Cbc
275

Generated by Doxygen 1.7.4

Wed Nov 9 2011 10:27:17

CONTENTS

Contents
1 Class Index

1.1 ClassHierarchy o
2 Class Index

21 ClassList
3 File Index

3.1 FileList e
4 Class Documentation

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

ampl_info Struct Reference L.
4.1.1 Detailed Description
CbcGenCtIBlk::babState_struct Struct Reference
4.2.1 Detailed Description L.
CbcBaseModel Class Reference
4.3.1 Detailed Description oo
CbcBranchAllDifferent Class Reference
4.41 Detailed Description oo
4.42 Member Data Documentation.
CbcBranchCut Class Reference
451 Detailed Description L.
452 Member Function Documentation
CbcBranchDecision Class Reference
4.6.1 Detailed Description L L o
4.6.2 Member Function Documentation
CbcBranchDefaultDecision Class Reference
471 Detailed Description L oL
4.7.2 Member Function Documentation
CbcBranchDynamicDecision Class Reference
4.8.1 Detailed Description L.
4.8.2 Member Function Documentation
CbcBranchingObject Class Reference

4.9.1 Detailed Description L o

12
12

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS i

4.9.2 Member Function Documentation 32
4.9.3 Member Data Documentation. 35
4.10 CbcBranchToFixLots Class Reference 35
4.10.1 Detailed Description 37
4.10.2 Constructor & Destructor Documentation. 38
4.10.3 Member Data Documentation. 38
4.11 CbcBranchUserDecision Class Reference 38
4.11.1 Detailed Description L. 39
4.11.2 Member Function Documentation 39
4.12 CbcCbcParam Class Reference 40
4.12.1 Detailed Description oL 41
4.12.2 Member Enumeration Documentation 42
4.12.3 Constructor & Destructor Documentation. 42
4.13 CbcClique Class Reference 43
4.13.1 Detailed Description L. 45
4.13.2 Constructor & Destructor Documentation. 45
4.13.3 Member Function Documentation 45
4.13.4 Member Data Documentation. 46
4.14 CbcCliqueBranchingObject Class Reference 47
4.14.1 Detailed Description 48
4.14.2 Member Function Documentation 48
4.15 CbcCompare Class Reference 49
4.15.1 Detailed Description L L oL 49
4.16 CbcCompareBase Class Reference 50
4.16.1 Detailed Description L. 51
4.16.2 Member Function Documentation 51
4.17 CbcCompareDefault Class Reference 52
4.17.1 Detailed Description L. 54
4.18 CbcCompareDepth Class Reference 54
4.18.1 Detailed Description L oL 55
4.19 CbcCompareEstimate Class Reference 55
4.19.1 Detailed Description Lo 56
4.20 CbcCompareObjective Class Reference 57
4.20.1 Detailed Description oL 58

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS iii

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

CbcCompareUser Class Reference 58
4.21.1 Detailed Description oL 59
4.21.2 Member Function Documentation 59
CbcConsequence Class Reference 59
4.22.1 Detailed Description L. 60
4.22.2 Member Function Documentation 60
CbcCountRowCut Class Reference 61
4.23.1 Detailed Description oL 62
4.23.2 Constructor & Destructor Documentation. 62
4.23.3 Member Function Documentation 62
CbcCutBranchingObject Class Reference 63
4.24.1 Detailed Description oL oo 64
4.24.2 Constructor & Destructor Documentation. 65
4.24.3 Member Function Documentation 65
CbcCutGenerator Class Reference 65
4.25.1 Detailed Description L L o 69
4.25.2 Member Function Documentation 69
CbcCutModifier Class Reference 70
4.26.1 Detailed Description L oL 71
CbcCutSubsetModifier Class Reference 71
4.27.1 Detailed Description L. 73
CbcDummyBranchingObject Class Reference 73
4.28.1 Detailed Description L oo 75
4.28.2 Member Function Documentation 75
CbcDynamicPseudoCostBranchingObject Class Reference 75
4.29.1 Detailed Description L oL 77
4.29.2 Constructor & Destructor Documentation. 78
4.29.3 Member Function Documentation 78
CbcEventHandler Class Reference 78
4.30.1 Detailed Description L o 80
4.30.2 Member Enumeration Documentation 81
4.30.3 Constructor & Destructor Documentation. 81
4.30.4 Member Function Documentation 82
CbcFathom Class Reference 82

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS iv

4.31.1 Detailed Description 84
4.31.2 Member Function Documentation 84
4.32 CbcFathomDynamicProgramming Class Reference 84
4.32.1 Detailed Description o 87
4.32.2 Member Function Documentation 87
4.33 CbcFeasibilityBase Class Reference 87
4.33.1 Detailed Description o 88
4.33.2 Member Function Documentation 88
4.34 CbcFixingBranchingObject Class Reference 88
4.34.1 Detailed Description L oL 89
4.34.2 Member Function Documentation 89
4.35 CbcFixVariable Class Reference 90
4.35.1 Detailed Description L. 92
4.35.2 Member Function Documentation 92
4.36 CbcFollowOn Class Reference 92
4.36.1 Detailed Description 94
4.37 CbcFollowOn2 Class Reference 94
4.37.1 Detailed Description L o 96
4.37.2 Member Function Documentation 96
4.38 CbcFullNodelnfo Class Reference 96
4.38.1 Detailed Description 98
4.38.2 Member Function Documentation 99
4.38.3 Member Data Documentation. 99
4.39 CbcGenCtIBlk Class Reference 100
4.39.1 Detailed Description L oL 106
4.39.2 Member Enumeration Documentation 106
4.39.3 Member Function Documentation 108
4.39.4 Member Data Documentation. 112
4.40 CbcGeneral ClassReference 114
4.40.1 Detailed Description L Lo 116
4.41 CbcGenParam Class Reference 116
4.41.1 Detailed Description L. 118
4.41.2 Member Enumeration Documentation 118
4.41.3 Constructor & Destructor Documentation. 119

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS v

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

4.51

4.52

CbcHeuristic Class Reference 119
4.42.1 Detailed Description o 124
4.42.2 Member Function Documentation 124
4.42.3 Member Data Documentation. 125
CbcHeuristicCrossover Class Reference 126
4.43.1 Detailed Description 128
4.43.2 Member Function Documentation 128
CbcHeuristicDINS Class Reference 128
4.441 Detailed Descriptiono oL 130
4.44.2 Member Function Documentation 130
CbcHeuristicDive Class Reference 130
4.451 Detailed Description oL oL 133
4.45.2 Member Function Documentation 133
CbcHeuristicDiveCoefficient Class Reference 133
4.46.1 Detailed Description L. 135
4.46.2 Member Function Documentation 135
CbcHeuristicDiveFractional Class Reference 135
4.471 Detailed Description L o 137
4.47.2 Member Function Documentation 137
CbcHeuristicDiveGuided Class Reference 137
4.48.1 Detailed Description 139
4.48.2 Member Function Documentation 139
CbcHeuristicDiveLineSearch Class Reference 139
4.49.1 Detailed Description Lo 141
4.49.2 Member Function Documentation 141
CbcHeuristicDivePseudoCost Class Reference 141
4.50.1 Detailed Description 143
4.50.2 Member Function Documentation 143
CbcHeuristicDiveVectorLength Class Reference 143
4.51.1 Detailed Description 145
4.51.2 Member Function Documentation 145
CbcHeuristicDynamic3 Class Reference 145
4.52.1 Detailed Description oL 147
4.52.2 Member Function Documentation 147

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS vi

4.53

454

4.55

4.56

4.57

4.58

4.59

4.60

4.61

4.62

4.63

4.64

CbcHeuristicFPump Class Reference 147
4.53.1 Detailed Description L oL 151
4.53.2 Member Function Documentation 151
4.53.3 Member Data Documentation. 152
CbcHeuristicGreedyCover Class Reference 152
4.54.1 Detailed Description 154
4.54.2 Member Function Documentation 154
CbcHeuristicGreedyEquality Class Reference 154
4.55.1 Detailed Description L Lo 156
4.55.2 Member Function Documentation 156
CbcHeuristicGreedySOS Class Reference 156
4.56.1 Detailed Description oL 158
4.56.2 Member Function Documentation 158
CbcHeuristicJustOne Class Reference 158
4.57.1 Detailed Description L. 159
4.57.2 Member Function Documentation 160
CbcHeuristicLocal Class Reference 160
4.58.1 Detailed Description o 162
4.58.2 Member Function Documentation 162
CbcHeuristicNaive Class Reference 162
4.59.1 Detailed Description 163
4.59.2 Member Function Documentation 164
CbcHeuristicNode Class Reference 164
4.60.1 Detailed Description L. 164
CbcHeuristicNodeList Class Reference 165
4.61.1 Detailed Description 165
CbcHeuristicPartial Class Reference 165
4.62.1 Detailed Description L. 167
CbcHeuristicPivotAndFix Class Reference 167
4.63.1 Detailed Description L oL 168
4.63.2 Member Function Documentation 168
CbcHeuristicRandRound Class Reference 169
4.64.1 Detailed Description L oL 170
4.64.2 Member Function Documentation 170

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS vii

4.65

4.66

4.67

4.68

4.69

4.70

4.71

4.72

4.73

4.74

CbcHeuristicRENS Class Reference 170
4.65.1 Detailed Description oL 172
4.65.2 Member Function Documentation 172
CbcHeuristicRINS Class Reference 172
4.66.1 Detailed Description 174
4.66.2 Member Function Documentation 174
4.66.3 Member Data Documentation. 175
CbcHeuristicVND Class Reference 175
4.67.1 Detailed Description L oL 177
4.67.2 Member Function Documentation 177
CbclintegerBranchingObject Class Reference 177
4.68.1 Detailed Description L oL 180
4.68.2 Constructor & Destructor Documentation. 180
4.68.3 Member Function Documentation 180
CbclntegerPseudoCostBranchingObject Class Reference 181
4.69.1 Detailed Description oL 183
4.69.2 Constructor & Destructor Documentation. 184
4.69.3 Member Function Documentation 184
CbcLink Class Reference 184
4.70.1 Detailed Description 186
4.70.2 Constructor & Destructor Documentation. 186
CbcLinkBranchingObject Class Reference 187
4.71.1 Detailed Description oL 188
4.71.2 Member Function Documentation 188
CbcLongCliqueBranchingObject Class Reference 188
4.72.1 Detailed Description L L oo 190
4.72.2 Member Function Documentation 190
CbclLotsize Class Reference 190
4.73.1 Detailed Description 192
4.73.2 Member Function Documentation 193
CbclotsizeBranchingObject Class Reference 194
4.741 Detailed Description L oo 195
4.74.2 Constructor & Destructor Documentation. 196
4.74.3 Member Function Documentation 196

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS viii

4.75

4.76

4.77

4.78

4.79

4.80

4.81

4.82

4.83

4.84

CbcMessage Class Reference 196
4.75.1 Detailed Description L oo 196
CbcModel Class Reference 197
4.76.1 Detailed Description L. 214
4.76.2 Member Enumeration Documentation 215
4.76.3 Constructor & Destructor Documentation. 217
4.76.4 Member Function Documentation 217
CbcNode Class Reference 228
4.771 Detailed Description oL o 231
4.77.2 Member Function Documentation 231
CbcNodelnfo Class Reference 234
4.78.1 Detailed Description L L oL 237
4.78.2 Constructor & Destructor Documentation. 238
4.78.3 Member Function Documentation 238
4.78.4 Member Data Documentation. 239
CbcNWay Class Reference 239
4.79.1 Detailed Description oL 241
CbcNWayBranchingObject Class Reference 242
4.80.1 Detailed Description L o 243
4.80.2 Constructor & Destructor Documentation. 243
4.80.3 Member Function Documentation 243
CbcObject Class Reference 245
4.81.1 Detailed Description oL 248
4.81.2 Member Function Documentation 248
4.81.3 Member Data Documentation. 250
CbcObjectUpdateData Class Reference 251
4.82.1 Detailed Description o 252
4.82.2 Member Data Documentation. 252
CbcOsiParam Class Reference 252
4.83.1 Detailed Description L o 253
4.83.2 Member Enumeration Documentation 253
4.83.3 Constructor & Destructor Documentation. 254
CbcParam Class Reference 254
4.84.1 Detailed Description L. 257

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS ix

4.85

4.86

4.87

4.88

4.89

4.90

4.91

4.92

4.93

4.94

4.95

4.96

4.97

CbcGenCtIBlk::cbcParamslinfo_struct Struct Reference 258
4.85.1 Detailed Description L L oL 258
CbcPartialNodelnfo Class Reference 258
4.86.1 Detailed Description 260
4.86.2 Member Function Documentation 260
CbcRounding Class Reference 260
4.87.1 Detailed Description L o 262
CbcSerendipity Class Reference 262
4.88.1 Detailed Description L oL 263
4.88.2 Member Function Documentation 263
CbcSimplelnteger Class Reference 264
4.89.1 Detailed Description L oL 266
4.89.2 Member Function Documentation 266
4.89.3 Member Data Documentation. 267
CbcSimplelntegerDynamicPseudoCost Class Reference 267
4.90.1 Detailed Description L o 273
4.90.2 Member Function Documentation 273
4.90.3 Member Data Documentation. 274
CbcSimplelntegerFixed Class Reference 274
4.91.1 Detailed Description 275
4.91.2 Member Function Documentation 275
CbcSimplelntegerPseudoCost Class Reference 276
4.92.1 Detailed Description oL oo 278
4.92.2 Member Data Documentation. 278
CbcSolver Class Reference, 278
4.93.1 Detailed Description L oL 281
4.93.2 Member Function Documentation 281
CbcSolver2 Class Reference 282
4.94.1 Detailed Description L. 283
CbcSolver3 Class Reference 283
4.95.1 Detailed Description oL 284
CbcSolverLongThin Class Reference 285
4.96.1 Detailed Description L. 286
CbcSolverUsefulData Struct Reference 286

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS X

4.97.1 Detailed Description L. 286
498 CbcSOSClassReference, 286
4.98.1 Detailed Description L oL 289
4.98.2 Constructor & Destructor Documentation. 289
4.98.3 Member Function Documentation 289
4.99 CbcSOSBranchingObject Class Reference 290
4.99.1 Detailed Description L L oo 291
4.99.2 Member Function Documentation 291
4.100CbcStatistics Class Reference 292
4.100.1 Detailed Description 293
4.101CbcStopNow Class Reference 293
4.101.1 Detailed Description 294
4.101.2 Member Function Documentation 294
4.102CbcStrategy Class Reference 294
4.102.1 Detailed Description L. 296
4.102.2 Member Function Documentation 296
4.102.3 Member Data Documentation. 296
4.103CbcStrategyDefault Class Reference 297
4.103.1 Detailed Description 298
4.104CbcStrategyDefaultSubTree Class Reference 298
4.104.1 Detailed Description 300
4.105CbcStrategyNull Class Reference 300
4.105.1 Detailed Description 301
4.106CbcStrongInfo Struct Reference 301
4.106.1 Detailed Description 302
4.107CbcThread Class Reference 302
4.107.1 Detailed Description 302
4.108CbcTree Class Reference 302
4.108.1 Detailed Description 306
4.108.2 Member Function Documentation 306
4.109CbcTreeLocal Class Reference 307
4.109.1 Detailed Description 308
4.110CbcTreeVariable Class Reference 309
4.110.1 Detailed Description 310

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS Xi

4111CbcUser Class Reference 310
4.111.1 Detailed Description 312
4.111.2 Member Function Documentation 312

4.112CglTemporary Class Reference 313
4.112.1 Detailed Description 313
4.112.2 Member Function Documentation 314

4.113CbcGenCtIBlk::chooseStrongCitl_struct Struct Reference 314
4.113.1 Detailed Description L. 314

4.114CIlpAmplObjective Class Reference 314
4.114.1 Detailed Description 315
4.114.2 Member Function Documentation 316

4.115CIpConstraintAmpl Class Reference 316
4.115.1 Detailed Description 317
4.115.2 Member Function Documentation 317

4.116ClpQuadinterface Class Reference 318
4.116.1 Detailed Description 319
4.116.2 Member Function Documentation 319

4.117CbcGenCtIBlk::debugSolinfo_struct Struct Reference 319
4.117.1 Detailed Description 319

4.118CbcGenCtIBIk::djFixCtl_struct Struct Reference 319
4.118.1 Detailed Description 319

4.119CbcGenCtIBlk::genParamsinfo_struct Struct Reference 320
4.119.1 Detailed Description 320

4.1200siBiLinear Class Reference 320
4.120.1 Detailed Description 324
4.120.2 Member Function Documentation 324
4.120.3 Member Data Documentation. 324

4.1210siBiLinearBranchingObject Class Reference 325
4.121.1 Detailed Description 325

4.1220siBiLinearEquality Class Reference 325
4.122.1 Detailed Description L. 327

4.1230siCbcSolverinterface Class Reference 327
4.123.1 Detailed Description 335
4.123.2 Member Function Documentation 335

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

CONTENTS xii

4.123.3 Friends And Related Function Documentation 341
4.1240siChooseStrongSubset Class Reference 342
4.124.1 Detailed Description L oL 342
4.124.2 Member Function Documentation 343
4.1250siLink Class Reference 343
4.125.1 Detailed Description 345
4.125.2 Constructor & Destructor Documentation. 345
4.125.3 Member Function Documentation 345
4.1260siLinkBranchingObject Class Reference 346
4.126.1 Detailed Description 346
4.1270siLinkedBound Class Reference 346
4.127.1 Detailed Description L oo 347
4.1280si0ldLink Class Reference 347
4.128.1 Detailed Description 348
4.128.2 Constructor & Destructor Documentation. 348
4.128.3 Member Function Documentation 349
4.1290si0ldLinkBranchingObject Class Reference 349
4.129.1 Detailed Description 349
4.1300siOnelLink Class Reference 350
4.130.1 Detailed Description 351
4.130.2 Constructor & Destructor Documentation. 351
4.130.3 Member Data Documentation. 351
4.131CbcGenCtIBlk::osiParamsinfo_struct Struct Reference 351
4.131.1 Detailed Description 351
4.1320siSimpleFixedinteger Class Reference 351
4.132.1 Detailed Description o 352
4.132.2 Member Function Documentation 352
4.1330siSolverLinearizedQuadratic Class Reference 353
4.133.1 Detailed Description 354
4.1340siSolverLink Class Reference 354
4.134.1 Detailed Description L. 358
4.134.2 Constructor & Destructor Documentation. 358
4.134.3 Member Function Documentation 358
4.134.4 Member Data Documentation. 359

