value)

Set number of "iterations" to stop after.

Node selection

» CbcCompareBase * nodeComparison () const
 void setNodeComparison (CbcCompareBase xcompare)
 void setNodeComparison (CbcCompareBase &compare)

Problem feasibility checking

» CbcFeasibilityBase * problemFeasibility () const
» void setProblemFeasibility (CbcFeasibilityBase xfeasibility)
» void setProblemFeasibility (CbcFeasibilityBase &feasibility)

Tree methods and subtree methods

» CbcTree * tree () const

Tree method e.g. heap (which may be overridden by inheritance)
« void passinTreeHandler (CbcTree &tree)

For modifying tree handling (original is cloned)
* void passIinSubTreeModel (CbcModel &model)

For passing in an CbcModel to do a sub Tree (with derived tree handlers).
» CbcModel * subTreeModel (OsiSolverInterface xsolver=NULL) const

For retrieving a copy of subtree model with given OsiSolver.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 208

* int numberStoppedSubTrees () const

Returns number of times any subtree stopped on nodes, time etc.
* void incrementSubTreeStopped ()

Says a sub tree was stopped.
* int typePresolve () const

Whether to automatically do presolve before branch and bound (subTrees).
+ void setTypePresolve (int value)

Branching Decisions
See the CbcBranchDecision class for additional information.

» CbcBranchDecision * branchingMethod () const
Get the current branching decision method.

« void setBranchingMethod (CbcBranchDecision xmethod)
Set the branching decision method.

« void setBranchingMethod (CbcBranchDecision &method)
Set the branching method.

+ CbcCutModifier x cutModifier () const
Get the current cut modifier method.

« void setCutModifier (CbcCutModifier xmodifier)
Set the cut modifier method.

« void setCutModifier (CbcCutModifier &modifier)
Set the cut modifier method.

Row (constraint) and Column (variable) cut generation

« int stateOfSearch () const
State of search 0 - no solution 1 - only heuristic solutions 2 - branched to a solution
3 - no solution but many nodes.

« void setStateOfSearch (int state)

« int searchStrategy () const
Strategy worked out - mainly at root node for use by CbcNode.

« void setSearchStrategy (int value)

Set strategy worked out - mainly at root node for use by CbcNode.

« int numberCutGenerators () const

Get the number of cut generators.
* CbcCutGenerator ** cutGenerators () const
Get the list of cut generators.
» CbcCutGenerator * cutGenerator (int i) const
Get the specified cut generator.
» CbcCutGenerator * virginCutGenerator (int i) const
Get the specified cut generator before any changes.

» void addCutGenerator (CglCutGenerator xgenerator, int howOften=1, const
char xname=NULL, bool normal=true, bool atSolution=false, bool infeasible=false,
int howOftenInSub=-100, int whatDepth=-1, int whatDepthInSub=-1)

Add one generator - up to user to delete generators.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 209

Strategy and sub models
See the CbcStrategy class for additional information.

» CbcStrategy * strategy () const

Get the current strategy.
void setStrategy (CbcStrategy &strategy)

Set the strategy. Clones.
void setStrategy (CbcStrategy *strategy)

Set the strategy. assigns.
CbcModel * parentModel () const

Get the current parent model.
void setParentModel (CbcModel &parentModel)

Set the parent model.

Heuristics and priorities

« void addHeuristic (CbcHeuristic xgenerator, const char xname=NULL, int before=-
1)
Add one heuristic - up to user to delete.
» CbcHeuristic * heuristic (int i) const

Get the specified heuristic.
« int numberHeuristics () const
Get the number of heuristics.
» CbcHeuristic * lastHeuristic () const
Pointer to heuristic solver which found last solution (or NULL)
« void setLastHeuristic (CbcHeuristic *last)
set last heuristic which found a solution
« void passlInPriorities (const int xpriorities, bool ifNotSimplelntegers)
Pass in branching priorities.
« int priority (int sequence) const
Returns priority level for an object (or 1000 if no priorities exist)
« void passInEventHandler (const CbcEventHandler xeventHandler)

Set an event handler.
» CbcEventHandler x getEventHandler () const

Retrieve a pointer to the event handler.

Setting/Accessing application data

« void setApplicationData (void xappData)

Set application data.
+ void * getApplicationData () const

Get application data.
+ void passiInSolverCharacteristics (OsiBabSolver xsolverCharacteristics)
For advanced applications you may wish to modify the behavior of Cbc e.g.
 const OsiBabSolver * solverCharacteristics () const

Get solver characteristics.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference

210

Message handling etc

void passinMessageHandler (CoinMessageHandler xhandler)
Pass in Message handler (not deleted at end)
void newLanguage (CoinMessages::Language language)
Set language.
void setLanguage (CoinMessages::Language language)
CoinMessageHandler * messageHandler () const
Return handler.
CoinMessages & messages ()
Return messages.
CoinMessages * messagesPointer ()
Return pointer to messages.
void setLogLevel (int value)
Set log level.
int logLevel () const
Get log level.
void setDefaultHandler (bool yesNo)

Set flag to say if handler_ is the default handler.

Specialized

« void setSpecialOptions (int value)

Set special options 0 bit (1) - check if cuts valid (if on debugger list) 1 bit (2) - use
current basis to check integer solution (rather than all slack) 2 bit (4) - don’t check
integer solution (by solving LP) 3 bit (8) - fast analyze 4 bit (16) - non-linear model
- so no well defined CoinPackedMatrix 5 bit (32) - keep names 6 bit (64) - try for
dominated columns 7 bit (128) - SOS type 1 but all declared integer 8 bit (256) -
Set to say solution just found, unset by doing cuts 9 bit (512) - Try reduced model
after 100 nodes 10 bit (1024) - Switch on some heuristics even if seems unlikely
11 bit (2048) - Mark as in small branch and bound 12 bit (4096) - Funny cuts so
do slow way (in some places) 13 bit (8192) - Funny cuts so do slow way (in other
places) 14 bit (16384) - Use Cplex! for fathoming 15 bit (32768) - Try reduced model
after 0 nodes 16 bit (65536) - Original model had integer bounds 17 bit (131072)
- Perturbation switched off 18 bit (262144) - donor CbcModel 19 bit (5624288) -
recipient CbcModel 20 bit (1048576) - waiting for sub model to return.

int specialOptions () const

Get special options.

bool normalSolver () const

Says if normal solver i.e. has well defined CoinPackedMatrix.

bool waitingForMiniBranchAndBound () const

Says if model is sitting there waiting for mini branch and bound to finish This is
because an event handler may only have access to parent model in mini branch
and bound.

void setMoreSpecialOptions (int value)

Set more special options at present bottom 6 bits used for shadow price mode 1024
for experimental hotstart 2048,4096 breaking out of cuts 8192 slowly increase min-
imum drop 16384 gomory 32768 more heuristics in sub trees 65536 no cuts in
preprocessing 131072 Time limits elapsed 18 bit (262144) - Perturb fathom nodes
19 bit (524288) - No limit on fathom nodes 20 bit (1048576) - Reduce sum of infea-
sibilities before cuts 21 bit (2097152) - Reduce sum of infeasibilities after cuts.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 211

* int moreSpecialOptions () const
Get more special options.
+ void setUseElapsedTime (bool yesNo)
Set time method.
bool useElapsedTime () const

Get time method.
bool ownObijects () const

Go to dantzig pivot selection if easy problem (clp only)
void checkModel ()

Check original model before it gets messed up.

Constructors and destructors etc

* CbcModel ()
Default Constructor.

» CbcModel (const OsiSolverInterface &)
Constructor from solver.

« void assignSolver (OsiSolverinterface *&solver, bool deleteSolver=true)
Assign a solver to the model (model assumes ownership)

« void setModelOwnsSolver (bool ourSolver)
Set ownership of solver.

* bool modelOwnsSolver ()
Get ownership of solver.

* CbcModel (const CbcModel &rhs, bool cloneHandler=false)
Copy constructor .

» CbhcModel & operator= (const CbcModel &rhs)

Assignment operator.
» ~CbcModel ()
Destructor.
 OsiSolverinterface * solver () const
Returns solver - has current state.
» OsiSolverinterface * swapSolver (OsiSolverinterface xsolver)
Returns current solver - sets new one.
» OsiSolverInterface * continuousSolver () const
Returns solver with continuous state.
« void createContinuousSolver ()
Create solver with continuous state.
« void clearContinuousSolver ()
Clear solver with continuous state.
 OsiSolverinterface * referenceSolver () const
A copy of the solver, taken at constructor or by saveReferenceSolver.
« void saveReferenceSolver ()
Save a copy of the current solver so can be reset to.
« void resetToReferenceSolver ()
Uses a copy of reference solver to be current solver.
« void gutsOfDestructor ()
Clears out as much as possible (except solver)
* void gutsOfDestructor2 ()

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 212

Clears out enough to reset CbcModel as if no branch and bound done.
« void resetModel ()
Clears out enough to reset CbcModel cutoff etc.
« void gutsOfCopy (const CbcModel &rhs, int mode=0)
Most of copy constructor mode - 0 copy but don’t delete before 1 copy and delete
before 2 copy and delete before (but use virgin generators)
« void movelnfo (const CbcModel &rhs)

Move status, nodes etc etc across.

semi-private i.e. users should not use

« int getNodeCount2 () const
Get how many Nodes it took to solve the problem.
« void setPointers (const OsiSolverInterface xsolver)
Set pointers for speed.
« int reducedCostFix ()
Perform reduced cost fixing.
« void synchronizeHandlers (int makeDefault)
Makes all handlers same.
« void saveExtraSolution (const double xsolution, double objectiveValue)
Save a solution to saved list.
« void saveBestSolution (const double xsolution, double objectiveValue)
Save a solution to best and move current to saved.
* void deleteSolutions ()
Delete best and saved solutions.
« int resolve (OsiSolverInterface xsolver)
Encapsulates solver resolve.
« int chooseBranch (CbcNode x&newNode, int numberPasseslLeft, CbcNode
*0ldNode, OsiCuts &cuts, bool &resolved, CoinWarmStartBasis xlastws, const
double xlowerBefore, const double xupperBefore, OsiSolverBranch x&branches)

Encapsulates choosing a variable - anyAction -2, infeasible (-1 round again), 0
done.

« int chooseBranch (CbcNode xnewNode, int numberPassesLeft, bool &re-

solved)

» CoinWarmStartBasis * getEmptyBasis (int ns=0, int na=0) const
Return an empty basis object of the specified size.

« int takeOffCuts (OsiCuts &cuts, bool allowResolve, OsiCuts xsaveCuts, int

numberNewCuts=0, const OsiRowCut **newCuts=NULL)
Remove inactive cuts from the model.

« int addCuts (CbcNode *node, CoinWarmStartBasis *&lastws, bool canFix)
Determine and install the active cuts that need to be added for the current subprob-
lem.

* bool addCuts1 (CbcNode xnode, CoinWarmStartBasis *&lastws)

Traverse the tree from node to root and prep the model.
« void previousBounds (CbcNode xnode, CbcNodelnfo xwhere, int iColumn,
double &lower, double &upper, int force)
Returns bounds just before where - initially original bounds.

« void setObjectiveValue (CbcNode xthisNode, const CbcNode xparentNode)

const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 213

Set objective value in a node.

* void convertToDynamic ()

If numberBeforeTrust >0 then we are going to use CbcBranchDynamic.

+ void synchronizeNumberBeforeTrust (int type=0)

Set numberBeforeTrust in all objects.
« void zaplntegerinformation (bool leaveObjects=true)
Zap integer information in problem (may leave object info)

« int cliquePseudoCosts (int doStatistics)

Use cliques for pseudocost information - return nonzero if infeasible.

« void pseudoShadow (int type)

Fill in useful estimates.

« void fillPseudoCosts (double xdownCosts, double xupCosts, int «priority=NULL,
int xnumberDown=NULL, int xnumberUp=NULL, int xnumberDownInfeasible=NULL,
int xnumberUplnfeasible=NULL) const

Return pseudo costs If not all integers or not pseudo costs - returns all zero Length
of arrays are numberintegers() and entries correspond to integerVariable()[i] User
must allocate arrays before call.

« void doHeuristicsAtRoot (int deleteHeuristicsAfterwards=0)

Do heuristics at root.
» void adjustHeuristics ()
Adjust heuristics based on model.
« const double * hotstartSolution () const
Get the hotstart solution.
» const int % hotstartPriorities () const
Get the hotstart priorities.
* CbcCountRowCut ** addedCuts () const

Return the list of cuts initially collected for this subproblem.
« int currentNumberCuts () const
Number of entries in the list returned by addedCuts()
+ OsiCuts * globalCuts ()
Global cuts.
« void setNextRowCut (const OsiRowCut &cut)
Copy and set a pointer to a row cut which will be added instead of normal branching.
» CbcNode * currentNode () const
Get a pointer to current node (be careful)
» CglTreeProbinginfo * probinginfo () const
Get a pointer to probing info.
» CoinThreadRandom * randomNumberGenerator ()
Thread specific random number generator.
« void setNumberStronglterations (int number)
Set the number of iterations done in strong branching.
* int numberStronglterations () const
Get the number of iterations done in strong branching.
* int maximumNumberlterations () const
Get maximum number of iterations (designed to be used in heuristics)
« void setMaximumNumberlterations (int value)
Set maximum number of iterations (designed to be used in heuristics)
* int numberExtralterations () const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76

CbcModel Class Reference 214

Number of extra iterations.
« void incrementStronglnfo (int numberTimes, int numberlterations, int number-

Fixed, bool ifinfeasible)

Increment strong info.
 const int * stronglnfo () const

Return strong info.
« int x mutableStronglinfo ()

Return mutable strong info.
» CglStored * storedRowCuts () const

Get stored row cuts for donor/recipient CbcModel.
+ void setStoredRowCuts (CglStored *cuts)

Set stored row cuts for donor/recipient CbcModel.
* bool allDynamic () const

Says whether all dynamic integers.
« void generateCpp (FILE *fp, int options)

Create C++ lines to get to current state.
 OsiBranchinglnformation usefullnformation () const

Generate an OsiBranchinglnformation object.
« void setBestSolutionBasis (const CoinWarmStartBasis &bestSolutionBasis)

Warm start object produced by heuristic or strong branching.
+ void redoWalkBack ()

Redo walkback arrays.

Solve methods

void initialSolve ()

Solve the initial LP relaxation.
void branchAndBound (int doStatistics=0)

Invoke the branch & cut algorithm.
void addUpdatelnformation (const CbcObjectUpdateData &data)

Adds an update information object.
int doOneNode (CbcModel xbaseModel, CbcNode *x&node, CbcNode «x&newNode)

Do one node - broken out for clarity? also for parallel (when baseModel!=this) Returns
1 if solution found node NULL on return if no branches left newNode NULL if no new
node created.
int resolve (CbcNodelnfo xparent, int whereFrom, double xsaveSolution=NULL,
double xsaveLower=NULL, double xsaveUpper=NULL)

Reoptimise an LP relaxation.
void makeGlobalCuts (int numberRows, const int xwhich)

Make given rows (L or G) into global cuts and remove from Ip.
void makeGlobalCut (const OsiRowCut *cut)

Make given cut into a global cut.
void makeGlobalCut (const OsiRowCut &cut)

Make given cut into a global cut.
void makeGlobalCut (const OsiColCut xcut)

Make given column cut into a global cut.
void makeGilobalCut (const OsiColCut &cut)

Make given column cut into a global cut.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76

CbcModel Class Reference 215

Multithreading

4.76.1

CbcThread * masterThread () const

Get pointer to masterthread.
CbcNodelnfo *x walkback () const

Get pointer to walkback.
int getNumberThreads () const

Get number of threads.
void setNumberThreads (int value)

Set number of threads.
int getThreadMode () const

Get thread mode.

void setThreadMode (int value)
Set thread mode always use numberThreads for branching 1 set then deterministic 2
set then use numberThreads for root cuts 4 set then use numberThreads in root mini
branch and bound 8 set and numberThreads - do heuristics numberThreads at a time
8 set and numberThreads==0 do all heuristics at once default is 0.

int parallelMode () const
Return.
bool isLocked () const

From here to end of section - code in CbcThread.cpp until class changed Returns true
if locked.

void lockThread ()
void unlockThread ()
void setInfolnChild (int type, CbcThread *info)

Set information in a child.
void moveToModel (CbcModel «xbaseModel, int mode)

Move/copy information from one model to another.
int splitModel (int numberModels, CbcModel xxmodel, int numberNodes)

Split up nodes.
void startSplitModel (int numberlterations)

Start threads.
void mergeModels (int numberModel, CbcModel *xmodel, int numberNodes)

Merge models.
static bool haveMultiThreadSupport ()

Indicates whether Cbc library has been compiled with multithreading support.

Detailed Description

Simple Branch and bound class.

The initialSolve() method solves the initial LP relaxation of the MIP problem. The bran-
chAndBound() method can then be called to finish using a branch and cut algorithm.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 216

Search Tree Traversal

Subproblems (aka nodes) requiring additional evaluation are stored using the CbcNode
and CbcNodelnfo objects. Ancestry linkage is maintained in the CbcNodelnfo object.
Evaluation of a subproblem within branchAndBound() proceeds as follows:

» The node representing the most promising parent subproblem is popped from the
heap which holds the set of subproblems requiring further evaluation.

+ Using branching instructions stored in the node, and information in its ancestors,
the model and solver are adjusted to create the active subproblem.

« If the parent subproblem will require further evaluation (i.e., there are branches
remaining) its node is pushed back on the heap. Otherwise, the node is deleted.
This may trigger recursive deletion of ancestors.

» The newly created subproblem is evaluated.

« If the subproblem requires further evaluation, a node is created. All information
needed to recreate the subproblem (branching information, row and column cuts)
is placed in the node and the node is added to the set of subproblems awaiting
further evaluation.

Note that there is never a node representing the active subproblem; the model and
solver represent the active subproblem.

Row (Constraint) Cut Handling
For a typical subproblem, the sequence of events is as follows:

» The subproblem is rebuilt for further evaluation: One result of a call to addCuts()
is a traversal of ancestors, leaving a list of all cuts used in the ancestors in
#addedCuts_. This list is then scanned to construct a basis that includes only
tight cuts. Entries for loose cuts are set to NULL.

» The subproblem is evaluated: One result of a call to solveWithCuts() is the return
of a set of newly generated cuts for the subproblem. #addedCuts_ is also kept
up-to-date as old cuts become loose.

» The subproblem is stored for further processing: A call to CbcNodelnfo::addCuts()
adds the newly generated cuts to the CbcNodelnfo object associated with this
node.

See CbcCountRowCut for details of the bookkeeping associated with cut management.

Definition at line 99 of file CbcModel.hpp.

4.76.2 Member Enumeration Documentation

4.76.21 enum CbcModel::CbcintParam
Enumerator:

CbcMaxNumNode The maximum number of nodes before terminating.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 217

CbcMaxNumSol The maximum number of solutions before terminating.

CbcFathomDiscipline Fathoming discipline. Controls objective function compar-
isons for purposes of fathoming by bound or determining monotonic variables.
If 1, action is taken only when the current objective is strictly worse than the
target. Implementation is handled by adding a small tolerance to the target.

CbcPrinting Adjusts printout 1 does different node message with number unsat-
isfied on last branch.

CbcNumberBranches Number of branches (may be more than number of nodes
as may include strong branching)

CbclLastintParam Just a marker, so that a static sized array can store parame-
ters.

Definition at line 103 of file CbcModel.hpp.

4.76.2.2 enum CbcModel::CbcDblParam
Enumerator:

CbclintegerTolerance The maximum amount the value of an integer variable can
vary from integer and still be considered feasible.

CbcinfeasibilityWeight The objective is assumed to worsen by this amount for
each integer infeasibility.

CbcCutoffincrement The amount by which to tighten the objective function cutoff
when a new solution is discovered.

CbcAllowableGap Stop when the gap between the objective value of the best
known solution and the best bound on the objective of any solution is less
than this. This is an absolute value. Conversion from a percentage is left to
the client.

CbcAllowableFractionGap Stop when the gap between the objective value of
the best known solution and the best bound on the objective of any solution
is less than this fraction of of the absolute value of best known solution. Code
stops if either this test or CbcAllowableGap test succeeds

CbcMaximumSeconds The maximum number of seconds before terminating. A
double should be adequate!

CbcCurrentCutoff Cutoff - stored for speed.

CbcOptimizationDirection Optimization direction - stored for speed.
CbcCurrentObjectiveValue Current objective value.
CbcCurrentMinimizationObjectiveValue Current minimization objective value.

CbcStartSeconds The time at start of model. So that other pieces of code can
access

CbcHeuristicGap Stop doing heuristics when the gap between the objective
value of the best known solution and the best bound on the objective of any
solution is less than this. This is an absolute value. Conversion from a per-
centage is left to the client.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 218

CbcHeuristicFractionGap Stop doing heuristics when the gap between the ob-
jective value of the best known solution and the best bound on the objective
of any solution is less than this fraction of of the absolute value of best known
solution. Code stops if either this test or CbcAllowableGap test succeeds

CbcSmallestChange Smallest non-zero change on a branch.
CbcSumChange Sum of non-zero changes on a branch.
CbcLargestChange Largest non-zero change on a branch.
CbcSmallChange Small non-zero change on a branch to be used as guess.

CbcLastDblParam Just a marker, so that a static sized array can store parame-
ters.

Definition at line 129 of file CbcModel.hpp.

4.76.3 Constructor & Destructor Documentation

4.76.3.1 CbcModel::CbcModel (const CbcModel & rhs, bool cloneHandler = false)

Copy constructor .

If cloneHandler is true then message handler is cloned

4.76.4 Member Function Documentation

4.76.4.1 void CbcModel::initialSolve ()

Solve the initial LP relaxation.

Invoke the solver’s initialSolve() method.
4.76.4.2 void CbcModel::branchAndBound (int doStatistics = 0)

Invoke the branch & cut algorithm.

The method assumes that initialSolve() has been called to solve the LP relaxation. It
processes the root node, then proceeds to explore the branch & cut search tree. The
search ends when the tree is exhausted or one of several execution limits is reached. If
doStatistics is 1 summary statistics are printed if 2 then also the path to best solution (if
found by branching) if 3 then also one line per node

4.76.4.3 int CbcModel::resolve (CbcNodelnfo parent, int whereFrom, double x
saveSolution = NULL, double * saveLower =NULL, double x saveUpper =NULL)

Reoptimise an LP relaxation.

Invoke the solver’s resolve() method. whereFrom - 0 - initial continuous 1 - resolve on
branch (before new cuts) 2 - after new cuts 3 - obsolete code or something modified
problem in unexpected way 10 - after strong branching has fixed variables at root 11 -
after strong branching has fixed variables in tree

returns 1 feasible, 0 infeasible, -1 feasible but skip cuts

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 219

4.76.44 CbcModelx CbcModel::findCliques (bool makeEquality, int atLeastThisMany, int
lessThanThis, int defaultValue=1000)
Identify cliques and construct corresponding objects.

Find cliques with size in the range [at Least ThisMany, lessThanThis] and con-
struct corresponding CbcClique objects. If makeEquality is true then a new model
may be returned if modifications had to be made, otherwise this is returned. If the
problem is infeasible #numberObjects_ is set to -1. A client must use deleteObjects()
before a second call to findCliques(). If priorities exist, clique priority is set to the default.

4.76.45 CbcModelx ChcModel::integerPresolve (bool weak=false)

Do integer presolve, creating a new (presolved) model.
Returns the new model, or NULL if feasibility is lost. If weak is true then just does a
normal presolve

4.76.4.6 bool ChcModel::integerPresolveThisModel (OsiSolverinterface x originalSolver, bool
weak=false)

Do integer presolve, modifying the current model.

Returns true if the model remains feasible after presolve.

4.76.4.7 bool CbcModel::tightenVubs (int type, bool allowMultipleBinary = false, double
useCutoff=1.0e50)

For variables involved in VUB constraints, see if we can tighten bounds by solving Ip’s.

Returns false if feasibility is lost. If CglProbing is available, it will be tried as well to
see if it can tighten bounds. This routine is just a front end for tightenVubs(int,const
intx,double).

If type = -1 all variables are processed (could be very slow). If type = 0 only
variables involved in VUBs are processed. If type = n > 0, only the n most expen-
sive VUB variables are processed, where it is assumed that x is at its maximum so delta
would have to go to 1 (if x not at bound).

IfallowMultipleBinary is true, then a VUB constraint is a row with one continu-
ous variable and any number of binary variables.

If useCutoff < 1.0e30, the original objective is installed as a constraint with
useCutoff as abound.

4.76.4.8 bool CbcModel::tightenVubs (int numberVubs, const int « which, double useCutoff =
1.0e50)

For variables involved in VUB constraints, see if we can tighten bounds by solving Ip’s.

This version is just handed a list of variables to be processed.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 220

4.76.4.9 void CbcModel::addObjects (int numberObjects, OsiObject = objects)

Add in object information.

Objects are cloned; the owner can delete the originals.
4.76.4.10 void CbcModel::addObjects (int numberObjects, CbcObject xx objects)

Add in object information.

Objects are cloned; the owner can delete the originals.
4.76.4.11 void ChcModel::findIntegers (bool startAgain, int type =0)

Identify integer variables and create corresponding objects.

Record integer variables and create an CbcSimplelnteger object for each one. If startAgain
is true, a new scan is forced, overwriting any existing integer variable information. If type
> 0 then 1==PseudoCost, 2 new ones low priority

4.76.4.12 void CbhcModel::setCutoff (double value)

Set cutoff bound on the objective function.

When using strict comparison, the bound is adjusted by a tolerance to avoid accidentally
cutting off the optimal solution.

4.76.4.13 void CbcModel::setHotstartSolution (const double x solution, const int x priorities =
NULL)

Pass in target solution and optional priorities.

If priorities then >0 means only branch if incorrect while <0 means branch even if
correct. +1 or -1 are highest priority

4.76.4.14 int CbcModel::getCurrentPassNumber ()const [inline]

Get current cut pass number in this round of cuts.
(1 is first pass)

Definition at line 744 of file CbcModel.hpp.
4.76.4.15 void CbcModel::setNumberStrong (int number)

Set the maximum number of candidates to be evaluated for strong branching.

A value of 0 disables strong branching.
4.76.4.16 void CbcModel::setPreferredWay (intvalue) [inline]

Set global preferred way to branch.
-1 down, +1 up, 0 no preference

Definition at line 762 of file CbcModel.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 221

4.76.4.17 void CbcModel::setNumberBeforeTrust (int number)

Set the number of branches before pseudo costs believed in dynamic strong branching.

A value of 0 disables dynamic strong branching.
4.76.4.18 int CbcModel::numberBeforeTrust()const [inline]

get the number of branches before pseudo costs believed in dynamic strong branching.

Definition at line 792 of file CbcModel.hpp.
4.76.4.19 void CbhcModel::setNumberPenalties (int number)

Set the number of variables for which to compute penalties in dynamic strong branching.

A value of 0 disables penalties.
4.76.4.20 int CbcModel::numberPenalties ()const [inline]

get the number of variables for which to compute penalties in dynamic strong branching.

Definition at line 803 of file CbcModel.hpp.
4.76.4.21 double ChcModel::penaltyScaleFactor ()const [inline]

Get scale factor to make penalties match strong.
Should/will be computed
Definition at line 815 of file CbcModel.hpp.

4.76.4.22 void CbcModel::setPenaltyScaleFactor (double value)

Set scale factor to make penalties match strong.

Should/will be computed
4.76.4.23 void CbhcModel::setProblemType (int number) [inline]

Problem type as set by user or found by analysis.

This will be extended 0 - not known 1 - Set partitioning <= 2 - Set partitioning == 3 - Set
covering 4 - all +- 1 or all +1 and odd

Definition at line 828 of file CbcModel.hpp.
4.76.4.24 void CbcModel::setPrintFrequency (int number) [inline]

Set the print frequency.

Controls the number of nodes evaluated between status prints. If number <=0 the
print frequency is set to 100 nodes for large problems, 1000 for small problems. Print
frequency has very slight overhead if small.

Definition at line 859 of file CbcModel.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 222

4.76.4.25 int CbcModel::status()const [inline]

Final status of problem Some of these can be found out by is......

functions -1 before branchAndBound 0 finished - check isProvenOptimal or isProvenin-
feasible to see if solution found (or check value of best solution) 1 stopped - on maxn-
odes, maxsols, maxtime 2 difficulties so run was abandoned (5 event user programmed
event occurred)

Definition at line 916 of file CbcModel.hpp.
4.76.4.26 int CbcModel::secondaryStatus ()const [inline]

Secondary status of problem.