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

1 Class Index 1

4.1350siUsesBiLinear Class Reference 359
4.135.1 Detailed Description 360
4.135.2 Member Function Documentation 360

4.136PseudoReducedCost Struct Reference 361
4.136.1 Detailed Description 361

5 File Documentation 361

5.1 CbcEventHandler.hpp File Reference 361
5.1.1 Detailed Description oL 362

5.2 CbcGenMessages.hpp File Reference 363
5.2.1 Detailed Description oL 363
5.2.2 Enumeration Type Documentation 363

5.3 CbcSolver.hpp File Reference 363
5.3.1 Detailed Description 364

5.4 CbcSolverAnalyze.hpp File Reference 365
5.4.1 Detailed Description L L oL 365

5.5 CbcSolverExpandKnapsack.hpp File Reference 365
5.5.1 Detailed Description oL 365

5.6 CbcSolverHeuristics.hpp File Reference 365
5.6.1 Detailed Description 365

1 Class Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
ampl_info 16

CbcGenCitiBlk::babState_struct 16
std::basic_fstream< char >
std::basic_fstream< wchar_t >
std::basic_ifstream< char >
std::basic_ifstream< wchar_t >
std::basic_ios< char >
std::basic_ios< wchar_t >
std::basic_iostream< char >
std::basic_iostream< wchar t >
std::basic_istream< char >
std::basic_istream< wchar_t >

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

1.1 Class Hierarchy 2
std::basic_istringstream< char >
std::basic_istringstream< wchar_t >
std::basic_ofstream< char >
std::basic_ofstream< wchar t >
std::basic_ostream< char >
std::basic_ostream< wchar_t >
std::basic_ostringstream< char >
std::basic_ostringstream< wchar_t >
std::basic_string< char >
std::basic_string< wchar_t >
std::basic_stringstream< char >
std::basic_stringstream< wchar_t >
CbcBaseModel 17
ChbhcBranchDecision 22
CbcBranchDefaultDecision 25
CbcBranchDynamicDecision 27
ChcBranchUserDecision 38
CbcBranchingObject 29
CbcCliqueBranchingObject 47
CbhcCutBranchingObject 63
CbcDummyBranchingObject 73
CbcFixingBranchingObject 88
CbclintegerBranchingObject 177
CbcDynamicPseudoCostBranchingObject 75
CbclintegerPseudoCostBranchingObject 181
CbcLinkBranchingObject 187
CbcLongCliqueBranchingObject 188
CbcLotsizeBranchingObject 194
CbcNWayBranchingObject 242
CbcSOSBranchingObject 290
CbcCbcParam 40
CbcCompare 49

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

1.1 Class Hierarchy 3
CbcCompareBase 50
CbcCompareDefault 52
CbcCompareDepth 54
CbcCompareEstimate 55
CbcCompareObjective 57
CbcCompareUser 58
CbcConsequence 59
CbcFixVariable 90
CbcCountRowCut 61
CbcCutGenerator 65
CbcCutModifier 70
CbcCutSubsetModifier 71
CbcEventHandler 78
CbcFathom 82
CbcFathomDynamicProgramming 84
CbcFeasibilityBase 87
CbcGenCtiBlk 100
CbcGenParam 116
CbcHeuristic 119
CbcHeuristicCrossover 126
CbcHeuristicDINS 128
CbcHeuristicDive 130
CbcHeuristicDiveCoefficient 133
CbcHeuristicDiveFractional 135
CbcHeuristicDiveGuided 137
CbcHeuristicDiveLineSearch 139
CbcHeuristicDivePseudoCost 141

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

1.1 Class Hierarchy 4

CbcHeuristicDiveVectorLength 143
CbcHeuristicDynamic3 145
CbcHeuristicFPump 147
CbcHeuristicGreedyCover 152
CbcHeuristicGreedyEquality 154
CbcHeuristicGreedySOS 156
CbcHeuristicJustOne 158
CbcHeuristicLocal 160
CbcHeuristicNaive 162
CbcHeuristicPartial 165
CbcHeuristicPivotAndFix 167
CbcHeuristicRandRound 169
CbcHeuristicRENS 170
CbcHeuristicRINS 172
CbcHeuristicVND 175
CbcRounding 260
CbcSerendipity 262
CbcHeuristicNode 164
CbcHeuristicNodeL.ist 165
CbcMessage 196
CbcModel 197
CbcNode 228
CbcNodelnfo 234

CbcFuliNodelnfo 96

CbcPartialNodelnfo 258
CbcObject 245

CbcBranchCut 19

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

1.1 Class Hierarchy 5

CbcBranchAllDifferent 17
CbcBranchToFixLots 35
CbcClique 43
CbcFollowOn 92
CbcFollowOn2 94
CbcGeneral 114
CbcLink 184
CbcLotsize 190
CbcNWay 239
CbcSimplelnteger 264
CbcSimplelntegerDynamicPseudoCost 267
ChcSimplelntegerFixed 274
CbcSimplelntegerPseudoCost 276
CbcSOS 286
CbcObjectUpdateData 251
CbcOsiParam 252
CbcParam 254
CbcGenCtiBlk::cbcParamsinfo_struct 258
CbcSolver 278
CbcSolver2 282
CbcSolver3 283
CbcSolverLongThin 285
CbcSolverUsefulData 286
CbcStatistics 292
CbcStopNow 293
CbcStrategy 294
CbcStrategyDefault 297

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

1.1 Class Hierarchy 6

CbcStrategyDefaultSubTree 298

CbcStrategyNull 300
CbcStronginfo 301
CbcThread 302
CbcTree 302

CbcTreeLocal 307

CbcTreeVariable 309
CbcUser 310
CglTemporary 313
CbcGenCtiBlk::chooseStrongCtl_struct 314
ClpAmplObjective 314
ClpConstraintAmpl 316
ClpQuadinterface 318
CbcGenCtiBlk::debugSolinfo_struct 319
CbcGenCtiBIk::djFixCtl_struct 319
CbcGenCitiBlk::genParamsinfo_struct 320
OsiBilLinear 320

OsiBiLinearEquality 325
OsiBiLinearBranchingObject 325
OsiCbcSolverinterface 327
OsiChooseStrongSubset 342
OsiLink 343
OsiLinkBranchingObject 346
OsiLinkedBound 346
OsiOldLink 347
OsiOldLinkBranchingObiject 349
OsiOneLink 350

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

2 Class Index 7
CbcGenCtiBlk::osiParamsinfo_struct 351
OsiSimpleFixedInteger 351
OsiSolverLinearizedQuadratic 353
OsiSolverLink 354
OsiUsesBiLinear 359
PseudoReducedCost 361

2 Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:
ampl_info 16
CbcGenCtiBlk::babState_struct (State of branch-and-cut) 16
CbcBaseModel (Base model) 17
CbcBranchAllDifferent (Define a branch class that branches so that it is

only satsified if all members have different values So cut is x <= y-1

orx >=y+1) 17
CbcBranchCut (Define a cut branching class) 19
CbcBranchDecision 22
CbcBranchDefaultDecision (Branching decision default class) 25
CbcBranchDynamicDecision (Branching decision dynamic class) 27
CbcBranchingObject (Abstract branching object base class Now just dif-

ference with OsiBranchingObject) 29
CbcBranchToFixLots (Define a branch class that branches so that one

way variables are fixed while the other way cuts off that solution) 35
CbcBranchUserDecision (Branching decision user class) 38
CbcCbcParam (Class for control parameters that act on a CbcModel ob-

ject) 40
CbcClique (Branching object for cliques) 43
CbcCliqueBranchingObject (Branching object for unordered cliques) 47

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

2.1 Class List 8

CbcCompare 49
CbcCompareBase 50
CbcCompareDefault 52
CbcCompareDepth 54
CbcCompareEstimate 55
CbcCompareObjective 57
CbcCompareUser 58
CbcConsequence (Abstract base class for consequent bounds) 59
CbcCountRowCut (OsiRowCut augmented with bookkeeping) 61
CbcCutBranchingObject (Cut branching object) 63

CbcCutGenerator (Interface between Cbc and Cut Generation Library) 65

CbcCutModifier (Abstract cut modifier base class) 70
CbcCutSubsetModifier (Simple cut modifier base class) 71
CbcDummyBranchingObject (Dummy branching object) 73
CbcDynamicPseudoCostBranchingObject (Simple branching object for

an integer variable with pseudo costs) 75
CbcEventHandler (Base class for Cbc event handling) 78
CbcFathom (Fathom base class) 82

CbcFathomDynamicProgramming (FathomDynamicProgramming class) 84

CbcFeasibilityBase 87
CbcFixingBranchingObject (General Branching Obiject class) 88
CbcFixVariable (Class for consequent bounds) 90
CbcFollowOn (Define a follow on class) 92
CbcFollowOn2 (Define a follow on class) 94

CbcFullNodelnfo (Information required to recreate the subproblem at this

node) 96
CbcGenCtiBlk 100
CbcGeneral (Define a catch all class) 114

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

2.1 Class List 9
CbcGenParam (Class for cbc-generic control parameters) 116
CbcHeuristic (Heuristic base class) 119
CbcHeuristicCrossover (Crossover Search class) 126
CbcHeuristicDINS 128
CbcHeuristicDive (Dive class) 130
CbcHeuristicDiveCoefficient (DiveCoefficient class) 133
CbcHeuristicDiveFractional (DiveFractional class) 135
CbcHeuristicDiveGuided (DiveGuided class) 137
CbcHeuristicDiveLineSearch (DiveLineSearch class) 139
CbcHeuristicDivePseudoCost (DivePseudoCost class) 141
CbcHeuristicDiveVectorLength (DiveVectorLength class) 143
CbcHeuristicDynamic3 (Heuristic - just picks up any good solution) 145
CbcHeuristicFPump (Feasibility Pump class) 147
CbcHeuristicGreedyCover (Greedy heuristic classes) 152
CbcHeuristicGreedyEquality 154
CbcHeuristicGreedySOS (Greedy heuristic for SOS and L rows (and pos-

itive elements)) 156
CbcHeuristicJustOne (Just One class - this chooses one at random) 158
CbcHeuristicLocal (LocalSearch class) 160
CbcHeuristicNaive (Naive class a) Fix all ints as close to zero as possible

b) Fix all ints with nonzero costs and < large to zero c¢) Put bounds

round continuous and Uls and maximize) 162
CbcHeuristicNode (A class describing the branching decisions that were

made to get to the node where a heuristic was invoked from) 164
CbcHeuristicNodelList 165
CbcHeuristicPartial (Partial solution class If user knows a partial solution

this tries to get an integer solution it uses hotstart information) 165
CbcHeuristicPivotAndFix (LocalSearch class) 167
CbcHeuristicRandRound (LocalSearch class) 169

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

2.1 Class List 10

CbcHeuristicRENS (LocalSearch class) 170
CbcHeuristicRINS (LocalSearch class) 172
CbcHeuristicVND (LocalSearch class) 175
CbcintegerBranchingObject (Simple branching object for an integer vari-
able) 177
CbclntegerPseudoCostBranchingObject (Simple branching object for an
integer variable with pseudo costs) 181
CbcLink (Define Special Linked Ordered Sets) 184

CbcLinkBranchingObject (Branching object for Special ordered sets) 187

CbcLongCliqueBranchingObject (Unordered Clique Branching Object class

) 188
CbcLotsize (Lotsize class) 190
CbcLotsizeBranchingObject (Lotsize branching object) 194
CbcMessage 196
CbcModel (Simple Branch and bound class) 197
CbcNode (Information required while the node is live) 228

CbcNodelnfo (Information required to recreate the subproblem at this

node) 234
CbcNWay (Define an n-way class for variables) 239
CbcNWayBranchingObject (N way branching Object class) 242
CbcObject 245
CbcObjectUpdateData 251
CbcOsiParam (Class for control parameters that act on a OsiSolverinter-

face object) 252
CbcParam (Very simple class for setting parameters) 254

CbcGenCitiBlk::cbcParamsinfo_struct (Start and end of CbcModel param-
eters in parameter vector) 258

CbcPartialNodelnfo (Holds information for recreating a subproblem by
incremental change from the parent) 258

CbcRounding (Rounding class) 260

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

2.1 Class List 1

CbcSerendipity (Heuristic - just picks up any good solution found by
solver - see OsiBabSolver) 262

CbcSimplelnteger (Define a single integer class) 264

CbcSimplelntegerDynamicPseudoCost (Define a single integer class but
with dynamic pseudo costs) 267

CbcSimplelntegerFixed (Define a single integer class where branching is
forced until fixed) 274

CbcSimplelntegerPseudoCost (Define a single integer class but with pseudo
costs) 276

CbcSolver (This allows the use of the standalone solver in a flexible man-
ner) 278

CbcSolver2 (This is to allow the user to replace initialSolve and resolve) 282
CbcSolver3 (This is to allow the user to replace initialSolve and resolve) 283

CbcSolverLongThin (This is to allow the user to replace initialSolve and
resolve) 285

CbcSolverUsefulData (Structure to hold useful arrays) 286
CbcSOS (Branching object for Special Ordered Sets of type 1 and 2) 286

CbcSOSBranchingObject (Branching object for Special ordered sets) 290

CbcStatistics (For gathering statistics) 292
CbcStopNow (Support the use of a call back class to decide whether to

stop) 293
CbcStrategy (Strategy base class) 294
CbcStrategyDefault (Default class) 297
CbcStrategyDefaultSubTree (Default class for sub trees) 298
CbcStrategyNull (Null class) 300
CbcStronginfo (Abstract base class for ‘objects’) 301
CbcThread (A class to encapsulate thread stuff) 302
CbcTree (Using MS heap implementation) 302
CbcTreelLocal 307
CbcTreeVariable 309

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

2.1 Class List 12
CbcUser (A class to allow the use of unknown user functionality) 310
CglTemporary (Stored Temporary Cut Generator Class - destroyed after

first use) 313
CbcGenCtiBlk::chooseStrongCtl_struct (Control variables for a strong

branching method) 314
ClpAmplObjective (Ampl Objective Class) 314
ClpConstraintAmpl (Ampl Constraint Class) 316
ClpQuadinterface (This is to allow the user to replace initialSolve and

resolve) 318
CbcGenCtiBlk::debugSolinfo_struct (Array of primal variable values for

debugging) 319
CbcGenCitIBIk::djFixCtl_struct (Control use of reduced cost fixing prior

to B&C) 319
CbcGenCtiBlk::genParamsinfo_struct (Start and end of cbc-generic pa-

rameters in parameter vector) 320
OsiBiLinear (Define BiLinear objects) 320
OsiBiLinearBranchingObject (Branching object for BiLinear objects) 325
OsiBiLinearEquality (Define Continuous BiLinear objects for an == bound

) 325
OsiCbcSolverinterface (Cbc Solver Interface) 327
OsiChooseStrongSubset (This class chooses a variable to branch on) 342
OsiLink (Define Special Linked Ordered Sets) 343
OsiLinkBranchingObject (Branching object for Linked ordered sets) 346
OsiLinkedBound (List of bounds which depend on other bounds) 346
OsiOldLink 347
OsiOldLinkBranchingObject (Branching object for Linked ordered sets) 349
OsiOneLink (Define data for one link) 350
CbcGenCitiBIk::osiParamsinfo_struct (Start and end of OsiSolverinter-

face parameters in parameter vector) 351
OsiSimpleFixedInteger (Define a single integer class - but one where you

keep branching until fixed even if satisfied) 351

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

3 File Index 13
OsiSolverLinearizedQuadratic (This is to allow the user to replace initial-
Solve and resolve) 353
OsiSolverLink (This is to allow the user to replace initialSolve and re-
solve This version changes coefficients) 354
OsiUsesBiLinear (Define a single variable class which is involved with
OsiBiLinear objects) 359
PseudoReducedCost 361
3 File Index
3.1 File List
Here is a list of all documented files with brief descriptions:
Cbc_ampl.h ??
Cbc_C_Interface.h ??
CbcBranchActual.hpp ?2?
CbcBranchAllDifferent.hpp ??
CbcBranchBase.hpp ??
CbcBranchCut.hpp ??
CbcBranchDecision.hpp ??
CbcBranchDefaultDecision.hpp ??
CbcBranchDynamic.hpp ??
CbcBranchFollow2.hpp ??
CbcBranchingObject.hpp ?2?
CbcBranchLink.hpp 22
CbcBranchLotsize.hpp ??
CbcBranchToFixLots.hpp ??
CbcBranchUser.hpp ??
CbcClique.hpp ??
?2?