-1 unset (status_ will also be -1) 0 search completed with solution 1 linear relaxation not
feasible (or worse than cutoff) 2 stopped on gap 3 stopped on nodes 4 stopped on time
5 stopped on user event 6 stopped on solutions 7 linear relaxation unbounded

Definition at line 933 of file CbcModel.hpp.
4.76.4.27 const charx CbcModel::getRowSense ()const [inline]

Get pointer to array[getNumRows()] of row constraint senses.

+ ’L: <= constraint

* 'E’: = constraint

+ 'G’: >= constraint

* 'R’: ranged constraint

» 'N’: free constraint
Definition at line 1021 of file CbcModel.hpp.
4.76.4.28 const doublexx ChcModel::getRightHandSide ()const [inline]
Get pointer to array[getNumRows()] of rows right-hand sides.

« if rowsense()[i] ==L then rhs()[i] == rowupper()[i]

« if rowsense()[i] == ‘G’ then rhs()[i] == rowlower()[i]

« if rowsense()[i] == 'R’ then rhs()[i] == rowupper()[i]

« if rowsense()[i] == ‘N’ then rhs()[i] == 0.0

Definition at line 1033 of file CbcModel.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 223

4.76.4.29 const doublex CbcModel::getRowRange ()const [inline]

Get pointer to array[getNumRows()] of row ranges.

« if rowsense()[i] == 'R’ then rowrange()[i] == rowupper()[i] - rowlower()[i]

« if rowsense()[i] |= 'R’ then rowrange()[i] is 0.0

Definition at line 1045 of file CbcModel.hpp.
4.76.4.30 bool CbcModel::isInteger (int collndex)const [inline]

Return true if column is integer.
Note: This function returns true if the the column is binary or a general integer.

Definition at line 1084 of file CbcModel.hpp.
4.76.4.31 intx CbcModel::usedInSolution()const [inline]

Array marked whenever a solution is found if non-zero.

Code marks if heuristic returns better so heuristic need only mark if it wants to on
solutions which are worse than current

Definition at line 1157 of file CbcModel.hpp.

4.76.4.32 double ChcModel::checkSolution (double cutoff, double x solution, int fixVariables,
double originalObjValue)

Call this to really test if a valid solution can be feasible Solution is number columns in
size.

If fixVariables true then bounds of continuous solver updated. Returns objective value
(worse than cutoff if not feasible) Previously computed objective value is now passed in
(in case user does not do solve)

4.76.4.33 bool CbcModel::feasibleSolution (int & numberintegerinfeasibilities, int &
numberObjectinfeasibilities) const

Test the current solution for feasiblility.

Scan all objects for indications of infeasibility. This is broken down into simple integer
infeasibility (numberIntegerInfeasibilities) and all other reports of infeasi-
bility (numberObjectInfeasibilities).

4.76.4.34 doublex CbcModel::currentSolution()const [inline]

Solution to the most recent Ip relaxation.
The solver’s solution to the most recent Ip relaxation.

Definition at line 1195 of file CbcModel.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 224

4.76.4.35 double ChcModel::getBestPossibleObjValue () const

Get best possible objective function value.

This is better of best possible left on tree and best solution found. If called from within
branch and cut may be optimistic.

4.76.4.36 double:x CbcModel::bestSolution ()const [inline]

The best solution to the integer programming problem.

The best solution to the integer programming problem found during the search. If no
solution is found, the method returns null.

Definition at line 1273 of file CbcModel.hpp.

4.76.4.37 void CbcModel::setBestSolution (const double x solution, int numberColumns,
double objectiveValue, bool check=false)

User callable setBestSolution.

If check false does not check valid If true then sees if feasible and warns if objective
value worse than given (so just set to COIN_DBL_MAX if you don’t care). If check true
then does not save solution if not feasible

4.76.4.38 int CbcModel::phase ()const [inline]

Current phase (so heuristics etc etc can find out).

0 - initial solve 1 - solve with cuts at root 2 - solve with cuts 3 - other e.g. strong branching
4 - trying to validate a solution 5 - at end of search

Definition at line 1315 of file CbcModel.hpp.
4.76.4.39 int CbcModel::numberGlobalViolations ()const [inline]

Number of times global cuts violated.
When global cut pool then this should be kept for each cut and type of cut
Definition at line 1358 of file CbcModel.hpp.

4.76.4.40 void CbcModel::passinSubTreeModel (CbcModel & model)

For passing in an CbcModel to do a sub Tree (with derived tree handlers).

Passed in model must exist for duration of branch and bound
4.76.441 CbcModelx CbcModel::subTreeModel (OsiSolverinterface * solver =NULL) const

For retrieving a copy of subtree model with given OsiSolver.

If no subtree model will use self (up to user to reset cutoff etc). If solver NULL uses
current

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 225

4.76.4.42 int CbcModel::typePresolve ()const [inline]

Whether to automatically do presolve before branch and bound (subTrees).

0-no 1 - ordinary presolve 2 - integer presolve (dodgy)

Definition at line 1439 of file CbcModel.hpp.

4.76.4.43 void ChcModel::setBranchingMethod (CbcBranchDecision & method)
[inline]

Set the branching method.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

Definition at line 1467 of file CbcModel.hpp.
4.76.4.44 void CbcModel::setCutModifier (CbcCutModifier & modifier)

Set the cut modifier method.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

4.76.4.45 void CbcModel::addCutGenerator (CglCutGenerator x« generator, int howOften = 1,
const char x name = NULL, bool normal =t rue, bool atSolution = false,
bool infeasible = false, int howOfteninSub =—-100, int whatDepth =—1, int
whatDepthinSub = -1)

Add one generator - up to user to delete generators.

howoften affects how generator is used. 0 or 1 means always, >1 means every that
number of nodes. Negative values have same meaning as positive but they may be
switched off (-> -100) by code if not many cuts generated at continuous. -99 is just
done at root. Name is just for printout. If depth >0 overrides how often generator is
called (if howOften==-1 or >0).

4.76.4.46 void CbcModel::addHeuristic (CbcHeuristic x generator, const char x name =
NULL, int before=—1)
Add one heuristic - up to user to delete.

The name is just used for print messages.
4.76.4.47 void ChcModel::passinPriorities (const int « priorities, bool ifNotSimplelntegers)

Pass in branching priorities.

If ifClique then priorities are on cliques otherwise priorities are on integer variables.
Other type (if exists set to default) 1 is highest priority. (well actually -INT_MAX is but
that’s ugly) If hotstart > 0 then branches are created to force the variable to the value
given by best solution. This enables a sort of hot start. The node choice should be
greatest depth and hotstart should normally be switched off after a solution.

If ifNotSimplelntegers true then appended to normal integers

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 226

This is now deprecated except for simple usage. If user creates Cbcobjects then set
priority in them

4.76.4.48 void CbhcModel::passinEventHandler (const CbcEventHandler x eventHandler)

Set an event handler.

A clone of the handler passed as a parameter is stored in CbcModel.
4.76.4.49 void CbcModel::setApplicationData (void appData)

Set application data.
This is a pointer that the application can store into and retrieve from the solver interface.
This field is available for the application to optionally define and use.

4.76.4.50 void CbcModel::passinSolverCharacteristics (OsiBabSolver x solverCharacteristics)

For advanced applications you may wish to modify the behavior of Cbc e.g.

if the solver is a NLP solver then you may not have an exact optimum solution at each
step. Information could be built into OsiSolverinterface but this is an alternative so
that that interface does not have to be changed. If something similar is useful to enough
solvers then it could be migrated You can also pass in by using solver->setAuxiliaryInfo.
You should do that if solver is odd - if solver is normal simplex then use this. NOTE -
characteristics are not cloned

4.76.4.51 void CbcModel::setDefaultHandler (bool yesNo) [inline]

Set flag to say if handler_is the default handler.

The default handler is deleted when the model is deleted. Other handlers (supplied by
the client) will not be deleted.

Definition at line 1694 of file CbcModel.hpp.
4.76.4.52 bool CbcModel::ownObjects ()const [inline]

Go to dantzig pivot selection if easy problem (clp only)
Now we may not own objects - just point to solver’s objects

Definition at line 1781 of file CbcModel.hpp.

4.76.4.53 void CbcModel::assignSolver (OsiSolverinterface & solver, bool deleteSolver =
true)

Assign a solver to the model (model assumes ownership)

On return, solver will be NULL. If deleteSolver then current solver deleted (if model
owned)

Note

Parameter settings in the outgoing solver are not inherited by the incoming solver.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 227

4.76.4.54 void CbhcModel::setModelOwnsSolver (bool ourSolver) [inline]

Set ownership of solver.

A parameter of false tells CbcModel it does not own the solver and should not delete
it. Once you claim ownership of the solver, you're responsible for eventually deleting
it. Note that CbcModel clones solvers with abandon. Unless you have a deep under-
standing of the workings of CbcModel, the only time you want to claim ownership is
when you’re about to delete the CbcModel object but want the solver to continue to exist
(as, for example, when branchAndBound has finished and you want to hang on to the
answer).

Definition at line 1818 of file CbcModel.hpp.
4.76.4.55 bool CbcModel::modelOwnsSolver() [inline]

Get ownership of solver.

A return value of true means that CbcModel owns the solver and will take responsibility
for deleting it when that becomes necessary.

Definition at line 1827 of file CbcModel.hpp.
4.76.4.56 void CbcModel::resetToReferenceSolver ()

Uses a copy of reference solver to be current solver.

Because of possible mismatches all exotic integer information is loat (apart from normal
information in OsiSolverinterface) so SOS etc and priorities will have to be redone

4.76.4.57 int CbcModel::parallelMode ()const [inline]

Return.

-2 if deterministic threaded and main thread -1 if deterministic threaded and serial thread
0 if serial 1 if opportunistic threaded

Definition at line 1944 of file CbcModel.hpp.
4.76.4.58 void CbcModel::setInfolnChild (int type, CbcThread x info)

Set information in a child.

-3 pass pointer to child thread info -2 just stop -1 delete simple child stuff 0 delete
opportunistic child stuff 1 delete deterministic child stuff

4.76.4.59 void CbcModel::moveToModel (CbcModel « baseModel, int mode)

Move/copy information from one model to another.

-1 - initialization 0 - from base model 1 - to base model (and reset) 2 - add in final
statistics etc (and reset so can do clean destruction)

4.76.4.60 int CbcModel::reducedCostFix ()

Perform reduced cost fixing.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.76 CbcModel Class Reference 228

Fixes integer variables at their current value based on reduced cost penalties. Returns
number fixed

4.76.4.61 void CbcModel::synchronizeHandlers (int makeDefault)

Makes all handlers same.

If makeDefault 1 then makes top level default and rest point to that. If 2 then each is
copy

4.76.4.62 CoinWarmStartBasisx CbcModel::getEmptyBasis (int ns = 0, int na=0) const

Return an empty basis object of the specified size.

A useful utility when constructing a basis for a subproblem from scratch. The object
returned will be of the requested capacity and appropriate for the solver attached to the
model.

4.76.4.63 int CbcModel::takeOffCuts (OsiCuts & cuts, bool allowResolve, OsiCuts x saveCuts,
int numberNewCuts = 0, const OsiRowCut x newCuts =NULL)

Remove inactive cuts from the model.

An OsiSolverinterface is expected to maintain a valid basis, but not a valid solution,
when loose cuts are deleted. Restoring a valid solution requires calling the solver to
reoptimise. If it's certain the solution will not be required, set allowResolve to false to
suppress reoptimisation. If saveCuts then slack cuts will be saved On input current cuts
are cuts and newCuts on exit current cuts will be correct. Returns number dropped

4.76.4.64 int CbcModel::addCuts (CbcNode *« node, CoinWarmStartBasis & lastws, bool
canfFix)

Determine and install the active cuts that need to be added for the current subproblem.

The whole truth is a bit more complicated. The first action is a call to addCuts1().
addCuts() then sorts through the list, installs the tight cuts in the model, and does book-
keeping (adjusts reference counts). The basis returned from addCuts1() is adjusted
accordingly.

If it turns out that the node should really be fathomed by bound, addCuts() simply treats
all the cuts as loose as it does the bookkeeping.

canFix true if extra information being passed
4.76.4.65 bool CbcModel::addCuts1 (CbcNode x node, CoinWarmStartBasis & lastws)

Traverse the tree from node to root and prep the model.

addCuts1() begins the job of prepping the model to match the current subproblem. The
model is stripped of all cuts, and the search tree is traversed from node to root to
determine the changes required. Appropriate bounds changes are installed, a list of
cuts is collected but not installed, and an appropriate basis (minus the cuts, but big
enough to accommodate them) is constructed.

Returns true if new problem similar to old

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.77 CbcNode Class Reference 229

4.76.4.66 void CbcModel::previousBounds (CbcNode *« node, CbcNodelnfo « where, int
iColumn, double & lower, double & upper, int force)

Returns bounds just before where - initially original bounds.

Also sets downstream nodes (lower if force 1, upper if 2)

4.76.4.67 void CbcModel::setObjectiveValue (CbcNode * thisNode, const CbcNode
parentNode) const

Set objective value in a node.

This is separated out so that odd solvers can use. It may look at extra information in
solverCharacteriscs_ and will also use bound from parent node

4.76.4.68 void ChcModel::convertToDynamic ()

If numberBeforeTrust >0 then we are going to use CbcBranchDynamic.

Scan and convert CbcSimplelnteger objects
4.76.4.69 void CbcModel::doHeuristicsAtRoot (int deleteHeuristicsAfterwards = 0)

Do heuristics at root.

0 - don’t delete 1 - delete 2 - just delete - don’t even use

4.76.4.70 void ChcModel::setBestSolutionBasis (const CoinWarmStartBasis &
bestSolutionBasis) [inline]

Warm start object produced by heuristic or strong branching.

If get a valid integer solution outside branch and bound then it can take a reasonable
time to solve LP which produces clean solution. If this object has any size then it will be
used in solve.

Definition at line 2249 of file CbcModel.hpp.

The documentation for this class was generated from the following file:

+ CbcModel.hpp

4,77 CbcNode Class Reference

Information required while the node is live.

#include <CbcNode.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.77 CbcNode Class Reference 230

Collaboration diagram for CbcNode:

CbcNode

, \
, \
\owner_ nodelnfo__

N
CbcNodelnfo <:parent_
o

\
(owner_ cuts_

AN /

CbcCountRowCut

Public Member Functions

» CbcNode ()

Default Constructor.
» CbcNode (CbcModel xmodel, CbcNode xlastNode)

Construct and increment parent reference count.
+ CbcNode (const CbcNode &)

Copy constructor.
» CbcNode & operator= (const CbcNode &rhs)

Assignment operator.
» ~CbcNode ()

Destructor.

+ void createlnfo (CbcModel xmodel, CbcNode xlastNode, const CoinWarmStart-
Basis xlastws, const double xlastLower, const double xlastUpper, int numberOIdAc-
tiveCuts, int numberNewCuts)

Create a description of the subproblem at this node.
« int chooseBranch (CbcModel xmodel, CbcNode xlastNode, int numberPassesLeft)

Create a branching object for the node.
* int chooseDynamicBranch (CbcModel xmodel, CbcNode xlastNode, OsiSolver-
Branch x&branches, int numberPassesLeft)

Create a branching object for the node - when dynamic pseudo costs.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.77

CbcNode Class Reference 231

int chooseOsiBranch (CbcModel xmodel, CbcNode xlastNode, OsiBranchingin-
formation xusefullnfo, int branchState)
Create a branching object for the node.
int chooseClpBranch (CbcModel xmodel, CbcNode xlastNode)
Create a branching object for the node.
void decrementCuts (int change=1)
Decrement active cut counts.
void decrementParentCuts (CbcModel xmodel, int change=1)
Decrement all active cut counts in chain starting at parent.
void nullNodelnfo ()
Nulls out node info.
void initializelnfo ()
Initialize reference counts in attached CbcNodelnfo.
int branch (OsiSolverInterface xsolver)
Does next branch and updates state.
double checklsCutoff (double cutoff)
Double checks in case node can change its mind! Returns objective value Can change
objective etc.
int numberBranches () const
Number of arms defined for the attached OsiBranchingObject.
int depth () const
Depth in branch-and-cut search tree.
void setDepth (int value)
Set depth in branch-and-cut search tree.
int numberUnsatisfied () const
Get the number of objects unsatisfied at this node.
void setNumberUnsatisfied (int value)
Set the number of objects unsatisfied at this node.
double suminfeasibilities () const
Get sum of "infeasibilities" reported by each object.
void setSumlinfeasibilities (double value)
Set sum of "infeasibilities" reported by each object.
const OsiBranchingObject * branchingObject () const
Branching object for this node.
OsiBranchingObject « modifiableBranchingObject () const
Modifiable branching object for this node.
void setBranchingObject (OsiBranchingObject xbranchingObject)
Set branching object for this node (takes ownership)
int nodeNumber () const
The node number.
bool onTree () const
Returns true if on tree.
void setOnTree (bool yesNo)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.77 CbcNode Class Reference 232

Sets true if on tree.

* bool active () const
Returns true if active.

« void setActive (bool yesNo)
Sets true if active.

+ void print () const
Print.

+ void checkinfo () const
Debug.

4,771 Detailed Description

Information required while the node is live.

When a subproblem is initially created, it is represented by an CbcNode object and an
attached CbcNodelnfo object.

The CbcNode contains information (depth, branching instructions), that's needed while
the subproblem remains ‘live’, i.e., while the subproblem is not fathomed and there are
branch arms still be be evaluated. The CbcNode is deleted when the last branch arm
has been evaluated.

The CbcNodelnfo object contains the information needed to maintain the search tree
and recreate the subproblem for the node. It remains in existence until there are no
nodes remaining in the subtree rooted at this node.

Definition at line 49 of file CbcNode.hpp.

4.77.2 Member Function Documentation

4.77.2.1 void CbhcNode::createlnfo (CbcModel « model, CbcNode x lastNode, const
CoinWarmStartBasis * lastws, const double x lastLower, const double x lastUpper, int
numberOldActiveCuts, int numberNewCuts)

Create a description of the subproblem at this node.

The CbcNodelnfo structure holds the information (basis & variable bounds) required to
recreate the subproblem for this node. It also links the node to its parent (via the parent’s
CbcNodelnfo object).

If lastNode == NULL, a CbcFullNodelnfo object will be created. All parameters except
model are unused.

If lastNode != NULL, a CbcPartialNodelnfo object will be created. Basis and bounds

information will be stored in the form of differences between the parent subproblem and

this subproblem. (More precisely, lastws, lastUpper, lastLower, numberOldActiveCuts,
and numberNewCuts are used.)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.77 CbcNode Class Reference 233

4.77.2.2 int ChcNode::chooseBranch (CbcModel « model, CbcNode x lastNode, int
numberPassesLeft)
Create a branching object for the node.

The routine scans the object list of the model and selects a set of unsatisfied objects
as candidates for branching. The candidates are evaluated, and an appropriate branch
object is installed.

The numberPassesLeft is decremented to stop fixing one variable each time and going
on and on (e.g. for stock cutting, air crew scheduling)

If evaluation determines that an object is monotone or infeasible, the routine returns
immediately. In the case of a monotone object, the branch object has already been
called to modify the model.

Return value:

+ 0: A branching object has been installed
» -1: A monotone object was discovered

» -2: An infeasible object was discovered

4.77.2.3 int CbcNode::chooseDynamicBranch (CbcModel « model, CbcNode lastNode,
OsiSolverBranch x& branches, int numberPassesLeft)
Create a branching object for the node - when dynamic pseudo costs.

The routine scans the object list of the model and selects a set of unsatisfied objects
as candidates for branching. The candidates are evaluated, and an appropriate branch
object is installed. This version gives preference in evaluation to variables which have
not been evaluated many times. It also uses numberStrong to say give up if last few
tries have not changed incumbent. See Achterberg, Koch and Martin.

The numberPassesLeft is decremented to stop fixing one variable each time and going
on and on (e.g. for stock cutting, air crew scheduling)

If evaluation determines that an object is monotone or infeasible, the routine returns
immediately. In the case of a monotone object, the branch object has already been
called to modify the model.

Return value:

+ 0: A branching object has been installed
» -1: A monotone object was discovered
+ -2: An infeasible object was discovered

« >0: Number of quich branching objects (and branches will be non NULL)

4.77.2.4 int ChcNode::chooseOsiBranch (CbcModel « model, CbcNode x lastNode,
OsiBranchinglnformation * usefullnfo, int branchState)

Create a branching object for the node.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.77 CbcNode Class Reference 234

The routine scans the object list of the model and selects a set of unsatisfied objects
as candidates for branching. The candidates are evaluated, and an appropriate branch
object is installed.

The numberPassesLeft is decremented to stop fixing one variable each time and going
on and on (e.g. for stock cutting, air crew scheduling)

If evaluation determines that an object is monotone or infeasible, the routine returns
immediately. In the case of a monotone object, the branch object has already been
called to modify the model.

Return value:

+ 0: A branching object has been installed
» -1: A monotone object was discovered

+ -2: An infeasible object was discovered
Branch state:

+ -1: start
» -1: A monotone object was discovered

+ -2: An infeasible object was discovered

4.77.2.5 int CbcNode::chooseClpBranch (CbcModel « model, CbcNode x lastNode)

Create a branching object for the node.

The routine scans the object list of the model and selects a set of unsatisfied objects as
candidates for branching. It then solves a series of problems and a CbcGeneral branch
object is installed.

If evaluation determines that an object is infeasible, the routine returns immediately.

Return value:

+ 0: A branching object has been installed

» -2: An infeasible object was discovered

4.77.2.6 void CbcNode::initializelnfo ()

Initialize reference counts in attached CbcNodelnfo.

This is a convenience routine, which will initialize the reference counts in the attached
CbcNodelnfo object based on the attached OsiBranchingObject.

See also

CbcNodelnfo::initializelnfo(int).
The documentation for this class was generated from the following file:

» CbcNode.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.78 CbcNodelnfo Class Reference 235

4,78 CbcNodelnfo Class Reference

Information required to recreate the subproblem at this node.
#include <CbcNodeInfo.hpp>

Inheritance diagram for CbcNodelnfo:

CbcNodelnfo

CbcFullNodelnfo CbcPartialNodelnfo

Collaboration diagram for CbcNodelnfo:

CbcNodelnfo [parent_

_ -w c 7
P 4 R N
/ / \
,nodelnfo_ .~ owner_ \\owner_ cuts_
\ g N *
CbcNode CbcCountRowCut

Public Member Functions

« virtual void applyToModel (CbcModel *model, CoinWarmStartBasis *&basis, Cbc-
CountRowCut *xaddCuts, int ¤tNumberCuts) const =0

Modify model according to information at node.
« virtual int applyBounds (int iColumn, double &lower, double &upper, int force)=0

Just apply bounds to one variable - force means overwrite by lower,upper (1=>infeasible)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.78 CbcNodelnfo Class Reference 236

« virtual CbcNodelnfo * buildRowBasis (CoinWarmStartBasis &basis) const =0
Builds up row basis backwards (until original model).
+ virtual CbcNodelnfo * clone () const =0
Clone.
« virtual void allBranchesGone ()
Called when number branches left down to zero.
+ void increment (int amount=1)
Increment number of references.
* int decrement (int amount=1)
Decrement number of references and return number left.
+ void initializelnfo (int number)
Initialize reference counts.
« int numberBranchesLeft () const
Return number of branches left in object.
+ void setNumberBranchesLeft (int value)
Set number of branches left in object.
* int numberPointingToThis () const
Return number of objects pointing to this.
+ void setNumberPointingToThis (int number)
Set number of objects pointing to this.
+ void incrementNumberPointingToThis ()
Increment number of objects pointing to this.
* int branchedOn ()
Say one branch taken.
+ void throwAway ()
Say thrown away.
» CbcNodelnfo * parent () const
Parent of this.
« void nullParent ()
Set parent null.
« void deleteCuts (int numberToDelete, CbcCountRowCut *:xcuts)
Delete cuts (decrements counts) Slow unless cuts in same order as saved.
+ void deleteCut (int whichOne)
Really delete a cut.
+ void decrementCuts (int change=1)
Decrement active cut counts.
+ void incrementCuts (int change=1)
Increment active cut counts.
+ void decrementParentCuts (CbcModel xmodel, int change=1)
Decrement all active cut counts in chain starting at parent.
+ void incrementParentCuts (CbcModel xmodel, int change=1)
Increment all active cut counts in parent chain.
CbcCountRowCut *x cuts () const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.78

CbcNodelnfo Class Reference

237

Array of pointers to cuts.
int numberCuts () const

Number of row cuts (this node)
void nullOwner ()
Set owner null.
int nodeNumber () const
The node number.
void deactivate (int mode=3)
Deactivate node information.
bool allActivated () const
Say if normal.
bool marked () const
Say if marked.
void mark ()
Mark.
void unmark ()

Unmark.

const OsiBranchingObject * parentBranch () const

Branching object for the parent.
void unsetParentBasedData ()

If we need to take off parent based data.

Constructors & destructors

CbcNodelnfo ()
Default Constructor.

Copy constructor.

« virtual ~CbcNodelnfo ()
Destructor.

Protected Attributes

int numberPointingToThis_

Number of other nodes pointing to this node.

CbcNodelnfo * parent_

parent

OsiBranchingObject * parentBranch_

Copy of the branching object of the parent when the node is created.

CbcNode * owner

Owner.
int numberCuts__

CbcNodelnfo (const CbcNodelnfo &)

CbcNodelnfo (CbcNodelnfo xparent, CbcNode *xowner)
Construct with parent and owner.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.78 CbcNodelnfo Class Reference 238

Number of row cuts (this node)
* int nodeNumber_

The node number.
* CbcCountRowCut *x* cuts__

Array of pointers to cuts.
* int numberRows__

Number of rows in problem (before these cuts).
* int numberBranchesLeft_

Number of branch arms left to explore at this node.
* int active_

Active node information.

4,781 Detailed Description

Information required to recreate the subproblem at this node.

When a subproblem is initially created, it is represented by a CbcNode object and an
attached CbcNodelnfo object.

The CbcNode contains information needed while the subproblem remains live. The
CbcNode is deleted when the last branch arm has been evaluated.

The CbcNodelnfo contains information required to maintain the branch-and-cut search
tree structure (links and reference counts) and to recreate the subproblem for this node
(basis, variable bounds, cutting planes). A CbcNodelnfo object remains in existence
until all nodes have been pruned from the subtree rooted at this node.

The principle used to maintain the reference count is that the reference count is always
the sum of all potential and actual children of the node. Specifically,

» Once it's determined how the node will branch, the reference count is set to the
number of potential children (i.e., the number of arms of the branch).

+ As each child is created by CbcNode::branch() (converting a potential child to the
active subproblem), the reference count is decremented.

+ If the child survives and will become a node in the search tree (converting the
active subproblem into an actual child), increment the reference count.

Notice that the active subproblem lives in a sort of limbo, neither a potential or an actual
node in the branch-and-cut tree.

CbcNodelnfo objects come in two flavours. A CbcFullNodelnfo object contains a full
record of the information required to recreate a subproblem. A CbcPartialNodelnfo
object expresses this information in terms of differences from the parent.

Definition at line 68 of file CbcNodelnfo.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.78 CbcNodelnfo Class Reference 239

4,78.2 Constructor & Destructor Documentation

4.78.21 CbhcNodelnfo::CbcNodelnfo ()

Default Constructor.

Creates an empty Nodelnfo object.
4.78.2.2 CbcNodelnfo::CbcNodelnfo (CbcNodelnfo * parent, CbcNode =« owner)

Construct with parent and owner.

As for ‘construct with parent’, and attached to owner.
4.78.2.3 virtual CbcNodelnfo::~ChcNodelnfo() [virtual]

Destructor.

Note that the destructor will recursively delete the parent if this nodelnfo is the last child.

4.78.3 Member Function Documentation

4.78.3.1 virtual void CbcNodelnfo::applyToModel (CbcModel « model, CoinWarmStartBasis
+& basis, CbcCountRowCut xx addCuts, int & currentNumberCuts) const
[pure virtual]

Modify model according to information at node.

The routine modifies the model according to bound and basis information at node and
adds any cuts to the addCuts array.

Implemented in CbcFullNodelnfo, and CbcPartialNodelnfo.

4.78.3.2 virtual CbcNodelnfo: CbcNodelnfo::buildRowBasis (CoinWarmStartBasis & basis)
const [pure virtual]

Builds up row basis backwards (until original model).

Returns NULL or previous one to apply . Depends on Free being 0 and impossible for
cuts

Implemented in CbcFullNodelnfo, and CbcPartialNodelnfo.
4.78.3.3 void ChcNodelnfo::initializelnfo (int number) [inline]

Initialize reference counts.
Initialize the reference counts used for tree maintenance.