CbcCompare.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

3.1 File List 14

CbcCompareActual.hpp ??
CbcCompareBase.hpp ??
CbcCompareDefault.hpp ??
CbcCompareDepth.hpp ??
CbcCompareEstimate.hpp ??
CbcCompareObjective.hpp 2?
CbcCompareUser.hpp ??
CbcConfig.h 22
CbcConsequence.hpp ?2?
CbcCountRowCut.hpp ??
CbcCutGenerator.hpp ??
CbcCutModifier.hpp 2?
CbcCutSubsetModifier.hpp ??
CbcDummyBranchingObject.hpp ?2?
CbcEventHandler.hpp (Event handling for cbc) 361
CbcFathom.hpp ??
CbcFathomDynamicProgramming.hpp ??
CbcFeasibilityBase.hpp ??
CbcFixVariable.hpp ??
CbcFollowOn.hpp ??
CbcFuliNodelnfo.hpp ??
CbcGenCbcParam.hpp ??
CbcGenCtiBlk.hpp 22
CbcGeneral.hpp ??
CbcGeneralDepth.hpp ??
CbcGenMessages.hpp (This file contains the enum that defines symbolic
names for for cbc-generic messages) 363
CbcGenOsiParam.hpp ??

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

3.1 File List 15
CbcGenParam.hpp ??
CbcHeuristic.hpp ??
CbcHeuristicDINS.hpp ??
CbcHeuristicDive.hpp ??
CbcHeuristicDiveCoefficient.hpp ??
CbcHeuristicDiveFractional.hpp 2?
CbcHeuristicDiveGuided.hpp ??
CbcHeuristicDiveLineSearch.hpp ??
CbcHeuristicDivePseudoCost.hpp ??
CbcHeuristicDiveVectorLength.hpp ??
CbcHeuristicFPump.hpp ??
CbcHeuristicGreedy.hpp 2?
CbcHeuristicLocal.hpp ??
CbcHeuristicPivotAndFix.hpp ??
CbcHeuristicRandRound.hpp ??
CbcHeuristicRENS.hpp ??
CbcHeuristicRINS.hpp ??
CbcHeuristicVND.hpp ??
CbcLinked.hpp ??
CbcMessage.hpp ??
CbcModel.hpp ??
CbcNode.hpp ??
CbcNodelnfo.hpp ??
CbcNWay.hpp ??
CbcObject.hpp ??
CbcObjectUpdateData.hpp ??

?2?

CbcParam.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

3.1 File List 16

CbcPartialNodelnfo.hpp ??
CbcSimplelnteger.hpp ??
CbcSimplelntegerDynamicPseudoCost.hpp ??
CbcSimplelntegerPseudoCost.hpp ??
CbcSolver.hpp (Defines CbcSolver, the proposed top-level class for the
new-style cbc solver) 363
CbcSolver2.hpp 2?
CbcSolver3.hpp ??

CbcSolverAnalyze.hpp (Look to see if a constraint is all-integer (vari-
ables & coeffs), or could be all integer) 365

CbcSolverExpandKnapsack.hpp (Expanding possibilities of xxy, where

xxy are both integers, constructing a knapsack constraint) 365
CbcSolverHeuristics.hpp (Routines for doing heuristics) 365
CbcSolverLongThin.hpp ??
CbcSOS.hpp ??
CbcStatistics.hpp ??
CbcStrategy.hpp ??
CbcSubProblem.hpp ??
CbcThread.hpp ??
CbcTree.hpp ??
CbcTreeLocal.hpp ??
ClpAmplObjective.hpp ??
ClpConstraintAmpl.hpp ?2?
ClpQuadinterface.hpp ??
Cbc/src/config.h ??
ThirdParty/Glpk/config.h ??
config_cbc.h ??
config_cbc_default.h 2?

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4 Class Documentation 17

config_default.h 2?
configall_system.h 2?
configall_system_msc.h ??
OsiCbcSolverinterface.hpp ??

4 Class Documentation

4.1 ampl_info Struct Reference
41.1 Detailed Description

Definition at line 11 of file Cbc_ampl.h.

The documentation for this struct was generated from the following file:

+ Cbc_ampl.h

4.2 CbcGenCtiBlk::babState_struct Struct Reference

State of branch-and-cut.

#include <CbcGenCtlBlk.hpp>

421 Detailed Description

State of branch-and-cut.

Major and minor status codes, and a solver holding the answer, assuming we have a
valid answer. See the documentation with the BACMajor, BACMinor, and BACWhere
enums for the meaning of the codes.

Definition at line 718 of file CbcGenCtIBlk.hpp.

The documentation for this struct was generated from the following file:

» CbcGenCtIBlk.hpp

4.3 CbcBaseModel Class Reference

Base model.

#include <CbcThread.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.4 CbcBranchAllDifferent Class Reference 18

4.3.1 Detailed Description

Base model.
Definition at line 429 of file CbcThread.hpp.

The documentation for this class was generated from the following file:

» CbcThread.hpp

4.4 CbcBranchAllDifferent Class Reference

Define a branch class that branches so that it is only satsified if all members have
different values So cut is x <=y-1 or x >=y+1.

#include <CbcBranchAllDifferent.hpp>

Inheritance diagram for CbcBranchAllDifferent:

CbcObject

CbcBranchCut

CbcBranchAllDifferent

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.4 CbcBranchAllDifferent Class Reference 19

Collaboration diagram for CbcBranchAlIDifferent:

Public Member Functions

CbcBranchAlIDifferent (CbcModel xmodel, int number, const int xwhich)

Useful constructor - passed set of integer variables which must all be different.
virtual CbcObject * clone () const

Clone.

virtual double infeasibility (const OsiBranchingInformation xinfo, int &preferred-
Way) const

Infeasibility - large is 0.5.

virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface *solver, const
OsiBranchinglnformation xinfo, int way)

Creates a branching object.

Protected Attributes

* int numberinSet_

data
* int * which_

Which variables.

4.41 Detailed Description

Define a branch class that branches so that it is only satsified if all members have
different values So cut is x <=y-1 or x >=y+1.

Definition at line 22 of file CbcBranchAlIDifferent.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.5 CbcBranchCut Class Reference

20

4.4.2 Member Data Documentation

4421 int CbcBranchAllDifferent::numberinSet_ [protected]

data
Number of entries
Definition at line 57 of file CbcBranchAlIDifferent.hpp.

The documentation for this class was generated from the following file:

+ CbcBranchAllDifferent.hpp

4.5 CbcBranchCut Class Reference

Define a cut branching class.
#include <CbcBranchCut.hpp>

Inheritance diagram for CbcBranchCut:

CbcObject

CbcBranchCut

CbcBranchAllDifferent CbcBranchToFixLots

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.5 CbcBranchCut Class Reference 21

Collaboration diagram for CbcBranchCut:

Public Member Functions

CbcBranchCut (CbcModel xmodel)
In to maintain normal methods.
virtual CbcObject * clone () const
Clone.
virtual double infeasibility (const OsiBranchingInformation xinfo, int &preferred-
Way) const
Infeasibility.
virtual void feasibleRegion ()
Set bounds to contain the current solution.
virtual bool boundBranch () const

Return true if branch created by object should fix variables.
virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface *solver, const
OsiBranchinglnformation xinfo, int way)
Creates a branching object.
virtual CbcBranchingObject * preferredNewFeasible () const
Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in the good direction.
virtual CbcBranchingObject * notPreferredNewFeasible () const
Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in a bad direction.
virtual void resetBounds ()

Reset original upper and lower bound values from the solver.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.5 CbcBranchCut Class Reference 22

4.5.1 Detailed Description

Define a cut branching class.
At present empty - all stuff in descendants

Definition at line 17 of file CbcBranchCut.hpp.

4.5.2 Member Function Documentation

4,5.2.1 Vvirtual void CbcBranchCut::feasibleRegion() [virtual]

Set bounds to contain the current solution.

More precisely, for the variable associated with this object, take the value given in the
current solution, force it within the current bounds if required, then set the bounds to fix
the variable at the integer nearest the solution value.

At present this will do nothing
Implements CbcObject.

4,5.2.2 virtual CbcBranchingObject: CbcBranchCut::preferredNewFeasible () const
[virtual]

Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in the good direction.

The preferred branching object will force the variable to be +/-1 from its current value,
depending on the reduced cost and objective sense. If movement in the direction which
improves the objective is impossible due to bounds on the variable, the branching object
will move in the other direction. If no movement is possible, the method returns NULL.

Only the bounds on this variable are considered when determining if the new point is
feasible.

At present this does nothing
Reimplemented from CbcObject.

4,5.2.3 virtual CbcBranchingObject: CbcBranchCut::notPreferredNewFeasible () const
[virtual]

Given a valid solution (with reduced costs, etc.), return a branching object which would
give a new feasible point in a bad direction.

As for preferredNewFeasible(), but the preferred branching object will force movement
in a direction that degrades the objective.

At present this does nothing

Reimplemented from CbcObject.
4.5.2.4 virtual void CbcBranchCut::iresetBounds () [virtual]

Reset original upper and lower bound values from the solver.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.6 CbcBranchDecision Class Reference 23

Handy for updating bounds held in this object after bounds held in the solver have been
tightened.

The documentation for this class was generated from the following file:

» CbcBranchCut.hpp

4.6 CbcBranchDecision Class Reference

Inheritance diagram for CbcBranchDecision:

CbcBranchDecision

CbcBranchDefaultDecision CbcBranchDynamicDecision CbcBranchUserDecision

Collaboration diagram for CbcBranchDecision:

Public Member Functions

+ CbcBranchDecision ()

Default Constructor.
« virtual ~CbcBranchDecision ()

Destructor.
« virtual CbcBranchDecision * clone () const =0

Clone.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.6 CbcBranchDecision Class Reference 24

virtual void initialize (CbcModel xmodel)=0

Initialize e.g. before starting to choose a branch at a node.
virtual int betterBranch (CbcBranchingObject «thisOne, CbcBranchingObject xbestSoFar,
double changeUp, int numberInfeasibilitiesUp, double changeDown, int number-
InfeasibilitiesDown)=0

Compare two branching objects.
virtual int bestBranch (CbcBranchingObject xxobjects, int numberObjects, int num-
berUnsatisfied, double xchangeUp, int xnumberinfeasibilitiesUp, double xchangeDown,
int xnumberlInfeasibilitiesDown, double objectiveValue)

Compare N branching objects.
virtual int whichMethod ()

Says whether this method can handle both methods - 1 better, 2 best, 3 both.
virtual void saveBranchingObject (OsiBranchingObject)

Saves a clone of current branching object.
virtual void updatelnformation (OsiSolverInterface *, const CbcNode)

Pass in information on branch just done.
virtual void setBestCriterion (double)

Sets or gets best criterion so far.
virtual void generateCpp (FILE x)

Create C++ lines to get to current state.
CbcModel * cbcModel () const

Model.
void setChooseMethod (const OsiChooseVariable &method)

Set (clone) chooseMethod.

Protected Attributes

4.6.1

CbcModel * model_

Pointer to model.

Detailed Description

Definition at line 28 of file CbcBranchDecision.hpp.

4.6.2

4.6.2.1

Member Function Documentation

virtual int CbcBranchDecision::betterBranch (CbcBranchingObject thisOne,
CbcBranchingObject « bestSoFar, double changeUp, int numberinfeasibilitiesUp,
double changeDown, int numberinfeasibilitiesDown) [pure virtual]

Compare two branching objects.

Return nonzero if branching using t hi sOne is better than branching using be st SoFar.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.7 CbcBranchDefaultDecision Class Reference 25

If best SoFar is NULL, the routine should return a nonzero value. This routine is used
only after strong branching. Either this or bestBranch is used depending which user
wants.

Implemented in CbcBranchUserDecision, CbcBranchDefaultDecision, and CbcBranch-
DynamicDecision.

4.6.2.2 virtual int CbcBranchDecision::bestBranch (CbcBranchingObject
objects, int numberObjects, int numberUnsatisfied, double x changeUp, int x
numberlnfeasibilitiesUp, double = changeDown, int x numberinfeasibilitiesDown,
double objectiveValue) [virtuall]

Compare N branching objects.

Return index of best and sets way of branching in chosen object.

Either this or betterBranch is used depending which user wants.

Reimplemented in CbcBranchUserDecision, and CbcBranchDefaultDecision.

4.6.2.3 virtual void CbcBranchDecision::saveBranchingObject (OsiBranchingObject +)
[inline, virtual]

Saves a clone of current branching object.

Can be used to update information on object causing branch - after branch

Reimplemented in CbcBranchDynamicDecision.

Definition at line 80 of file CbcBranchDecision.hpp.

4.6.2.4 Vvirtual void CbcBranchDecision::updatelnformation (OsiSolverinterface x , const
CbcNode +) [inline, virtual]

Pass in information on branch just done.

assumes object can get information from solver

Reimplemented in CbcBranchDynamicDecision.

Definition at line 83 of file CbcBranchDecision.hpp.

The documentation for this class was generated from the following file:

» CbcBranchDecision.hpp

4,7 CbcBranchDefaultDecision Class Reference

Branching decision default class.

#include <CbcBranchDefaultDecision.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.7 CbcBranchDefaultDecision Class Reference 26

Inheritance diagram for CbcBranchDefaultDecision:

CbcBranchDecision

CbcBranchDefaultDecision

Collaboration diagram for CbcBranchDefaultDecision:

Public Member Functions

« virtual CbcBranchDecision * clone () const

Clone.
virtual void initialize (CbcModel xmodel)

Initialize, e.g. before the start of branch selection at a node.
virtual int betterBranch (CbcBranchingObject xthisOne, CbcBranchingObject xbestSoFar,
double changeUp, int numinfUp, double changeDn, int numInfDn)

Compare two branching objects.
« virtual void setBestCriterion (double value)
Sets or gets best criterion so far.

« virtual int bestBranch (CbcBranchingObject *xobjects, int numberObjects, int num-
berUnsatisfied, double xchangeUp, int xnumberinfeasibilitiesUp, double xchangeDown,
int xnumberlInfeasibilitiesDown, double objectiveValue)

Compare N branching objects.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.7 CbcBranchDefaultDecision Class Reference 27

4,71 Detailed Description

Branching decision default class.

This class implements a simple default algorithm (betterBranch()) for choosing a branch-
ing variable.

Definition at line 18 of file CbcBranchDefaultDecision.hpp.

4.7.2 Member Function Documentation

4.7.2.1 virtual int ChcBranchDefaultDecision::betterBranch (CbcBranchingObject
thisOne, CbcBranchingObject * bestSoFar, double changeUp, int numinfUp,
double changeDn, int numinfDn) [virtual]

Compare two branching objects.

Return nonzero if thisOne is better than best SoFar.

The routine compares branches using the values supplied in numInfUp and numInfDn
until a solution is found by search, after which it uses the values supplied in changeUp
and changeDn. The best branching object seen so far and the associated parameter
values are remembered in the CbcBranchDefaultDecision object. The nonzero
return value is +1 if the up branch is preferred, -1 if the down branch is preferred.

As the names imply, the assumption is that the values supplied for numInfUp and
numInfDn will be the number of infeasibilities reported by the branching object, and
changeUp and changeDn will be the estimated change in objective. Other measures
can be used if desired.

Because an CbcBranchDefaultDecision object remembers the current best
branching candidate (#bestObject_) as well as the values used in the comparison, the
parameter best SoFar is redundant, hence unused.

Implements CbcBranchDecision.

4.7.2.2 virtual int CbcBranchDefaultDecision::bestBranch (CbcBranchingObject xx
objects, int numberObjects, int numberUnsatisfied, double x changeUp, int
numberlnfeasibilitiesUp, double « changeDown, int x numberinfeasibilitiesDown,
double objectiveValue) [virtuall]

Compare N branching objects.

Return index of best and sets way of branching in chosen object.

This routine is used only after strong branching.

Reimplemented from CbcBranchDecision.

The documentation for this class was generated from the following file:

+ CbcBranchDefaultDecision.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.8 CbcBranchDynamicDecision Class Reference 28

4.8 CbcBranchDynamicDecision Class Reference

Branching decision dynamic class.
#include <CbcBranchDynamic.hpp>

Inheritance diagram for CbcBranchDynamicDecision:

CbcBranchDecision

CbcBranchDynamicDecision

Collaboration diagram for CbcBranchDynamicDecision:

Public Member Functions

« virtual CbcBranchDecision * clone () const
Clone.
virtual void initialize (CbcModel xmodel)

Initialize, e.g. before the start of branch selection at a node.
virtual int betterBranch (CbcBranchingObject xthisOne, CbcBranchingObject xbestSoFar,
double changeUp, int numinfUp, double changeDn, int numInfDn)

Compare two branching objects.
virtual void setBestCriterion (double value)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.8 CbcBranchDynamicDecision Class Reference 29

Sets or gets best criterion so far.
+ virtual int whichMethod ()

Says whether this method can handle both methods - 1 better, 2 best, 3 both.
« virtual void saveBranchingObject (OsiBranchingObject xobject)

Saves a clone of current branching object.
+ virtual void updatelnformation (OsiSolverinterface *solver, const CbcNode xnode)

Pass in information on branch just done.

4.8.1 Detailed Description

Branching decision dynamic class.

This class implements a simple algorithm (betterBranch()) for choosing a branching
variable when dynamic pseudo costs.

Definition at line 19 of file CbcBranchDynamic.hpp.

4.8.2 Member Function Documentation

4.8.2.1 virtual int CbcBranchDynamicDecision::betterBranch (CbcBranchingObject
thisOne, CbcBranchingObject * bestSoFar, double changeUp, int numinfUp,
double changeDn, int numinfDn) [virtual]

Compare two branching objects.

Return nonzero if thisOne is better than best SoFar.

The routine compares branches using the values supplied in numInfUp and numInfDn
until a solution is found by search, after which it uses the values supplied in changeUp
and changeDn. The best branching object seen so far and the associated parameter
values are remembered in the CbcBranchDynamicDecision object. The nonzero
return value is +1 if the up branch is preferred, -1 if the down branch is preferred.

As the names imply, the assumption is that the values supplied for numInfUp and
numInfDn will be the number of infeasibilities reported by the branching object, and
changeUp and changeDn will be the estimated change in objective. Other measures
can be used if desired.

Because an CbcBranchDynamicDecision object remembers the current best
branching candidate (#bestObject_) as well as the values used in the comparison, the
parameter best SoFar is redundant, hence unused.

Implements CbcBranchDecision.

4.8.2.2 virtual void ChcBranchDynamicDecision::saveBranchingObject (OsiBranchingObject
object) [virtual]

Saves a clone of current branching object.

Can be used to update information on object causing branch - after branch

Reimplemented from CbcBranchDecision.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.9 CbcBranchingObject Class Reference 30

4.8.2.3 virtual void CbcBranchDynamicDecision::updatelnformation (OsiSolverinterface
solver, const CbcNode « node) [virtual]

Pass in information on branch just done.
assumes object can get information from solver
Reimplemented from CbcBranchDecision.

The documentation for this class was generated from the following file:

+ CbcBranchDynamic.hpp

4.9 CbcBranchingObject Class Reference

Abstract branching object base class Now just difference with OsiBranchingObiject.
#include <CbcBranchingObject.hpp>

Inheritance diagram for CbcBranchingObject:

| CbcCliqueBranchingObject |

| CbcCutBranchingObject |

| CbcDummyBranchingObject |

| CbcFixingBranchingObject |

CbcDynamicPseudoCostBranchingObject |

CbclntegerBranchingObject

4.
CbcBranchingObject

CbclntegerPseudoCostBranchingObject |

CocLinkBranchingObiject |

CbcLongCliqueBranchingObject |

| CbcLotsizeBranchingObject |

| CbcNWayBranchingObject |

| CbcSOSBranchingObject |

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.9 CbcBranchingObject Class Reference 31

Collaboration diagram for CbcBranchingObject:

Public Member Functions

CbcBranchingObiject ()

Default Constructor.
CbcBranchingObject (CbcModel xmodel, int variable, int way, double value)

Constructor.
CbcBranchingObject (const CbcBranchingObject &)

Copy constructor.
CbcBranchingObject & operator= (const CbcBranchingObject &rhs)

Assignment operator.
virtual CbcBranchingObject * clone () const =0

Clone.
virtual ~CbcBranchingObiject ()

Destructor.
virtual int fill[Stronglnfo (CbcStronginfo &)

Some branchingObjects may claim to be able to skip strong branching.
void resetNumberBranchesLeft ()

Reset number of branches left to original.
+ void setNumberBranches (int value)

Set number of branches to do.
« virtual double branch ()=0

Execute the actions required to branch, as specified by the current state of the branch-
ing object, and advance the object’s state.
« virtual double branch (OsiSolverInterface *)

Execute the actions required to branch, as specified by the current state of the branch-
ing object, and advance the object’s state.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.9 CbcBranchingObject Class Reference 32

virtual void fix (OsiSolverlnterface *, double *, double *, int) const
Update bounds in solver as in ‘branch’ and update given bounds.
virtual bool tighten (OsiSolverinterface)
Change (tighten) bounds in object to reflect bounds in solver.
virtual void previousBranch ()
Reset every information so that the branching object appears to point to the previous
child.
virtual void print () const
Print something about branch - only if log level high.
int variable () const
Index identifying the associated CbcObject within its class.
int way () const
Get the state of the branching object.
void way (int way)
Set the state of the branching object.
void setModel (CbcModel xmodel)
update model
CbcModel x model () const
Return model.
CbcObject * object () const
Return pointer back to object which created.
void setOriginalObject (CbcObject xobject)
Set pointer back to object which created.
virtual CbcBranchObjType type () const =0
Return the type (an integer identifier) of t his.
virtual int compareQOriginalObject (const CbcBranchingObject xbrObj) const
Compare the original object of t hi s with the original object of brOb ;.
virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
*brObj, const bool replacelfOverlap=false)=0
Compare the this with brobj.

Protected Attributes

CbcModel * model_

The model that owns this branching object.
CbcObject * originalCbcObject

Pointer back to object which created.
int variable

Branching variable (0 is first integer)
int way_

The state of the branching object.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.9 CbcBranchingObject Class Reference 33

4.9.1 Detailed Description

Abstract branching object base class Now just difference with OsiBranchingObiject.

In the abstract, an CbcBranchingObject contains instructions for how to branch. We
want an abstract class so that we can describe how to branch on simple objects (e.g.,
integers) and more exotic objects (e.g., cliques or hyperplanes).

The branch() method is the crucial routine: it is expected to be able to step through a
set of branch arms, executing the actions required to create each subproblem in turn.
The base class is primarily virtual to allow for a wide range of problem modifications.

See CbcObject for an overview of the three classes (CbcObject, CbcBranchingObject,
and CbcBranchDecision) which make up cbc’s branching model.

Definition at line 53 of file CbcBranchingObject.hpp.

4.9.2 Member Function Documentation

4.9.2.1 virtual int CbcBranchingObject::fillStronginfo (CbcStronginfo&) [inline,
virtual]
Some branchingObjects may claim to be able to skip strong branching.

If so they have to fill in CbcStronglinfo. The object mention in incoming CbcStronginfo
must match. Returns nonzero if skip is wanted

Reimplemented in CbcDynamicPseudoCostBranchingObject.

Definition at line 79 of file CbcBranchingObject.hpp.
4.9.2.2 virtual double CbcBranchingObject::branch() [pure virtual]

Execute the actions required to branch, as specified by the current state of the branching
object, and advance the object’s state.

Mainly for diagnostics, whether it is true branch or strong branching is also passed.
Returns change in guessed objective on next branch

Implemented in CbcLinkBranchingObject, CbcCutBranchingObject, CbcDynamicPseu-
doCostBranchingObject, CbclLotsizeBranchingObject, CbcCliqueBranchingObject, Cb-
cLongCliqueBranchingObject, CocDummyBranchingObject, CbcFixingBranchingObiject,
CbcNWayBranchingObject, CbclntegerBranchingObject, CbclntegerPseudoCostBranchin-
gObject, and CbcSOSBranchingObject.

4.9.2.3 virtual double CbcBranchingObject::branch (OsiSolverinterface x) [inline,
virtual]

Execute the actions required to branch, as specified by the current state of the branching
object, and advance the object’s state.

Mainly for diagnostics, whether it is true branch or strong branching is also passed.
Returns change in guessed objective on next branch

Definition at line 105 of file CbcBranchingObject.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.9 CbcBranchingObject Class Reference 34

4.9.2.4 virtual void CbcBranchingObject::fix (OsiSolverinterface =, double * , double x, int)
const [inline, virtual]

Update bounds in solver as in ’branch’ and update given bounds.

branchState is -1 for 'down’ +1 for 'up’

Reimplemented in CbclntegerBranchingObject, and CbcSOSBranchingObject.
Definition at line 110 of file CbcBranchingObject.hpp.

4.9.2.5 virtual bool ChcBranchingObject::tighten (OsiSolverinterface «+) [inline,
virtual]

Change (tighten) bounds in object to reflect bounds in solver.
Return true if now fixed
Reimplemented in CbclntegerBranchingObject.

Definition at line 116 of file CbcBranchingObject.hpp.
4.9.2.6 virtual void ChcBranchingObject::previousBranch() [inline, virtual]

Reset every information so that the branching object appears to point to the previous
child.

This method does not need to modify anything in any solver.
Reimplemented in CbcSOSBranchingObject.
Definition at line 121 of file CbcBranchingObject.hpp.

4.9.2.7 int CbcBranchingObject::variable ()const [inline]

Index identifying the associated CbcObject within its class.

The name is misleading, and typically the index will not refer directly to a variable.
Rather, it identifies an CbcObject within the class of similar CbcObjects

E.g., for an CbcSimplelnteger, variable() is the index of the integer variable in the set of
integer variables (not the index of the variable in the set of all variables).

Definition at line 143 of file CbcBranchingObject.hpp.
4.9.2.8 int CbcBranchingObject::way ()const [inline]

Get the state of the branching object.

Returns a code indicating the active arm of the branching object. The precise meaning
is defined in the derived class.

See also

way_

Definition at line 154 of file CbcBranchingObject.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.9 CbcBranchingObject Class Reference 35

4.9.2.9 void ChcBranchingObject::way (intway) [inline]

Set the state of the branching object.
See way()

Definition at line 162 of file CbcBranchingObject.hpp.

4,9.2.10 virtual CbcBranchObjType ChcBranchingObject::type () const [pure
virtual]

Return the type (an integer identifier) of this.
See definition of CbcBranchObjType above for possibilities

Implemented in CbcLinkBranchingObject, CbcCutBranchingObject, CbcDynamicPseu-
doCostBranchingObiject, CbclLotsizeBranchingObject, CbcCliqueBranchingObject, Cb-
cLongCliqueBranchingObject, CocDummyBranchingObject, CbcFixingBranchingObiject,
CbcNWayBranchingObject, CbclntegerBranchingObject, CbclntegerPseudoCostBranchin-
gObject, and CbcSOSBranchingObject.

4.9.2.11 virtual int CbcBranchingObject::compareOriginalObject (const
CbcBranchingObject « brObj)const [inline, virtual]

Compare the original object of this with the original object of brOb J.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented in CbcCutBranchingObject, CbcCliqueBranchingObject, CbcLongClique-
BranchingObject, CbcDummyBranchingObject, CbcFixingBranchingObject, CbcNWay-
BranchingObject, and CbcSOSBranchingObject.

Definition at line 199 of file CbcBranchingObject.hpp.

4.9.2.12 virtual ChcRangeCompare CbcBranchingObject::compareBranchingObject (const
CbcBranchingObject « brObj, const bool replacelfOverlap=false) [pure
virtual]

Compare the this with brObj.

this and brObj must be of the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CbcRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implemented in CbcLinkBranchingObject, CbcCutBranchingObject, CbcLotsizeBranchin-
gObject, CbcCliqueBranchingObject, CbcLongCliqueBranchingObject, CbcDummyBranchin-
gObject, CbcFixingBranchingObject, CocNWayBranchingObject, CbclntegerBranchin-
gObject, CbclntegerPseudoCostBranchingObject, and CbcSOSBranchingObject.

4.9.3 Member Data Documentation

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

410 CbcBranchToFixLots Class Reference 36

4.9.3.1 int CbcBranchingObject::way_ [protected]

The state of the branching object.

Specifies the active arm of the branching object. Coded as -1 to take the ‘down’ arm,
+1 for the ‘up’ arm. ‘Down’ and ‘up’ are defined based on the natural meaning (floor and
ceiling, respectively) for a simple integer. The precise meaning is defined in the derived
class.

Definition at line 232 of file CbcBranchingObject.hpp.

The documentation for this class was generated from the following file:

+ CbcBranchingObject.hpp

410 ChbcBranchToFixLots Class Reference

Define a branch class that branches so that one way variables are fixed while the other
way cuts off that solution.

#include <CbcBranchToFixLots.hpp>

Inheritance diagram for CbcBranchToFixLots:

CbcObject

CbcBranchCut

CbcBranchToFixLots

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

410 CbcBranchToFixLots Class Reference 37

Collaboration diagram for CbcBranchToFixLots:

Public Member Functions

CbcBranchToFixLots (CbcModel xmodel, double djTolerance, double fractionFixed,
int depth, int numberClean=0, const char xmark=NULL, bool alwaysCreate=false)

Useful constructor - passed reduced cost tolerance and fraction we would like fixed.
virtual CbcObject * clone () const

Clone.
int shallWe () const
Does a lot of the work, Returns 0 if no good, 1 if dj, 2 if clean, 3 if both FIXME: should
use enum or equivalent to make these numbers clearer.
virtual double infeasibility (const OsiBranchingInformation xinfo, int &preferred-
Way) const

Infeasibility for an integer variable - large is 0.5, but also can be infinity when known
infeasible.

virtual bool canDoHeuristics () const

Return true if object can take part in normal heuristics.
virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface xsolver, const
OsiBranchingInformation xinfo, int way)

Creates a branching object.
virtual void redoSequenceEtc (CbcModel xmodel, int numberColumns, const int
xoriginalColumns)

Redoes data when sequence numbers change.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

410 CbcBranchToFixLots Class Reference 38

Protected Attributes

+ double djTolerance__

data
+ double fractionFixed_

We only need to make sure this fraction fixed.
« char x mark__

Never fix ones marked here.
+ CoinPackedMatrix matrixByRow_

Matrix by row.
* int depth_

Do if depth multiple of this.
* int numberClean_

number of ==1 rows which need to be clean
* bool alwaysCreate_

If true then always create branch.

4,10.1 Detailed Description
Define a branch class that branches so that one way variables are fixed while the other
way cuts off that solution.

a) On reduced cost b) When enough ==1 or <=1 rows have been satisfied (not fixed -
satisfied)

Definition at line 23 of file CbcBranchToFixLots.hpp.

410.2 Constructor & Destructor Documentation

4.10.2.1 CbcBranchToFixLots::ChcBranchToFixLots (CbcModel + model, double
djTolerance, double fractionFixed, int depth, int numberClean = O, const char « mark
=NULL, bool alwaysCreate=false)

Useful constructor - passed reduced cost tolerance and fraction we would like fixed.

Also depth level to do at. Also passed number of 1 rows which when clean triggers fix
Always does if all 1 rows cleaned up and number>0 or if fraction columns reached Also
whether to create branch if can’t reach fraction.

4.10.3 Member Data Documentation

4.10.3.1 double CbcBranchToFixLots::djTolerance_ [protected]

data
Reduced cost tolerance i.e. dj has to be >= this before fixed

Definition at line 79 of file CbcBranchToFixLots.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.11 CbcBranchUserDecision Class Reference 39

The documentation for this class was generated from the following file:

+ CbcBranchToFixLots.hpp

4,11 CbcBranchUserDecision Class Reference

Branching decision user class.
#include <CbcBranchUser.hpp>

Inheritance diagram for CbcBranchUserDecision:

CbcBranchDecision

CbcBranchUserDecision

Collaboration diagram for CbcBranchUserDecision:

Public Member Functions

» virtual CbcBranchDecision * clone () const

Clone.
« virtual void initialize (CbcModel xmodel)

Initialize i.e. before start of choosing at a node.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

412 CbcCbcParam Class Reference 40

« virtual int betterBranch (CbcBranchingObject thisOne, CbcBranchingObject xbestSoFar,
double changeUp, int numberInfeasibilitiesUp, double changeDown, int number-
InfeasibilitiesDown)

Returns nonzero if branching on first object is "better" than on second (if second NULL
first wins).
« virtual int bestBranch (CbcBranchingObject xxobjects, int numberObjects, int num-
berUnsatisfied, double xchangeUp, int xnumberinfeasibilitiesUp, double xchangeDown,
int xnumberlnfeasibilitiesDown, double objectiveValue)

Compare N branching objects.

4111 Detailed Description

Branching decision user class.

Definition at line 14 of file CbcBranchUser.hpp.

4.11.2 Member Function Documentation

4.11.2.1 virtual int CbcBranchUserDecision::betterBranch (CbcBranchingObiject thisOne,
CbcBranchingObject « bestSoFar, double changeUp, int numberinfeasibilitiesUp,
double changeDown, int numberinfeasibilitiesDown) [virtual]

Returns nonzero if branching on first object is "better" than on second (if second NULL
first wins).

This is only used after strong branching. The initial selection is done by infeasibility() for
each CbcObject return code +1 for up branch preferred, -1 for down

Implements CbcBranchDecision.

4.11.2.2 virtual int CbcBranchUserDecision::bestBranch (CbcBranchingObject xx
objects, int numberObjects, int numberUnsatisfied, double x changeUp, int x
numberinfeasibilitiesUp, double x changeDown, int + numberinfeasibilitiesDown,
double objectiveValue) [virtuall

Compare N branching objects.

Return index of best and sets way of branching in chosen object.

This routine is used only after strong branching. This is reccommended version as it
can be more sophisticated

Reimplemented from CbcBranchDecision.

The documentation for this class was generated from the following file:

+ CbcBranchUser.hpp

4,12 CbcCbcParam Class Reference

Class for control parameters that act on a CbcModel object.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

412 CbcCbcParam Class Reference 41

#include <CbcGenCbcParam.hpp>

Collaboration diagram for CbcCbcParam:

Public Types

Subtypes

» enum CbcCbcParamCode
Enumeration for parameters that control a CbcModel object.

Public Member Functions

Constructors and Destructors

Be careful how you specify parameters for the constructors! There’s great
potential for confusion.

* CbcCbcParam ()
Default constructor.
» CbcCbcParam (CbcCbcParamCode code, std::string name, std::string help,
double lower, double upper, double dflt=0.0, bool display=true)
Constructor for a parameter with a double value.
» CbcCbcParam (CbcCbcParamCode code, std::string name, std::string help, int
lower, int upper, int dflt=0, bool display=true)
Constructor for a parameter with an integer value.
* CbcCbcParam (CbcCbcParamCode code, std::string name, std::string help,
std::string firstValue, int dflt, bool display=true)
Constructor for a parameter with keyword values.
» CbcCbcParam (CbcCbcParamCode code, std::string name, std::string help,
std::string dflt, bool display=true)
Constructor for a string parameter.
* CbcCbcParam (CbcCbcParamCode code, std::string name, std::string help,
bool display=true)
Constructor for an action parameter.
* CbcCbcParam (const CbcCbcParam &orig)
Copy constructor.
* CbcCbcParam * clone ()

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

412 CbcCbcParam Class Reference 42

Clone.
* CbcCbcParam & operator= (const CocCbcParam &rhs)

Assignment.
* ~CbcCbcParam ()

Destructor.

Methods to query and manipulate a parameter object

* CbcCbcParamCode paramCode () const

Get the parameter code.
« void setParamCode (CbcCbcParamCode code)

Set the parameter code.
* CbcModel * obj () const

Get the underlying CbcModel object.
+ void setObj (CbcModel *obj)

Set the underlying CbcModel object.