Definition at line 149 of file CbcNodelnfo.hpp.
4.78.3.4 void CbcNodelnfo::deactivate (int mode = 3)

Deactivate node information.

1 - bounds 2 - cuts 4 - basis!

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.79 CbcNWay Class Reference 240

4.78.4 Member Data Documentation

4.78.4.1 int CbcNodelnfo::numberPointingToThis_ [protected]

Number of other nodes pointing to this node.

Number of existing and potential search tree nodes pointing to this node. ‘Existing’
means referenced by parent_ of some other CbcNodelnfo. ‘Potential” means children
still to be created (numberBranchesLeft_ of this CbcNodelnfo).

Definition at line 293 of file CbcNodelnfo.hpp.
4.78.4.2 int CbcNodelnfo::numberRows_ [protected]

Number of rows in problem (before these cuts).
This means that for top of chain it must be rows at continuous

Definition at line 315 of file CbcNodelnfo.hpp.
4.78.4.3 int CbcNodelnfo::numberBrancheslLeft_ [protected]

Number of branch arms left to explore at this node.

Definition at line 323 of file CbcNodelnfo.hpp.
4.78.4.4 int CbcNodelnfo::active_ [protected]

Active node information.
1 - bounds 2 - cuts 4 - basis!
Definition at line 329 of file CbcNodelnfo.hpp.

The documentation for this class was generated from the following file:

+ CbcNodelnfo.hpp

4.79 CbcNWay Class Reference

Define an n-way class for variables.

#include <CbcNWay.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.79 CbcNWay Class Reference 241

Inheritance diagram for CocNWay:

CbcObject

CbcNWay

Collaboration diagram for CbcNWay:

engraiCecngct

o [EmE]

< Cooheuratonode *»

e

Public Member Functions

CbcNWay (CbcModel xmodel, int numberMembers, const int xwhich, int identi-
fier)

Useful constructor (which are matrix indices)
virtual CbcObject * clone () const

Clone.
» CbcNWay & operator= (const CocNWay &rhs)

Assignment operator.
* virtual ~CbcNWay ()

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.79 CbcNWay Class Reference 242

Destructor.
+ void setConsequence (int iColumn, const CbcConsequence &consequence)
Set up a consequence for a single member.
void applyConsequence (int iSequence, int state) const

Applies a consequence for a single member.
virtual double infeasibility (const OsiBranchinginformation xinfo, int &preferred-
Way) const

Infeasibility - large is 0.5 (and 0.5 will give this)
virtual void feasibleRegion ()

This looks at solution and sets bounds to contain solution.
virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface xsolver, const
OsiBranchingInformation xinfo, int way)

Creates a branching object.
* int numberMembers () const

Number of members.
« const int * members () const

Members (indices in range 0 ... numberColumns-1)
« virtual void redoSequenceEtc (CbcModel xmodel, int numberColumns, const int
xoriginalColumns)

Redoes data when sequence numbers change.

Protected Attributes

* int numberMembers_

data Number of members
* int * members_

Members (indices in range 0 ... numberColumns-1)
» CbcConsequence ** consequence_

Consequences (normally NULL)

4.79.1 Detailed Description

Define an n-way class for variables.
Only valid value is one at UB others at LB Normally 0-1
Definition at line 15 of file CbcNWay.hpp.

The documentation for this class was generated from the following file:

+ CbcNWay.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.80 CbcNWayBranchingObject Class Reference 243

4.80 CbcNWayBranchingObject Class Reference

N way branching Object class.
#include <CbcNWay.hpp>
Inheritance diagram for CbcNWayBranchingObiject:

CbcBranchingObject

CbcNWayBranchingObject

Collaboration diagram for CbcNWayBranchingObject:

oy Barshngonct

Public Member Functions

» CbcNWayBranchingObject (CbcModel xmodel, const CobcNWay sxnway, int num-
berBranches, const int xorder)

Useful constructor - order had matrix indices way_ -1 corresponds to setting first, +1
to second, +3 etc.

+ virtual CbcBranchingObject * clone () const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.80 CbcNWayBranchingObject Class Reference 244

Clone.
« virtual double branch ()

Does next branch and updates state.
« virtual void print ()

Print something about branch - only if log level high.
« virtual int numberBranches () const

The number of branch arms created for this branching object.
« virtual bool twoWay () const

Is this a two way object (-1 down, +1 up)
+ virtual CbcBranchObjType type () const

Return the type (an integer identifier) of this.
« virtual int compareOriginalObject (const CbcBranchingObject xbrObj) const

Compare the original object of t hi s with the original object of brOb j.
« virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
+brObj, const bool replacelfOverlap=false)

Compare the this with brobj.

4.80.1 Detailed Description

N way branching Object class.
Variable is number of set.

Definition at line 81 of file CbcNWay.hpp.

4.80.2 Constructor & Destructor Documentation

4.80.2.1 CbcNWayBranchingObject::CbcNWayBranchingObject (CbcModel + model, const
CbcNWay nway, int numberBranches, const int x order)

Useful constructor - order had matrix indices way_ -1 corresponds to setting first, +1 to
second, +3 etc.

this is so -1 and +1 have similarity to normal

4.80.3 Member Function Documentation

4.80.3.1 virtual int CbocNWayBranchingObject::compareOriginalObject (const
CbcBranchingObject « brObj) const [virtual]
Compare the original object of this with the original object of brOb J.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented from CbcBranchingObject.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.80 CbcNWayBranchingObject Class Reference 245

4.80.3.2 virtual ChcRangeCompare CbcNWayBranchingObject::compareBranchingObject (
const CbcBranchingObject + brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brObj.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CbcRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

» CbcNWay.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.81 CbcObject Class Reference

246

4.81 CbcObiject Class Reference

Inheritance diagram for CbcObject:

CbcBranchCut

CbcClique

CbcFollowOn

CbcFollowOn2

CbcGeneral

CbcObject

ChbcLink

CbclLotsize

CbcNWay

CbcBranchAlIDifferent

CbcBranchToFixLots

CbcSimplelntegerDynamicPseudoCost

CbcSimplelnteger

l@——— CbcSimplelntegerFixed

CbcSOS

CbcSimplelntegerPseudoCost

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.81

CbcObject Class Reference 247

Collaboration diagram for CbcObject:

Public Member Functions

virtual CbcObject * clone () const =0

Clone.
virtual ~CbcObiject ()

Destructor.
virtual double infeasibility (const OsiBranchinglnformation x*, int &preferredWay)
const
Infeasibility of the object.
virtual void feasibleRegion ()=0
For the variable(s) referenced by the object, look at the current solution and set bounds
to match the solution.
virtual double feasibleRegion (OsiSolverinterface *solver, const OsiBranchinglIn-
formation xinfo) const
Dummy one for compatibility.
virtual double feasibleRegion (OsiSolverinterface xsolver) const
For the variable(s) referenced by the object, look at the current solution and set bounds
to match the solution.
virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface *, const Os-
iBranchinglnformation x, int)
Create a branching object and indicate which way to branch first.
virtual OsiBranchingObiject * createOsiBranch (OsiSolverinterface *solver, const
OsiBranchingInformation xinfo, int way) const
Create an Osibranching object and indicate which way to branch first.
virtual OsiSolverBranch x solverBranch () const

Create an OsiSolverBranch object.
virtual CbcBranchingObject * preferredNewFeasible () const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.81

CbcObject Class Reference 248

Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in a good direction.

virtual CbcBranchingObject * notPreferredNewFeasible () const
Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in a bad direction.
virtual void resetBounds (const OsiSolverInterface)
Reset variable bounds to their original values.
virtual void floorCeiling (double &floorValue, double &ceilingValue, double value,
double tolerance) const
Returns floor and ceiling i.e.
virtual CbcObjectUpdateData createUpdatelnformation (const OsiSolverinterface
xsolver, const CbcNode xnode, const CbcBranchingObject xbranchingObject)
Pass in information on branch just done and create CbcObjectUpdateData instance.
virtual void updatelnformation (const CbcObjectUpdateData &)
Update object by CbcObjectUpdateData.
intid () const
Identifier (normally column number in matrix)
void setld (int value)
Set identifier (normally column number in matrix) but 1000000000 to 1100000000
means optional branching object i.e.
bool optionalObject () const
Return true if optional branching object i.e.
int position () const
Get position in object_ list.
void setPosition (int position)
Set position in object _ list.
void setModel (CbcModel xmodel)
update model
CbcModel * model () const

Return model.
int preferredWay () const

If -1 down always chosen first, +1 up always, 0 normal.
void setPreferredWay (int value)

Set -1 down always chosen first, +1 up always, 0 normal.
virtual void redoSequenceEtc (CbcModel *, int, const int)

Redoes data when sequence numbers change.

Protected Attributes

* CbcModel * model_

data

* intid_

Identifier (normally column number in matrix)

* int position_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.81 CbcObject Class Reference 249

Position in object list.
* int preferredWay_

If -1 down always chosen first, +1 up always, 0 normal.

4.81.1 Detailed Description

Definition at line 67 of file CbcObject.hpp.

4.81.2 Member Function Documentation

4.81.2.1 virtual double ChcObject::infeasibility (const OsiBranchinglnformation * , int &
preferredWay)const [inline, virtuall]
Infeasibility of the object.

This is some measure of the infeasibility of the object. It should be scaled to be in the
range [0.0, 0.5], with 0.0 indicating the object is satisfied.

The preferred branching direction is returned in preferredWay,

This is used to prepare for strong branching but should also think of case when no
strong branching

The object may also compute an estimate of cost of going "up" or "down". This will
probably be based on pseudo-cost ideas

Reimplemented in CbcBranchAlIDifferent, CbcBranchCut, Cbclotsize, CbcBranchToFixLots,
CbcClique, CbcFollowOn, CbcGeneral, CbcNWay, CbcSimplelnteger, CbcSimplelnte-
gerDynamicPseudoCost, CbcSimplelntegerPseudoCost, and CbcSOS.

Definition at line 107 of file CbcObject.hpp.

4.81.2.2 virtual double CbcObject::feasibleRegion (OsiSolverinterface * solver) const
[virtual]

For the variable(s) referenced by the object, look at the current solution and set bounds

to match the solution.

Returns measure of how much it had to move solution to make feasible

4.81.2.3 virtual CbcBranchingObject: CbcObject::createCbcBranch (OsiSolverinterface * ,
const OsiBranchingInformation x, int) [inline, virtual]

Create a branching object and indicate which way to branch first.

The branching object has to know how to create branches (fix variables, etc.)

Reimplemented in CbcBranchAlIDifferent, CbcBranchCut, CbcLotsize, CbcBranchToFixLots,
CbcCligue, CbcFollowOn, CbcGeneral, CbcNWay, CbcSimplelnteger, CbcSimplelnte-
gerDynamicPseudoCost, CbcSimplelntegerPseudoCost, and CbcSOS.

Definition at line 137 of file CbcObject.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.81 CbcObject Class Reference 250

4.81.2.4 virtual OsiBranchingObject:+ ChcObject::createOsiBranch (OsiSolverinterface « solver,
const OsiBranchingInformation info, int way)const [virtuall]
Create an Osibranching object and indicate which way to branch first.

The branching object has to know how to create branches (fix variables, etc.)
4.81.2.5 virtual OsiSolverBranch+ ChcObject::solverBranch ()const [virtual]

Create an OsiSolverBranch object.
This returns NULL if branch not represented by bound changes

Reimplemented in CbcSimplelntegerDynamicPseudoCost, and CbcSOS.

4.81.2.6 virtual CbcBranchingObject:+ CbcObject::preferredNewFeasible () const
[inline, virtual]

Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in a good direction.

If the method cannot generate a feasible point (because there aren’t any, or because it
isn’t bright enough to find one), it should return null.

Reimplemented in CbcBranchCut, and CbcLotsize.
Definition at line 169 of file CbcObject.hpp.

4.81.2.7 virtual CbcBranchingObject:+ ChcObject::notPreferredNewFeasible () const
[inline, virtual]

Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in a bad direction.

If the method cannot generate a feasible point (because there aren’t any, or because it
isn’t bright enough to find one), it should return null.

Reimplemented in CbcBranchCut, and Cbclotsize.

Definition at line 181 of file CbcObject.hpp.

4.81.2.8 virtual void CbcObject::resetBounds (const OsiSolverinterface x) [inline,
virtual]

Reset variable bounds to their original values.

Bounds may be tightened, so it may be good to be able to set this info in object.

Reimplemented in CbcLotsize, and CbcSimplelnteger.

Definition at line 189 of file CbcObject.hpp.

4.81.2.9 virtual void ChcObject::floorCeiling (double & floorValue, double & ceilingValue,
double value, double tolerance)const [virtuall]

Returns floor and ceiling i.e.

closest valid points

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.81 CbcObject Class Reference 251

Reimplemented in CbclLotsize.

4.81.2.10 virtual CbcObjectUpdateData ChcObject::createUpdatelnformation (const
OsiSolverinterface * solver, const CbcNode node, const CbcBranchingObject
* branchingObject) [virtual]

Pass in information on branch just done and create CbcObjectUpdateData instance.

If object does not need data then backward pointer will be NULL. Assumes can get
information from solver

Reimplemented in CbcSimplelntegerDynamicPseudoCost, and CbcSOS.
4.81.2.11 void CbcObject::setld (intvalue) [inline]

Set identifier (normally column number in matrix) but 1000000000 to 1100000000 means
optional branching object i.e.

code would work without it

Definition at line 214 of file CbcObject.hpp.
4.81.2.12 bool ChcObject::optionalObject ()const [inline]

Return true if optional branching object i.e.
code would work without it

Definition at line 220 of file CbcObject.hpp.

4.81.3 Member Data Documentation

4.81.3.1 CbcModelx CbcObject::model_ [protected]

data
Model
Definition at line 259 of file CbcObject.hpp.

The documentation for this class was generated from the following file:

» CbcObject.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.82

CbcObjectUpdateData Class Reference

4.82

CbcObjectUpdateData Class Reference

Collaboration diagram for CbcObjectUpdateData:

Public Member Functions

CbcObjectUpdateData ()

Default Constructor.

CbcObjectUpdateData (CbcObject xobject, int way, double change, int status, int

intDecrease_, double branchingValue)

Useful constructor.
CbcObjectUpdateData (const CbcObjectUpdateData &)

Copy constructor.
CbcObjectUpdateData & operator= (const CbcObjectUpdateData &rhs)

Assignment operator.
virtual ~CbcObjectUpdateData ()

Destructor.

Public Attributes

CbcObject * object_

data
int way_

Branch as defined by instance of CbcObject.
int objectNumber_

Object number.
double change_

Change in objective.
int status_

Status 0 Optimal, 1 infeasible, 2 unknown.
int intDecrease

Decrease in number unsatisfied.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.83 CbcOsiParam Class Reference 253

+ double branchingValue__

Branching value.
+ double originalObjective_

Objective value before branching.
+ double cutoff_

Current cutoff.

4.82.1 Detailed Description

Definition at line 14 of file CbcObjectUpdateData.hpp.

4.82.2 Member Data Documentation

4.82.2.1 CbcObject+ CbcObjectUpdateData::object_

data
Object
Definition at line 43 of file CbcObjectUpdateData.hpp.

The documentation for this class was generated from the following file:

+ CbcObjectUpdateData.hpp

4,83 CbcOsiParam Class Reference

Class for control parameters that act on a OsiSolverInterface object.

#include <CbcGenOsiParam.hpp>

Public Types

Subtypes

» enum CbcOsiParamCode
Enumeration for parameters that control an OsiSolverinterface object.

Public Member Functions

Constructors and Destructors

Be careful how you specify parameters for the constructors! There’s great
potential for confusion.

* CbcOsiParam ()
Default constructor.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.83

CbcOsiParam Class Reference 254

CbcOsiParam (CbcOsiParamCode code, std::string name, std::string help, dou-
ble lower, double upper, double dflt=0.0, bool display=true)

Constructor for a parameter with a double value.
CbcOsiParam (CbcOsiParamCode code, std::string name, std::string help, int
lower, int upper, int dflt=0, bool display=true)

Constructor for a parameter with an integer value.
CbcOsiParam (CbcOsiParamCode code, std::string name, std::string help, std::string
firstValue, int dflt, bool display=true)

Constructor for a parameter with keyword values.
CbcOsiParam (CbcOsiParamCode code, std::string name, std::string help, std::string
dflt, bool display=true)

Constructor for a string parameter.
CbcOsiParam (CbcOsiParamCode code, std::string name, std::string help, bool
display=true)

Constructor for an action parameter.
CbcOsiParam (const CbcOsiParam &orig)

Copy constructor.
CbcOsiParam = clone ()
Clone.
CbcOsiParam & operator= (const CbcOsiParam &rhs)

Assignment.
~CbcOsiParam ()
Destructor.

Methods to query and manipulate a parameter object

4.83.1

» CbcOsiParamCode paramCode () const

Get the parameter code.

« void setParamCode (CbcOsiParamCode code)

Set the parameter code.

» OsiSolverlnterface * obj () const

Get the underlying OsiSolverinterface object.

+ void setObj (OsiSolverinterface *obj)

Set the underlying OsiSolverinterace object.

Detailed Description

Class for control parameters that act on a OsiSolverInterface object.

Adds parameter type codes and push/pull functions to the generic parameter object.

Definition at line 31 of file CbcGenOsiParam.hpp.

4.83.2 Member Enumeration Documentation

4.83.2.1

enum CbcOsiParam::CbcOsiParamCode

Enumeration for parameters that control an OsiSolverInterface object.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.84 CbcParam Class Reference 255

These are parameters that control the operation of an OsiSolverInterface object. CBCOSI_-
FIRSTPARAM and CBCOSI_LASTPARAM are markers to allow convenient separation
of parameter groups.

Definition at line 46 of file CbcGenOsiParam.hpp.

4.83.3 Constructor & Destructor Documentation

4.83.3.1 CbcOsiParam::CbcOsiParam (CbcOsiParamCode code, std::string name,
std::string help, double lower, double upper, double dflt=0 . O, bool display =t rue

)
Constructor for a parameter with a double value.

The default value is 0.0. Be careful to clearly indicate that 1ower and upper are
real (double) values to distinguish this constructor from the constructor for an integer
parameter.

4.83.3.2 CbcOsiParam::ChcOsiParam (CbcOsiParamCode code, std::string name,
std::string help, int lower, int upper, int dflt = 0, bool display =t rue)
Constructor for a parameter with an integer value.

The default value is 0.

4.83.3.3 CbcOsiParam::CbhcOsiParam (CbcOsiParamCode code, std::string name,
std::string help, std::string firstValue, int dflt, bool display =t rue)
Constructor for a parameter with keyword values.

The string supplied as £irstValue becomes the first keyword. Additional keywords
can be added using appendKwd(). Keywords are numbered from zero. It's necessary to
specify both the first keyword (firstvalue) and the default keyword index (df1t) in
order to distinguish this constructor from the string and action parameter constructors.

4.83.3.4 CbcOsiParam::ChcOsiParam (CbcOsiParamCode code, std::string name,
std::string help, std::string dflt, bool display =t rue)

Constructor for a string parameter.

The default string value must be specified explicitly to distinguish a string constructor
from an action parameter constructor.

The documentation for this class was generated from the following file:

* CbcGenOsiParam.hpp

4.84 CbcParam Class Reference

Very simple class for setting parameters.

#include <CbcParam.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.84 CbcParam Class Reference

256

Collaboration diagram for CbcParam:

T

A

elements
I
|

std::vector< T > std::

A

std::basic_string< char >

string

Y

< std::string >, elements\
/ \
/ \
/ istringValue_
‘ I longHelp
std::vector< std::strin .
< 9> I shortHelp_
4 ' name_

1

‘\deﬁnedKeyWords_/

N\
N

|
/

/
/

CbcParam

Public Member Functions

Constructor and destructor

CbcParam ()
Constructors.

CbcParam (std::string name, std::string help, double lower, double upper, Cbc-
ParameterType type, bool display=true)
CbcParam (std::string name, std::string help, int lower, int upper, CbcParame-
terType type, bool display=true)
CbcParam (std::string name, std::string help, std::string firstValue, CbcParam-
eterType type, int defaultindex=0, bool display=true)
CbcParam (std::string name, std::string help, CbcParameterType type, intindexNumber=-
1, bool display=true)
CbcParam (const CbcParam &)
Copy constructor.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.84 CbcParam Class Reference 257

» CbcParam & operator= (const CbcParam &rhs)

Assignment operator. This copies the data.
* ~CbcParam ()

Destructor.

stuff

+ void append (std::string keyWord)
Insert string (only valid for keywords)
+ void addHelp (std::string keyWord)
Adds one help line.
« std::string name () const
Returns name.
« std::string shortHelp () const
Returns short help.
« int setDoubleParameter (CbcModel &model, double value) const

Sets a double parameter (nonzero code if error)
+ double doubleParameter (CbcModel &model) const

Gets a double parameter.
« int setIntParameter (CbcModel &model, int value) const

Sets a int parameter (nonzero code if error)
« int intParameter (CbcModel &model) const

Gets a int parameter.
« int setDoubleParameter (ClpSimplex xmodel, double value) const

Sets a double parameter (nonzero code if error)
+ double doubleParameter (ClpSimplex xmodel) const

Gets a double parameter.
* int setIntParameter (ClpSimplex xmodel, int value) const

Sets a int parameter (nonzero code if error)
« int intParameter (ClpSimplex xmodel) const

Gets a int parameter.
« int setDoubleParameter (OsiSolverinterface x*model, double value) const

Sets a double parameter (nonzero code if error)
+ double doubleParameter (OsiSolverinterface xmodel) const

Gets a double parameter.
« int setIntParameter (OsiSolverInterface *model, int value) const

Sets a int parameter (nonzero code if error)
« int intParameter (OsiSolverinterface *model) const

Gets a int parameter.
« int checkDoubleParameter (double value) const

Checks a double parameter (nonzero code if error)
+ std::string matchName () const

Returns name which could match.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.84

CbcParam Class Reference 258

int parameterOption (std::string check) const

Returns parameter option which matches (-1 if none)
void printOptions () const

Prints parameter options.
std::string currentOption () const

Returns current parameter option.
+ void setCurrentOption (int value)
Sets current parameter option.
void setIntValue (int value)

Sets int value.
int intValue () const
void setDoubleValue (double value)

Sets double value.
double doubleValue () const
void setStringValue (std::string value)

Sets string value.
std::string stringValue () const
int matches (std::string input) const

Returns 1 if matches minimum, 2 if matches less, 0 if not matched.
» CbcParameterType type () const

type
bool displayThis () const

whether to display
void setLonghelp (const std::string help)

Set Long help.
void printLongHelp () const

Print Long help.
void printString () const

Print action and string.
int indexNumber () const

type for classification

4.84.1 Detailed Description

Very simple class for setting parameters.

Definition at line 153 of file CbcParam.hpp.

The

documentation for this class was generated from the following file:

» CbcParam.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.85 CbcGenCtiBlk::cbcParamsinfo_struct Struct Reference 259

4.85 CbcGenCtlBlk::cbhcParamslinfo_struct Struct Reference
Start and end of CbcModel parameters in parameter vector.
#include <CbcGenCtlBlk.hpp>

4.85.1 Detailed Description

Start and end of CbcModel parameters in parameter vector.
Definition at line 605 of file CbcGenCtIBlk.hpp.

The documentation for this struct was generated from the following file:

+ CbcGenCtIBIk.hpp

4.86 CbcPartialNodelnfo Class Reference

Holds information for recreating a subproblem by incremental change from the parent.
#include <CbcPartialNodeInfo.hpp>

Inheritance diagram for CbcPartialNodelnfo:

CbcNodelnfo

CbcPartialNodelnfo

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.86 CbcPartialNodelnfo Class Reference 260

Collaboration diagram for CbcPartialNodelnfo:

<4

parent

~
~

CbcNodelnfo

N

7 I A N
(nodelnfo_ owner_ ~ \owner_ \cuts_

AN | B |

CbcPartialNodelnfo CbcNode CbcCountRowCut

Public Member Functions

+ virtual void applyToModel (CbcModel xmodel, CoinWarmStartBasis «&basis, Cbc-
CountRowCut *xaddCuts, int ¤tNumberCuts) const

Modify model according to information at node.
« virtual int applyBounds (int iColumn, double &lower, double &upper, int force)

Just apply bounds to one variable - force means overwrite by lower,upper (1=>infeasible)
« virtual CbcNodelnfo * buildRowBasis (CoinWarmStartBasis &basis) const

Builds up row basis backwards (until original model).
+ virtual CbcNodelnfo * clone () const

Clone.
+ const CoinWarmStartDiff x basisDiff () const

Basis diff information.
+ const int * variables () const

Which variable (top bit if upper bound changing)
+ int numberChangedBounds () const

Number of bound changes.

Protected Attributes

» CoinWarmStartDiff % basisDiff_

Basis diff information.
* int x variables__

Which variable (top bit if upper bound changing)
+ int numberChangedBounds_

Number of bound changes.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.87 CbcRounding Class Reference 261

4.86.1 Detailed Description

Holds information for recreating a subproblem by incremental change from the parent.

A CbcPartialNodelnfo object contains changes to the bounds and basis, and additional
cuts, required to recreate a subproblem by modifying and augmenting the parent sub-
problem.

Definition at line 39 of file CbcPartialNodelnfo.hpp.

4.86.2 Member Function Documentation

4.86.2.1 virtual void CbcPartialNodelnfo::applyToModel (CbcModel + model,
CoinWarmStartBasis x& basis, CbcCountRowCut *x addCuts, int &
currentNumberCuts)const [virtual]

Modify model according to information at node.

The routine modifies the model according to bound and basis change information at
node and adds any cuts to the addCuts array.

Implements CbcNodelnfo.

4.86.2.2 virtual CbcNodelnfo: CbcPartialNodelnfo::buildRowBasis (CoinWarmStartBasis &
basis)const [virtuall]

Builds up row basis backwards (until original model).

Returns NULL or previous one to apply . Depends on Free being 0 and impossible for
cuts

Implements CbcNodelnfo.

The documentation for this class was generated from the following file:

+ CbcPartialNodelnfo.hpp

4.87 CbcRounding Class Reference

Rounding class.

#include <CbcHeuristic.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.87 CbcRounding Class Reference 262

Inheritance diagram for CbcRounding:

CbcHeuristic

CbcRounding

Collaboration diagram for CbcRounding:

Public Member Functions

» CbcRounding & operator= (const CbcRounding &rhs)
Assignment operator.
« virtual CbcHeuristic * clone () const
Clone.
« virtual void generateCpp (FILE xfp)
Create C++ lines to get to current state.
« virtual void resetModel (CbcModel xmodel)
Resets stuff if model changes.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual int solution (double &objectiveValue, double xnewSolution)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.88 CbcSerendipity Class Reference 263

returns 0 if no solution, 1 if valid solution with better objective value than one passed
in Sets solution values if good, sets objective value (only if good) This is called after
cuts have been added - so can not add cuts

« virtual int solution (double &objectiveValue, double xnewSolution, double solu-
tionValue)

returns 0 if no solution, 1 if valid solution with better objective value than one passed

in Sets solution values if good, sets objective value (only if good) This is called after

cuts have been added - so can not add cuts Use solutionValue rather than solvers one
« virtual void validate ()

Validate model i.e. sets when_ to 0 if necessary (may be NULL)
+ void setSeed (int value)

Set seed.

4.87.1 Detailed Description

Rounding class.
Definition at line 395 of file CbcHeuristic.hpp.

The documentation for this class was generated from the following file:

+ CbcHeuristic.hpp

4.88 ChcSerendipity Class Reference

heuristic - just picks up any good solution found by solver - see OsiBabSolver
#include <CbcHeuristic.hpp>

Inheritance diagram for CbcSerendipity:

CbcHeuristic

CbcSerendipity

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.88 CbcSerendipity Class Reference 264

Collaboration diagram for CbcSerendipity:

Public Member Functions

CbcSerendipity & operator= (const CbcSerendipity &rhs)

Assignment operator.
virtual CbcHeuristic * clone () const

Clone.
virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
virtual void setModel (CbcModel xmodel)

update model
virtual int solution (double &objectiveValue, double xnewSolution)

returns 0 if no solution, 1 if valid solution.
virtual void resetModel (CbcModel xmodel)

Resets stuff if model changes.

4.88.1 Detailed Description

heuristic - just picks up any good solution found by solver - see OsiBabSolver

Definition at line 540 of file CbcHeuristic.hpp.

4.88.2 Member Function Documentation

4.88.2.1 virtual int ChcSerendipity::solution (double & objectiveValue, double x newSolution)
[virtual]
returns 0 if no solution, 1 if valid solution.

Sets solution values if good, sets objective value (only if good) We leave all variables
which are at one at this node of the tree to that value and will initially set all others to

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.89 CbcSimplelnteger Class Reference 265

zero. We then sort all variables in order of their cost divided by the number of entries
in rows which are not yet covered. We randomize that value a bit so that ties will be
broken in different ways on different runs of the heuristic. We then choose the best one
and set it to one and repeat the exercise.

Implements CbcHeuristic.

The documentation for this class was generated from the following file:

+ CbcHeuristic.hpp

4.89 ChcSimplelnteger Class Reference

Define a single integer class.
#include <CbcSimpleInteger.hpp>

Inheritance diagram for CbcSimplelnteger:

CbcObject

CbcSimplelnteger

CbcSimplelntegerDynamicPseudoCost | | CbcSimplelntegerFixed | | CbcSimplelntegerPseudoCost

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.89 CbcSimplelnteger Class Reference 266

Collaboration diagram for CbcSimplelnteger:

Public Member Functions

+ virtual CbcObject * clone () const

Clone.
OsiSimplelnteger * osiObject () const

Construct an OsiSimplelnteger object.
virtual double infeasibility (const OsiBranchinglnformation xinfo, int &preferred-
Way) const

Infeasibility - large is 0.5.
virtual double feasibleRegion (OsiSolverinterface *solver, const OsiBranchinglIn-
formation xinfo) const

Set bounds to fix the variable at the current (integer) value.
virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface xsolver, const
OsiBranchingInformation xinfo, int way)

Create a branching object and indicate which way to branch first.
void fillCreateBranch (CbclIntegerBranchingObject <branching, const OsiBranching-
Information xinfo, int way)

Fills in a created branching object.
virtual OsiSolverBranch * solverBranch (OsiSolverInterface *solver, const Osi-
BranchingInformation xinfo) const

Create an OsiSolverBranch object.
virtual void feasibleRegion ()

Set bounds to fix the variable at the current (integer) value.
« virtual int columnNumber () const

Column number if single column object -1 otherwise, so returns >= 0 Used by heuris-
tics.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.89 CbcSimplelnteger Class Reference 267

void setColumnNumber (int value)

Set column number.
virtual void resetBounds (const OsiSolverInterface xsolver)

Reset variable bounds to their original values.
virtual void resetSequenceEtc (int numberColumns, const int xoriginalColumns)

Change column numbers after preprocessing.
+ double originalLowerBound () const
Original bounds.
double breakEven () const

Breakeven e.g 0.7 -> >= 0.7 go up first.
+ void setBreakEven (double value)

Set breakeven e.g 0.7 -> >= 0.7 go up first.

Protected Attributes

+ double originalLower_

data
+ double originalUpper_

Original upper bound.
» double breakEven__

Breakeven i.e. >= this preferred is up.
* int columnNumber

Column number in model.
* int preferredWay_

If -1 down always chosen first, +1 up always, 0 normal.

4.89.1 Detailed Description

Define a single integer class.

Definition at line 165 of file CbcSimplelnteger.hpp.

4.89.2 Member Function Documentation

4.89.2.1 virtual double CbcSimplelnteger::feasibleRegion (OsiSolverinterface * solver, const
OsiBranchingInformation x info) const [virtual]
Set bounds to fix the variable at the current (integer) value.

Given an integer value, set the lower and upper bounds to fix the variable. Returns
amount it had to move variable.

Reimplemented from CbcObject.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.90 CbcSimplelntegerDynamicPseudoCost Class Reference 268

4.89.2.2 virtual CbcBranchingObject:+ CbcSimplelnteger::createChcBranch (
OsiSolverinterface * solver, const OsiBranchinglnformation x info, int way)
[virtual]

Create a branching object and indicate which way to branch first.
The branching object has to know how to create branches (fix variables, etc.)
Reimplemented from CbcObject.

Reimplemented in CbcSimplelntegerDynamicPseudoCost, and CbcSimplelntegerPseu-
doCost.

4.89.2.3 virtual OsiSolverBranchx ChcSimplelnteger::solverBranch (OsiSolverinterface
solver, const OsiBranchinginformation x info)const [virtual]

Create an OsiSolverBranch object.

This returns NULL if branch not represented by bound changes
4.89.2.4 virtual void CbcSimplelnteger::feasibleRegion() [virtual]

Set bounds to fix the variable at the current (integer) value.

Given an integer value, set the lower and upper bounds to fix the variable. The algorithm
takes a bit of care in order to compensate for minor numerical inaccuracy.

Implements CbcObject.

4.89.2.5 virtual void ChcSimplelnteger::resetBounds (const OsiSolverinterface x solver)
[virtual]

Reset variable bounds to their original values.
Bounds may be tightened, so it may be good to be able to set this info in object.

Reimplemented from CbcObject.

4.89.3 Member Data Documentation

4.89.3.1 double CbcSimplelnteger::originalLower_ [protected]

data
Criginal lower bound
Definition at line 273 of file CbcSimplelnteger.hpp.

The documentation for this class was generated from the following file:

+ CbcSimplelnteger.hpp

4.90 ChbcSimplelntegerDynamicPseudoCost Class Reference

Define a single integer class but with dynamic pseudo costs.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.90 CbcSimplelntegerDynamicPseudoCost Class Reference 269

#include <CbcSimpleIntegerDynamicPseudoCost.hpp>

Inheritance diagram for CbcSimplelntegerDynamicPseudoCost:

CbcObject
A

CbcSimplelnteger
A

CbcSimplelntegerDynamicPseudoCost

Collaboration diagram for CbcSimplelntegerDynamicPseudoCost:

Public Member Functions

+ virtual CbcObject * clone () const

Clone.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.90 CbcSimplelntegerDynamicPseudoCost Class Reference 270

+ virtual double infeasibility (const OsiBranchinglnformation xinfo, int &preferred-
Way) const
Infeasibility - large is 0.5.
« virtual CbcBranchingObject * createCbcBranch (OsiSolverinterface *solver, const
OsiBranchingInformation xinfo, int way)
Creates a branching object.
« void fillCreateBranch (CbclntegerBranchingObject xbranching, const OsiBranching-
Information xinfo, int way)
Fills in a created branching object.
« virtual CbcObjectUpdateData createUpdatelnformation (const OsiSolverinterface
xsolver, const CbcNode *node, const CbcBranchingObject xbranchingObject)
Pass in information on branch just done and create CbcObjectUpdateData instance.
« virtual void updatelnformation (const CbcObjectUpdateData &data)
Update object by CbcObjectUpdateData.
« void copySome (const CbcSimplelntegerDynamicPseudoCost xotherObject)
Copy some information i.e. just variable stuff.
« virtual void updateBefore (const OsiObject *rhs)
Updates stuff like pseudocosts before threads.
« virtual void updateAfter (const OsiObject xrhs, const OsiObject xbaseObject)
Updates stuff like pseudocosts after threads finished.
+ void updateAfterMini (int numberDown, int numberDownlInfeasible, double sum-
Down, int numberUp, int numberUplnfeasible, double sumUp)
Updates stuff like pseudocosts after mini branch and bound.
« virtual OsiSolverBranch x solverBranch () const
Create an OsiSolverBranch object.
+ double downDynamicPseudoCost () const
Down pseudo cost.
+ void setDownDynamicPseudoCost (double value)
Set down pseudo cost.
+ void updateDownDynamicPseudoCost (double value)
Modify down pseudo cost in a slightly different way.
+ double upDynamicPseudoCost () const
Up pseudo cost.
+ void setUpDynamicPseudoCost (double value)
Set up pseudo cost.
+ void updateUpDynamicPseudoCost (double value)
Modify up pseudo cost in a slightly different way.
 double downShadowPrice () const
Down pseudo shadow price cost.
+ void setDownShadowPrice (double value)
Set down pseudo shadow price cost.
* double upShadowPrice () const

Up pseudo shadow price cost.
+ void setUpShadowPrice (double value)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.90

CbcSimplelntegerDynamicPseudoCost Class Reference

271

Set up pseudo shadow price cost.
double upDownSeparator () const
Up down separator.
void setUpDownSeparator (double value)
Set up down separator.
double sumDownCost () const
Down sum cost.
void setSumDownCost (double value)
Set down sum cost.
void addToSumDownCost (double value)
Add to down sum cost and set last and square.
double sumUpCost () const
Up sum cost.
void setSumUpCost (double value)
Set up sum cost.
void addToSumUpCost (double value)
Add to up sum cost and set last and square.
double sumDownChange () const
Down sum change.
void setSumDownChange (double value)
Set down sum change.
void addToSumDownChange (double value)
Add to down sum change.
double sumUpChange () const
Up sum change.
void setSumUpChange (double value)
Set up sum change.
void addToSumUpChange (double value)
Add to up sum change and set last and square.
double sumDownDecrease () const
Sum down decrease number infeasibilities from strong or actual.
void setSumDownDecrease (double value)

Set sum down decrease number infeasibilities from strong or actual.

void addToSumDownDecrease (double value)

Add to sum down decrease number infeasibilities from strong or actual.

double sumUpDecrease () const

Sum up decrease number infeasibilities from strong or actual.
void setSumUpDecrease (double value)

Set sum up decrease number infeasibilities from strong or actual.

void addToSumUpDecrease (double value)

Add to sum up decrease number infeasibilities from strong or actual.

int numberTimesDown () const

Down number times.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.90

CbcSimplelntegerDynamicPseudoCost Class Reference

272

void setNumberTimesDown (int value)
Set down number times.

void incrementNumberTimesDown ()
Increment down number times.

int numberTimesUp () const
Up number times.

void setNumberTimesUp (int value)
Set up number times.

void incrementNumberTimesUp ()
Increment up number times.

int numberTimesDownlnfeasible () const

Down number times infeasible.
void setNumberTimesDownlInfeasible (int value)

Set down number times infeasible.
void incrementNumberTimesDownlnfeasible ()

Increment down number times infeasible.
int numberTimesUplnfeasible () const

Up number times infeasible.

void setNumberTimesUplnfeasible (int value)
Set up number times infeasible.

void incrementNumberTimesUplnfeasible ()
Increment up number times infeasible.

int numberBeforeTrust () const
Number of times before trusted.

void setNumberBeforeTrust (int value)

Set number of times before trusted.
void incrementNumberBeforeTrust ()

Increment number of times before trusted.
virtual double upEstimate () const

Return "up" estimate.
virtual double downEstimate () const

Return "down" estimate (default 1.0e-5)
int method () const

method - see below for details
void setMethod (int value)

Set method.

void setDownlInformation (double changeObjectiveDown, int changelnfeasibility-

Down)

Pass in information on a down branch.

void setUpInformation (double changeObjectiveUp, int changelnfeasibilityUp)

Pass in information on a up branch.
void setProbinglnformation (int fixedDown, int fixedUp)

Pass in probing information.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.90 CbcSimplelntegerDynamicPseudoCost Class Reference 273

+ void print (int type=0, double value=0.0) const

Print - 0 -summary, 1 just before strong.
* bool same (const CbcSimplelntegerDynamicPseudoCost xobj) const

Same - returns true if contents match(ish)

Protected Attributes

+ double downDynamicPseudoCost_

data
+ double upDynamicPseudoCost_

Up pseudo cost.
+ double upDownSeparator_

Up/down separator If > 0.0 then do first branch up if value-floor(value) > = this value.
 double sumDownCost_

Sum down cost from strong or actual.
 double sumUpCost_

Sum up cost from strong or actual.
 double sumDownChange__

Sum of all changes to x when going down.
+ double sumUpChange_

Sum of all changes to x when going up.
+ double downShadowPrice_

Current pseudo-shadow price estimate down.
+ double upShadowPrice_

Current pseudo-shadow price estimate up.
 double sumDownDecrease

Sum down decrease number infeasibilities from strong or actual.
» double sumUpDecrease_

Sum up decrease number infeasibilities from strong or actual.
+ double lastDownCost_

Last down cost from strong (i.e. as computed by last strong)
* double lastUpCost_

Last up cost from strong (i.e. as computed by last strong)
* int lastDownDecrease

Last down decrease number infeasibilities from strong (i.e. as computed by last strong)
« int lastUpDecrease_

Last up decrease number infeasibilities from strong (i.e. as computed by last strong)
* int numberTimesDown_

Number of times we have gone down.
* int numberTimesUp_

Number of times we have gone up.
* int numberTimesDownlinfeasible

Number of times we have been infeasible going down.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.90 CbcSimplelntegerDynamicPseudoCost Class Reference 274

« int numberTimesUplnfeasible_

Number of times we have been infeasible going up.
* int numberBeforeTrust

Number of branches before we trust.
* int numberTimesDownLocalFixed

Number of local probing fixings going down.
+ int numberTimesUpLocalFixed_

Number of local probing fixings going up.
 double numberTimesDownTotalFixed_

Number of total probing fixings going down.
+ double numberTimesUpTotalFixed_
Number of total probing fixings going up.
+ int numberTimesProbingTotal_

Number of times probing done.
* int method

Number of times infeasible when tested.

4.90.1 Detailed Description

Define a single integer class but with dynamic pseudo costs.
Based on work by Achterberg, Koch and Martin.

It is wild overkill but to keep design all twiddly things are in each. This could be used for
fine tuning.

Definition at line 35 of file CbcSimplelntegerDynamicPseudoCost.hpp.

4.90.2 Member Function Documentation

4.90.2.1 virtual CbcObjectUpdateData ChcSimplelntegerDynamicPseudo-
Cost::createUpdatelnformation (const OsiSolverinterface * solver, const CbcNode
node, const CbcBranchingObject * branchingObject) [virtuall]

Pass in information on branch just done and create CbcObjectUpdateData instance.

If object does not need data then backward pointer will be NULL. Assumes can get
information from solver

Reimplemented from CbcObject.

4.90.2.2 virtual OsiSolverBranchx ChcSimplelntegerDynamicPseudoCost::solverBranch ()
const [virtual]

Create an OsiSolverBranch object.
This returns NULL if branch not represented by bound changes

Reimplemented from CbcObject.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.91 CbcSimplelntegerFixed Class Reference 275

4.90.3 Member Data Documentation

4.90.3.1 double CbcSimplelntegerDynamicPseudoCost::downDynamicPseudoCost_-
[protected]

data
Down pseudo cost

Definition at line 320 of file CbcSimplelntegerDynamicPseudoCost.hpp.
4.90.3.2 int CbcSimplelntegerDynamicPseudoCost::method_ [protected]

Number of times infeasible when tested.
Method - 0 - pseudo costs 1 - probing
Definition at line 377 of file CbcSimplelntegerDynamicPseudoCost.hpp.

The documentation for this class was generated from the following file:

+ CbcSimplelntegerDynamicPseudoCost.hpp

4.91 CbcSimplelntegerFixed Class Reference

Define a single integer class where branching is forced until fixed.
#include <CbcBranchUser.hpp>

Inheritance diagram for CbcSimplelntegerFixed:

CbcObject

CbcSimplelnteger

CbcSimplelntegerFixed

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.91 CbcSimplelntegerFixed Class Reference 276

Collaboration diagram for CbcSimplelntegerFixed:

Public Member Functions

» virtual CbcObject * clone () const

Clone.
« virtual double infeasibility (int &preferredWay) const

Infeasibility - large is 0.5.
« virtual CbcBranchingObject * createBranch (OsiSolverinterface *solver, const
OsiBranchingInformation xinfo, int way)

Creates a branching object.

4,91.1 Detailed Description

Define a single integer class where branching is forced until fixed.

Definition at line 64 of file CbcBranchUser.hpp.

4.91.2 Member Function Documentation

4.91.2.1 virtual CbcBranchingObijects CbcSimplelntegerFixed::createBranch (
OsiSolverinterface * solver, const OsiBranchinglnformation = info, int way)
[virtual]

Creates a branching object.

The preferred direction is set by way, -1 for down, +1 for up. Create a branching object
and indicate which way to branch first.

The branching object has to know how to create branches (fix variables, etc.)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.92 CbcSimplelntegerPseudoCost Class Reference 277

The documentation for this class was generated from the following file:

+ CbcBranchUser.hpp

4,92 CbcSimplelntegerPseudoCost Class Reference

Define a single integer class but with pseudo costs.
#include <CbcSimpleIntegerPseudoCost.hpp>

Inheritance diagram for CbcSimplelntegerPseudoCost:

CbcObject

CbcSimplelnteger

CbcSimplelntegerPseudoCost

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.92 CbcSimplelntegerPseudoCost Class Reference 278

Collaboration diagram for CbcSimplelntegerPseudoCost:

Public Member Functions

+ virtual CbcObject * clone () const

Clone.
virtual double infeasibility (const OsiBranchingInformation xinfo, int &preferred-
Way) const

Infeasibility - large is 0.5.
virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface *solver, const
OsiBranchinglnformation *info, int way)

Creates a branching object.
+ double downPseudoCost () const
Down pseudo cost.
+ void setDownPseudoCost (double value)
Set down pseudo cost.
double upPseudoCost () const

Up pseudo cost.
void setUpPseudoCost (double value)

Set up pseudo cost.
double upDownSeparator () const

Up down separator.
void setUpDownSeparator (double value)

Set up down separator.
virtual double upEstimate () const

Return "up" estimate.
virtual double downEstimate () const

Return "down" estimate (default 1.0e-5)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.93 CbcSolver Class Reference 279

* int method () const

method - see below for details
+ void setMethod (int value)

Set method.

Protected Attributes

« double downPseudoCost_

data
* double upPseudoCost_

Up pseudo cost.
» double upDownSeparator_

Up/down separator If > 0.0 then do first branch up if value-floor(value) > = this value.
* int method

Method - 0 - normal - return min (up,down) 1 - if before any solution return Coin-
Max(up,down) 2 - if before branched solution return CoinMax(up,down) 3 - always
return CoinMax(up,down)

4,92.1 Detailed Description

Define a single integer class but with pseudo costs.

Definition at line 14 of file CbcSimplelntegerPseudoCost.hpp.

4.92.2 Member Data Documentation

4.92.2.1 double CbcSimplelntegerPseudoCost::downPseudoCost_
[protected]

data
Down pseudo cost
Definition at line 95 of file CbcSimplelntegerPseudoCost.hpp.

The documentation for this class was generated from the following file:

+ CbcSimplelntegerPseudoCost.hpp

4,93 CbcSolver Class Reference

This allows the use of the standalone solver in a flexible manner.

#include <CbcSolver.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.93 CbcSolver Class Reference 280

Collaboration diagram for CbcSolver:

Public Member Functions

Solve method

« int solve (int argc, const char xargv[], int returnMode)

This takes a list of commands, does "stuff" and returns returnMode - 0 model and
solver untouched - babModel updated 1 model updated - just with solution basis
etc 2 model updated i.e.

« int solve (const char *input, int returnMode)

This takes a list of commands, does "stuff" and returns returnMode - 0 model and
solver untouched - babModel updated 1 model updated - just with solution basis
etc 2 model updated i.e.

Constructors and destructors etc

» CbcSolver ()
Default Constructor.
» CbcSolver (const OsiClpSolverInterface &)
Constructor from solver.
» CbcSolver (const CbcModel &)
Constructor from model.
» CbcSolver (const CbcSolver &rhs)
Copy constructor .
» CbcSolver & operator= (const CbcSolver &rhs)
Assignment operator.
» ~CbcSolver ()
Destructor.
« void fillParameters ()
Fill with standard parameters.
« void fillValuesInSolver ()
Set default values in solvers from parameters.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.93 CbcSolver Class Reference 281

« void addUserFunction (CbcUser *function)

Add user function.
« void setUserCallBack (CbcStopNow xfunction)

Set user call back.
« void addCutGenerator (CglCutGenerator xgenerator)

Add cut generator.

miscellaneous methods to line up with old

« int x analyze (OsiClpSolverinterface xsolverMod, int &numberChanged, dou-
ble &increment, bool changelnt, CoinMessageHandler xgeneralMessageHandler)

« void updateModel (ClpSimplex xmodel2, int returnMode)
1 - add heuristics to model 2 - do heuristics (and set cutoff and best solution) 3 - for
miplib test so skip some (out model later)

useful stuff

« int intValue (CbcOrClpParameterType type) const

Get int value.
« void setIntValue (CbcOrClpParameterType type, int value)

Set int value.
» double doubleValue (CbcOrClpParameterType type) const

Get double value.
+ void setDoubleValue (CbcOrClpParameterType type, double value)

Set double value.
» CbcUser * userFunction (const char xname) const

User function (NULL if no match)
» CbcModel * model ()

Return original Cbc model.
» CbcModel * babModel ()

Return updated Cbc model.
« int numberUserFunctions () const

Number of userFunctions.
» CbcUser ** userFunctionArray () const

User function array.
+ OsiClpSolverinterface * originalSolver () const

Copy of model on initial load (will contain output solutions)
» CoinModel * originalCoinModel () const

Copy of model on initial load.
« void setOriginalSolver (OsiClpSolverInterface *originalSolver)

Copy of model on initial load (will contain output solutions)
« void setOriginalCoinModel (CoinModel xoriginalCoinModel)

Copy of model on initial load.
* int numberCutGenerators () const

Number of cutgenerators.
» CglCutGenerator *x cutGeneratorArray () const

Cut generator array.
» double startTime () const

Start time.
« void setPrinting (bool onOff)

Whether to print to std::cout.
« void setReadMode (int value)

Where to start reading commands.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.93 CbcSolver Class Reference 282

4,931 Detailed Description

This allows the use of the standalone solver in a flexible manner.

It has an original OsiClpSolverinterface and CbcModel which it can use repeatedly, e.g.,
to get a heuristic solution and then start again.

So I [jjf] will need a primitive scripting language which can then call solve and manipulate
solution value and solution arrays.

Also provides for user callback functions. Currently two ideas in gestation, CbcUser and
CbcStopNow. The latter seems limited to deciding whether or not to stop. The former
seems completely general, with a notion of importing and exporting, and a ‘solve’, which
should be interpreted as ‘do whatever this user function does’.

Parameter initialisation is at last centralised in fillParameters().

Definition at line 56 of file CbcSolver.hpp.

4.93.2 Member Function Documentation

4.93.2.1 int CbcSolver::solve (int argc, const char x argv[], int returnMode)

This takes a list of commands, does "stuff" and returns returnMode - 0 model and solver
untouched - babModel updated 1 model updated - just with solution basis etc 2 model
updated i.e.

as babModel (babModel NULL) (only use without preprocessing)
4.93.2.2 int CbcSolver::solve (const char x input, int returnMode)

This takes a list of commands, does "stuff" and returns returnMode - 0 model and solver
untouched - babModel updated 1 model updated - just with solution basis etc 2 model
updated i.e.

as babModel (babModel NULL) (only use without preprocessing)
4,93.2.3 void ChcSolver::fillValuesinSolver ()

Set default values in solvers from parameters.

Misleading. The current code actually reads default values from the underlying solvers
and installs them as default values for a subset of parameters in #parameters_.

4.93.2.4 void CbcSolver::updateModel (ClpSimplex « model2, int returnMode)

1 - add heuristics to model 2 - do heuristics (and set cutoff and best solution) 3 - for
miplib test so skip some (out model later)

Updates model_ from babModel_ according to returnMode returnMode - 0 model and
solver untouched - babModel updated 1 model updated - just with solution basis etc 2
model updated i.e. as babModel (babModel NULL) (only use without preprocessing)

The documentation for this class was generated from the following file:

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.94 CbcSolver2 Class Reference 283

» CbcSolver.hpp

4,94 CbcSolver2 Class Reference

This is to allow the user to replace initialSolve and resolve.
#include <CbcSolver2.hpp>

Collaboration diagram for CbcSolver2:

Public Member Functions

Solve methods

« virtual void initialSolve ()

Solve initial LP relaxation.
« virtual void resolve ()

Resolve an LP relaxation after problem modification.

Constructors and destructors

» CbcSolver2 ()

Default Constructor.
virtual OsiSolverInterface * clone (bool CopyData=true) const

Clone.
CbcSolver2 (const CbcSolver2 &)

Copy constructor.
CbcSolver2 & operator= (const CbcSolver2 &rhs)

Assignment operator.
virtual ~CbcSolver2 ()

Destructor.

Sets and Getss

« void initialize (CbcModel xmodel, const char xkeep)

Setup arrays - ones in keep will always be in.
« const int x when () const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.95 CbcSolver3 Class Reference 284

get which ones have been used
* int getMemory () const

Get memory (i.e. how recent use should be)
« int getCount () const

Get current count.
« void setMemory (int value)

Set memory (i.e. how recent use should be)
« void setAlgorithm (int value)

Say whether to just count usage.
« int getAlgorithm () const

Say whether to just count usage.
« void setStrategy (int value)

Strategy.
« int getStrategy () const

Strategy.

4,941 Detailed Description

This is to allow the user to replace initialSolve and resolve.

This version is to try and speed up long thin problems.

This particular version assumes unit elements and rhs Can be E or G rhs
Definition at line 22 of file CbcSolver2.hpp.

The documentation for this class was generated from the following file:

+ CbcSolver2.hpp

4.95 ChcSolver3 Class Reference

This is to allow the user to replace initialSolve and resolve.
#include <CbcSolver3.hpp>

Collaboration diagram for CbcSolver3:

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.95 CbcSolver3 Class Reference

285

Public Member Functions

Solve methods

virtual void initialSolve ()

Solve initial LP relaxation.
virtual void resolve ()

Resolve an LP relaxation after problem modification.

Constructors and destructors

CbcSolver3 ()

Default Constructor.
virtual OsiSolverInterface * clone (bool CopyData=true) const

Clone.
CbcSolver3 (const CbcSolver3 &)

Copy constructor.
CbcSolver3 & operator= (const CbcSolver3 &rhs)

Assignment operator.
virtual ~CbcSolver3 ()

Destructor.

Sets and Getss

void initialize (CbcModel xmodel, const char xkeep)

Setup arrays - ones in keep will always be in.
const int * when () const

get which ones have been used
int getMemory () const

Get memory (i.e. how recent use should be)
int getCount () const

Get current count.
void setMemory (int value)

Set memory (i.e. how recent use should be)
void setBelievelnfeasible (bool yesNo)

Say whether to believe infeasible.
void setAlgorithm (int value)

Say whether to just count usage.
void setNested (double value)

Do nested search if this fraction fixed.
int getAlgorithm () const

Say whether to just count usage.
double getNested () const

Do nested search if this fraction fixed.

4,95.1 Detailed Description

This is to allow the user to replace initialSolve and resolve.

Definition at line 19 of file CbcSolver3.hpp.

The documentation for this class was generated from the following file:

+ CbcSolver3.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.96 CbcSolverLongThin Class Reference 286

4,96 CbcSolverLongThin Class Reference

This is to allow the user to replace initialSolve and resolve.
#include <CbcSolverLongThin.hpp>

Collaboration diagram for CbcSolverLongThin:

Public Member Functions

Solve methods

« virtual void initialSolve ()

Solve initial LP relaxation.
« virtual void resolve ()

Resolve an LP relaxation after problem modification.

Constructors and destructors

» CbcSolverLongThin ()

Default Constructor.
virtual OsiSolverInterface * clone (bool CopyData=true) const

Clone.
CbcSolverLongThin (const CbcSolverLongThin &)

Copy constructor.
CbcSolverLongThin & operator= (const CbcSolverLongThin &rhs)

Assignment operator.
virtual ~CbcSolverLongThin ()

Destructor.

Sets and Getss

« void initialize (CbcModel xmodel, const char xkeep)

Setup arrays - ones in keep will always be in.
 const int * when () const

get which ones have been used
* int getMemory () const

Get memory (i.e. how recent use should be)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.97 CbcSolverUsefulData Struct Reference

287

« int getCount () const

Get current count.
« void setMemory (int value)

Set memory (i.e. how recent use should be)
« void setBelievelnfeasible (bool yesNo)

Say whether to believe infeasible.
« void setAlgorithm (int value)

Say whether to just count usage.
« void setNested (double value)

Do nested search if this fraction fixed.
« int getAlgorithm () const

Say whether to just count usage.
» double getNested () const

Do nested search if this fraction fixed.

4,96.1 Detailed Description

This is to allow the user to replace initialSolve and resolve.

Definition at line 19 of file CbcSolverLongThin.hpp.

The documentation for this class was generated from the following file:

+ CbcSolverLongThin.hpp

4.97 CbcSolverUsefulData Struct Reference
Structure to hold useful arrays.

#include <CbcSolver.hpp>

4971 Detailed Description

Structure to hold useful arrays.

Definition at line 240 of file CbcSolver.hpp.