4121 Detailed Description

Class for control parameters that act on a CbcModel object.
Adds parameter type codes and push/pull functions to the generic parameter object.

Definition at line 31 of file CbcGenCbcParam.hpp.

412.2 Member Enumeration Documentation

412.21 enum CbcCbcParam::CbcCbcParamCode

Enumeration for parameters that control a CbcModel object.

These are parameters that control the operation of a CbcModel object. CBCCBC_-
FIRSTPARAM and CBCCBC_LASTPARAM are markers to allow convenient separation
of parameter groups.

Definition at line 45 of file CbcGenCbcParam.hpp.

4.12.3 Constructor & Destructor Documentation

412.3.1 ChcChcParam::CbcChcParam (CbcCbhcParamCode code, std::string name,
std::string help, double lower, double upper, double dflt=0 . O, bool display =t rue
)

Constructor for a parameter with a double value.

The default value is 0.0. Be careful to clearly indicate that 1ower and upper are
real (double) values to distinguish this constructor from the constructor for an integer
parameter.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.13 CbcClique Class Reference 43

4.12.3.2 CbcCbcParam::CbcChcParam (CbcCbcParamCode code, std::string name,
std::string help, int lower, int upper, int dflt = 0, bool display =t rue)

Constructor for a parameter with an integer value.

The default value is 0.

4.12.3.3 CbcChcParam::CbcCbcParam (CbcCbcParamCode code, std::string name,
std::string help, std::string firstValue, int dflt, bool display =t rue)

Constructor for a parameter with keyword values.

The string supplied as £irstValue becomes the first keyword. Additional keywords
can be added using appendKwd(). Keywords are numbered from zero. It's necessary to
specify both the first keyword (£irstValue) and the default keyword index (d£1t)in
order to distinguish this constructor from the string and action parameter constructors.

412.3.4 ChcChcParam::CbcChcParam (CbcChcParamCode code, std::string name,
std::string help, std::string dflt, bool display =t rue)
Constructor for a string parameter.

The default string value must be specified explicitly to distinguish a string constructor
from an action parameter constructor.

The documentation for this class was generated from the following file:

» CbcGenCbcParam.hpp

413 CbcClique Class Reference

Branching object for cliques.
#include <CbcClique.hpp>

Inheritance diagram for CbcClique:

CbcObject

CbcClique

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.13 CbcClique Class Reference 44

Collaboration diagram for CbcClique:

Public Member Functions

» CbcClique ()
Default Constructor.
+ CbcClique (CbcModel xmodel, int cliqueType, int numberMembers, const int xwhich,
const char xtype, int identifier, int slack=-1)
Useful constructor (which are integer indices) slack can denote a slack in set.
» CbcClique (const CbcClique &)
Copy constructor.
« virtual CbcObject * clone () const
Clone.
» CbcClique & operator= (const CbcClique &rhs)
Assignment operator.
« virtual ~CbcClique ()
Destructor.
« virtual double infeasibility (const OsiBranchinglnformation xinfo, int &preferred-
Way) const
Infeasibility - large is 0.5.
« virtual void feasibleRegion ()
This looks at solution and sets bounds to contain solution.
« virtual CbcBranchingObject * createCbcBranch (OsiSolverinterface xsolver, const
OsiBranchingInformation xinfo, int way)
Creates a branching object.
* int numberMembers () const

Number of members.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.13 CbcClique Class Reference 45

int numberNonSOSMembers () const

Number of variables with -1 coefficient.
+ const int x members () const

Members (indices in range 0 ... numberintegers_-1)
char type (int index) const

Type of each member, i.e., which way is strong.
int cliqueType () const

Clique type: 0 is <=, 1is ==.
virtual void redoSequenceEtc (CbcModel xmodel, int numberColumns, const int
xoriginalColumns)

Redoes data when sequence numbers change.

Protected Attributes

* int numberMembers_

data Number of members
* int numberNonSOSMembers__

Number of Non SOS members i.e. fixing to zero is strong.
* int x members_

Members (indices in range 0 ... numberintegers_-1)
* char x type_

Strong value for each member.
* int cliqueType_

Clique type.
* int slack

Slack variable for the clique.

4,13.1 Detailed Description

Branching object for cliques.

A clique is defined to be a set of binary variables where fixing any one variable to its
‘strong’ value fixes all other variables. An example is the most common SOS1 construc-
tion: a set of binary variables x_j s.t. SUM{j} x_j = 1. Setting any one variable to 1 forces
all other variables to 0. (See comments for CbcSOS below.)

Other configurations are possible, however: Consider x1-x2+x3 <= 0. Setting x1 (x3)
to 1 forces x2 to 1 and x3 (x1) to 0. Setting x2 to 0 forces x1 and x3 to 0.

The proper point of view to take when interpreting CbcClique is ‘generalisation of SOS1
on binary variables.’” To get into the proper frame of mind, here’s an example.

Consider the following sequence, where x_j = (1-y_j):

x1l + x2 + x3 <= 1 all strong at 1
xl - y2 + x3 <= 0 y2 strong at 0; x1, x3 strong at 1
-yl - y2 + x3 <= -1 yl, y2 strong at 0, x3 strong at 1
-yl - y2 - y3 <= -2 all strong at 0

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.13 CbcClique Class Reference 46

The first line is a standard SOS1 on binary variables.

Variables with +1 coefficients are ‘SOS-style’ and variables with -1 coefficients are ‘non-
SOS-style’. So numberNonSOSMembers_ simply tells you how many variables have -1
coefficients. The implicit rhs for a clique is 1-numberNonSOSMembers._.

Definition at line 41 of file CbcClique.hpp.

413.2 Constructor & Destructor Documentation

4.13.2.1 CbcClique::CbcClique (CbcModel « model, int cliqueType, int numberMembers,
const int which, const char x type, int identifier, int slack=—1)

Useful constructor (which are integer indices) slack can denote a slack in set.

If type == NULL then as if 1

4.13.3 Member Function Documentation

4.13.3.1 int CbcClique::numberNonSOSMembers ()const [inline]

Number of variables with -1 coefficient.

Number of non-SOS members, i.e., fixing to zero is strong. See comments at head of
class, and comments for type_.

Definition at line 86 of file CbcClique.hpp.
4.13.3.2 char CbcClique::type (int index)const [inline]

Type of each member, i.e., which way is strong.

This also specifies whether a variable has a +1 or -1 coefficient.

» 0 => -1 coefficient, 0 is strong value

* 1 => +1 coefficient, 1 is strong value If unspecified, all coefficients are assumed
to be positive.

Indexed as 0 .. numberMembers_-1
Definition at line 104 of file CbcClique.hpp.
4.13.4 Member Data Documentation

4.13.41 charx CbcClique::type_ [protected]

Strong value for each member.

This also specifies whether a variable has a +1 or -1 coefficient.

* 0 => -1 coefficient, 0 is strong value

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.14 CbcCliqueBranchingObject Class Reference 47

+ 1 => +1 coefficient, 1 is strong value If unspecified, all coefficients are assumed
to be positive.
Indexed as 0 .. numberMembers_-1

Definition at line 136 of file CbcClique.hpp.
4.13.4.2 int CbcClique::cliqueType_ [protected]

Clique type.

0 defines a <= relation, 1 an equality. The assumed value of the rhs is numberNonSOSMembers_-
+1. (See comments for the class.)

Definition at line 143 of file CbcClique.hpp.
4.13.43 int CbcClique::slack_ [protected]

Slack variable for the clique.

Identifies the slack variable for the clique (typically added to convert a <= relation to an
equality). Value is sequence number within clique menbers.

Definition at line 151 of file CbcClique.hpp.

The documentation for this class was generated from the following file:

» CbcClique.hpp

414 ChcCliqueBranchingObject Class Reference

Branching object for unordered cliques.
#include <CbcClique.hpp>

Inheritance diagram for CbcCliqueBranchingObiject:

CbcBranchingObject

CbcCliqueBranchingObject

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.14 CbcCliqueBranchingObject Class Reference 48

Collaboration diagram for CbcCliqueBranchingObject:

Public Member Functions

virtual CbcBranchingObject * clone () const

Clone.
virtual double branch ()

Does next branch and updates state.
virtual void print ()

Print something about branch - only if log level high.
virtual CbcBranchODbjType type () const

Return the type (an integer identifier) of this.
virtual int compareOriginalObject (const CbcBranchingObject xbrObj) const

Compare the original object of t hi s with the original object of brOb j.
virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
+brObj, const bool replacelfOverlap=false)

Compare the this with brObj.

4141 Detailed Description

Branching object for unordered cliques.

Intended for cliques which are long enough to make it worthwhile but <= 64 members.
There will also be ones for long cliques.

Variable_ is the clique id number (redundant, as the object also holds a pointer to the
clique.

Definition at line 162 of file CbcClique.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.15 CbcCompare Class Reference 49

4.14.2 Member Function Documentation

4.14.21 virtual int CbcCliqueBranchingObject::compareOriginalObject (const
CbhcBranchingObject « brObj)const [virtual]
Compare the original object of this with the original object of brOb J.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented from CbcBranchingObject.

4.14.2.2 virtual ChcRangeCompare CbcCliqueBranchingObject::compareBranchingObject (
const CbcBranchingObject + brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brObj.

this and brObj must be of the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CbcRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

» CbcClique.hpp

415 CbcCompare Class Reference

Collaboration diagram for CbcCompare:

CbcCompareBase “test_

}

test_
|
|

CbcCompare

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.16 CbcCompareBase Class Reference

50

Public Member Functions

* bool alternateTest (CbcNode *xx, CbcNode xy)

This is alternate test function.

» CbcCompareBase * comparisonObiject () const

return comparison object

4151 Detailed Description

Definition at line 11 of file CbcCompare.hpp.

The documentation for this class was generated from the following file:

» CbcCompare.hpp

416 ChcCompareBase Class Reference

Inheritance diagram for CocCompareBase:

CbcCompareBase

CbcCompareDefault

CbcCompareDepth

CbcCompareEstimate

CbcCompareObjective

CbcCompareUser

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.16 CbcCompareBase Class Reference 51

Collaboration diagram for CocCompareBase:

CbcCompareBase [®-test

Public Member Functions

« virtual bool newSolution (CbcModel *)

Reconsider behaviour after discovering a new solution.
« virtual bool newSolution (CbcModel *, double, int)

Reconsider behaviour after discovering a new solution.
« virtual bool fullScan () const

Returns true if wants code to do scan with alternate criterion NOTE - this is temporarily
disabled.

« virtual void generateCpp (FILE %)

Create C++ lines to get to current state.
+ virtual CbcCompareBase * clone () const

Clone.
« virtual bool test (CbcNode *, CbcNode)

This is test function.
« virtual bool alternateTest (CbcNode *x, CbcNode xy)

This is alternate test function.
* bool equalityTest (CbcNode *x, CbcNode *y) const

Further test if everything else equal.
+ void sayThreaded ()

Say threaded.

416.1 Detailed Description

Definition at line 27 of file CbcCompareBase.hpp.

4.16.2 Member Function Documentation

4.16.2.1 virtual bool CbcCompareBase::newSolution (CbcModel x) [inline,
virtual]

Reconsider behaviour after discovering a new solution.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.17 CbcCompareDefault Class Reference 52

This allows any method to change its behaviour. It is called after each solution.

The method should return true if changes are made which will alter the evaluation cri-
teria applied to a node. (So that in cases where the search tree is sorted, it can be
properly rebuilt.)

Definition at line 45 of file CbcCompareBase.hpp.

4.16.2.2 virtual bool ChcCompareBase::newSolution (CbcModel x , double, int)
[inline, virtual]

Reconsider behaviour after discovering a new solution.

This allows any method to change its behaviour. It is called after each solution.

The method should return true if changes are made which will alter the evaluation cri-
teria applied to a node. (So that in cases where the search tree is sorted, it can be
properly rebuilt.)

Reimplemented in CbcCompareUser, and CbcCompareDefault.
Definition at line 57 of file CbcCompareBase.hpp.

The documentation for this class was generated from the following file:

+ CbcCompareBase.hpp

417 CbcCompareDefault Class Reference

Inheritance diagram for CbcCompareDefault:

CbcCompareBase

CbcCompareDefault

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.17 CbcCompareDefault Class Reference 53

Collaboration diagram for CbcCompareDefault:

CbcCompareBase _<\ test

-

CbcCompareDefault

Public Member Functions

* CbcCompareDefault ()
Default Constructor.
» CbcCompareDefault (double weight)
Constructor with weight.
» CbcCompareDefault (const CbcCompareDefault &rhs)
Copy constructor.
» CbcCompareDefault & operator= (const CbcCompareDefault &rhs)
Assignment operator.
virtual CocCompareBase * clone () const

Clone.
virtual void generateCpp (FILE *fp)

Create C++ lines to get to current state.
virtual bool test (CbcNode *x, CbcNode xy)

This is test function.
virtual bool newSolution (CbcModel «model, double objectiveAtContinuous, int
numberlnfeasibilitiesAtContinuous)

This allows method to change behavior as it is called after each solution.
virtual bool every1000Nodes (CbcModel xmodel, int numberNodes)

This allows method to change behavior Return true if want tree re-sorted.
double getCutoff () const

Cutoff.
double getBestPossible () const

Best possible solution.
+ void setBreadthDepth (int value)

Depth above which want to explore first.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.17 CbcCompareDefault Class Reference 54

+ void startDive (CbcModel xmodel)

Start dive.
« void cleanDive ()

Clean up diving (i.e. switch off or prepare)

Protected Attributes

+ double weight_

Weight for each infeasibility.
+ double saveWeight_

Weight for each infeasibility - computed from solution.
+ double cutoff_

Curtoff.
» double bestPossible

Best possible solution.
* int numberSolutions_

Number of solutions.
* int treeSize

Tree size (at last check)
* int breadthDepth_

Depth above which want to explore first.
* int startNodeNumber_

Chosen node from estimated (-1 is off)
+ int afterNodeNumber_

Node number when dive started.
* bool setupForDiving_

Indicates doing setup for diving.

4171 Detailed Description

Definition at line 31 of file CbcCompareDefault.hpp.

The documentation for this class was generated from the following file:

+ CbcCompareDefault.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.18 CbcCompareDepth Class Reference

55

418 CbcCompareDepth Class Reference

Inheritance diagram for CbcCompareDepth:

CbcCompareBase

CbcCompareDepth

Collaboration diagram for CbcCompareDepth:

-

CbcCompareDepth

Public Member Functions

« virtual CbcCompareBase * clone () const

Clone.
« virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
« virtual bool test (CbcNode xx, CbcNode xy)

This is test function.

CbcCompareBase _“ test

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.19 CbcCompareEstimate Class Reference 56

4.18.1 Detailed Description

Definition at line 25 of file CbcCompareDepth.hpp.

The documentation for this class was generated from the following file:

» CbcCompareDepth.hpp

419 CbcCompareEstimate Class Reference

Inheritance diagram for CbcCompareEstimate:

CbcCompareBase

CbcCompareEstimate

Collaboration diagram for CocCompareEstimate:

-

CbcCompareBase _“test_

CbcCompareEstimate

Public Member Functions

« virtual CbcCompareBase * clone () const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.20 CbcCompareObjective Class Reference 57

Clone.
« virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
« virtual bool test (CbcNode *xx, CbcNode x*y)

This is test function.

4.19.1 Detailed Description

Definition at line 27 of file CbcCompareEstimate.hpp.

The documentation for this class was generated from the following file:

+ CbcCompareEstimate.hpp

4.20 ChcCompareObjective Class Reference

Inheritance diagram for CbcCompareObijective:

CbcCompareBase

CbcCompareObjective

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.20 CbcCompareObjective Class Reference

58

Collaboration diagram for CocCompareQObjective:

-

CbcCompareObijective

Public Member Functions

« virtual CbcCompareBase * clone () const

Clone.
« virtual void generateCpp (FILE xfp)

Create C++ lines to get to current state.
« virtual bool test (CbcNode *xx, CbcNode x*y)

This is test function.

4.20.1 Detailed Description

Definition at line 26 of file CbcCompareObjective.hpp.

The documentation for this class was generated from the following file:

+ CbcCompareQObijective.hpp

CbcCompareBase _“ test

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.21 CbcCompareUser Class Reference 59

4.21 CbcCompareUser Class Reference

Inheritance diagram for CbcCompareUser:

CbcCompareBase

CbcCompareUser

Collaboration diagram for CbcCompareUser:

CbcCompareBase [test

-

CbcCompareUser

Public Member Functions

« virtual CbcCompareBase * clone () const
Clone.

« virtual bool test (CbcNode *x, CbcNode x*y)
This is test function.

« virtual bool alternateTest (CbcNode xx, CbcNode xy)
This is alternate test function.

« virtual bool newSolution (CbcModel xmodel, double objectiveAtContinuous, int
numberlnfeasibilitiesAtContinuous)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.22 CbcConsequence Class Reference 60

Reconsider behaviour after discovering a new solution.
« virtual bool fullScan () const

Returns true if wants code to do scan with alternate criterion.

4.21.1 Detailed Description

Definition at line 17 of file CbcCompareUser.hpp.

4.21.2 Member Function Documentation

4.21.2.1 virtual bool CbhcCompareUser::newSolution (CbcModel =, double, int)
[virtual]

Reconsider behaviour after discovering a new solution.
This allows any method to change its behaviour. It is called after each solution.

The method should return true if changes are made which will alter the evaluation cri-
teria applied to a node. (So that in cases where the search tree is sorted, it can be
properly rebuilt.)

Reimplemented from CbcCompareBase.