The documentation for this struct was generated from the following file:

» CbcSolver.hpp

4.98 ChcSOS Class Reference

Branching object for Special Ordered Sets of type 1 and 2.
#include <CbcSOS.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.98 CbcSOS Class Reference 288

Inheritance diagram for CbcSOS:

CbcObject

CbcSOS

Collaboration diagram for CbcSOS:

¥ ol CocEvanrianer

. brarenngitetos
Do Garanehbesson

Gocsirateny

Public Member Functions

* CbcSOS (CbcModel xmodel, int numberMembers, const int xwhich, const double
xweights, int identifier, int type=1)
Constructor with SOS type and member information.
« virtual CbcObject * clone () const
Clone.
« virtual double infeasibility (const OsiBranchinglnformation xinfo, int &preferred-
Way) const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.98

CbcSOS Class Reference 289

Infeasibility - large is 0.5.
virtual void feasibleRegion ()
This looks at solution and sets bounds to contain solution.
virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface xsolver, const
OsiBranchingInformation xinfo, int way)
Creates a branching object.
virtual CbcObjectUpdateData createUpdatelnformation (const OsiSolverinterface
xsolver, const CbcNode *node, const CbcBranchingObject xbranchingObject)
Pass in information on branch just done and create CbcObjectUpdateData instance.
virtual void updatelnformation (const CbcObjectUpdateData &data)
Update object by CbcObjectUpdateData.
virtual OsiSolverBranch * solverBranch () const
Create an OsiSolverBranch object.
virtual void redoSequenceEtc (CbcModel xmodel, int numberColumns, const int
xoriginalColumns)
Redoes data when sequence numbers change.
OsiSOS * 0siObject (const OsiSolverinterface xsolver) const
Construct an OsiSOS object.
int numberMembers () const
Number of members.
const int * members () const
Members (indices in range 0 ... numberColumns-1)
int sosType () const
SOS type.
int numberTimesDown () const
Down number times.
int numberTimesUp () const
Up number times.
const double * weights () const
Array of weights.
void setNumberMembers (int n)
Set number of members.
int x mutableMembers () const
Members (indices in range 0 ... numberColumns-1)
double x mutableWeights () const
Array of weights.
virtual bool canDoHeuristics () const
Return true if object can take part in normal heuristics.
void setintegerValued (bool yesNo)

Set whether set is integer valued or not.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.98 CbcSOS Class Reference 290

4.98.1 Detailed Description

Branching object for Special Ordered Sets of type 1 and 2.

SOS1 are an ordered set of variables where at most one variable can be non-zero.
SOS1 are commonly defined with binary variables (interpreted as selection between
alternatives) but this is not necessary. An SOS1 with all binary variables is a special
case of a clique (setting any one variable to 1 forces all others to 0).

In theory, the implementation makes no assumptions about integrality in Type 1 sets.
In practice, there are places where the code seems to have been written with a binary
SOS mindset. Current development of SOS branching objects is proceeding in OsiSOS.

SOS2 are an ordered set of variables in which at most two consecutive variables can be
non-zero and must sum to 1 (interpreted as interpolation between two discrete values).
By definition the variables are non-integer.

Definition at line 29 of file CbcSOS.hpp.

4,98.2 Constructor & Destructor Documentation

4.98.2.1 ChcSO0S::CbcSOS (CbcModel s« model, int numberMembers, const int x which,
const double x weights, int identifier, int type=1)

Constructor with SOS type and member information.

Type specifies SOS 1 or 2. Identifier is an arbitrary value.

Which should be an array of variable indices with numberMembers entries. Weights can
be used to assign arbitrary weights to variables, in the order they are specified in which.
If no weights are provided, a default array of 0, 1, 2, ... is generated.

4.98.3 Member Function Documentation

4.98.3.1 virtual CbcObjectUpdateData ChcSOS::createUpdatelnformation (const
OsiSolverinterface * solver, const CbcNode * node, const CbcBranchingObject
* branchingObject) [virtual]

Pass in information on branch just done and create CbcObjectUpdateData instance.

If object does not need data then backward pointer will be NULL. Assumes can get
information from solver

Reimplemented from CbcObject.
4.98.3.2 virtual OsiSolverBranchx CbcSOS::solverBranch ()const [virtuall]

Create an OsiSolverBranch object.
This returns NULL if branch not represented by bound changes
Reimplemented from CbcObject.

The documentation for this class was generated from the following file:

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.99 CbcSOSBranchingObject Class Reference 291

» CbcSOS.hpp

4.99 CbcSOSBranchingObject Class Reference

Branching object for Special ordered sets.
#include <CbcSOS.hpp>
Inheritance diagram for CbcSOSBranchingObject:

CbcBranchingObject

CbcSOSBranchingObject

Collaboration diagram for CbcSOSBranchingObject:

x

CocCuGmerior

Public Member Functions

« virtual CbcBranchingObject * clone () const
Clone.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.99 CbcSOSBranchingObject Class Reference 292

virtual double branch ()

Does next branch and updates state.
virtual void fix (OsiSolverInterface *solver, double xlower, double xupper, int branch-
State) const

Update bounds in solver as in ‘branch’ and update given bounds.
virtual void previousBranch ()

Reset every information so that the branching object appears to point to the previous
child.

« virtual void print ()

Print something about branch - only if log level high.
« virtual CbcBranchObjType type () const

Return the type (an integer identifier) of this.
« virtual int compareOriginalObject (const CbcBranchingObject «brObj) const

Compare the original object of t hi s with the original object of brOb j.
« virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
+brObj, const bool replacelfOverlap=false)

Compare the this with brObj.
+ void computeNonzeroRange ()

Fill out the firstNonzero_and lastNonzero_ data members.

4.99.1 Detailed Description

Branching object for Special ordered sets.
Variable_is the set id number (redundant, as the object also holds a pointer to the set.

Definition at line 189 of file CbcSOS.hpp.

4.99.2 Member Function Documentation

4.99.2.1 virtual void CbcSOSBranchingObject::fix (OsiSolverinterface x solver, double x lower,
double x upper, int branchState)const [virtual]

Update bounds in solver as in 'branch’ and update given bounds.

branchState is -1 for 'down’ +1 for 'up’

Reimplemented from CbcBranchingObject.

4,99.2.2 virtual void CbcSOSBranchingObject::previousBranch() [inline,
virtual]

Reset every information so that the branching object appears to point to the previous
child.

This method does not need to modify anything in any solver.
Reimplemented from CbcBranchingObject.

Definition at line 225 of file CbcSOS.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.100 ChbcStatistics Class Reference 293

4.99.2.3 virtual int CbcSOSBranchingObject::compareOriginalObject (const
CbcBranchingObject « brObj)const [virtual]

Compare the original object of this with the original object of brOb j.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented from CbcBranchingObject.

4.99.2.4 virtual ChcRangeCompare CbcSOSBranchingObject::compareBranchingObject (
const CbcBranchingObject « brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brObj.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CocRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

* CbcSOS.hpp

4,100 ChcStatistics Class Reference

For gathering statistics.

#include <CbcStatistics.hpp>

Protected Attributes

» double value_
Value.
+ double startingObjective__
Starting objective.
+ double endingObjective_
Ending objective.
e intid_
id
* int parentld_
parent id
* intway_
way -1 or +1 is first branch -10 or +10 is second branch
* int sequence_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.101 CbcStopNow Class Reference

294

sequence number branched on
* int depth_

depth
+ int startingInfeasibility

starting number of integer infeasibilities
+ int endinglInfeasibility_

ending number of integer infeasibilities
* int numberlterations_

number of iterations

4.100.1 Detailed Description

For gathering statistics.

Definition at line 13 of file CbcStatistics.hpp.

The documentation for this class was generated from the following file:

+ CbcStatistics.hpp

4101 CbcStopNow Class Reference

Support the use of a call back class to decide whether to stop.

#include <CbcSolver.hpp>

Public Member Functions

Decision methods

« virtual int callBack (CbcModel %, int)
Import.

Constructors and destructors etc

» CbcStopNow ()

Default Constructor.
CbcStopNow (const CbcStopNow &rhs)

Copy constructor .
CbcStopNow & operator= (const CbcStopNow &rhs)

Assignment operator.
« virtual CbcStopNow * clone () const
Clone.
virtual ~CbcStopNow ()

Destructor.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.102 CbcStrategy Class Reference

295

4101.1 Detailed Description

Support the use of a call back class to decide whether to stop.

Definitely under construction.

Definition at line 351 of file CbcSolver.hpp.

4.101.2 Member Function Documentation

4.101.2.1 virtual int CbcStopNow::callBack (CbcModel x , int)
virtual]

Import.

Values for whereFrom:

« 1 after initial solve by dualsimplex etc

« 2 after preprocessing

+ 3 just before branchAndBound (so user can override)
* 4 just after branchAndBound (before postprocessing)
« 5 after postprocessing

+ 6 after a user called heuristic phase

Returns

0 if good nonzero return code to stop

Definition at line 369 of file CbcSolver.hpp.

[inline,

The documentation for this class was generated from the following file:

» CbcSolver.hpp

4102 CbcStrategy Class Reference

Strategy base class.

#include <CbcStrategy.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.102 CbcStrategy Class Reference 296

Inheritance diagram for CbcStrategy:

CbcStrategy

CbcStrategyDefault CbcStrategyDefaultSubTree CbcStrategyNull

Public Member Functions

« virtual CbcStrategy * clone () const =0
Clone.
« virtual void setupCutGenerators (CbcModel &model)=0

Setup cut generators.
» virtual void setupHeuristics (CbcModel &model)=0
Setup heuristics.
« virtual void setupPrinting (CbcModel &model, int modelLogLevel)=0
Do printing stuff.
« virtual void setupOther (CbcModel &model)=0
Other stuff e.g. strong branching and preprocessing.
+ void setNested (int depth)
Set model depth (i.e. how nested)
+ int getNested () const
Get model depth (i.e. how nested)
+ void setPreProcessState (int state)
Say preProcessing done.
* int preProcessState () const
See what sort of preprocessing was done.
» CglPreProcess * process () const
Pre-processing object.
+ void deletePreProcess ()
Delete pre-processing object to save memory.

« virtual CbcNodelnfo * fullNodelnfo (CbcModel xmodel, int numberRowsAtContin-
uous) const

Return a new Full node information pointer (descendant of CbcFullNodelnfo)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.102 CbcStrategy Class Reference 297

« virtual CbcNodelnfo * partialNodelnfo (CbcModel xmodel, CbcNodelnfo *parent,
CbcNode xowner, int numberChangedBounds, const int xvariables, const double
xboundChanges, const CoinWarmStartDiff xbasisDiff) const

Return a new Partial node information pointer (descendant of CbcPartialNodelnfo)
« virtual void generateCpp (FILE x)

Create C++ lines to get to current state.
« virtual int status (CbcModel xmodel, CbcNodelnfo xparent, int whereFrom)

After a CbcModel::resolve this can return a status.

Protected Attributes

* int depth_
Model depth.
* int preProcessState_

PreProcessing state -.
» CglPreProcess * process_

If preprocessing then this is object.

4.102.1 Detailed Description

Strategy base class.

Definition at line 18 of file CbcStrategy.hpp.

4.102.2 Member Function Documentation

4,102.2.1 virtual int CbcStrategy::status (CbcModel x model, CbcNodelnfo * parent, int
whereFrom) [virtual]

After a CbcModel::resolve this can return a status.

-1 no effect 0 treat as optimal 1 as 0 but do not do any more resolves (i.e. no more cuts)
2 treat as infeasible

4.102.3 Member Data Documentation

4.102.3.1 int CbcStrategy::preProcessState_ [protected]

PreProcessing state -.
-1 infeasible 0 off 1 was done (so need post-processing)
Definition at line 87 of file CbcStrategy.hpp.

The documentation for this class was generated from the following file:

» CbcStrategy.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.103 CbcStrategyDefault Class Reference 298

4103 CbcStrategyDefault Class Reference

Default class.
#include <CbcStrategy.hpp>

Inheritance diagram for CbcStrategyDefault:

CbcStrategy

CbcStrategy Default

Collaboration diagram for CbcStrategyDefault:

CbcStrategy

CbcStrategy Default

Public Member Functions

« virtual CbcStrategy * clone () const
Clone.

« virtual void setupCutGenerators (CbcModel &model)
Setup cut generators.

« virtual void setupHeuristics (CbcModel &model)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.104 CbcStrategyDefaultSubTree Class Reference 299

Setup heuristics.
virtual void setupPrinting (CbcModel &model, int modelLoglevel)

Do printing stuff.
virtual void setupOther (CbcModel &model)
Other stuff e.g. strong branching.
void setupPreProcessing (int desired=1, int passes=10)

Set up preProcessing - see below.
int desiredPreProcess () const

See what sort of preprocessing wanted.
* int preProcessPasses () const

See how many passes wanted.
« virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.

Protected Attributes

* int desiredPreProcess

Desired pre-processing 0 - none 1 - ordinary 2 - find sos 3 - find cliques 4 - more
aggressive sos 5 - add integer slacks.

* int preProcessPasses_

Number of pre-processing passes.

4.103.1 Detailed Description

Default class.
Definition at line 131 of file CbcStrategy.hpp.

The documentation for this class was generated from the following file:

+ CbcStrategy.hpp

4104 CbcStrategyDefaultSubTree Class Reference

Default class for sub trees.

#include <CbcStrategy.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.104 CbcStrategyDefaultSubTree Class Reference 300

Inheritance diagram for CbcStrategyDefaultSubTree:

CbcStrategy

CbcStrategy DefaultSubTree

Collaboration diagram for CbcStrategyDefaultSubTree:

Public Member Functions

« virtual CbcStrategy * clone () const

Clone.
« virtual void setupCutGenerators (CbcModel &model)

Setup cut generators.
« virtual void setupHeuristics (CbcModel &model)

Setup heuristics.
« virtual void setupPrinting (CbcModel &model, int modelLoglLevel)

Do printing stuff.
« virtual void setupOther (CbcModel &model)

Other stuff e.g. strong branching.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.105 CbcStrategyNull Class Reference 301

41041 Detailed Description

Default class for sub trees.
Definition at line 209 of file CbcStrategy.hpp.

The documentation for this class was generated from the following file:

+ CbcStrategy.hpp

4.105 ChbcStrategyNull Class Reference

Null class.
#include <CbcStrategy.hpp>

Inheritance diagram for CbcStrategyNull:

CbcStrategy

CbcStrategyNull

Collaboration diagram for CbcStrategyNull:

CbcStrategy

CbcStrategyNull

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.106 CbcStronginfo Struct Reference 302

Public Member Functions

« virtual CbcStrategy * clone () const
Clone.
« virtual void setupCutGenerators (CbcModel &)

Setup cut generators.
« virtual void setupHeuristics (CbcModel &)

Setup heuristics.
« virtual void setupPrinting (CbcModel &, int)

Do printing stuff.
+ virtual void setupOther (CbcModel &)

Other stuff e.g. strong branching.

4.105.1 Detailed Description

Null class.
Definition at line 95 of file CbcStrategy.hpp.

The documentation for this class was generated from the following file:

» CbcStrategy.hpp

4.106 CbcStronginfo Struct Reference

Abstract base class for ‘objects’.
#include <CbcObject.hpp>

Collaboration diagram for CbcStronglnfo:

posstlesrancn _ _ [Caesiorgine

]

- GocEventrndir

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.107 CbcThread Class Reference 303

4.106.1 Detailed Description

Abstract base class for ‘objects’.
It now just has stuff that OsiObject does not have

The branching model used in Cbc is based on the idea of an object. In the abstract,
an object is something that has a feasible region, can be evaluated for infeasibility,
can be branched on (i.e., there’s some constructive action to be taken to move toward
feasibility), and allows comparison of the effect of branching.

This class (CbcObject) is the base class for an object. To round out the branching
model, the class CbcBranchingObject describes how to perform a branch, and the class
CbcBranchDecision describes how to compare two CbcBranchingObijects.

To create a new type of object you need to provide three methods: #infeasibility(), #fea-
sibleRegion(), and #createCbcBranch(), described below.

This base class is primarily virtual to allow for any form of structure. Any form of discon-
tinuity is allowed.

Definition at line 51 of file CbcObject.hpp.

The documentation for this struct was generated from the following file:

» CbcObject.hpp

4107 CbcThread Class Reference
A class to encapsulate thread stuff.
#include <CbcThread.hpp>
4,107.1 Detailed Description

A class to encapsulate thread stuff.
Definition at line 418 of file CbcThread.hpp.

The documentation for this class was generated from the following file:

» CbcThread.hpp

4,108 CbcTree Class Reference

Using MS heap implementation.

#include <CbcTree.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.108 CbcTree Class Reference 304
Inheritance diagram for CbcTree:
CbcTree
CbcTreelocal CbcTreeVariable
Collaboration diagram for CbcTree:
T
lelements
I
|
CbcNode std::vector< T > CbcCompareBase ‘:test
~ - -
y \ I
,nodelnfo7 ‘owner_ ~ elements < CbcNode * > test_
* Ve > ~ |
z h |
CbcNodelnfo ‘:parenL std::vector< CbcNode * > CbcCompare
7K 3 4
/ \ / .
\Cuts_lowner_ Jnodes_ , ‘comparison_
| \ 7/
\ 1 \ /
CbcCountRowCut CbcTree

Public Member Functions

Constructors and related

» CbcTree ()

Generated on Wed Nov 9 2011 10:27:17 for Cbc by

Doxygen

4.108 CbcTree Class Reference 305

Default Constructor.
CbcTree (const CbcTree &rhs)

Copy constructor.
CbcTree & operator= (const CbcTree &rhs)

= operator
virtual ~CbcTree ()

Destructor.

virtual CbcTree * clone () const
Clone.

virtual void generateCpp (FILE x)

Create C++ lines to get to current state.

Heap access and maintenance methods

» void setComparison (CbcCompareBase &compare)

Set comparison function and resort heap.
« virtual CbcNode * top () const

Return the top node of the heap.
« virtual void push (CbcNode *x)

Add a node to the heap.
« virtual void pop ()

Remove the top node from the heap.
« virtual CbcNode * bestNode (double cutoff)

Gets best node and takes off heap.
« virtual void rebuild ()

Rebuild the heap.

Direct node access methods

« virtual bool empty ()

Test for an empty tree.
« virtual int size () const

Return size.
» CbcNode * operator[] (int i) const

Return a node pointer.
» CbcNode * nodePointer (int i) const

Return a node pointer.

Search tree maintenance

« virtual void cleanTree (CbcModel «model, double cutoff, double &bestPossi-
bleObjective)
Prune the tree using an objective function cutoff.
» CbcNode * bestAlternate ()
Get best on list using alternate method.
« virtual void endSearch ()
We may have got an intelligent tree so give it one more chance.
« virtual double getBestPossibleObjective ()

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.108 CbcTree Class Reference 306

Get best possible objective function in the tree.
« void resetNodeNumbers ()

Reset maximum node number.
« int maximumNodeNumber () const

Get maximum node number.
+ void setNumberBranching (int value)

Set number of branches.
« int getNumberBranching () const

Get number of branches.
 void setMaximumBranching (int value)

Set maximum branches.
* int getMaximumBranching () const

Get maximum branches.
 unsigned int x branched () const

Get branched variables.
« int x newBounds () const

Get bounds.
« void addBranchingInformation (const CbcModel xmodel, const CbcNodelnfo
xnodelnfo, const double xcurrentLower, const double xcurrentUpper)

Adds branching information to complete state.
* void increaseSpace ()

Increase space for data.

Protected Attributes

« std::vector< CbcNode * > nodes_
Storage vector for the heap.
» CbcCompare comparison_
Sort predicate for heap ordering.
* int maximumNodeNumber_
Maximum "node" number so far to split ties.
+ int numberBranching_
Size of variable list.
* int maximumBranching_
Maximum size of variable list.
* unsigned int * branched_

Integer variables branched or bounded top bit set if new upper bound next bit set if a
branch.

* int x newBound_

New bound.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.108 CbcTree Class Reference 307

4.108.1 Detailed Description

Using MS heap implementation.

It's unclear if this is needed any longer, or even if it should be allowed. Cbc occasionally
tries to do things to the tree (typically tweaking the comparison predicate) that can
cause a violation of the heap property (parent better than either child). In a debug build,
Microsoft's heap implementation does checks that detect this and fail. This symbol
switched to an alternate implementation of CbcTree, and there are clearly differences,
but no explanation as to why or what for.

As of 100921, the code is cleaned up to make it through ‘cbc -unitTest’ without triggering
‘Invalid heap’ in an MSVS debug build. The method validateHeap() can be used for
debugging if this turns up again.

Controls search tree debugging

In order to have validateHeap() available, set CBC_DEBUG_HEAP to 1 or higher.

« 1 calls validateHeap() after each change to the heap
+ 2 will print a line for major operations (clean, set comparison, etc.)

« 3 will print information about each push and pop

#define CBC_DEBUG_HEAP 1
Implementation of the live set as a heap.
This class is used to hold the set of live nodes in the search tree.

Definition at line 53 of file CbcTree.hpp.

4.108.2 Member Function Documentation

4.108.2.1 virtual CbcNode:x CbcTree::bestNode (double cutoff) [virtual]

Gets best node and takes off heap.

Before returning the node from the top of the heap, the node is offered an opportunity to
reevaluate itself. Callers should be prepared to check that the node returned is suitable
for use.

4.108.2.2 virtual void ChcTree::cleanTree (CbcModel « model, double cutoff, double &
bestPossibleObjective) [virtual]

Prune the tree using an objective function cutoff.

This routine removes all nodes with objective worse than the specified cutoff value. It
also sets bestPossibleObjective to the best objective over remaining nodes.

The documentation for this class was generated from the following file:

» CbcTree.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4109 CbcTreelLocal Class Reference 308

4,109 ChbcTreelLocal Class Reference

Inheritance diagram for CbcTreeLocal:

CbcTree

CbcTreelLocal

Collaboration diagram for CbcTreeLocal:

Public Member Functions

« virtual CbcTree * clone () const
Clone.

« virtual void generateCpp (FILE xfp)
Create C++ lines to get to current state.

Heap access and maintenance methods

« virtual CbcNode * top () const

Return the top node of the heap.
« virtual void push (CbcNode *x)

Add a node to the heap.
« virtual void pop ()

Remove the top node from the heap.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4109 CbcTreelLocal Class Reference

309

Other stuff

« int createCut (const double xsolution, OsiRowCut &cut)
Create cut - return -1 if bad, 0 if okay and 1 if cut is everything.

« virtual bool empty ()

Test if empty xxx note may be overridden.
» virtual void endSearch ()

We may have got an intelligent tree so give it one more chance.

« void reverseCut (int state, double bias=0.0)

Other side of last cut branch (if bias==rhs_ will be weakest possible)

« void deleteCut (OsiRowCut &cut)
Delete last cut branch.

« void passiInSolution (const double *solution, double solutionValue)

Pass in solution (so can be used after heuristic)
* int range () const
 void setRange (int value)
« int typeCuts () const
« void setTypeCuts (int value)
« int maxDiversification () const
 void setMaxDiversification (int value)
« int timeLimit () const
+ void setTimeLimit (int value)
« int nodeLimit () const
« void setNodeLimit (int value)
» bool refine () const
« void setRefine (bool yesNo)

4.109.1 Detailed Description

Definition at line 40 of file CbcTreeLocal.hpp.

The documentation for this class was generated from the following file:

+ CbcTreelLocal.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4110 CbcTreeVariable Class Reference 310

4,110 ChbcTreeVariable Class Reference

Inheritance diagram for CbcTreeVariable:

CbcTree

CbcTreeVariable

Collaboration diagram for CbcTreeVariable:

Public Member Functions

« virtual CbcTree * clone () const
Clone.

« virtual void generateCpp (FILE xfp)
Create C++ lines to get to current state.

Heap access and maintenance methods

« virtual CbcNode * top () const

Return the top node of the heap.
« virtual void push (CbcNode *x)

Add a node to the heap.
« virtual void pop ()

Remove the top node from the heap.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.111 CbcUser Class Reference 311

Other stuff

« int createCut (const double xsolution, OsiRowCut &cut)

Create cut - return -1 if bad, 0 if okay and 1 if cut is everything.
« virtual bool empty ()

Test if empty xxx note may be overridden.
» virtual void endSearch ()

We may have got an intelligent tree so give it one more chance.
« void reverseCut (int state, double bias=0.0)

Other side of last cut branch (if bias==rhs_ will be weakest possible)
« void deleteCut (OsiRowCut &cut)

Delete last cut branch.
« void passiInSolution (const double *solution, double solutionValue)

Pass in solution (so can be used after heuristic)
* int range () const
 void setRange (int value)
« int typeCuts () const
« void setTypeCuts (int value)
« int maxDiversification () const
 void setMaxDiversification (int value)
« int timeLimit () const
+ void setTimeLimit (int value)
« int nodeLimit () const
« void setNodeLimit (int value)
» bool refine () const
« void setRefine (bool yesNo)

4.110.1 Detailed Description

Definition at line 206 of file CbcTreeLocal.hpp.

The documentation for this class was generated from the following file:

+ CbcTreelLocal.hpp

4,111 CbhcUser Class Reference

A class to allow the use of unknown user functionality.

#include <CbcSolver.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.111 CbcUser Class Reference 312

Collaboration diagram for CbcUser:

std::basic_string< char >

std::string

A

userName_
I
|

CbcUser

Public Member Functions

import/export methods

« virtual int importData (CbcSolver x, int &, char xx)

Import - gets full command arguments.
« virtual void exportSolution (CbcSolver x, int, const char x=NULL)

Export.
« virtual void exportData (CbcSolver x)

Export Data (i.e. at very end)
« virtual void fillinformation (CbcSolver %, CbcSolverUsefulData &)

Get useful stuff.

usage methods

» CoinModel * coinModel () const

CoinModel if valid.
« virtual void x stuff ()

Other info - needs expanding.
* std::string name () const

Name.
« virtual void solve (CbcSolver xmodel, const char xoptions)=0

Solve (whatever that means)
« virtual bool canDo (const char xoptions)=0

Returns true if function knows about option.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.111 CbcUser Class Reference 313

Constructors and destructors etc

» CbcUser ()
Default Constructor.
» CbcUser (const CbcUser &rhs)
Copy constructor.
* CbcUser & operator= (const CbcUser &rhs)
Assignment operator.
virtual CbcUser * clone () const =0

Clone.
virtual ~CbcUser ()

Destructor.

Protected Attributes

Private member data

« CoinModel * coinModel__

CoinModel.
* std::string userName_

Name of user function.

4111.1 Detailed Description

A class to allow the use of unknown user functionality.
For example, access to a modelling language (CbcAmpl).

Definition at line 260 of file CbcSolver.hpp.

4.111.2 Member Function Documentation

4.111.2.1 virtual int CbcUser::importData (CbcSolver *, int&, charxx) [inline,
virtual]

Import - gets full command arguments.

Returns

e -1-no action
* 0 - data read in without error

e 1 -errors

Definition at line 272 of file CbcSolver.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.112 CglTemporary Class Reference 314

4.111.2.2 virtual void ChcUser::exportSolution (CbcSolver x, int, const char x =NULL)
[inline, virtual]
Export.

Values for mode:

* 1 OsiClpSolver
+ 2 CbcModel

« add 10 if infeasible from odd situation

Definition at line 283 of file CbcSolver.hpp.

The documentation for this class was generated from the following file:

+ CbcSolver.hpp

4112 CglTemporary Class Reference

Stored Temporary Cut Generator Class - destroyed after first use.

#include <CbcLinked.hpp>

Public Member Functions

Generate Cuts

« virtual void generateCuts (const OsiSolverinterface &si, OsiCuts &cs, const
CglTreelnfo info=CglTreelnfo()) const
Generate Mixed Integer Stored cuts for the model of the solver interface, si.

Constructors and destructors

» CglTemporary ()

Default constructor.
CglTemporary (const CglTemporary &rhs)

Copy constructor.
virtual CglCutGenerator * clone () const

Clone.
» CglTemporary & operator= (const CglTemporary &rhs)

Assignment operator.
virtual ~CglTemporary ()

Destructor.

4.112.1 Detailed Description

Stored Temporary Cut Generator Class - destroyed after first use.

Definition at line 1266 of file CbcLinked.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.113 CbcGenCtiBlk::chooseStrongCtl_struct Struct Reference 315

4.112.2 Member Function Documentation

4.112.2.1 virtual void CglTemporary::generateCuts (const OsiSolverinterface & si, OsiCuts &
cs, const CglTreelnfo info=CglTreeInfo ())const [virtual]

Generate Mixed Integer Stored cuts for the model of the solver interface, si.
Insert the generated cuts into OsiCut, cs.

This generator just looks at previously stored cuts and inserts any that are violated by
enough

The documentation for this class was generated from the following file:

+ CbcLinked.hpp

4113 CbcGenCitlIBlk::chooseStrongCtl_struct Struct Reference

Control variables for a strong branching method.

#include <CbcGenCtlBlk.hpp>

4.113.1 Detailed Description

Control variables for a strong branching method.

Consult OsiChooseVariable and CbcModel for details. An artifact of the changeover
from CbcObjects to OsiObjects is that the number of uses before pseudo costs are
trusted (numBeforeTrust_) and the number of variables evaluated with strong branching
(numStrong_) are parameters of CbcModel.

Definition at line 765 of file CbcGenCitIBIk.hpp.

The documentation for this struct was generated from the following file:

» CbcGenCtIBlk.hpp

4114 ClpAmplObjective Class Reference

Ampl Objective Class.
#include <ClpAmplObjective.hpp>

Public Member Functions

Stuff

« virtual double * gradient (const ClpSimplex *model, const double *solution,
double &offset, bool refresh, int includeLinear=2)
Returns gradient.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.114 ClpAmplObjective Class Reference 316

virtual double reducedGradient (ClpSimplex xmodel, double xregion, bool use-
FeasibleCosts)
Resize objective.

« virtual double stepLength (ClpSimplex xmodel, const double *solution, const
double xchange, double maximumTheta, double ¤tObj, double &pre-
dictedObj, double &thetaObj)

Returns step length which gives minimum of objective for solution + theta * change
vector up to maximum theta.

« virtual double objectiveValue (const ClpSimplex xmodel, const double *solution)
const

Return objective value (without any ClpModel offset) (model may be NULL)
« virtual void resize (int newNumberColumns)
« virtual void deleteSome (int numberToDelete, const int xwhich)
Delete columns in objective.

« virtual void reallyScale (const double xcolumnScale)
Scale objective.

« virtual int markNonlinear (char xwhich)
Given a zeroed array sets nonlinear columns to 1.

« virtual void newXValues ()

Say we have new primal solution - so may need to recompute.

Constructors and destructors

» ClpAmplObjective ()
Default Constructor.
ClpAmplObjective (void xamplinfo)

Constructor from ampl info.
ClpAmplObijective (const ClpAmplObjective &rhs)

Copy constructor .
ClpAmplObjective & operator= (const ClpAmplObjective &rhs)

Assignment operator.

* virtual ~ClpAmplObjective ()
Destructor.

« virtual ClpObjective * clone () const

Clone.

Gets and sets

+ double * linearObjective () const
Linear objective.

41141 Detailed Description

Ampl Objective Class.
Definition at line 18 of file ClpAmplObjective.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.115 ClpConstraintAmpl Class Reference 317

4.114.2 Member Function Documentation

4.114.2.1 virtual doublex ClpAmplObjective::gradient (const ClpSimplex x model, const double
* solution, double & offset, bool refresh, int includeLinear=2) [virtuall]

Returns gradient.

If Ampl then solution may be NULL, also returns an offset (to be added to current one)
If refresh is false then uses last solution Uses model for scaling includeLinear 0 - no, 1
as is, 2 as feasible

4.114.2.2 virtual double ClpAmplObjective::reducedGradient (ClpSimplex model, double x
region, bool useFeasibleCosts) [virtuall

Resize objective.

Returns reduced gradient.Returns an offset (to be added to current one).

4.114.2.3 virtual double ClpAmplObjective::stepLength (ClpSimplex « model, const double
solution, const double x change, double maximumTheta, double & currentObj,
double & predictedObj, double & thetaObj) [virtuall

Returns step length which gives minimum of objective for solution + theta * change
vector up to maximum theta.

arrays are numberColumns+numberRows Also sets current objective, predicted and at
maximumTheta

4.114.2.4 virtual int ClpAmplObjective::markNonlinear (char x which) [virtuall]

Given a zeroed array sets nonlinear columns to 1.
Returns number of nonlinear columns

The documentation for this class was generated from the following file:

» ClpAmplObjective.hpp

4115 ClpConstraintAmpl Class Reference

Ampl Constraint Class.

#include <ClpConstraintAmpl.hpp>

Public Member Functions

Stuff

« virtual int gradient (const ClpSimplex xmodel, const double *solution, double
xgradient, double &functionValue, double &offset, bool useScaling=false, bool
refresh=true) const

Fills gradient.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.115 ClpConstraintAmpl Class Reference 318

« virtual void resize (int newNumberColumns)

Resize constraint.
« virtual void deleteSome (int numberToDelete, const int xwhich)

Delete columns in constraint.
« virtual void reallyScale (const double xcolumnScale)

Scale constraint.
« virtual int markNonlinear (char xwhich) const

Given a zeroed array sets nonampl columns to 1.
« virtual int markNonzero (char xwhich) const

Given a zeroed array sets possible nonzero coefficients to 1.
« virtual void newXValues ()

Say we have new primal solution - so may need to recompute.

Constructors and destructors

» ClpConstraintAmpl ()

Default Constructor.
ClpConstraintAmpl (int row, void xamplinfo)

Constructor from ampl.
» ClpConstraintAmpl (const ClpConstraintAmpl &rhs)

Copy constructor .
ClpConstraintAmpl & operator= (const ClpConstraintAmpl &rhs)

Assignment operator.
virtual ~ClpConstraintAmpl ()

Destructor.
« virtual ClpConstraint * clone () const

Clone.

Gets and sets

« virtual int numberCoefficients () const

Number of coefficients.
» const int % column () const

Columns.
» const double * coefficient () const

Coefficients.

4.115.1 Detailed Description

Ampl Constraint Class.

Definition at line 17 of file ClpConstraintAmpl.hpp.

4.115.2 Member Function Documentation

4.115.2.1 virtual int ClpConstraintAmpl::gradient (const ClpSimplex x model, const double x
solution, double x gradient, double & functionValue, double & offset, bool
useScaling = false, bool refresh=t rue)const [virtual]

Fills gradient.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.116 ClpQuadinterface Class Reference 319

If Ampl then solution may be NULL, also returns true value of function and offset so we
can use x not deltaX in constraint If refresh is false then uses last solution Uses model
for scaling Returns non-zero if gradient udefined at current solution

4,115.2.2 virtual int ClpConstraintAmpl::markNonlinear (char x which)const [virtual]

Given a zeroed array sets nonampl columns to 1.

Returns number of nonampl columns
4.115.2.3 virtual int ClpConstraintAmpl::markNonzero (char x which)const [virtual]

Given a zeroed array sets possible nonzero coefficients to 1.
Returns number of nonzeros

The documentation for this class was generated from the following file:

+ ClpConstraintAmpl.hpp

4116 ClpQuadinterface Class Reference

This is to allow the user to replace initialSolve and resolve.

#include <ClpQuadInterface.hpp>

Public Member Functions

Solve methods

« virtual void initialSolve ()

Solve initial LP relaxation.
« virtual void resolve ()

Resolve an LP relaxation after problem modification.

Constructors and destructors

» ClpQuadlnterface ()

Default Constructor.
virtual OsiSolverInterface * clone (bool CopyData=true) const

Clone.
ClpQuadinterface (const ClpQuadinterface &)

Copy constructor.
ClpQuadinterface & operator= (const ClpQuadinterface &rhs)

Assignment operator.
virtual ~ClpQuadinterface ()

Destructor.

Sets and Getss

« void initialize ()
Setup fake objective.
« virtual double getObjValue () const
Get objective function value (can’t use default)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.117 CbcGenCitiBlk::debugSolinfo_struct Struct Reference 320

4116.1 Detailed Description

This is to allow the user to replace initialSolve and resolve.

Definition at line 18 of file ClpQuadinterface.hpp.

4.116.2 Member Function Documentation

4.116.2.1 void ClpQuadinterface::initialize ()

Setup fake objective.
It could also read an ampl .nl file or somehow get nonlinear info

The documentation for this class was generated from the following file:

+ ClpQuadinterface.hpp

4117 CbcGenCtiBlk::debugSolinfo_struct Struct Reference

Array of primal variable values for debugging.

#include <CbcGenCtlBlk.hpp>

4.117.1 Detailed Description

Array of primal variable values for debugging.
Used to provide a known optimal solution to activateRowCutDebugger().
Definition at line 669 of file CbcGenCtIBIk.hpp.

The documentation for this struct was generated from the following file:

» CbcGenCtIBlk.hpp

4.118 CbcGenCtIBIk::djFixCtl_struct Struct Reference

Control use of reduced cost fixing prior to B&C.

#include <CbcGenCtlBlk.hpp>

4.118.1 Detailed Description

Control use of reduced cost fixing prior to B&C.

This heuristic fixes variables whose reduced cost for the root relaxtion exceeds the
specified threshold. This is purely a heuristic, performed before there’s any incumbent
solution. It may well fix variables at the wrong bound!

Definition at line 739 of file CbcGenCtIBlk.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.119 CbcGenCtiBlk::genParamsinfo_struct Struct Reference 321

The documentation for this struct was generated from the following file:

+ CbcGenCtIBIk.hpp

4119 CbcGenCtIBlk::genParamsinfo_struct Struct Reference
Start and end of cbc-generic parameters in parameter vector.
#include <CbcGenCtlBlk.hpp>

4119.1 Detailed Description

Start and end of cbc-generic parameters in parameter vector.
Definition at line 598 of file CbcGenCitIBIk.hpp.

The documentation for this struct was generated from the following file:

+ CbcGenCtIBIk.hpp

4,120 OsiBiLinear Class Reference

Define BiLinear objects.
#include <CbcLinked.hpp>

Inheritance diagram for OsiBiLinear:

OsiBiLinear

OsiBiLinearEquality

Public Member Functions

+ OsiBiLinear (OsiSolverinterface xsolver, int xColumn, int yColumn, int xyRow,
double coefficient, double xMesh, double yMesh, int numberExistingObjects=0,
const OsiObject *xobjects=NULL)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.120 OsiBiLinear Class Reference 322

Useful constructor - This Adds in rows and variables to construct valid Linked Ordered
Set Adds extra constraints to match other x/y So note not const solver.

+ OsiBiLinear (CoinModel xcoinModel, int xColumn, int yColumn, int xyRow, double
coefficient, double xMesh, double yMesh, int numberExistingObjects=0, const
OsiObject *xobjects=NULL)

Useful constructor - This Adds in rows and variables to construct valid Linked Ordered
Set Adds extra constraints to match other x/y So note not const model.

+ virtual OsiObject * clone () const
Clone.

« virtual double infeasibility (const OsiBranchinglnformation xinfo, int &whichWay)
const

Infeasibility - large is 0.5.

« virtual double feasibleRegion (OsiSolverinterface *solver, const OsiBranchinglIn-

formation xinfo) const
Set bounds to fix the variable at the current (integer) value.
+ virtual OsiBranchingObiject x createBranch (OsiSolverinterface xsolver, const Os-
iBranchinglnformation xinfo, int way) const
Creates a branching object.
« virtual void resetSequenceEtc (int numberColumns, const int xoriginalColumns)
Redoes data when sequence numbers change.
« virtual bool canDoHeuristics () const
Return true if object can take part in normal heuristics.
« virtual bool boundBranch () const
Return true if branch should only bound variables.
+ int xColumn () const
X column.
« int yColumn () const
Y column.
+ int xRow () const
X row.
* int yRow () const
Y row.
« int xyRow () const
XY row.
+ double coefficient () const
Coefficient.
+ void setCoefficient (double value)
Set coefficient.
« int firstL,ambda () const
First lambda (of 4)
+ double xSatisfied () const
X satisfied if less than this away from mesh.
+ double ySatisfied () const

Y satisfied if less than this away from mesh.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.120 OsiBiLinear Class Reference 323

double xOtherSatisfied () const

X other satisfied if less than this away from mesh.
double yOtherSatisfied () const

Y other satisfied if less than this away from mesh.
+ double xMeshSize () const
X meshSize.
+ double yMeshSize () const
Y meshSize.
double xySatisfied () const

XY satisfied if two version differ by less than this.
+ void setMeshSizes (const OsiSolverinterface *solver, double x, double y)
Set sizes and other stuff.
int branchingStrategy () const

branching strategy etc bottom 2 bits 0 branch on either, 1 branch on x, 2 branch on y
next bit 4 set to say don’t update coefficients next bit 8 set to say don'’t use in feasible
region next bit 16 set to say - Always satisfied !!

int boundType () const

Simple quadratic bound marker.
« void newBounds (OsiSolverinterface *solver, int way, short xOrY, double separa-
tor) const
Does work of branching.
int updateCoefficients (const double xlower, const double xupper, double xobjective,
CoinPackedMatrix xmatrix, CoinWarmStartBasis xbasis) const

Updates coefficients - returns number updated.
double xyCoefficient (const double xsolution) const

Returns true value of single xyRow coefficient.
void getCoefficients (const OsiSolverinterface xsolver, double xB[2], double yB[2],
double xybar[4]) const

Get LU coefficients from matrix.
double computeLambdas (const double xB[3], const double yB[3], const double
xybar[4], double lambda[4]) const

Compute lambdas (third entry in each .B is current value) (nonzero if bad)
void addExtraRow (int row, double multiplier)

Adds in data for extra row with variable coefficients.
+ void getPseudoShadow (const OsiBranchinglnformation xinfo)
Sets infeasibility and other when pseudo shadow prices.
double getMovement (const OsiBranchinglnformation xinfo)

Gets sum of movements to correct value.

Protected Member Functions

« void computeLambdas (const OsiSolverinterface *xsolver, double lambda[4]) const

Compute lambdas if coefficients not changing.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.120 OsiBiLinear Class Reference 324

Protected Attributes

« double coefficient_

data
« double xMeshSize

X mesh
+ double yMeshSize

y mesh
« double xSatisfied_

x satisfied if less than this away from mesh
* double ySatisfied_

y satisfied if less than this away from mesh
+ double xOtherSatisfied_

X other satisfied if less than this away from mesh.
* double yOtherSatisfied_

Y other satisfied if less than this away from mesh.
+ double xySatisfied_

xy satisfied if less than this away from true
 double xyBranchValue_

value of x or y to branch about
* int xColumn_

x column
* int yColumn_

y column
* int firstLambda_

First lambda (of 4)
« int branchingStrategy

branching strategy etc bottom 2 bits 0 branch on either, 1 branch on x, 2 branch on y
next bit 4 set to say don’t update coefficients next bit 8 set to say don'’t use in feasible
region next bit 16 set to say - Always satisfied !!

* int boundType_

Simple quadratic bound marker.
* int xRow_
X row
* int yRow_
y row (-1 if xxx)
* int xyRow_
Output row.
* int convexity_

Convexity row.
* int numberExtraRows_

Number of extra rows (coefficients to be modified)
« double x multiplier_

Multiplier for coefficient on row.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.120 OsiBiLinear Class Reference 325

* int x extraRow_

Row number.
* short chosen_

Which chosen -1 none, 0 x, 1.

4.120.1 Detailed Description

Define BiLinear objects.
This models xxy where one or both are integer

Definition at line 720 of file CbcLinked.hpp.

4.120.2 Member Function Documentation

4.120.2.1 virtual double OsiBiLinear::feasibleRegion (OsiSolverinterface *« solver, const
OsiBranchingInformation x info) const [virtuall]

Set bounds to fix the variable at the current (integer) value.

Given an integer value, set the lower and upper bounds to fix the variable. Returns
amount it had to move variable.

4.120.2.2 virtual OsiBranchingObject: OsiBiLinear::createBranch (OsiSolverinterface * solver,
const OsiBranchingInformation * info, int way)const [virtuall]

Creates a branching object.

The preferred direction is set by way, 0 for down, 1 for up.
4.120.2.3 int OsiBiLinear::boundType()const [inline]

Simple quadratic bound marker.

0 no 1 L if coefficient pos, G if negative i.e. value is ub on xy 2 G if coefficient pos, L if
negative i.e. value is Ib on xy 3 E If bound then real coefficient is 1.0 and coefficient_ is
bound

Definition at line 899 of file CbcLinked.hpp.

4.120.3 Member Data Documentation

4.120.3.1 double OsiBiLinear::coefficient_ [protected]

data
Coefficient

Definition at line 929 of file CbcLinked.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.121 OsiBiLinearBranchingObject Class Reference 326

4.120.3.2 int OsiBiLinear::boundType_ [protected]

Simple quadratic bound marker.

0 no 1 L if coefficient pos, G if negative i.e. value is ub on xy 2 G if coefficient pos, L if
negative i.e. value is Ib on xy 3 E If bound then real coefficient is 1.0 and coefficient_ is
bound

Definition at line 970 of file CbcLinked.hpp.

The documentation for this class was generated from the following file:

» CbcLinked.hpp

4121 OsiBiLinearBranchingObject Class Reference

Branching object for BiLinear objects.

#include <CbcLinked.hpp>

Public Member Functions

« virtual OsiBranchingObject * clone () const
Clone.
+ virtual double branch (OsiSolverinterface xsolver)

Does next branch and updates state.
« virtual void print (const OsiSolverInterface xsolver=NULL)

Print something about branch - only if log level high.
« virtual bool boundBranch () const

Return true if branch should only bound variables.

4.121.1 Detailed Description

Branching object for BiLinear objects.
Definition at line 991 of file CbcLinked.hpp.

The documentation for this class was generated from the following file:

» CbcLinked.hpp

4122 OsiBiLinearEquality Class Reference

Define Continuous BiLinear objects for an == bound.

#include <CbcLinked.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.122 OsiBiLinearEquality Class Reference 327

Inheritance diagram for OsiBiLinearEquality:

OsiBilLinear

OsiBiLinearEquality

Collaboration diagram for OsiBiLinearEquality:

OsiBilLinear

OsiBiLinearEquality

Public Member Functions

» OsiBiLinearEquality (OsiSolverinterface xsolver, int xColumn, int yColumn, int xy-
Row, double rhs, double xMesh)
Useful constructor - This Adds in rows and variables to construct Ordered Set for xxy
= b So note not const solver.
« virtual OsiObject * clone () const
Clone.
« virtual double improvement (const OsiSolverInterface xsolver) const
Possible improvement.
+ double newGrid (OsiSolverInterface *solver, int type) const

change grid if type 0 then use solution and make finer if 1 then back to original returns
mesh size

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 328

* int numberPoints () const

Number of points.

4.122.1 Detailed Description

Define Continuous BiLinear objects for an == bound.
This models xxy = b where both are continuous
Definition at line 1038 of file CbcLinked.hpp.

The documentation for this class was generated from the following file:

» CbcLinked.hpp

4,123 OsiCbhcSolverinterface Class Reference

Cbc Solver Interface.
#include <OsiCbcSolverInterface.hpp>

Collaboration diagram for OsiCbcSolverInterface:

Public Member Functions

« virtual void setObjSense (double s)

Set objective function sense (1 for min (default), -1 for max,)
« virtual void setColSolution (const double *colsol)

Set the primal solution column values.
« virtual void setRowPrice (const double xrowprice)

Set dual solution vector.

Solve methods

« virtual void initialSolve ()

Solve initial LP relaxation.
« virtual void resolve ()

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 329

Resolve an LP relaxation after problem modification.
« virtual void branchAndBound ()

Invoke solver’s built-in enumeration algorithm.

Parameter set/get methods

The set methods return true if the parameter was set to the given value, false other-
wise.

There can be various reasons for failure: the given parameter is not applicable for
the solver (e.g., refactorization frequency for the cbc algorithm), the parameter is
not yet implemented for the solver or simply the value of the parameter is out of the
range the solver accepts. If a parameter setting call returns false check the details
of your solver.

The get methods return true if the given parameter is applicable for the solver and
is implemented. In this case the value of the parameter is returned in the second
argument. Otherwise they return false.

* bool setintParam (OsilntParam key, int value)

* bool setDblParam (OsiDblParam key, double value)

* bool setStrParam (OsiStrParam key, const std::string &value)

* bool getintParam (OsilntParam key, int &value) const

* bool getDblParam (OsiDblParam key, double &value) const

* bool getStrParam (OsiStrParam key, std::string &value) const

« virtual bool setHintParam (OsiHintParam key, bool yesNo=true, OsiHintStrength
strength=0siHintTry, void xotherinformation=NULL)

« virtual bool getHintParam (OsiHintParam key, bool &yesNo, OsiHintStrength
&strength, void x&otherInformation) const

Get a hint parameter.

« virtual bool getHintParam (OsiHintParam key, bool &yesNo, OsiHintStrength

&strength) const

Get a hint parameter.

Methods returning info on how the solution process terminated

« virtual bool isAbandoned () const

Are there a numerical difficulties?
« virtual bool isProvenOptimal () const

Is optimality proven?
« virtual bool isProvenPrimallnfeasible () const

Is primal infeasiblity proven?
« virtual bool isProvenDuallnfeasible () const

Is dual infeasiblity proven?
« virtual bool isPrimalObjectiveLimitReached () const

Is the given primal objective limit reached?

« virtual bool isDualObjectiveLimitReached () const
Is the given dual objective limit reached?

« virtual bool islterationLimitReached () const

Iteration limit reached?

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 330

WarmsStart related methods

« virtual CoinWarmStart * getEmptyWarmStart () const

Get an empty warm start object.
« virtual CoinWarmStart x getWarmStart () const

Get warmstarting information.
« virtual bool setWarmStart (const CoinWarmStart xwarmstart)
Set warmstarting information.

Hotstart related methods (primarily used in strong branching).

The user can create a hotstart (a snapshot) of the optimization process then reopti-
mize over and over again always starting from there.

NOTE: between hotstarted optimizations only bound changes are allowed.

« virtual void markHotStart ()

Create a hotstart point of the optimization process.
« virtual void solveFromHotStart ()

Optimize starting from the hotstart.
« virtual void unmarkHotStart ()

Delete the snapshot.

Methods related to querying the input data

« virtual int getNumCols () const

Get number of columns.
« virtual int getNumRows () const

Get number of rows.
« virtual int getNumElements () const

Get number of nonzero elements.
« virtual const double * getColLower () const

Get pointer to array[getNumCols()] of column lower bounds.
« virtual const double * getColUpper () const

Get pointer to array[getNumCols()] of column upper bounds.
« virtual const char * getRowSense () const

Get pointer to array[getNumRows()] of row constraint senses.
« virtual const double * getRightHandSide () const

Get pointer to array[getNumRows()] of rows right-hand sides.
« virtual const double * getRowRange () const

Get pointer to array[getNumRows()] of row ranges.
« virtual const double * getRowLower () const

Get pointer to array[getNumRows()] of row lower bounds.
« virtual const double * getRowUpper () const

Get pointer to array[getNumRows()] of row upper bounds.
« virtual const double * getObjCoefficients () const

Get pointer to array[getNumCols()] of objective function coefficients.
« virtual double getObjSense () const

Get objective function sense (1 for min (default), -1 for max)
« virtual bool isContinuous (int colNumber) const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 331

Return true if column is continuous.
virtual const CoinPackedMatrix x getMatrixByRow () const

Get pointer to row-wise copy of matrix.
virtual const CoinPackedMatrix x getMatrixByCol () const

Get pointer to column-wise copy of matrix.
virtual double getlinfinity () const

Get solver’s value for infinity.

Methods related to querying the solution

virtual const double * getColSolution () const
Get pointer to array[getNumCols()] of primal solution vector.
virtual const double * getRowPrice () const
Get pointer to array[getNumRows()] of dual prices.
virtual const double * getReducedCost () const
Get a pointer to array[getNumCols()] of reduced costs.
virtual const double * getRowActivity () const
Get pointer to array[getNumRows()] of row activity levels (constraint matrix times
the solution vector.
virtual double getObjValue () const
Get objective function value.
virtual int getlterationCount () const
Get how many iterations it took to solve the problem (whatever "iteration" mean to
the solver.
virtual std::vector< double x > getDualRays (int maxNumRays, bool fullRay=false)
const
Get as many dual rays as the solver can provide.
virtual std::vector< double x > getPrimalRays (int maxNumRays) const
Get as many primal rays as the solver can provide.

Methods for row and column names.

Because OsiCbc is a pass-through class, it's necessary to override any virtual method
in order to be sure we catch an override by the underlying solver.

See the OsiSolverinterface class documentation for detailed descriptions.

virtual std::string dfltRowCoIName (char rc, int ndx, unsigned digits=7) const
Generate a standard name of the form Rnnnnnnn or Cnnnnnnn.
virtual std::string getObjName (unsigned maxLen=std::string::npos) const
Return the name of the objective function.
virtual void setObjName (std::string name)
Set the name of the objective function.
virtual std::string getRowName (int rowIndex, unsigned maxLen=std::string::npos)
const

Return the name of the row.
virtual const OsiNameVec & getRowNames ()

Return a pointer to a vector of row names.
virtual void setRowName (int ndx, std::string name)

Set a row name.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 332

« virtual void setRowNames (OsiNameVec &srcNames, int srcStart, int len, int
tgtStart)
Set multiple row names.
« virtual void deleteRowNames (int tgtStart, int len)
Delete len row names starting at index tgtStart.
« virtual std::string getColName (int collndex, unsigned maxLen=std::string::npos)
const
Return the name of the column.
« virtual const OsiNameVec & getColNames ()

Return a pointer to a vector of column names.
« virtual void setColName (int ndx, std::string name)
Set a column name.
« virtual void setColNames (OsiNameVec &srcNames, int srcStart, int len, int
tgtStart)
Set multiple column names.
« virtual void deleteColNames (int tgtStart, int len)
Delete len column names starting at index tgtStart.

Changing bounds on variables and constraints

« virtual void setObjCoeff (int elementindex, double elementValue)

Set an objective function coefficient.
« virtual void setColLower (int elementindex, double elementValue)
Set a single column lower bound
Use -DBL_MAX for -infinity.
« virtual void setColUpper (int elementindex, double elementValue)
Set a single column upper bound
Use DBL_MAX for infinity.
« virtual void setColBounds (int elementindex, double lower, double upper)
Set a single column lower and upper bound.
« virtual void setColSetBounds (const int xindexFirst, const int xindexLast, const
double xboundList)
Set the bounds on a number of columns simultaneously
The default implementation just invokes setColLower() and setColUpper() over and
over again.
« virtual void setRowLower (int elementindex, double elementValue)
Set a single row lower bound
Use -DBL_MAX for -infinity.
« virtual void setRowUpper (int elementindex, double elementValue)
Set a single row upper bound
Use DBL_MAX for infinity.
« virtual void setRowBounds (int elementindex, double lower, double upper)
Set a single row lower and upper bound.
« virtual void setRowType (int index, char sense, double rightHandSide, double
range)
Set the type of a single row
« virtual void setRowSetBounds (const int xindexFirst, const int xindexLast, const
double xboundList)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 333

Set the bounds on a number of rows simultaneously
The default implementation just invokes setRowlLower() and setRowUpper() over
and over again.
« virtual void setRowSetTypes (const int xindexFirst, const int xindexLast, const
char xsenseList, const double *rhsList, const double xrangeL.ist)
Set the type of a number of rows simultaneously
The default implementation just invokes setRowType() over and over again.

Integrality related changing methods

« virtual void setContinuous (int index)

Set the index-th variable to be a continuous variable.
« virtual void setInteger (int index)

Set the index-th variable to be an integer variable.
« virtual void setContinuous (const int xindices, int len)

Set the variables listed in indices (which is of length len) to be continuous variables.
« virtual void setInteger (const int xindices, int len)

Set the variables listed in indices (which is of length len) to be integer variables.

Methods to expand a problem.<

Note that if a column is added then by default it will correspond to a continuous
variable.

« virtual void addCol (const CoinPackedVectorBase &vec, const double collb,
const double colub, const double obj)
« virtual void addCol (int numberElements, const int xrows, const double xelements,
const double collb, const double colub, const double obj)
Add a column (primal variable) to the problem.
« virtual void addCols (const int numcols, const CoinPackedVectorBase xconst
xcols, const double *collb, const double xcolub, const double *obj)
« virtual void deleteCols (const int num, const int xcollndices)
« virtual void addRow (const CoinPackedVectorBase &vec, const double rowlb,
const double rowub)
« virtual void addRow (const CoinPackedVectorBase &vec, const char rowsen,
const double rowrhs, const double rowrng)
« virtual void addRows (const int numrows, const CoinPackedVectorBase *xconst
*rows, const double xrowlb, const double xrowub)
« virtual void addRows (const int numrows, const CoinPackedVectorBase xconst
*rows, const char xrowsen, const double xrowrhs, const double xrowrng)
« virtual void deleteRows (const int num, const int xrowlIndices)
« virtual void applyRowCuts (int numberCuts, const OsiRowCut *cuts)
Apply a collection of row cuts which are all effective.
« virtual void applyRowCuts (int numberCuts, const OsiRowCut *xcuts)
Apply a collection of row cuts which are all effective.