The documentation for this class was generated from the following file:

» CbcCompareUser.hpp

4.22 ChcConsequence Class Reference

Abstract base class for consequent bounds.
#include <CbcConsequence.hpp>

Inheritance diagram for CbcConsequence:

CbcConsequence

CbcFixVariable

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.23 CbcCountRowCut Class Reference 61

Public Member Functions

« virtual CbcConsequence * clone () const =0

Clone.
+ virtual ~CbcConsequence ()

Destructor.
« virtual void applyToSolver (OsiSolverinterface *solver, int state) const =0

Apply to an LP solver.

4.22.1 Detailed Description

Abstract base class for consequent bounds.

When a variable is branched on it normally interacts with other variables by means of
equations. There are cases where we want to step outside LP and do something more
directly e.g. fix bounds. This class is for that.

At present it need not be virtual as only instance is CbcFixVariable, but ...

Definition at line 22 of file CbcConsequence.hpp.

4.22.2 Member Function Documentation

4.22.2.1 virtual void CbcConsequence::applyToSolver (OsiSolverinterface * solver, int state)
const [pure virtual]

Apply to an LP solver.
Action depends on state
Implemented in CbcFixVariable.

The documentation for this class was generated from the following file:

» CbcConsequence.hpp

4.23 ChcCountRowCut Class Reference

OsiRowCut augmented with bookkeeping.

#include <CbcCountRowCut.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.23 CbcCountRowCut Class Reference

62

Collaboration diagram for CbcCountRowCut:

CbcCountRowCut

, |
, |
\cuts_ powner_

N /

CbcNodelnfo [parent_

|

\

/ \
\nodelnfo_ pwner_

NN

CbcNode

Public Member Functions

+ void increment (int change=1)

Increment the number of references.
* int decrement (int change=1)

Decrement the number of references and return the number left.

+ void setInfo (CbcNodelnfo *, int whichOne)

Set the information associating this cut with a node.
+ int numberPointingToThis ()

Number of other CbcNodelnfo objects pointing to this row cut.

« int whichCutGenerator () const

Which generator for cuts - as user order.

* bool canDropCut (const OsiSolverinterface xsolver, int row) const

Returns true if can drop cut if slack basic.

Constructors & destructors

* CbcCountRowCut ()

Default Constructor.
* CbcCountRowCut (const OsiRowCut &)

‘Copy’ constructor using an OsiRowCut

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.23 CbcCountRowCut Class Reference 63

» CbcCountRowCut (const OsiRowCut &, CbcNodelnfo *, int whichOne, int whichGenerator=-
1, int numberPointingToThis=0)

‘Copy’ constructor using an OsiRowCut and an CbcNodelnfo
« virtual ~CbcCountRowCut ()
Destructor.

4.23.1 Detailed Description

OsiRowCut augmented with bookkeeping.

CbcCountRowCut is an OsiRowCut object augmented with bookkeeping information: a
reference count and information that specifies the the generator that created the cut and
the node to which it's associated.

The general principles for handling the reference count are as follows:
* Once it's determined how the node will branch, increment the reference count

under the assumption that all children will use all cuts currently tight at the node
and will survive to be placed in the search tree.

» As this assumption is proven incorrect (a cut becomes loose, or a child is fath-
omed), decrement the reference count accordingly.

When all possible uses of a cut have been demonstrated to be unnecessary, the ref-
erence count (#numberPointingToThis_) will fall to zero. The CbcCountRowCut object
(and its included OsiRowCut object) are then deleted.

Definition at line 35 of file CbcCountRowCut.hpp.

4.23.2 Constructor & Destructor Documentation

4.23.2.1 virtual CbcCountRowCut::~CbhcCountRowCut () [virtual]
Destructor.

Note

The destructor will reach out (via #owner_) and NULL the reference to the cut in
the owner’s cuts_ list.

4.23.3 Member Function Documentation

4.23.3.1 void CbcCountRowCut::setinfo (CbcNodelnfo =, int whichOne)

Set the information associating this cut with a node.

An CbcNodelnfo object and an index in the cut set of the node. For locally valid cuts,
the node will be the search tree node where the cut was generated. For globally valid
cuts, it's the node where the cut was activated.

The documentation for this class was generated from the following file:

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.24 CbcCutBranchingObject Class Reference 64

+ CbcCountRowCut.hpp

4.24 CbhcCutBranchingObject Class Reference

Cut branching object.
#include <CbcBranchCut.hpp>

Inheritance diagram for CbcCutBranchingObject:

CbcBranchingObject

CbcCutBranchingObject

Collaboration diagram for CbcCutBranchingObject:

test_ st
GocComparcBase |

Public Member Functions

» CbcCutBranchingObject ()

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.24

CbcCutBranchingObject Class Reference 65

Default constructor.
CbcCutBranchingObject (CbcModel xmodel, OsiRowCut &down, OsiRowCut &up,
bool canFix)
Create a cut branching object.
CbcCutBranchingObiject (const CbcCutBranchingObject &)
Copy constructor.
CbcCutBranchingObject & operator= (const CbcCutBranchingObject &rhs)
Assignment operator.
virtual CbcBranchingObiject * clone () const
Clone.
virtual ~CbcCutBranchingObject ()
Destructor.
virtual double branch ()
Sets the bounds for variables or adds a cut depending on the current arm of the branch
and advances the object state to the next arm.
virtual void print ()
Print something about branch - only if log level high.
virtual bool boundBranch () const
Return true if branch should fix variables.
virtual CbcBranchObjType type () const
Return the type (an integer identifier) of this.
virtual int compareQOriginalObject (const CbcBranchingObject xbrObj) const
Compare the original object of t hi s with the original object of brOb j.
virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
xbrObj, const bool replacelfOverlap=false)
Compare the t his with brObj.

Protected Attributes

4.24.1

OsiRowCut down_

Cut for the down arm (way_ = -1)
OsiRowCut up_

Cut for the up arm (way_ = 1)
bool canFix_

True if one way can fix variables.

Detailed Description

Cut branching object.

This object can specify a two-way branch in terms of two cuts

Definition at line 108 of file CbcBranchCut.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.25 CbcCutGenerator Class Reference 66

4.24.2 Constructor & Destructor Documentation

4.24.2.1 CbcCutBranchingObject::CbcCutBranchingObject (CbcModel « model, OsiRowCut
& down, OsiRowCut & up, bool canFix)
Create a cut branching object.

Cut down will applied on way=-1, up on way==1 Assumed down will be first so way_ set
to -1

4.24.3 Member Function Documentation

4.24.3.1 virtual double CbcCutBranchingObject::branch() [virtual]

Sets the bounds for variables or adds a cut depending on the current arm of the branch

and advances the object state to the next arm.

Returns change in guessed objective on next branch

Implements CbcBranchingObject.

4.24.3.2 virtual int CbcCutBranchingObject::compareOriginalObject (const
CbcBranchingObject « brObj)const [virtual]

Compare the original object of this with the original object of brOb j.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented from CbcBranchingObject.

4.24.3.3 virtual CbhcRangeCompare CbhcCutBranchingObject::compareBranchingObject (
const CbcBranchingObject « brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brOb7j.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CocRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

+ CbcBranchCut.hpp

4,25 CbcCutGenerator Class Reference

Interface between Cbc and Cut Generation Library.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.25 CbcCutGenerator Class Reference 67

#include <CbcCutGenerator.hpp>

Collaboration diagram for CbcCutGenerator:

Public Member Functions

Generate Cuts

» bool generateCuts (OsiCuts &cs, int fullScan, OsiSolverinterface *solver, Cbc-
Node *node)
Generate cuts for the client model.

Constructors and destructors

» CbcCutGenerator ()
Default constructor.

» CbcCutGenerator (CbcModel xmodel, CglCutGenerator «generator, int howOften=1,
const char kxname=NULL, bool normal=true, bool atSolution=false, bool infea-
sible=false, int howOftenlnsub=-100, int whatDepth=-1, int whatDepthInSub=-
1, int switchOfflfLessThan=0)

Normal constructor.

» CbcCutGenerator (const CbcCutGenerator &)
Copy constructor.

* CbcCutGenerator & operator= (const CbcCutGenerator &rhs)
Assignment operator.

* ~CbcCutGenerator ()

Destructor.

Gets and sets

« void refreshModel (CbcModel xmodel)
Set the client model.

« const char * cutGeneratorName () const
return name of generator

« void generateTuning (FILE xfp)
Create C++ lines to show how to tune.

« void setHowOften (int value)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.25

CbcCutGenerator Class Reference 68

Set the cut generation interval.
int howOften () const

Get the cut generation interval.
int howOftenInSub () const

Get the cut generation interval.in sub tree.
int inaccuracy () const

Get level of cut inaccuracy (0 means exact e.g. cliques)
void setlnaccuracy (int level)

Set level of cut inaccuracy (0 means exact e.g. cliques)
void setWhatDepth (int value)
Set the cut generation depth.
void setWhatDepthInSub (int value)
Set the cut generation depth in sub tree.
int whatDepth () const
Get the cut generation depth criterion.
int whatDepthInSub () const

Get the cut generation depth criterion.in sub tree.
int switches () const

Get switches (for debug)
bool normal () const

Get whether the cut generator should be called in the normal place.
void setNormal (bool value)

Set whether the cut generator should be called in the normal place.
bool atSolution () const

Get whether the cut generator should be called when a solution is found.
void setAtSolution (bool value)

Set whether the cut generator should be called when a solution is found.

bool whenlinfeasible () const
Get whether the cut generator should be called when the subproblem is found to
be infeasible.

void setWhenlInfeasible (bool value)
Set whether the cut generator should be called when the subproblem is found to be
infeasible.

bool timing () const
Get whether the cut generator is being timed.

void setTiming (bool value)

Set whether the cut generator is being timed.
double timelnCutGenerator () const

Return time taken in cut generator.
void incrementTimelnCutGenerator (double value)
CglCutGenerator * generator () const
Get the CglCutGenerator corresponding to this CbcCut Generator.
int numberTimesEntered () const
Number times cut generator entered.
void setNumberTimesEntered (int value)
void incrementNumberTimesEntered (int value=1)
int numberCutsInTotal () const

Total number of cuts added.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.25

CbcCutGenerator Class Reference 69

void setNumberCutsinTotal (int value)
void incrementNumberCutsinTotal (int value=1)
int numberElementsinTotal () const
Total number of elements added.
void setNumberElementsinTotal (int value)
void incrementNumberElementsinTotal (int value=1)
int numberColumnCuts () const
Total number of column cuts.
void setNumberColumnCuts (int value)
void incrementNumberColumnCuts (int value=1)
int numberCutsActive () const
Total number of cuts active after (at end of n cut passes at each node)
void setNumberCutsActive (int value)
void incrementNumberCutsActive (int value=1)
void setSwitchOfflfLessThan (int value)
int switchOfflfLessThan () const
bool needsOptimalBasis () const
Say if optimal basis needed.
void setNeedsOptimalBasis (bool yesNo)
Set if optimal basis needed.
bool mustCallAgain () const
Whether generator MUST be called again if any cuts (i.e. ignore break from loop)
void setMustCallAgain (bool yesNo)
Set whether generator MUST be called again if any cuts (i.e. ignore break from
loop)
bool switchedOff () const
Whether generator switched off for moment.
void setSwitchedOff (bool yesNo)
Set whether generator switched off for moment.
bool ineffectualCuts () const
Whether last round of cuts did little.
void setlneffectualCuts (bool yesNo)
Set whether last round of cuts did little.
bool whetherToUse () const
Whether to use if any cuts generated.
void setWhetherToUse (bool yesNo)
Set whether to use if any cuts generated.
bool whetherlnMustCallAgainMode () const
Whether in must call again mode (or after others)
void setWhetherInMustCallAgainMode (bool yesNo)
Set whether in must call again mode (or after others)
bool whetherCallAtEnd () const
Whether to call at end.
void setWhetherCallAtEnd (bool yesNo)
Set whether to call at end.
int numberCutsAtRoot () const
Number of cuts generated at root.

void setNumberCutsAtRoot (int value)
int numberActiveCutsAtRoot () const

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.25 CbcCutGenerator Class Reference 70

Number of cuts active at root.
 void setNumberActiveCutsAtRoot (int value)
« int numberShortCutsAtRoot () const

Number of short cuts at root.
« void setModel (CbcModel xmodel)

Set model.
* bool globalCutsAtRoot () const

Whether global cuts at root.
+ void setGlobalCutsAtRoot (bool yesNo)

Set whether global cuts at root.
* bool globalCuts () const

Whether global cuts.
+ void setGlobalCuts (bool yesNo)

Set whether global cuts.

4.25.1 Detailed Description

Interface between Cbc and Cut Generation Library.

CbcCutGenerator is intended to provide an intelligent interface between Cbc and

the cutting plane algorithms inthe CGL. A CbcCutGeneratorisboundtoaCglCutGenerator
and to an CbcModel. It contains parameters which control when and how the generateCuts

method of the CglCutGenerator will be called.

The builtin decision criteria available to use when deciding whether to generate cuts are
limited: every X nodes, when a solution is found, and when a subproblem is found to be
infeasible. The idea is that the class will grow more intelligent with time.

Definition at line 49 of file CbcCutGenerator.hpp.

4.25.2 Member Function Documentation

4.25.2.1 bool CbcCutGenerator::generateCuts (OsiCuts & cs, int fullScan, OsiSolverinterface x
solver, CbcNode * node)
Generate cuts for the client model.

Evaluate the state of the client model and decide whether to generate cuts. The gener-
ated cuts are inserted into and returned in the collection of cuts cs.

If fullScan is =0, the generator is obliged to call the CGL generateCuts routine.
Otherwise, it is free to make a local decision. Negative fullScan says things like at
integer solution The current implementation uses whenCutGenerator_ to decide.

The routine returns true if reoptimisation is needed (because the state of the solver
interface has been modified).

If node then can find out depth
4.25.2.2 void CbcCutGenerator::refreshModel (CbcModel « model)

Set the client model.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.26 CbcCutModifier Class Reference 71

In addition to setting the client model, refreshModel also calls the refreshSolver
method of the CglCutGenerator object.

4.25.2.3 void CbcCutGenerator::setHowOften (int value)

Set the cut generation interval.

Set the number of nodes evaluated between calls to the Cgl object's generateCuts
routine.

If value is positive, cuts will always be generated at the specified interval. If value is
negative, cuts will initially be generated at the specified interval, but Cbc may adjust the
value depending on the success of cuts produced by this generator.

A value of -100 disables the generator, while a value of -99 means just at root.
4.25.2.4 void CbcCutGenerator::setWhatDepth (int value)

Set the cut generation depth.

Set the depth criterion for calls to the Cgl object’s generateCut s routine. Only active
if > 0.

If whenCutGenerator is positive and this is positive then this overrides. If whenCutGen-
erator is -1 then this is used as criterion if any cuts were generated at root node. If
whenCutGenerator is anything else this is ignored.

The documentation for this class was generated from the following file:

+ CbcCutGenerator.hpp

426 CbcCutModifier Class Reference

Abstract cut modifier base class.
#include <CbcCutModifier.hpp>

Inheritance diagram for CbcCutModifier:

CbcCutModifier

CbcCutSubsetModifier

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.27 CbcCutSubsetModifier Class Reference 72

Public Member Functions

» CbcCutModifier ()
Default Constructor.

virtual ~CbcCutModifier ()
Destructor.

» CbcCutModifier & operator= (const CbcCutModifier &rhs)
Assignment.

virtual CbcCutModifier * clone () const =0

Clone.
virtual int modify (const OsiSolverinterface xsolver, OsiRowCut &cut)=0

Returns 0 unchanged 1 strengthened 2 weakened 3 deleted.
virtual void generateCpp (FILE x)

Create C++ lines to get to current state.

4.26.1 Detailed Description

Abstract cut modifier base class.

In exotic circumstances - cuts may need to be modified a) strengthened - changed b)
weakened - changed c) deleted - set to NULL d) unchanged

Definition at line 27 of file CbcCutModifier.hpp.

The documentation for this class was generated from the following file:

+ CbcCutModifier.hpp

4,27 CbcCutSubsetModifier Class Reference

Simple cut modifier base class.

#include <CbcCutSubsetModifier.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.27 CbcCutSubsetModifier Class Reference 73

Inheritance diagram for CbcCutSubsetModifier:

CbcCutModifier

CbcCutSubsetModifier

Collaboration diagram for CbcCutSubsetModifier:

CbcCutModifier

CbcCutSubsetModifier

Public Member Functions

+ CbcCutSubsetModifier ()

Default Constructor.
» CbcCutSubsetModifier (int firstOdd)

Useful Constructor.
+ virtual ~CbcCutSubsetModifier ()

Destructor.
» CbcCutSubsetModifier & operator= (const CbcCutSubsetModifier &rhs)

Assignment.
« virtual CbcCutModifier x clone () const

Clone.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.28 CbcDummyBranchingObject Class Reference 74

« virtual int modify (const OsiSolverinterface *solver, OsiRowCut &cut)

Returns 0 unchanged 1 strengthened 2 weakened 3 deleted.
« virtual void generateCpp (FILE %)

Create C++ lines to get to current state.

Protected Attributes

« int firstOdd_

data First odd variable

4.27.1 Detailed Description

Simple cut modifier base class.

In exotic circumstances - cuts may need to be modified a) strengthened - changed b)
weakened - changed c) deleted - set to NULL d) unchanged

initially get rid of cuts with variables >= k could weaken
Definition at line 31 of file CbcCutSubsetModifier.hpp.