Methods to input a problem

« virtual void loadProblem (const CoinPackedMatrix &matrix, const double xcollb,
const double xcolub, const double xobj, const double xrowlb, const double
*rowub)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 334

Load in an problem by copying the arguments (the constraints on the rows are given
by lower and upper bounds).

« virtual void assignProblem (CoinPackedMatrix «&matrix, double *&collb, dou-
ble x&colub, double x&obj, double *&rowlb, double *&rowub)

Load in an problem by assuming ownership of the arguments (the constraints on
the rows are given by lower and upper bounds).

« virtual void loadProblem (const CoinPackedMatrix &matrix, const double *xcollb,
const double xcolub, const double xobj, const char xrowsen, const double
s«rowrhs, const double xrowrng)

Load in an problem by copying the arguments (the constraints on the rows are given
by sense/rhs/range triplets).

« virtual void assignProblem (CoinPackedMatrix «&matrix, double *&collb, dou-
ble x&colub, double *&obj, char *&rowsen, double x&rowrhs, double *&rowrng)

Load in an problem by assuming ownership of the arguments (the constraints on
the rows are given by sense/rhs/range triplets).

« virtual void loadProblem (const int numcols, const int numrows, const Coin-
BigIndex xstart, const int xindex, const double xvalue, const double xcollb,
const double xcolub, const double xobj, const double xrowlb, const double
*rowub)

Just like the other loadProblem() methods except that the matrix is given in a stan-
dard column major ordered format (without gaps).

« virtual void loadProblem (const int numcols, const int numrows, const Coin-
Bigindex xstart, const int xindex, const double xvalue, const double xcollb,
const double xcolub, const double xobj, const char xrowsen, const double
xrowrhs, const double xrowrng)

Just like the other loadProblem() methods except that the matrix is given in a stan-
dard column major ordered format (without gaps).

« virtual int readMps (const char xfilename, const char xextension="mps")

Read an mps file from the given filename (defaults to Osi reader) - returns number
of errors (see OsiMpsReader class)

« virtual void writeMps (const char *filename, const char xextension="mps",
double objSense=0.0) const

Write the problem into an mps file of the given filename.

« virtual int writeMpsNative (const char xfilename, const char xxrowNames, const
char xxcolumnNames, int formatType=0, int numberAcross=2, double objSense=0.0)
const

Write the problem into an mps file of the given filename, names may be null.

Message handling (extra for Cbc messages).

Normally | presume you would want the same language.
If not then you could use underlying model pointer
» void newLanguage (CoinMessages::Language language)

Set language.
» void setLanguage (CoinMessages::Language language)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 335

Chc specific public interfaces

» CbcModel * getModelPtr () const

Get pointer to Cbc model.
» OsiSolverinterface * getRealSolverPtr () const

Get pointer to underlying solver.
« void setCutoff (double value)

Set cutoff bound on the objective function.
 double getCutoff () const

Get the cutoff bound on the objective function - always as minimize.
« void setMaximumNodes (int value)

Set the CbcModel::CbcMaxNumNode maximum node limit.
« int getMaximumNodes () const

Get the CbcModel::CbcMaxNumNode maximum node limit.
« void setMaximumSolutions (int value)

Set the CbcModel::CbcMaxNumSol maximum number of solutions.
* int getMaximumSolutions () const

Get the CbcModel::CbcMaxNumSol maximum number of solutions.
* void setMaximumSeconds (double value)

Set the CbcModel::CbcMaximumSeconds maximum number of seconds.
+ double getMaximumSeconds () const

Get the CbcModel::CbcMaximumSeconds maximum number of seconds.
* bool isNodeLimitReached () const

Node limit reached?
* bool isSolutionLimitReached () const

Solution limit reached?
« int getNodeCount () const

Get how many Nodes it took to solve the problem.
* int status () const

Final status of problem - 0 finished, 1 stopped, 2 difficulties.
« virtual void passinMessageHandler (CoinMessageHandler xhandler)
Pass in a message handler.

Constructors and destructors

OsiCbcSolverinterface (OsiSolverInterface xsolver=NULL, CbcStrategy *strategy=NULL)

Default Constructor.
virtual OsiSolverInterface * clone (bool copyData=true) const

Clone.
OsiCbcSolverinterface (const OsiCbcSolverinterface &)

Copy constructor.

OsiCbcSolverinterface & operator= (const OsiCbcSolverinterface &rhs)
Assignment operator.

virtual ~OsiCbcSolverinterface ()

Destructor.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 336

Protected Member Functions

Protected methods

« virtual void applyRowCut (const OsiRowCut &rc)

Apply a row cut (append to constraint matrix).
« virtual void applyColCut (const OsiColCut &cc)

Apply a column cut (adjust one or more bounds).

Protected Attributes

Protected member data

¢ CbcModel * modelPtr
Cbc model represented by this class instance.

Friends

+ void OsiCbcSolverInterfaceUnitTest (const std::string &mpsDir, const std::string
&netlibDir)

A function that tests the methods in the OsiCbcSolverinterface class.

4.123.1 Detailed Description

Cbc Solver Interface.
Instantiation of OsiCbcSolverInterface for the Model Algorithm.

Definition at line 30 of file OsiCbcSolverInterface.hpp.

4.123.2 Member Function Documentation

4.123.2.1 virtual CoinWarmStart+ OsiCbcSolverinterface::getEmptyWarmStart () const
[virtual]
Get an empty warm start object.

This routine returns an empty CoinWarmStartBasis object. Its purpose is to provide a
way to give a client a warm start basis object of the appropriate type, which can resized
and modified as desired.

4.123.2.2 virtual bool OsiCbcSolverinterface::setWarmStart (const CoinWarmStart « warmstart
) [virtual]

Set warmstarting information.

Return true/false depending on whether the warmstart information was accepted or not.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 337

4.123.2.3 virtual const charx OsiCbcSolverinterface::getRowSense ()const [virtual]

Get pointer to array[getNumRows()] of row constraint senses.

* 'L <= constraint

» 'E’ = constraint

+ 'G’ >= constraint

* 'R’ ranged constraint

« 'N’ free constraint

4.123.2.4 virtual const doublex OsiCbcSolverinterface::getRightHandSide () const
[virtual]

Get pointer to array[getNumRows()] of rows right-hand sides.

« if rowsense()[i] == 'L then rhs()[i] == rowupper()[i]
« if rowsense()[i] == ‘G’ then rhs()[i] == rowlower()[i]
« if rowsense()[i] == 'R’ then rhs()[i] == rowupper()[i]

« if rowsense()[i] == ‘N’ then rhs()[i] == 0.0

4.123.2.5 virtual const doublex OsiCbcSolverinterface::getRowRange () const
[virtual]

Get pointer to array[getNumRows()] of row ranges.

« if rowsense()[i] == 'R’ then rowrange()[i] == rowupper()[i] - rowlower()[i]

« if rowsense()[i] |= 'R’ then rowrange()]i] is undefined

4.123.2.6 virtual int OsiCbcSolverinterface::getlterationCount ()const [virtuall]

Get how many iterations it took to solve the problem (whatever "iteration" mean to the
solver.

4.123.2.7 virtual std::vector<<doublex> OsiChcSolverinterface::getDualRays (int
maxNumRays, bool fullRay = false)const [virtuall]

Get as many dual rays as the solver can provide.

(In case of proven primal infeasibility there should be at least one.)

The first getNumRows() ray components will always be associated with the row duals
(as returned by getRowPrice()). If ful1Ray is true, the final getNumCols() entries will
correspond to the ray components associated with the nonbasic variables. If the full ray
is requested and the method cannot provide it, it will throw an exception.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 338

NOTE for implementers of solver interfaces:

The double pointers in the vector should point to arrays of length getNumRows() and
they should be allocated via new(].

NOTE for users of solver interfaces:

It is the user’s responsibility to free the double pointers in the vector using delete][].

4.123.2.8 virtual std::vector<<doublex> OsiCbcSolverInterface::getPrimalRays (int
maxNumRays)const [virtual]

Get as many primal rays as the solver can provide.

(In case of proven dual infeasibility there should be at least one.)

NOTE for implementers of solver interfaces:

The double pointers in the vector should point to arrays of length getNumCols() and they
should be allocated via new(].

NOTE for users of solver interfaces:

It is the user’s responsibility to free the double pointers in the vector using delete]].

4.123.2.9 virtual std::string OsiCbcSolverinterface::getRowName (int rowindex, unsigned
maxLen=std: :string: :npos Jeonst [virtual]

Return the name of the row.

4.123.2.10 virtual void OsiCbcSolverinterface::setColLower (int elementindex, double
elementValue) [virtual]

Set a single column lower bound

Use -DBL_MAX for -infinity.

4.123.2.11 virtual void OsiCbcSolverinterface::setColUpper (int elementindex, double
elementValue) [virtual]

Set a single column upper bound

Use DBL_MAX for infinity.

4.123.2.12 virtual void OsiChcSolverinterface::setColSetBounds (const int indexFirst, const
int x indexLast, const double x boundList) [virtual]

Set the bounds on a number of columns simultaneously

The default implementation just invokes setColLower() and setColUpper() over and over
again.

Parameters
index- | pointers to the beginning and after the end of the array of the indices of the
First,indexLas variables whose either bound changes
\ boundList | the new lower/upper bound pairs for the variables \

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 339

4.123.2.13 virtual void OsiCbcSolverinterface::setRowLower (int elementindex, double
elementValue) [virtual]

Set a single row lower bound

Use -DBL_MAX for -infinity.

4.123.2.14 virtual void OsiChcSolverinterface::setRowUpper (int elementindex, double
elementValue) [virtual]

Set a single row upper bound
Use DBL_MAX for infinity.

4.123.2.15 virtual void OsiCbcSolverinterface::setRowSetBounds (const int * indexFirst, const
int x indexLast, const double x boundList) [virtuall]

Set the bounds on a number of rows simultaneously

The default implementation just invokes setRowlLower() and setRowUpper() over and
over again.

Parameters

First,indexLas constraints whose either bound changes

index- | pointers to the beginning and after the end of the array of the indices of the

boundList | the new lower/upper bound pairs for the constraints

4.123.2.16 virtual void OsiChcSolverinterface::setRowSetTypes (const int indexFirst, const
int x indexLast, const char x senseList, const double « rhsList, const double
rangelList) [virtual]

Set the type of a number of rows simultaneously

The default implementation just invokes setRowType() over and over again.

Parameters

First,indexLas constraints whose any characteristics changes

index- | pointers to the beginning and after the end of the array of the indices of the

senselist | the new senses

rhsList | the new right hand sides

rangelList | the new ranges

4.123.2.17 virtual void OsiChcSolverinterface::setColSolution (const double colsol)
[virtual]

Set the primal solution column values.

colsol[numcols()] is an array of values of the problem column variables. These values
are copied to memory owned by the solver object or the solver. They will be returned as
the result of colsol() until changed by another call to setColsol() or by a call to any solver
routine. Whether the solver makes use of the solution in any way is solver-dependent.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 340

4.123.2.18 virtual void OsiCbcSolverinterface::setRowPrice (const double * rowprice)
[virtual]

Set dual solution vector.

rowprice[numrows()] is an array of values of the problem row dual variables. These
values are copied to memory owned by the solver object or the solver. They will be
returned as the result of rowprice() until changed by another call to setRowprice() or by
a call to any solver routine. Whether the solver makes use of the solution in any way is
solver-dependent.

4.123.2.19 virtual void OsiChcSolverinterface::addCol (int numberElements, const int x rows,
const double x elements, const double collb, const double colub, const double obj
) [virtual]

Add a column (primal variable) to the problem.

4.123.2.20 virtual void OsiCbcSolverinterface::applyRowCuts (int numberCuts, const
OsiRowCut x cuts) [virtuall]

Apply a collection of row cuts which are all effective.

applyCuts seems to do one at a time which seems inefficient.

4.123.2.21 virtual void OsiCbcSolverinterface::applyRowCuts (int numberCuts, const
OsiRowCut xx cuts) [virtuall]

Apply a collection of row cuts which are all effective.

applyCuts seems to do one at a time which seems inefficient. This uses array of pointers

4.123.2.22 virtual void OsiCbcSolverinterface::loadProblem (const CoinPackedMatrix & matrix,
const double * collb, const double x colub, const double x obj, const double *
rowlb, const double x rowub) [virtual]

Load in an problem by copying the arguments (the constraints on the rows are given by
lower and upper bounds).

If a pointer is 0 then the following values are the default:

» colub: all columns have upper bound infinity
» collb: all columns have lower bound 0

» rowub: all rows have upper bound infinity

» rowlb: all rows have lower bound -infinity

* ob7j: all variables have 0 objective coefficient

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 341

4.123.2.23 virtual void OsiCbcSolverinterface::assignProblem (CoinPackedMatrix <& matrix,
double x& collb, double x& colub, double «x& obj, double «& rowlb, double &
rowub) [virtuall]

Load in an problem by assuming ownership of the arguments (the constraints on the
rows are given by lower and upper bounds).
For default values see the previous method.
WARNING: The arguments passed to this method will be freed using the C++ delete

and delete [] functions.

4.123.2.24 virtual void OsiCbcSolverinterface::loadProblem (const CoinPackedMatrix & matrix,
const double x collb, const double x colub, const double * obj, const char *
rowsen, const double x rowrhs, const double x rowrng) [virtual]

Load in an problem by copying the arguments (the constraints on the rows are given by
sense/rhs/range triplets).

If a pointer is 0 then the following values are the default:

» colub: all columns have upper bound infinity
* collb: all columns have lower bound 0

» obj: all variables have 0 objective coefficient
* rowsen: all rows are >=

« rowrhs: all right hand sides are 0

» rowrng: 0 for the ranged rows

4.123.2.25 virtual void OsiChcSolverinterface::assignProblem (CoinPackedMatrix +& matrix,
double x& collb, double & colub, double & obj, char «x& rowsen, double &
rowrhs, double x& rowrng) [virtual]

Load in an problem by assuming ownership of the arguments (the constraints on the
rows are given by sense/rhs/range triplets).

For default values see the previous method.

WARNING: The arguments passed to this method will be freed using the C++ delete
and delete[] functions.

4.123.2.26 virtual void OsiCbcSolverinterface::loadProblem (const int numcols, const int
numrows, const CoinBigindex x start, const int x index, const double * value,
const double x collb, const double x colub, const double x obj, const double
rowlb, const double x rowub) [virtual]

Just like the other loadProblem() methods except that the matrix is given in a standard
column major ordered format (without gaps).

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.123 OsiCbcSolverinterface Class Reference 342

4.123.2.27 virtual void OsiCbcSolverinterface::loadProblem (const int numcols, const int
numrows, const CoinBigindex x start, const int x index, const double * value,
const double x collb, const double x colub, const double x obj, const char x
rowsen, const double x rowrhs, const double x rowrng) [virtual]

Just like the other loadProblem() methods except that the matrix is given in a standard
column major ordered format (without gaps).

4.123.2.28 virtual void OsiCbcSolverinterface::writeMps (const char * filename, const char x
extension = "mps", double objSense=0.0)const [virtual]

Write the problem into an mps file of the given filename.

If objSense is non zero then -1.0 forces the code to write a maximization objective and
+1.0 to write a minimization one. If 0.0 then solver can do what it wants

4.123.2.29 virtual int OsiCbcSolverinterface::writeMpsNative (const char x filename, const char
+x rowNames, const char xx columnNames, int formatType = O, int numberAcross
=2, double objSense=0.0)const [virtual]

Write the problem into an mps file of the given filename, names may be null.
formatType is 0 - normal 1 - extra accuracy 2 - IEEE hex (later)

Returns non-zero on 1/O error

4.123.2.30 virtual void OsiCbcSolverinterface::passinMessageHandler (CoinMessageHandler
handler) [virtual]

Pass in a message handler.

It is the client’s responsibility to destroy a message handler installed by this routine; it
will not be destroyed when the solver interface is destroyed.

4.123.2.31 virtual void OsiCbcSolverinterface::applyRowCut (const OsiRowCut & rc)
[protected, virtual]

Apply a row cut (append to constraint matrix).

4.123.2.32 virtual void OsiChcSolverinterface::applyColCut (const OsiColCut & cc)
[protected, virtual]

Apply a column cut (adjust one or more bounds).

4.123.3 Friends And Related Function Documentation

4.123.3.1 void OsiCbcSolverinterfaceUnitTest (const std::string & mpsDir, const std::string &
netlibDir) [friend]

A function that tests the methods in the OsiCbcSolverinterface class.

The documentation for this class was generated from the following file:

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.124 OsiChooseStrongSubset Class Reference 343

+ OsiCbcSolverinterface.hpp

4124 OsiChooseStrongSubset Class Reference

This class chooses a variable to branch on.

#include <CbcLinked.hpp>

Public Member Functions

» OsiChooseStrongSubset ()

Default Constructor.
OsiChooseStrongSubset (const OsiSolverInterface xsolver)

Constructor from solver (so we can set up arrays etc)
OsiChooseStrongSubset (const OsiChooseStrongSubset &)

Copy constructor.
OsiChooseStrongSubset & operator= (const OsiChooseStrongSubset &rhs)

Assignment operator.
virtual OsiChooseVariable * clone () const

Clone.
virtual ~OsiChooseStrongSubset ()

Destructor.
virtual int setupList (OsiBranchinglnformation xinfo, bool initialize)

Sets up strong list and clears all if initialize is true.
virtual int chooseVariable (OsiSolverinterface *solver, OsiBranchinglnformation
xinfo, bool fixVariables)

Choose a variable Returns -.
int numberObjectsToUse () const

Number of objects to use.
+ void setNumberObjectsToUse (int value)

Set number of objects to use.
Protected Attributes
« int numberObjectsToUse_
Number of objects to be used (and set in solver)
4.124.1 Detailed Description

This class chooses a variable to branch on.

This is just as OsiChooseStrong but it fakes it so only first so many are looked at in this
phase

Definition at line 1203 of file CbcLinked.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.125 OsiLink Class Reference 344

4.124.2 Member Function Documentation

4.124.2.1 virtual int OsiChooseStrongSubset::setupList (OsiBranchinglnformation x info, bool
initialize) [virtual]
Sets up strong list and clears all if initialize is true.

Returns number of infeasibilities. If returns -1 then has worked out node is infeasible!

4.124.2.2 virtual int OsiChooseStrongSubset::chooseVariable (OsiSolverinterface * solver,
OsiBranchinginformation x info, bool fixVariables) [virtual]

Choose a variable Returns -.

-1 Node is infeasible 0 Normal termination - we have a candidate 1 All looks satisfied
- no candidate 2 We can change the bound on a variable - but we also have a strong
branching candidate 3 We can change the bound on a variable - but we have a non-
strong branching candidate 4 We can change the bound on a variable - no other candi-
dates We can pick up branch from bestObjectindex() and bestWhichWay() We can pick
up a forced branch (can change bound) from firstForcedObjectindex() and firstForced-
WhichWay() If we have a solution then we can pick up from goodObjectiveValue() and
goodSolution() If fixVariables is true then 2,3,4 are all really same as problem changed

The documentation for this class was generated from the following file:

+ CbcLinked.hpp

4,125 OsiLink Class Reference

Define Special Linked Ordered Sets.
#include <CbcLinked.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.125 OsiLink Class Reference 345

Collaboration diagram for OsiLink:

std::basic_string< char >

std::string

A

function_
I
|

OsiOneLink

3

data
I
|

OsiLink

Public Member Functions

+ OsiLink (const OsiSolverinterface xsolver, int yRow, int yColumn, double mesh-
Size)

Useful constructor -.
virtual OsiObject * clone () const

Clone.
virtual double infeasibility (const OsiBranchinglnformation xinfo, int &whichWay)
const

Infeasibility - large is 0.5.
virtual double feasibleRegion (OsiSolverinterface *solver, const OsiBranchinglIn-
formation xinfo) const

Set bounds to fix the variable at the current (integer) value.
virtual OsiBranchingObject * createBranch (OsiSolverInterface ssolver, const Os-
iBranchinglnformation =xinfo, int way) const

Creates a branching object.
virtual void resetSequenceEtc (int numberColumns, const int xoriginalColumns)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.125 OsiLink Class Reference 346

Redoes data when sequence numbers change.
* int numberLinks () const

Number of links for each member.
« virtual bool canDoHeuristics () const

Return true if object can take part in normal heuristics.
« virtual bool boundBranch () const

Return true if branch should only bound variables.

4.125.1 Detailed Description

Define Special Linked Ordered Sets.

New style

members and weights may be stored in SOS object
This is for y and xxf(y) and zxg(y) etc

Definition at line 600 of file CbcLinked.hpp.

4125.2 Constructor & Destructor Documentation

4.125.2.1 OsiLink::OsiLink (const OsiSolverinterface x solver, int yRow, int yColumn, double
meshSize)

Useful constructor -.

4.125.3 Member Function Documentation

4.125.3.1 virtual double OsiLink::feasibleRegion (OsiSolverinterface * solver, const
OsiBranchinginformation = info) const [virtual]
Set bounds to fix the variable at the current (integer) value.

Given an integer value, set the lower and upper bounds to fix the variable. Returns
amount it had to move variable.

4.125.3.2 virtual OsiBranchingObject: OsiLink::createBranch (OsiSolverinterface * solver,
const OsiBranchingInformation info, int way)const [virtuall]

Creates a branching object.
The preferred direction is set by way, 0 for down, 1 for up.

The documentation for this class was generated from the following file:

» CbcLinked.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.126 OsiLinkBranchingObject Class Reference

347

4126 OsiLinkBranchingObject Class Reference

Branching object for Linked ordered sets.

#include <CbcLinked.hpp>

Public Member Functions

« virtual OsiBranchingObject * clone () const
Clone.
« virtual double branch (OsiSolverinterface xsolver)

Does next branch and updates state.
« virtual void print (const OsiSolverInterface *solver=NULL)

Print something about branch - only if log level high.

4.126.1 Detailed Description

Branching object for Linked ordered sets.
Definition at line 678 of file CbcLinked.hpp.

The documentation for this class was generated from the following file:

+ CbcLinked.hpp

4,127 OsiLinkedBound Class Reference

List of bounds which depend on other bounds.
#include <CbcLinked.hpp>

Collaboration diagram for OsiLinkedBound:

OsiLinkedBound::boundElementAction

A

laffected_
|
|

OsiLinkedBound

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.128 OsiOldLink Class Reference 348

Classes

« struct boundElementAction

Public Member Functions

Action methods

« void updateBounds (ClpSimplex xsolver)
Update other bounds.

Constructors and destructors

* OsiLinkedBound ()

Default Constructor.
» OsiLinkedBound (OsiSolverinterface xmodel, int variable, int numberAffected,
const int xpositionL, const int xpositionU, const double sxmultiplier)

Useful Constructor.
» OsiLinkedBound (const OsiLinkedBound &)

Copy constructor.
» OsiLinkedBound & operator= (const OsiLinkedBound &rhs)

Assignment operator.
* ~OsiLinkedBound ()

Destructor.
Sets and Gets

« int variable () const

Get variable.
« void addBoundModifier (bool upperBoundAffected, bool useUpperBound, int
whichVariable, double multiplier=1.0)

Add a bound modifier.

41271 Detailed Description

List of bounds which depend on other bounds.
Definition at line 300 of file CbcLinked.hpp.

The documentation for this class was generated from the following file:

+ CbcLinked.hpp

4,128 O0OsiOldLink Class Reference

Public Member Functions

+ OsiOldLink (const OsiSolverinterface xsolver, int numberMembers, int number-
Links, int first, const double xweights, int setNumber)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.128

OsiOldLink Class Reference 349

4.128.1

Useful constructor - A valid solution is if all variables are zero apart from kxnumberLink
to (k+1)xnumberLink-1 where k is 0 through numberinSet-1.

OsiOldLink (const OsiSolverInterface xsolver, int numberMembers, int number-
Links, int typeSOS, const int xwhich, const double *weights, int setNumber)
Useful constructor - A valid solution is if all variables are zero apart from kxnumberLink
to (k+1)xnumberLink-1 where k is 0 through numberinSet-1.
virtual OsiObject * clone () const
Clone.
virtual double infeasibility (const OsiBranchinglnformation xinfo, int &whichWay)
const
Infeasibility - large is 0.5.
virtual double feasibleRegion (OsiSolverinterface *solver, const OsiBranchinglIn-
formation xinfo) const
Set bounds to fix the variable at the current (integer) value.
virtual OsiBranchingObject * createBranch (OsiSolverInterface *solver, const Os-
iBranchinglnformation xinfo, int way) const
Creates a branching object.
virtual void resetSequenceEtc (int numberColumns, const int xoriginalColumns)
Redoes data when sequence numbers change.
int numberLinks () const
Number of links for each member.
virtual bool canDoHeuristics () const
Return true if object can take part in normal heuristics.
virtual bool boundBranch () const

Return true if branch should only bound variables.

Detailed Description

Definition at line 434 of file CbcLinked.hpp.

4.128.2 Constructor & Destructor Documentation

4.128.2.1 OsiOldLink::OsiOldLink (const OsiSolverinterface « solver, int numberMembers, int

numberLinks, int first, const double x weights, int setNumber)

Useful constructor - A valid solution is if all variables are zero apart from kxnumberLink
to (k+1)*xnumberLink-1 where k is 0 through numberinSet-1.

The length of weights array is numberInSet. For this constructor the variables in matrix
are the numberInSetxnumberLink starting at first. If weights null then 0,1,2..

4.128.2.2 OsiOldLink::OsiOldLink (const OsiSolverinterface x solver, int numberMembers, int

numberLinks, int typeSOS, const int x which, const double « weights, int setNumber

)

Useful constructor - A valid solution is if all variables are zero apart from kxnumberLink
to (k+1)xnumberLink-1 where k is 0 through numberinSet-1.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.129 OsiOldLinkBranchingObject Class Reference 350

The length of weights array is numberInSet. For this constructor the variables are given
by list - grouped. If weights null then 0,1,2..

4.128.3 Member Function Documentation

4.128.3.1 virtual double OsiOldLink::feasibleRegion (OsiSolverinterface x solver, const
OsiBranchinginformation x info) const [virtuall]

Set bounds to fix the variable at the current (integer) value.

Given an integer value, set the lower and upper bounds to fix the variable. Returns
amount it had to move variable.

4,128.3.2 virtual OsiBranchingObject:x OsiOldLink::createBranch (OsiSolverinterface * solver,
const OsiBranchingInformation x info, int way)const [virtual]

Creates a branching object.
The preferred direction is set by way, 0 for down, 1 for up.

The documentation for this class was generated from the following file:

» CbcLinked.hpp

4129 OsiOldLinkBranchingObject Class Reference

Branching object for Linked ordered sets.

#include <CbcLlinked.hpp>

Public Member Functions

« virtual OsiBranchingObject * clone () const

Clone.
« virtual double branch (OsiSolverinterface xsolver)

Does next branch and updates state.
« virtual void print (const OsiSolverinterface xsolver=NULL)

Print something about branch - only if log level high.
4.129.1 Detailed Description

Branching object for Linked ordered sets.
Definition at line 518 of file CbcLinked.hpp.

The documentation for this class was generated from the following file:

» CbcLinked.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4130 OsiOneLink Class Reference 351

4,130 OsiOneLink Class Reference

Define data for one link.
#include <CbcLinked.hpp>

Collaboration diagram for OsiOneLink:

std::basic_string< char >

std::string

A

function_
I
|

OsiOneLink

Public Member Functions

+ OsiOnelLink (const OsiSolverinterface xsolver, int xRow, int xColumn, int xyRow,
const char xfunctionString)

Useful constructor -.

Public Attributes

* int xRow_

data
* int xColumn_

Column which defines x.
* int xyRow

Output row.
» std::string function_

Function.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.131 CbcGenCtiBIk::osiParamsinfo_struct Struct Reference 352

4.130.1 Detailed Description

Define data for one link.

Definition at line 558 of file CbcLinked.hpp.

4.130.2 Constructor & Destructor Documentation

4.130.2.1 OsiOneLink::OsiOneLink (const OsiSolverinterface x solver, int xRow, int xColumn,
int xyRow, const char x functionString)

Useful constructor -.

4.130.3 Member Data Documentation

4.130.3.1 int OsiOneLink::xRow_

data
Row which defines x (if -1 then no x)
Definition at line 583 of file CbcLinked.hpp.

The documentation for this class was generated from the following file:

+ CbcLinked.hpp

4131 CbcGenCilIBlk::osiParamsinfo_struct Struct Reference
Start and end of OsiSolverInterface parameters in parameter vector.
#include <CbcGenCtlBlk.hpp>

4.131.1 Detailed Description

Start and end of OsiSolverInterface parameters in parameter vector.
Definition at line 614 of file CbcGenCtIBIk.hpp.