The documentation for this class was generated from the following file:

+ CbcCutSubsetModifier.hpp

4.28 ChcDummyBranchingObject Class Reference

Dummy branching object.
#include <CbcDummyBranchingObject.hpp>

Inheritance diagram for CbcDummyBranchingObject:

CbcBranchingObject

CbcDummyBranchingObject

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.28 CbcDummyBranchingObject Class Reference 75

Collaboration diagram for CocDummyBranchingObject:

Public Member Functions

+ CbcDummyBranchingObject (CbcModel xmodel=NULL)
Default constructor.
» CbcDummyBranchingObject (const CocDummyBranchingObject &)
Copy constructor.
* CbcDummyBranchingObject & operator= (const CocDummyBranchingObject &rhs)

Assignment operator.
« virtual CbcBranchingObiject * clone () const
Clone.
+ virtual ~CbcDummyBranchingObject ()
Destructor.
« virtual double branch ()
Dummy branch.
« virtual void print ()
Print something about branch - only if log level high.
« virtual CbcBranchObjType type () const
Return the type (an integer identifier) of this.
« virtual int compareOriginalObject (const CbcBranchingObject xbrObj) const
Compare the original object of t hi s with the original object of brOb j.
« virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
+brObj, const bool replacelfOverlap=false)
Compare the this with brObj.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.29 CbcDynamicPseudoCostBranchingObject Class Reference 76

4.28.1 Detailed Description

Dummy branching object.

This object specifies a one-way dummy branch. This is so one can carry on branching
even when it looks feasible

Definition at line 18 of file CbcDummyBranchingObject.hpp.

4.28.2 Member Function Documentation

4.28.2.1 virtual int CbcDummyBranchingObject::compareOriginalObject (const
CbcBranchingObject « brObj)const [virtual]
Compare the original object of this with the original object of brOb j.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented from CbcBranchingObject.

4.28.2.2 virtual CbocRangeCompare CbcDummyBranchingObject::compareBranchingObject (
const CbcBranchingObject « brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brOb7j.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CocRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

+ CbcDummyBranchingObject.hpp

4.29 ChcDynamicPseudoCostBranchingObject Class Reference

Simple branching object for an integer variable with pseudo costs.

#include <CbcBranchDynamic.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.29 CbcDynamicPseudoCostBranchingObject Class Reference 77

Inheritance diagram for CbcDynamicPseudoCostBranchingObject:

CbcBranchingObject

CbclntegerBranchingObject

CbcDynamicPseudoCostBranchingObject

Collaboration diagram for CbcDynamicPseudoCostBranchingObject:

Public Member Functions

» CbcDynamicPseudoCostBranchingObject ()

Default constructor.
» CbcDynamicPseudoCostBranchingObject (CbcModel xmodel, int variable, int way,
double value, CbcSimplelntegerDynamicPseudoCost *object)
Create a standard floor/ceiling branch object.
» CbcDynamicPseudoCostBranchingObject (CbcModel xmodel, int variable, int way,
double lowerValue, double upperValue)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.29 CbcDynamicPseudoCostBranchingObject Class Reference 78

Create a degenerate branch object.
+ CbcDynamicPseudoCostBranchingObiject (const CbcDynamicPseudoCostBranchin-
gObject &)
Copy constructor.
» CbcDynamicPseudoCostBranchingObject & operator= (const CbcDynamicPseu-
doCostBranchingObject &rhs)

Assignment operator.
virtual CbcBranchingObject * clone () const

Clone.
virtual ~CbcDynamicPseudoCostBranchingObiject ()

Destructor.
void fillPart (int variable, int way, double value, CbcSimplelntegerDynamicPseu-
doCost *xobject)
Does part of constructor.
virtual double branch ()
Sets the bounds for the variable according to the current arm of the branch and ad-
vances the object state to the next arm.
virtual int fillStrongInfo (CbcStronglinfo &info)
Some branchingObjects may claim to be able to skip strong branching.
double changelnGuessed () const

Change in guessed.
void setChangelnGuessed (double value)

Set change in guessed.
CbcSimplelntegerDynamicPseudoCost * object () const

Return object.
void setObject (CbcSimplelntegerDynamicPseudoCost *object)

Set object.
virtual CbcBranchObjType type () const

Return the type (an integer identifier) of t his.

Protected Attributes

 double changelnGuessed_

Change in guessed objective value for next branch.
» CbcSimplelntegerDynamicPseudoCost * object_

Pointer back to object.

4.29.1 Detailed Description

Simple branching object for an integer variable with pseudo costs.

This object can specify a two-way branch on an integer variable. For each arm of the
branch, the upper and lower bounds on the variable can be independently specified.

Variable_ holds the index of the integer variable in the integerVariable_ array of the
model.

Definition at line 111 of file CbcBranchDynamic.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.30 CbcEventHandler Class Reference 79

4.29.2 Constructor & Destructor Documentation

4.29.2.1 ChcDynamicPseudoCostBranchingObject::CbcDynamicPseudoCostBranchingObject
(CbcModel x model, int variable, int way, double value,
CbcSimplelntegerDynamicPseudoCost * object)

Create a standard floor/ceiling branch object.

Specifies a simple two-way branch. Let value = xx. One arm of the branch will be is
Ib <= x <= floor(xx), the other ceil(xx) <= x <= ub. Specify way = -1 to set the object
state to perform the down arm first, way = 1 for the up arm.

4.29.2.2 CbcDynamicPseudoCostBranchingObject::CbcDynamicPseudoCostBranchingObject (
CbcModel « model, int variable, int way, double lowerValue, double upperValue)

Create a degenerate branch object.

Specifies a ‘one-way branch’. Calling branch() for this object will always result in lower-
Value <= x <= upperValue. Used to fix a variable when lowerValue = upperValue.

4.29.3 Member Function Documentation

4.29.3.1 virtual double CbcDynamicPseudoCostBranchingObject::branch() [virtuall]

Sets the bounds for the variable according to the current arm of the branch and ad-

vances the object state to the next arm.

This version also changes guessed objective value

Reimplemented from CbclntegerBranchingObject.

4.29.3.2 virtual int ChcDynamicPseudoCostBranchingObject::fillStronginfo (CbcStronginfo
&info) [virtuall]

Some branchingObjects may claim to be able to skip strong branching.

If so they have to fill in CbcStronginfo. The object mention in incoming CbcStronglnfo
must match. Returns nonzero if skip is wanted

Reimplemented from CbcBranchingObject.

The documentation for this class was generated from the following file:

+ CbcBranchDynamic.hpp

430 CbcEventHandler Class Reference

Base class for Cbc event handling.

#include <CbcEventHandler.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.30 CbcEventHandler Class Reference 80

Collaboration diagram for CbcEventHandler:

Public Types

» enum CbcEvent {
node = 200, treeStatus, solution, heuristicSolution,
beforeSolution1, beforeSolution2, afterHeuristic, endSearch }
Events known to cbc.
+ enum CbcAction {
noAction = -1, stop = 0, restart, restartRoot,
addCuts, killSolution }

Action codes returned by the event handler.
« typedef std::map< CbcEvent, CbcAction > eaMapPair

Data type for event/action pairs.

Public Member Functions

Event Processing

« virtual CbcAction event (CbcEvent whichEvent)
Return the action to be taken for an event.

Constructors and destructors

» CbcEventHandler (CbcModel xmodel=0)

Default constructor.
» CbcEventHandler (const CbcEventHandler &orig)

Copy constructor.
» CbcEventHandler & operator= (const CbcEventHandler &rhs)

Assignment.
virtual CbcEventHandler * clone () const

Clone (virtual) constructor.
virtual ~CbcEventHandler ()

Destructor.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.30 CbcEventHandler Class Reference 81

Set/Get methods

« void setModel (CbcModel xmodel)

Set model.
+ const CbcModel * getModel () const

Get model.
« void setDfltAction (CbcAction action)

Set the default action.
« void setAction (CbcEvent event, CbcAction action)

Set the action code associated with an event.

Protected Attributes

Data members

Protected (as opposed to private) to allow access by derived classes.

» CbcModel * model_

Pointer to associated CbcModel.
» CbcAction dfltAction_

Default action.
» eaMapPair x eaMap_

Pointer to a map that holds non-default event/action pairs.

4.30.1 Detailed Description

Base class for Cbc event handling.

Up front: We're not talking about unanticipated events here. We're talking about an-
ticipated events, in the sense that the code is going to make a call to event() and is
prepared to obey the return value that it receives.

The general pattern for usage is as follows:
1. Create a CbcEventHandler object. This will be initialised with a set of default
actions for every recognised event.
2. Attach the event handler to the CbcModel object.

3. When execution reaches the point where an event occurs, call the event handler
as CbcEventHandler::event(the event). The return value will specify what the
code should do in response to the event.

The return value associated with an event can be changed at any time.

Definition at line 81 of file CbcEventHandler.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.30 CbcEventHandler Class Reference 82

4.30.2 Member Enumeration Documentation

4.30.2.1 enum CbcEventHandler::CbcEvent
Events known to cbc.

Enumerator:

node Processing of the current node is complete.

treeStatus A tree status interval has arrived.

solution A solution has been found.

heuristicSolution A heuristic solution has been found.

beforeSolution1 A solution will be found unless user takes action (first check).

beforeSolution2 A solution will be found unless user takes action (thorough check).

afterHeuristic After failed heuristic.
endSearch End of search.
Definition at line 87 of file CbcEventHandler.hpp.
4.30.2.2 enum CbcEventHandler::CbcAction

Action codes returned by the event handler.

Specific values are chosen to match ClpEventHandler return codes.

Enumerator:

noAction Continue --- no action required.

stop Stop --- abort the current run at the next opportunity.

restart Restart --- restart branch-and-cut search; do not undo root node process-
ing.

restartRoot RestartRoot --- undo root node and start branch-and-cut afresh.

addCuts Add special cuts.

killSolution Pretend solution never happened.

Definition at line 110 of file CbcEventHandler.hpp.

4.30.3 Constructor & Destructor Documentation

4.30.3.1 ChcEventHandler::ChcEventHandler (CbcModel « model = 0)
Default constructor.
4.30.3.2 CbcEventHandler::ChcEventHandler (const CbcEventHandler & orig)

Copy constructor.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.31 CbcFathom Class Reference 83

4.30.3.3 virtual CbcEventHandler::~ChcEventHandler () [virtual]

Destructor.

4.30.4 Member Function Documentation

4.30.4.1 virtual CbcAction CbhcEventHandler::event (CbcEvent whichEvent)
[virtual]

Return the action to be taken for an event.

Return the action that should be taken in response to the event passed as the parame-
ter. The default implementation simply reads a return code from a map.

4.30.4.2 CbcEventHandler& ChcEventHandler::operator= (const CbcEventHandler & rhs
)

Assignment.

4.30.4.3 virtual CbcEventHandlerx ChcEventHandler::clone ()const [virtual]
Clone (virtual) constructor.

4.30.4.4 void ChcEventHandler::setModel (CbcModel « model) [inline]

Set model.

Definition at line 176 of file CbcEventHandler.hpp.
4.30.4.5 const CbcModel: CbcEventHandler::getModel ()const [inline]

Get model.
Definition at line 182 of file CbcEventHandler.hpp.

The documentation for this class was generated from the following file:

+ CbcEventHandler.hpp

4.31 CbcFathom Class Reference

Fathom base class.

#include <CbcFathom.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.31 CbcFathom Class Reference 84

Inheritance diagram for CbcFathom:

CbcFathom

CbcFathomDynamicProgramming

Collaboration diagram for CbcFathom:

Public Member Functions

« virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
« virtual CbcFathom = clone () const =0

Clone.
« virtual void resetModel (CbcModel xmodel)=0

Resets stuff if model changes.
« virtual int fathom (double *&newSolution)=0

returns 0 if no fathoming attempted, 1 fully fathomed, 2 incomplete search, 3 incom-
plete search but treat as complete.

Protected Attributes

» CbcModel x« model_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.32 CbcFathomDynamicProgramming Class Reference 85

Model.
* bool possible_

Possible - if this method of fathoming can be used.

4.31.1 Detailed Description

Fathom base class.

The idea is that after some branching the problem will be effectively smaller than the
original problem and maybe there will be a more specialized technique which can com-
pletely fathom this branch quickly.

One method is to presolve the problem to give a much smaller new problem and then
do branch and cut on that. Another might be dynamic programming.

Definition at line 32 of file CbcFathom.hpp.

4.31.2 Member Function Documentation

4.31.2.1 virtual int ChcFathom::fathom (double <& newSolution) [pure virtual]

returns 0 if no fathoming attempted, 1 fully fathomed, 2 incomplete search, 3 incomplete
search but treat as complete.

If solution then newSolution will not be NULL and will be freed by CbcModel. It is
expected that the solution is better than best so far but CbcModel will double check.

If returns 3 then of course there is no guarantee of global optimum
Implemented in CbcFathomDynamicProgramming.

The documentation for this class was generated from the following file:

» CbcFathom.hpp

4.32 ChcFathomDynamicProgramming Class Reference

FathomDynamicProgramming class.

#include <CbcFathomDynamicProgramming.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.32

CbcFathomDynamicProgramming Class Reference 86

Inheritance diagram for CbcFathomDynamicProgramming:

CbcFathom

CbcFathomDynamicProgramming

Collaboration diagram for CbcFathomDynamicProgramming:

Public Member Functions

virtual void setModel (CbcModel sxmodel)
update model (This is needed if cliques update matrix etc)
virtual CbcFathom x clone () const
Clone.
virtual void resetModel (CbcModel xmodel)
Resets stuff if model changes.
virtual int fathom (double *x&newSolution)

returns 0 if no fathoming attempted, 1 fully fathomed , 2 incomplete search, 3 incom-
plete search but treat as complete.

int maximumSize () const

Maximum size allowed.
int checkPossible (int allowableSize=0)

Returns type of algorithm and sets up arrays.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.32 CbcFathomDynamicProgramming Class Reference 87
* bool tryColumn (int numberElements, const int xrows, const double xcoefficients,
double cost, int upper=COIN_INT_MAX)
Tries a column returns true if was used in making any changes.
+ const double * cost () const
Returns cost array.
» const int x back () const
Returns back array.
« int target () const
Gets bit pattern for target result.
+ void setTarget (int value)
Sets bit pattern for target result.
Protected Attributes

int size_
Size of states (power of 2 unless just one constraint)
int type_
Type - 0 coefficients and rhs all 1, 1 - coefficients > 1 orrhs > 1.
double * cost_
Space for states.
int x back_
Which state produced this cheapest one.
int *x lookup_
Some rows may be satisified so we need a lookup.
int x indices__
Space for sorted indices.
int numberActive_
Number of active rows.
int maximumSizeAllowed
Maximum size allowed.
int x startBit_
Start bit for each active row.
int x numberBits__
Number bits for each active row.
int x rhs_
Effective rhs.
int x coefficients_
Space for sorted coefficients.
int target_
Target pattern.
int numberNonOne
Number of Non 1 rhs.
int bitPattern_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.33 CbcFeasibilityBase Class Reference 88

Current bit pattern.
* int algorithm_

Current algorithm.

4.32.1 Detailed Description

FathomDynamicProgramming class.

The idea is that after some branching the problem will be effectively smaller than the
original problem and maybe there will be a more specialized technique which can com-
pletely fathom this branch quickly.

This is a dynamic programming implementation which is very fast for some specialized
problems. It expects small integral rhs, an all integer problem and positive integral
coefficients. At present it can not do general set covering problems just set partitioning.
It can find multiple optima for various rhs combinations.

The main limiting factor is size of state space. Each 1 rhs doubles the size of the
problem. 2 or 3 rhs quadruples, 4,5,6,7 by 8 etc.

Definition at line 28 of file CbcFathomDynamicProgramming.hpp.

4.32.2 Member Function Documentation

4.32.2.1 virtual int CbcFathomDynamicProgramming::fathom (double & newSolution)
[virtual]

returns 0 if no fathoming attempted, 1 fully fathomed , 2 incomplete search, 3 incomplete
search but treat as complete.

If solution then newSolution will not be NULL and will be freed by CbcModel. It is
expected that the solution is better than best so far but CbcModel will double check.

If returns 3 then of course there is no guarantee of global optimum
Implements CbcFathom.

The documentation for this class was generated from the following file:

+ CbcFathomDynamicProgramming.hpp

4.33 ChcFeasibilityBase Class Reference

Public Member Functions

« virtual int feasible (CbcModel x, int)

On input mode: 0 - called after a solve but before any cuts.
« virtual CbcFeasibilityBase * clone () const

Clone.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.34 CbcFixingBranchingObject Class Reference 89

4.33.1 Detailed Description

Definition at line 22 of file CbcFeasibilityBase.hpp.

4.33.2 Member Function Documentation

4.33.2.1 virtual int CbcFeasibilityBase::feasible (CbcModel x, int) [inline,
virtual]

On input mode: 0 - called after a solve but before any cuts.

-1 - called after strong branching Returns : 0 - no opinion -1 pretend infeasible 1 pretend
integer solution

Definition at line 36 of file CbcFeasibilityBase.hpp.

The documentation for this class was generated from the following file:

+ CbcFeasibilityBase.hpp

4.34 CbcFixingBranchingObject Class Reference

General Branching Object class.
#include <CbcFollowOn.hpp>

Inheritance diagram for CbcFixingBranchingObject:

CbcBranchingObject

CbcFixingBranchingObject

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.34 CbcFixingBranchingObject Class Reference 90

Collaboration diagram for CbcFixingBranchingObiject:

GocFlxingBranchingObect

mmmmmm

,,, - N S =
\\\\\\\\

Public Member Functions

+ virtual CbcBranchingObject * clone () const

Clone.
« virtual double branch ()

Does next branch and updates state.
« virtual void print ()

Print something about branch - only if log level high.
« virtual CbcBranchObjType type () const

Return the type (an integer identifier) of t his.
« virtual int compareOriginalObject (const CbcBranchingObject xbrObj) const

Compare the original object of t hi s with the original object of brOb j.
+ virtual CbcRangeCompare compareBranchingObject (const CbcBranchingObject
xbrObj, const bool replacelfOverlap=false)

Compare the this with brObj.

4,341 Detailed Description

General Branching Object class.
Each way fixes some variables to lower bound

Definition at line 72 of file CbcFollowOn.hpp.