The documentation for this struct was generated from the following file:

» CbcGenCtiBlk.hpp

4132 OsiSimpleFixedinteger Class Reference

Define a single integer class - but one where you keep branching until fixed even if
satisfied.

#include <CbcLinked.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.132 OsiSimpleFixedinteger Class Reference 353

Public Member Functions

OsiSimpleFixedInteger ()

Default Constructor.
OsiSimpleFixedInteger (const OsiSolverinterface xsolver, int iColumn)

Useful constructor - passed solver index.
OsiSimpleFixedInteger (int iColumn, double lower, double upper)

Useful constructor - passed solver index and original bounds.
OsiSimpleFixedInteger (const OsiSimplelnteger &)

Useful constructor - passed simple integer.
OsiSimpleFixedInteger (const OsiSimpleFixedInteger &)

Copy constructor.
virtual OsiObject * clone () const

Clone.
OsiSimpleFixedInteger & operator= (const OsiSimpleFixedInteger &rhs)

Assignment operator.
virtual ~OsiSimpleFixedInteger ()

Destructor.
virtual double infeasibility (const OsiBranchinglnformation xinfo, int &whichWay)
const

Infeasibility - large is 0.5.
virtual OsiBranchingObject * createBranch (OsiSolverinterface *xsolver, const Os-
iBranchinglInformation xinfo, int way) const

Creates a branching object.

4.132.1 Detailed Description

Define a single integer class - but one where you keep branching until fixed even if
satisfied.

Definition at line 1089 of file CbcLinked.hpp.

4.132.2 Member Function Documentation

4,132.2.1 virtual OsiBranchingObjectx OsiSimpleFixedinteger::createBranch (
OsiSolverinterface * solver, const OsiBranchinginformation x info, int way) const
[virtual]

Creates a branching object.
The preferred direction is set by way, 0 for down, 1 for up.

The documentation for this class was generated from the following file:

+ CbcLinked.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.133 OsiSolverLinearizedQuadratic Class Reference 354

4,133 OsiSolverLinearizedQuadratic Class Reference

This is to allow the user to replace initialSolve and resolve.

#include <CbcLinked.hpp>

Public Member Functions

Solve methods

« virtual void initialSolve ()
Solve initial LP relaxation.

Constructors and destructors

» OsiSolverLinearizedQuadratic ()

Default Constructor.
» OsiSolverLinearizedQuadratic (ClpSimplex xquadraticModel)

Useful constructor (solution should be good)
« virtual OsiSolverinterface * clone (bool copyData=true) const

Clone.
» OsiSolverLinearizedQuadratic (const OsiSolverLinearizedQuadratic &)

Copy constructor.
» OsiSolverLinearizedQuadratic & operator= (const OsiSolverLinearizedQuadratic
&rhs)

Assignment operator.
« virtual ~OsiSolverLinearizedQuadratic ()

Destructor.

Sets and Gets

« double bestObjectiveValue () const
Objective value of best solution found internally.
+ const double * bestSolution () const
Best solution found internally.
void setSpecialOptions3 (int value)

Set special options.
* int specialOptions3 () const

Get special options.
+ ClpSimplex * quadraticModel () const

Copy of quadratic model if one.

Protected Attributes

Private member data

* double bestObjectiveValue_
Objective value of best solution found internally.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.134 OsiSolverLink Class Reference 355

» ClpSimplex x quadraticModel_

Copy of quadratic model if one.
« double * bestSolution

Best solution found internally.
* int specialOptions3_
0 bit (1) - don’t do mini B&B 1 bit (2) - quadratic only in objective

4.133.1 Detailed Description

This is to allow the user to replace initialSolve and resolve.
Definition at line 1318 of file CbcLinked.hpp.

The documentation for this class was generated from the following file:

+ CbcLinked.hpp

4,134 OsiSolverLink Class Reference

This is to allow the user to replace initialSolve and resolve This version changes coeffi-
cients.

#include <CbcLinked.hpp>

Collaboration diagram for OsiSolverLink:

OsiLinkedBound::boundElementAction

A

laffected_
|
l

OsiLinkedBound

X

linfo_
|
l

OsiSolverLink

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.134 OsiSolverLink Class Reference 356

Public Member Functions

Solve methods

« virtual void initialSolve ()
Solve initial LP relaxation.
« virtual void resolve ()
Resolve an LP relaxation after problem modification.
« virtual int fathom (bool allFixed)
Problem specific Returns -1 if node fathomed and no solution 0 if did nothing 1 if
node fathomed and solution allFixed is true if all LinkedBound variables are fixed.
» double * nonlinearSLP (int numberPasses, double deltaTolerance)

Solves nonlinear problem from CoinModel using SLP - may be used as crash for
other algorithms when number of iterations small.
* double linearizedBAB (CglStored xcut)

Solve linearized quadratic objective branch and bound.
* double * heuristicSolution (int numberPasses, double deltaTolerance, int mode)

Solves nonlinear problem from CoinModel using SLP - and then tries to get heuristic
solution Returns solution array mode - 0 just get continuous 1 round and try normal
bab 2 use defaultBound_ to bound integer variables near current solution.
« int doAOCuts (CglTemporary xcutGen, const double xsolution, const double
*solution2)

Do OA cuts.

Constructors and destructors

» OsiSolverLink ()

Default Constructor.
» OsiSolverLink (CoinModel &modelObject)

This creates from a coinModel object.
« void load (CoinModel &modelObject, bool tightenBounds=false, int logLevel=1)

« virtual OsiSolverInterface * clone (bool copyData=true) const

Clone.
» OsiSolverLink (const OsiSolverLink &)

Copy constructor.
» OsiSolverLink & operator= (const OsiSolverLink &rhs)

Assignment operator.
« virtual ~OsiSolverLink ()

Destructor.

Sets and Gets

 void addBoundModifier (bool upperBoundAffected, bool useUpperBound, int
whichVariable, int whichVariableAffected, double multiplier=1.0)
Add a bound modifier.
« int updateCoefficients (ClpSimplex xsolver, CoinPackedMatrix xmatrix)
Update coefficients - returns number updated if in updating mode.
« void analyzeObjects ()

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.134 OsiSolverLink Class Reference 357

Analyze constraints to see which are convex (quadratic)
« void addTighterConstraints ()
Add reformulated bilinear constraints.
+ double bestObjectiveValue () const
Objective value of best solution found internally.
+ void setBestObjectiveValue (double value)
Set objective value of best solution found internally.
» const double * bestSolution () const
Best solution found internally.
+ void setBestSolution (const double xsolution, int numberColumns)
Set best solution found internally.
* void setSpecialOptions2 (int value)
Set special options.
« void sayConvex (bool convex)
Say convex (should work it out) - if convex false then strictly concave.
* int specialOptions2 () const
Get special options.
» CoinPackedMatrix * cleanMatrix () const
Clean copy of matrix So we can add rows.
» CoinPackedMatrix * originalRowCopy () const
Row copy of matrix Just genuine columns and rows Linear part.
» ClpSimplex * quadraticModel () const
Copy of quadratic model if one.
» CoinPackedMatrix * quadraticRow (int rowNumber, double *linear) const
Gets correct form for a quadratic row - user to delete.
» double defaultMeshSize () const
Default meshSize.
« void setDefaultMeshSize (double value)
 double defaultBound () const
Default maximumbound.
« void setDefaultBound (double value)
« void setIntegerPriority (int value)
Set integer priority.
« int integerPriority () const
Get integer priority.
* int objectiveVariable () const
Objective transfer variable if one.
« void setBiLinearPriority (int value)
Set biLinear priority.
« int biLinearPriority () const
Get bilinear priority.
» const CoinModel * coinModel () const
Return CoinModel.
« void setBiLinearPriorities (int value, double meshSize=1.0)
Set all biLinear priorities on x-x variables.
+ void setBranchingStrategyOnVariables (int strategyValue, int priorityValue=-1,
int mode=7)
Set options and priority on all or some biLinear variables 1 - on I-12 - on I-x 4 - on
X-x or combinations.
* void setMeshSizes (double value)
Set all mesh sizes on x-x variables.
« void setFixedPriority (int priorityValue)
Two tier integer problem where when set of variables with priority less than this are
fixed the problem becomes an easier integer problem.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.134 OsiSolverLink Class Reference 358

Protected Member Functions

functions

« void gutsOfDestructor (bool justNullify=false)

Do real work of initialize.
+ void gutsOfCopy (const OsiSolverLink &rhs)

Do real work of copy.

Protected Attributes

Private member data

» CoinPackedMatrix x matrix_
Clean copy of matrix Marked coefficients will be multiplied by L or U.
» CoinPackedMatrix * originalRowCopy_
Row copy of matrix Just genuine columns and rows.
» ClpSimplex * quadraticModel_
Copy of quadratic model if one.
¢ int numberNonLinearRows_
Number of rows with nonLinearities.
« int x startNonLinear__
Starts of lists.
« int x rowNonLinear_
Row number for a list.
* int x convex_
Indicator whether is convex, concave or neither.
* int * whichNonLinear_
Indices in a list/row.
» CoinModel coinModel_
Model in CoinModel format.
* int numberVariables_
Number of variables in tightening phase.
* OsiLinkedBound * info_
Information.
« int specialOptions2_
0 bit (1) - call fathom (may do mini B&B) 1 bit (2) - quadratic only in objective (add
OA cuts) 2 bit (4) - convex 3 bit (8) - try adding OA cuts 4 bit (16) - add linearized
constraints
« int objectiveRow_
Objective transfer row if one.
« int objectiveVariable_
Objective transfer variable if one.
* double bestObjectiveValue_
Objective value of best solution found internally.
 double defaultMeshSize_
Default mesh.
« double defaultBound__

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.134 OsiSolverLink Class Reference 359

Default maximum bound.
double * bestSolution_

Best solution found internally.
« int integerPriority_

Priority for integers.
* int biLinearPriority_

Priority for bilinear.
* int numberFix_

Number of variables which when fixed help.
* int x fixVariables

list of fixed variables

4.134.1 Detailed Description

This is to allow the user to replace initialSolve and resolve This version changes coeffi-
cients.

Definition at line 29 of file CbcLinked.hpp.

4.134.2 Constructor & Destructor Documentation

4.134.2.1 OsiSolverLink::OsiSolverLink (CoinModel & modelObject)

This creates from a coinModel object.

if errors.then number of sets is -1

This creates linked ordered sets information. It assumes -

for product terms syntax is yyxf(zz) also just f(zz) is allowed and even a constant

modelObject not const as may be changed as part of process.

4.134.3 Member Function Documentation

4.134.3.1 doublex OsiSolverLink::nonlinearSLP (int numberPasses, double deltaTolerance)

Solves nonlinear problem from CoinModel using SLP - may be used as crash for other
algorithms when number of iterations small.

Also exits if all problematical variables are changing less than deltaTolerance Returns
solution array

4.134.3.2 double OsiSolverLink::linearizedBAB (CglStored * cut)

Solve linearized quadratic objective branch and bound.

Return cutoff and OA cut

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.135 OsiUsesBiLinear Class Reference 360

4.134.3.3 void OsiSolverLink::setBranchingStrategyOnVariables (int strategyValue, int
priorityValue = —1, int mode="7)

Set options and priority on all or some biLinear variables 1 - on |- 2 - on I-x 4 - on x-x
or combinations.
-1 means leave (for priority value and strategy value)

4.134.3.4 void OsiSolverLink::gutsOfDestructor (bool justNullify = false)
[protected]

Do real work of initialize.

Do real work of delete

4.134.4 Member Data Documentation

4.134.4.1 intx OsiSolverLink::convex_ [protected]

Indicator whether is convex, concave or neither.
-1 concave, 0 neither, +1 convex
Definition at line 257 of file CbcLinked.hpp.

The documentation for this class was generated from the following file:

» CbcLinked.hpp

4,135 OsiUsesBilLinear Class Reference

Define a single variable class which is involved with OsiBiLinear objects.

#include <CbcLlinked.hpp>

Public Member Functions

» OsiUsesBiLinear ()

Default Constructor.
+ OsiUsesBiLinear (const OsiSolverInterface xsolver, int iColumn, int type)

Useful constructor - passed solver index.
» OsiUsesBiLinear (int iColumn, double lower, double upper, int type)

Useful constructor - passed solver index and original bounds.
» OsiUsesBiLinear (const OsiSimplelnteger &rhs, int type)

Useful constructor - passed simple integer.
» OsiUsesBiLinear (const OsiUsesBilLinear &rhs)

Copy constructor.
« virtual OsiObject * clone () const

Clone.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.135 OsiUsesBiLinear Class Reference 361

» OsiUsesBiLinear & operator= (const OsiUsesBilLinear &rhs)

Assignment operator.
« virtual ~OsiUsesBiLinear ()

Destructor.
+ virtual double infeasibility (const OsiBranchingInformation xinfo, int &whichWay)
const

Infeasibility - large is 0.5.
« virtual OsiBranchingObiject x createBranch (OsiSolverinterface xsolver, const Os-
iBranchinglInformation xinfo, int way) const

Creates a branching object.

« virtual double feasibleRegion (OsiSolverInterface *solver, const OsiBranchinglIn-
formation xinfo) const

Set bounds to fix the variable at the current value.
+ void addBiLinearObjects (OsiSolverLink xsolver)

Add all bi-linear objects.

Protected Attributes

* int numberBiLinear

data Number of bilinear objects (maybe could be more general)
* int type_

Type of variable - 0 continuous, 1 integer.
+ OsiObject ** objects_

Objects.

4.135.1 Detailed Description

Define a single variable class which is involved with OsiBiLinear objects.
This is used so can make better decision on where to branch as it can look at all objects.

This version sees if it can re-use code from OsiSimplelnteger even if not an integer
variable. If not then need to duplicate code.

Definition at line 1139 of file CbcLinked.hpp.

4.135.2 Member Function Documentation

4.135.2.1 virtual OsiBranchingObject:+ OsiUsesBiLinear::createBranch (OsiSolverinterface *
solver, const OsiBranchinginformation x info, int way)const [virtual]

Creates a branching object.

The preferred direction is set by way, 0 for down, 1 for up.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.136 PseudoReducedCost Struct Reference 362

4.135.2.2 virtual double OsiUsesBiLinear::feasibleRegion (OsiSolverinterface solver, const
OsiBranchinginformation x info)const [virtuall]

Set bounds to fix the variable at the current value.

Given an current value, set the lower and upper bounds to fix the variable. Returns
amount it had to move variable.

The documentation for this class was generated from the following file:

+ CbcLinked.hpp

4136 PseudoReducedCost Struct Reference
4.136.1 Detailed Description

Definition at line 10 of file CbcHeuristicDive.hpp.

The documentation for this struct was generated from the following file:

» CbcHeuristicDive.hpp

5 File Documentation

5.1 CbcEventHandler.hpp File Reference

Event handling for cbc.
#include <map>

Include dependency graph for CbcEventHandler.hpp:

CbcEventHandler.hpp

map

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

5.1 CbcEventHandler.hpp File Reference 363

This graph shows which files directly or indirectly include this file:

CbcEventHandler.hpp

A

CbcModel.hpp

»

CbcGenCtIBlk.hpp I | CbcParam.hpp | | CbcSolver.hpp | | ChbcStatistics.hpp | | CbcStrategy.hpp |

CbcThread.hpp

| OsiCbcSolverinterface.hpp |

Classes

« class CbcEventHandler

Base class for Cbc event handling.

5.1.1 Detailed Description

Event handling for cbc. This file contains the declaration of CbcEventHandler, used for
event handling in cbc.

The central method is CbcEventHandler::event(). The default semantics of this call are
‘ask for the action to take in reponse to this event’. The call is made at the point in the
code where the event occurs (e.g., when a solution is found, or when a node is added
to or removed from the search tree). The return value specifies the action to perform in
response to the event (e.g., continue, or stop).

This is alazy class. Initially, it knows nothing about specific events, and returns dfltAction_-
for any event. This makes for a trivial constructor and fast startup. The only place where
the list of known events or actions is hardwired is in the enum definitions for CbcEvent
and CbcAction, respectively.

At the first call to setAction, a map is created to hold (Event,Action) pairs, and this map
will be consulted ever after. Events not in the map will still return the default value.

For serious extensions, derive a subclass and replace event() with a function that suits
you better. The function has access to the CbcModel via a pointer held in the CbcEven-
tHandler object, and can do as much thinking as it likes before returning an answer. You
can also print as much information as you want. The model is held as a const, however,
S0 you can't alter reality.

The design of the class deliberately matches ClpEventHandler, so that other solvers
can participate in cbc without breaking the patterns set by clp-specific code.

Definition in file CbcEventHandler.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

5.2 CbcGenMessages.hpp File Reference 364

5.2 CbcGenMessages.hpp File Reference

This file contains the enum that defines symbolic names for for cbc-generic messages.

This graph shows which files directly or indirectly include this file:

CbcGenMessages.hpp

CbcGenCitIBIk.hpp

Enumerations
» enum CbcGenMsgCode

Symbolic names for cbc-generic messages.

5.2.1 Detailed Description

This file contains the enum that defines symbolic names for for cbc-generic messages.

Definition in file CbcGenMessages.hpp.

5.2.2 Enumeration Type Documentation

5.2.21 enum CbcGenMsgCode

Symbolic names for cbc-generic messages.
These are the ‘internal IDs’ for cbc-generic messages.

Definition at line 36 of file CbcGenMessages.hpp.

5.3 CbcSolver.hpp File Reference

Defines CbcSolver, the proposed top-level class for the new-style cbc solver.
#include <string>

#include <vector>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

5.3 CbcSolver.hpp File Reference 365

#include "CoinMessageHandler.hpp"
#include "OsiClpSolverInterface.hpp"
#include "CbcModel.hpp"

#include "CbcOrClpParam.hpp"

Include dependency graph for CbcSolver.hpp:

|

‘CleModelhpp

OsiCipSolverlntertace.hop

oscutstep || o % [on

CoinMessageHandier.hpp

CheConfigh

GbeObject.hpp

sting OsiBranchingObiect. hpp vector

Classes

« class CbcSolver

This allows the use of the standalone solver in a flexible manner.
« struct CbcSolverUsefulData

Structure to hold useful arrays.
+ class CbcUser

A class to allow the use of unknown user functionality.

+ class CbcStopNow

Support the use of a call back class to decide whether to stop.

5.3.1 Detailed Description

Defines CbcSolver, the proposed top-level class for the new-style cbc solver. This class
is currently an orphan. With the removal of all code flagged with the NEWS_STYLE_-
SOLVER, this class is never instantiated (and cannot be instantiated). It is available to
be coopted as a top-level object wrapping the current CbcMain0 and CbcMain1, should
that appear to be a desireable path forward. -- Ih, 091211 --

Definition in file CbcSolver.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CocOrCipParam.hpp

5.4 CbcSolverAnalyze.hpp File Reference 366

5.4 CbcSolverAnalyze.hpp File Reference

Look to see if a constraint is all-integer (variables & coeffs), or could be all integer.

5.4.1 Detailed Description

Look to see if a constraint is all-integer (variables & coeffs), or could be all integer.

Definition in file CbcSolverAnalyze.hpp.

5.5 CbcSolverExpandKnapsack.hpp File Reference

Expanding possibilities of xxy, where xxy are both integers, constructing a knapsack
constraint.

5.5.1 Detailed Description

Expanding possibilities of xxy, where xxy are both integers, constructing a knapsack
constraint. Results in a tighter model.

Definition in file CbcSolverExpandKnapsack.hpp.

5.6 CbcSolverHeuristics.hpp File Reference

Routines for doing heuristics.

Functions

« int doHeuristics (CbcModel xmodel, int type, CbcOrClpParam xparameters_, int
numberParameters_, int noPrinting_, int initialPumpTune)

1 - add heuristics to model 2 - do heuristics (and set cutoff and best solution) 3 - for
miplib test so skip some (out model later)

5.6.1 Detailed Description

Routines for doing heuristics.

Definition in file CbcSolverHeuristics.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

	Class Index
	Class Hierarchy

	Class Index
	Class List

	File Index
	File List

	Class Documentation
	ampl_info Struct Reference
	Detailed Description

	CbcGenCtlBlk::babState_struct Struct Reference
	Detailed Description

	CbcBaseModel Class Reference
	Detailed Description

	CbcBranchAllDifferent Class Reference
	Detailed Description
	Member Data Documentation

	CbcBranchCut Class Reference
	Detailed Description
	Member Function Documentation

	CbcBranchDecision Class Reference
	Detailed Description
	Member Function Documentation

	CbcBranchDefaultDecision Class Reference
	Detailed Description
	Member Function Documentation

	CbcBranchDynamicDecision Class Reference
	Detailed Description
	Member Function Documentation

	CbcBranchingObject Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	CbcBranchToFixLots Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Data Documentation

	CbcBranchUserDecision Class Reference
	Detailed Description
	Member Function Documentation

	CbcCbcParam Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation

	CbcClique Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	CbcCliqueBranchingObject Class Reference
	Detailed Description
	Member Function Documentation

	CbcCompare Class Reference
	Detailed Description

	CbcCompareBase Class Reference
	Detailed Description
	Member Function Documentation

	CbcCompareDefault Class Reference
	Detailed Description

	CbcCompareDepth Class Reference
	Detailed Description

	CbcCompareEstimate Class Reference
	Detailed Description

	CbcCompareObjective Class Reference
	Detailed Description

	CbcCompareUser Class Reference
	Detailed Description
	Member Function Documentation

	CbcConsequence Class Reference
	Detailed Description
	Member Function Documentation

	CbcCountRowCut Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CbcCutBranchingObject Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CbcCutGenerator Class Reference
	Detailed Description
	Member Function Documentation

	CbcCutModifier Class Reference
	Detailed Description

	CbcCutSubsetModifier Class Reference
	Detailed Description

	CbcDummyBranchingObject Class Reference
	Detailed Description
	Member Function Documentation

	CbcDynamicPseudoCostBranchingObject Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CbcEventHandler Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation

	CbcFathom Class Reference
	Detailed Description
	Member Function Documentation

	CbcFathomDynamicProgramming Class Reference
	Detailed Description
	Member Function Documentation

	CbcFeasibilityBase Class Reference
	Detailed Description
	Member Function Documentation

	CbcFixingBranchingObject Class Reference
	Detailed Description
	Member Function Documentation

	CbcFixVariable Class Reference
	Detailed Description
	Member Function Documentation

	CbcFollowOn Class Reference
	Detailed Description

	CbcFollowOn2 Class Reference
	Detailed Description
	Member Function Documentation

	CbcFullNodeInfo Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	CbcGenCtlBlk Class Reference
	Detailed Description
	Member Enumeration Documentation
	Member Function Documentation
	Member Data Documentation

	CbcGeneral Class Reference
	Detailed Description

	CbcGenParam Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation

	CbcHeuristic Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	CbcHeuristicCrossover Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicDINS Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicDive Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicDiveCoefficient Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicDiveFractional Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicDiveGuided Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicDiveLineSearch Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicDivePseudoCost Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicDiveVectorLength Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicDynamic3 Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicFPump Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	CbcHeuristicGreedyCover Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicGreedyEquality Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicGreedySOS Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicJustOne Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicLocal Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicNaive Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicNode Class Reference
	Detailed Description

	CbcHeuristicNodeList Class Reference
	Detailed Description

	CbcHeuristicPartial Class Reference
	Detailed Description

	CbcHeuristicPivotAndFix Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicRandRound Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicRENS Class Reference
	Detailed Description
	Member Function Documentation

	CbcHeuristicRINS Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	CbcHeuristicVND Class Reference
	Detailed Description
	Member Function Documentation

	CbcIntegerBranchingObject Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CbcIntegerPseudoCostBranchingObject Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CbcLink Class Reference
	Detailed Description
	Constructor & Destructor Documentation

	CbcLinkBranchingObject Class Reference
	Detailed Description
	Member Function Documentation

	CbcLongCliqueBranchingObject Class Reference
	Detailed Description
	Member Function Documentation

	CbcLotsize Class Reference
	Detailed Description
	Member Function Documentation

	CbcLotsizeBranchingObject Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CbcMessage Class Reference
	Detailed Description

	CbcModel Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation
	Member Function Documentation

	CbcNode Class Reference
	Detailed Description
	Member Function Documentation

	CbcNodeInfo Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	CbcNWay Class Reference
	Detailed Description

	CbcNWayBranchingObject Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CbcObject Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	CbcObjectUpdateData Class Reference
	Detailed Description
	Member Data Documentation

	CbcOsiParam Class Reference
	Detailed Description
	Member Enumeration Documentation
	Constructor & Destructor Documentation

	CbcParam Class Reference
	Detailed Description

	CbcGenCtlBlk::cbcParamsInfo_struct Struct Reference
	Detailed Description

	CbcPartialNodeInfo Class Reference
	Detailed Description
	Member Function Documentation

	CbcRounding Class Reference
	Detailed Description

	CbcSerendipity Class Reference
	Detailed Description
	Member Function Documentation

	CbcSimpleInteger Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	CbcSimpleIntegerDynamicPseudoCost Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	CbcSimpleIntegerFixed Class Reference
	Detailed Description
	Member Function Documentation

	CbcSimpleIntegerPseudoCost Class Reference
	Detailed Description
	Member Data Documentation

	CbcSolver Class Reference
	Detailed Description
	Member Function Documentation

	CbcSolver2 Class Reference
	Detailed Description

	CbcSolver3 Class Reference
	Detailed Description

	CbcSolverLongThin Class Reference
	Detailed Description

	CbcSolverUsefulData Struct Reference
	Detailed Description

	CbcSOS Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	CbcSOSBranchingObject Class Reference
	Detailed Description
	Member Function Documentation

	CbcStatistics Class Reference
	Detailed Description

	CbcStopNow Class Reference
	Detailed Description
	Member Function Documentation

	CbcStrategy Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	CbcStrategyDefault Class Reference
	Detailed Description

	CbcStrategyDefaultSubTree Class Reference
	Detailed Description

	CbcStrategyNull Class Reference
	Detailed Description

	CbcStrongInfo Struct Reference
	Detailed Description

	CbcThread Class Reference
	Detailed Description

	CbcTree Class Reference
	Detailed Description
	Member Function Documentation

	CbcTreeLocal Class Reference
	Detailed Description

	CbcTreeVariable Class Reference
	Detailed Description

	CbcUser Class Reference
	Detailed Description
	Member Function Documentation

	CglTemporary Class Reference
	Detailed Description
	Member Function Documentation

	CbcGenCtlBlk::chooseStrongCtl_struct Struct Reference
	Detailed Description

	ClpAmplObjective Class Reference
	Detailed Description
	Member Function Documentation

	ClpConstraintAmpl Class Reference
	Detailed Description
	Member Function Documentation

	ClpQuadInterface Class Reference
	Detailed Description
	Member Function Documentation

	CbcGenCtlBlk::debugSolInfo_struct Struct Reference
	Detailed Description

	CbcGenCtlBlk::djFixCtl_struct Struct Reference
	Detailed Description

	CbcGenCtlBlk::genParamsInfo_struct Struct Reference
	Detailed Description

	OsiBiLinear Class Reference
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	OsiBiLinearBranchingObject Class Reference
	Detailed Description

	OsiBiLinearEquality Class Reference
	Detailed Description

	OsiCbcSolverInterface Class Reference
	Detailed Description
	Member Function Documentation
	Friends And Related Function Documentation

	OsiChooseStrongSubset Class Reference
	Detailed Description
	Member Function Documentation

	OsiLink Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	OsiLinkBranchingObject Class Reference
	Detailed Description

	OsiLinkedBound Class Reference
	Detailed Description

	OsiOldLink Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	OsiOldLinkBranchingObject Class Reference
	Detailed Description

	OsiOneLink Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Data Documentation

	CbcGenCtlBlk::osiParamsInfo_struct Struct Reference
	Detailed Description

	OsiSimpleFixedInteger Class Reference
	Detailed Description
	Member Function Documentation

	OsiSolverLinearizedQuadratic Class Reference
	Detailed Description

	OsiSolverLink Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	OsiUsesBiLinear Class Reference
	Detailed Description
	Member Function Documentation

	PseudoReducedCost Struct Reference
	Detailed Description

	File Documentation
	CbcEventHandler.hpp File Reference
	Detailed Description

	CbcGenMessages.hpp File Reference
	Detailed Description
	Enumeration Type Documentation

	CbcSolver.hpp File Reference
	Detailed Description

	CbcSolverAnalyze.hpp File Reference
	Detailed Description

	CbcSolverExpandKnapsack.hpp File Reference
	Detailed Description

	CbcSolverHeuristics.hpp File Reference
	Detailed Description