4.34.2 Member Function Documentation

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.35 CbcFixVariable Class Reference 91

4.34.2.1 virtual int CbcFixingBranchingObject::compareOriginalObject (const
CbcBranchingObject « brObj)const [virtual]
Compare the original object of this with the original object of brOb j.

Assumes that there is an ordering of the original objects. This method should be invoked
only if this and brObj are of the same type. Return negative/0/positive depending on
whether this is smaller/same/larger than the argument.

Reimplemented from CbcBranchingObject.

4.34.2.2 virtual ChcRangeCompare ChcFixingBranchingObject::compareBranchingObject (
const CbcBranchingObject « brObj, const bool replacelfOverlap = false)
[virtual]

Compare the this with brObj.

this and brObj must be os the same type and must have the same original object,
but they may have different feasible regions. Return the appropriate CocRangeCompare
value (first argument being the sub/superset if that's the case). In case of overlap (and
if replaceIfOverlap is true) replace the current branching object with one whose
feasible region is the overlap.

Implements CbcBranchingObject.

The documentation for this class was generated from the following file:

+ CbcFollowOn.hpp

4,35 CbcFixVariable Class Reference

Class for consequent bounds.
#include <CbcFixVariable.hpp>

Inheritance diagram for CbcFixVariable:

CbcConsequence

CbcFixVariable

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.35 CbcFixVariable Class Reference

92

Collaboration diagram for CbcFixVariable:

CbcConsequence

CbcFixVariable

Public Member Functions

« virtual CbcConsequence * clone () const

Clone.
« virtual ~CbcFixVariable ()

Destructor.
« virtual void applyToSolver (OsiSolverinterface *solver, int state) const

Apply to an LP solver.

Protected Attributes

* int numberStates

Number of states.
* int x states

Values of integers for various states.
* int x startLower_

Start of information for each state (setting new lower)
« int x startUpper_

Start of information for each state (setting new upper)
 double * newBound

For each variable new bounds.
* int x variable_

Variable.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.36 CbcFollowOn Class Reference 93

4.35.1 Detailed Description

Class for consequent bounds.

When a variable is branched on it normally interacts with other variables by means of
equations. There are cases where we want to step outside LP and do something more
directly e.g. fix bounds. This class is for that.

A state of -9999 means at LB, +9999 means at UB, others mean if fixed to that value.

Definition at line 22 of file CbcFixVariable.hpp.

4.35.2 Member Function Documentation

4.35.2.1 virtual void ChcFixVariable::applyToSolver (OsiSolverinterface * solver, int state)
const [virtual]

Apply to an LP solver.
Action depends on state
Implements CbcConsequence.

The documentation for this class was generated from the following file:

+ CbcFixVariable.hpp

4,36 CbcFollowOn Class Reference

Define a follow on class.
#include <CbcFollowOn.hpp>

Inheritance diagram for CbcFollowOn:

CbcObject

CbcFollowOn

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.36 CbcFollowOn Class Reference

94

Collaboration diagram for CbcFollowOn:

CocBasettoce B

e

Consratetcs

ConCuGansator

——]
Daeneres. T Guranehbesson

Public Member Functions

CbcFollowOn (CbcModel xmodel)
Useful constructor.

virtual CbcObject * clone () const
Clone.

virtual double infeasibility (const OsiBranchingInformation xinfo, int &preferred-
Way) const

Infeasibility - large is 0.5.
virtual void feasibleRegion ()

This looks at solution and sets bounds to contain solution.
« virtual CbcBranchingObiject * createCbcBranch (OsiSolverinterface *solver, const
OsiBranchingInformation xinfo, int way)

Creates a branching object.

virtual int gutsOfFollowOn (int &otherRow, int &preferredWay) const

As some computation is needed in more than one place - returns row.

Protected Attributes

» CoinPackedMatrix matrix_
data Matrix

» CoinPackedMatrix matrixByRow_
Matrix by row.
e intxrhs_

Possible rhs (if 0 then not possible)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.37 CbcFollowOn2 Class Reference 95

4.36.1 Detailed Description

Define a follow on class.

The idea of this is that in air-crew scheduling problems crew may fly in on flight A and
out on flight B or on some other flight. A useful branch is one which on one side fixes all
which go out on flight B to 0, while the other branch fixes all those that do NOT go out
on flight B to 0.

This branching rule should be in addition to normal rules and have a high priority.
Definition at line 23 of file CbcFollowOn.hpp.

The documentation for this class was generated from the following file:

+ CbcFollowOn.hpp

4.37 CbcFollowOn2 Class Reference

Define a follow on class.
#include <CbcBranchFollow2.hpp>

Inheritance diagram for CbcFollowOn2:

CbcObject

CbcFollowOn2

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.37 CbcFollowOn2 Class Reference 96

Collaboration diagram for CbcFollowOn2:

Public Member Functions

+ CbcFollowOn2 (CbcModel xmodel)

Useful constructor.
« virtual CbcObject * clone () const

Clone.
« virtual double infeasibility (int &preferredWay) const

Infeasibility - large is 0.5.
+ virtual void feasibleRegion ()

This looks at solution and sets bounds to contain solution.
« virtual CbcBranchingObject * createBranch (int way)

Creates a branching object.
« virtual int gutsOfFollowOn2 (int &otherRow, int &preferredWay, int &effectiveRhs)
const

As some computation is needed in more than one place - returns row.
+ int maximumRhs () const

get and set for maximum rhws (affects cuts as branch)

Protected Attributes

» CoinPackedMatrix matrix_
data Matrix

+ CoinPackedMatrix matrixByRow_
Matrix by row.

e intxrhs_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.38 CbcFullNodelnfo Class Reference 97

Possible rhs (if 0 then not possible)
 int maximumRhs__

If > 1 then allow cuts if effective rhs <= this.

4.37.1 Detailed Description

Define a follow on class.

The idea of this is that in air-crew scheduling problems crew may fly in on flight A and
out on flight B or on some other flight. A useful branch is one which on one side fixes all
which go out on flight B to 0, while the other branch fixes all those that do NOT go out
on flight B to 0.

This tries to generalize so that cuts are produced with sum aij xj <= bi on each side.
It should be intelligent enough to fix if things can be fixed. We also need to make sure
branch cuts work properly (i.e. persistence).

This branching rule should be in addition to normal rules and have a high priority.

Definition at line 26 of file CbcBranchFollow2.hpp.

4.37.2 Member Function Documentation

4.37.2.1 virtual int CbcFollowOn2::gutsOfFollowOn2 (int & otherRow, int & preferredWay, int &
effectiveRhs)const [virtuall]

As some computation is needed in more than one place - returns row.
Also returns other row and effective rhs (so we can know if cut)

The documentation for this class was generated from the following file:

+ CbcBranchFollow2.hpp

4,38 CbcFullNodelnfo Class Reference

Information required to recreate the subproblem at this node.

#include <CbcFullNodeInfo.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.38 CbcFullNodelnfo Class Reference 98

Inheritance diagram for CbcFullNodelnfo:

CbcNodelnfo

CbcFullNodelnfo

Collaboration diagram for CbcFullNodelnfo:

CbcNodelnfo [parent_

_\/
T ‘ RS
N
7 | A N
(nodelnfo_ pwner_ ~ owner_ \cuts_

RN B |

CbcFullNodelnfo CbcNode CbcCountRowCut

Public Member Functions

« virtual void applyToModel (CbcModel *model, CoinWarmStartBasis *x&basis, Cbc-
CountRowCut *xaddCuts, int ¤tNumberCuts) const

Modify model according to information at node.
« virtual int applyBounds (int iColumn, double &lower, double &upper, int force)

Just apply bounds to one variable - force means overwrite by lower,upper (1=>infeasible)
« virtual CbcNodelnfo * buildRowBasis (CoinWarmStartBasis &basis) const

Builds up row basis backwards (until original model).
» CbcFullNodelnfo (CbcModel xmodel, int numberRowsAtContinuous)

Constructor from continuous or satisfied.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.38 CbcFullNodelnfo Class Reference 99

« virtual CbcNodelnfo * clone () const

Clone.
 const double * lower () const

Lower bounds.
+ const double x upper () const

Upper bounds.

Protected Attributes

» CoinWarmStartBasis * basis__

Full basis.

4.38.1 Detailed Description

Information required to recreate the subproblem at this node.

When a subproblem is initially created, it is represented by a CbcNode object and an
attached CbcNodelnfo object.

The CbcNode contains information needed while the subproblem remains live. The
CbcNode is deleted when the last branch arm has been evaluated.

The CbcNodelnfo contains information required to maintain the branch-and-cut search
tree structure (links and reference counts) and to recreate the subproblem for this node
(basis, variable bounds, cutting planes). A CbcNodelnfo object remains in existence
until all nodes have been pruned from the subtree rooted at this node.

The principle used to maintain the reference count is that the reference count is always
the sum of all potential and actual children of the node. Specifically,

* Once it's determined how the node will branch, the reference count is set to the
number of potential children (i.e., the number of arms of the branch).

 As each child is created by CbcNode::branch() (converting a potential child to the
active subproblem), the reference count is decremented.

« If the child survives and will become a node in the search tree (converting the
active subproblem into an actual child), increment the reference count.

Notice that the active subproblem lives in a sort of limbo, neither a potential or an actual
node in the branch-and-cut tree.

CbcNodelnfo objects come in two flavours. A CbcFullNodelnfo object contains a full
record of the information required to recreate a subproblem. A CbcPartialNodelnfo
object expresses this information in terms of differences from the parent.Holds complete
information for recreating a subproblem.

A CbcFullNodelnfo object contains all necessary information (bounds, basis, and cuts)
required to recreate a subproblem.

Definition at line 81 of file CbcFullNodelnfo.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.38 CbcFullNodelnfo Class Reference 100

4.38.2 Member Function Documentation

4.38.2.1 virtual void ChcFullNodelnfo::applyToModel (CbcModel « model,
CoinWarmStartBasis x& basis, CbcCountRowCut «x* addCuts, int &
currentNumberCuts)const [virtual]

Modify model according to information at node.

The routine modifies the model according to bound information at node, creates a new
basis according to information at node, but with the size passed in through basis, and
adds any cuts to the addCuts array.

Note

The basis passed in via basis is solely a vehicle for passing in the desired basis
size. It will be deleted and a new basis returned.

Implements CbcNodelnfo.

4.38.2.2 virtual CbcNodelnfo: ChcFullNodelnfo::buildRowBasis (CoinWarmStartBasis &
basis)const [virtuall]

Builds up row basis backwards (until original model).

Returns NULL or previous one to apply . Depends on Free being 0 and impossible for
cuts

Implements CbcNodelnfo.

4.38.3 Member Data Documentation

4.38.3.1 CoinWarmStartBasis:x CbcFullNodelnfo::basis_ [protected]

Full basis.

This MUST BE A POINTER to avoid cutting extra information in derived warm start
classes.

Definition at line 137 of file CbcFullNodelnfo.hpp.

The documentation for this class was generated from the following file:

» CbcFullNodelnfo.hpp

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 101

4.39 CbcGenCtiBlk Class Reference

Collaboration diagram for CbcGenCtIBlk:

-
_ T ™ Cocbrancnbecsion N
o« CbeGenCHBIk: docalTreeCtl_struct
e
- statistics_

modl

probiomFoasibi

— e
houisic

e T—

B——
o oPoto | CooGenCuBik::greedyCoverCl_struct ==
= - — —| CoeGenCHBl:roudingOl strct e — - _ _ ___"ndng
heuristicName_ .~
.
- lastipsin
veson. GocGonCiBH: womiH siruct - — _ o
s .
L.
CocGenCiBik gonParamsiio st | b
\ b
CboGenCtiBlk::cbcParamsinfo_stnuct T e
CocGenCHBK:miCH_struct probing.
CooGonCUB:robgCsinet. 4~ ~ s
S -
-
- ‘chooseStrong.
o
—
-
T Sayuser

d

e ——)

ConGenGHBk: FonGHLstnct

ConGenCiBiciueCH stuet
- or /
osParams

:

Classes

« struct babState_struct

State of branch-and-cut.
struct cbcParamsinfo_struct

Start and end of CbcModel parameters in parameter vector.
struct chooseStrongCtl_struct

Control variables for a strong branching method.
struct cliqueCtl_struct
Control variable and prototype for clique cut generator.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39

CbcGenCtIBIk Class Reference

102

struct combineCtl_struct

Control variable and prototype for combine heuristic.
struct debugSolinfo_struct

Array of primal variable values for debugging.
struct djFixCtl_struct

Control use of reduced cost fixing prior to B&C.
struct flowCtl_struct

Control variable and prototype for flow cover cut generator.
struct fpumpCtl_struct

Control variable and prototype for feasibility pump heuristic.
struct genParamsinfo_struct

Start and end of cbc-generic parameters in parameter vector.
struct gomoryCtl_struct

Control variable and prototype for Gomory cut generator.
struct greedyCoverCtl_struct

Control variable and prototype for greedy cover heuristic.
struct greedyEqualityCtl_struct

Control variable and prototype for greedy equality heuristic.
struct knapsackCtl_struct

Control variable and prototype for knapsack cover cut generator.
struct localTreeCtl_struct

Control variables for local tree.
struct mirCtl_struct

Control variable and prototype for MIR cut generator.
struct oddHoleCtl_struct

Control variable and prototype for odd hole cut generator.
struct osiParamsinfo_struct

Start and end of OsiSolverinterface parameters in parameter vector.
struct probingCtl_struct

Control variable and prototype for probing cut generator.
struct redSplitCtl_struct

Control variable and prototype for reduce-and-split cut generator.
struct roundingCtl_struct

Control variable and prototype for simple rounding heuristic.
struct twomirCtl_struct

Control variable and prototype for Two-MIR cut generator.

Public Types

Enumeration types used for chc-generic control variables

« enum IPPControl

Codes to control integer preprocessing.
» enum CGControl

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 103

Codes to control the use of cut generators and heuristics.
» enum BPControl

Codes to specify the assignment of branching priorities.
enum BACMajor

Major status codes for branch-and-cut.
enum BACMinor

Minor status codes.
enum BACWhere

Codes to specify where branch-and-cut stopped.

Public Member Functions

Constructors and destructors

» CbcGenCitiBlk ()
Default constructor.

* ~CbcGenCtIBIk ()
Destructor.

Access and Control Functions for Cut Generators and Heuristics

Control functions, plus lazy creation functions for cut generators and heuristics

cbe-generic avoids creating objects for cut generators and heuristics unless they're
actually used. For cut generators, a prototype is created and reused. For heuristics,
the default is to create a new object with each call, because the model may have
changed. The object is returned through the reference parameter. The return value
of the function is the current action state.

Cut generator and heuristic objects created by these calls will be deleted with the
destruction of the CbcGenCtIBlk object.

« int getCutDepth ()
Get cut depth setting.

« void setCutDepth (int cutDepth)
Set cut depth setting.

» IPPControl getiPPAction ()

« void setIPPAction (IPPControl action)
Set action state for use of integer preprocessing.

» CGControl getProbing (CglCutGenerator x&gen)
Obtain a prototype for a probing cut generator.

« void setProbingAction (CGControl action)
Set action state for use of probing cut generator.

» CGControl getClique (CglCutGenerator x&gen)
Obtain a prototype for a clique cut generator.

« void setCliqueAction (CGControl action)
Set action state for use of clique cut generator.

» CGControl getFlow (CglCutGenerator x&gen)
Obtain a prototype for a flow cover cut generator.

« void setFlowAction (CGControl action)
Set action state for use of flow cover cut generator.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39

CbcGenCtIBIk Class Reference 104

CGControl getGomory (CglCutGenerator x&gen)
Obtain a prototype for a Gomory cut generator.
void setGomoryAction (CGControl action)
Set action state for use of Gomory cut generator.
CGControl getkKnapsack (CglCutGenerator x&gen)
Obtain a prototype for a knapsack cover cut generator.
void setKnapsackAction (CGControl action)
Set action state for use of knapsack cut generator.
CGControl getMir (CglCutGenerator *&gen)
Obtain a prototype for a mixed integer rounding (MIR) cut generator.
void setMirAction (CGControl action)
Set action state for use of MIR cut generator.
CGControl getRedSplit (CglCutGenerator x&gen)
Obtain a prototype for a reduce and split cut generator.
void setRedSplitAction (CGControl action)
Set action state for use of reduce and split cut generator.
CGControl getTwomir (CglCutGenerator *&gen)
Obtain a prototype for a 2-MIR cut generator.
void setTwomirAction (CGControl action)
Set action state for use of 2-MIR cut generator.
CGControl getFPump (CbcHeuristic «&gen, CbcModel xmodel, bool alwaysCre-
ate=true)
Obtain a feasibility pump heuristic.
void setFPumpAction (CGControl action)
Set action state for use of feasibility pump heuristic.
CGControl getCombine (CbcHeuristic «&gen, CbcModel xmodel, bool alwaysCre-
ate=true)
Obtain a local search/combine heuristic.
void setCombineAction (CGControl action)
Set action state for use of local search/combine heuristic.
CGControl getGreedyCover (CbcHeuristic x*&gen, CbcModel xmodel, bool al-
waysCreate=true)
Obtain a greedy cover heuristic.
void setGreedyCoverAction (CGControl action)
Set action state for use of greedy cover heuristic.
CGControl getGreedyEquality (CbcHeuristic x&gen, CbcModel xmodel, bool
alwaysCreate=true)
Obtain a greedy equality heuristic.
void setGreedyEqualityAction (CGControl action)
Set action state for use of greedy equality heuristic.
CGControl getRounding (CbcHeuristic x*&gen, CbcModel xmodel, bool alwaysCre-
ate=true)
Obtain a simple rounding heuristic.
void setRoundingAction (CGControl action)
Set action state for use of simple rounding heuristic.
CGControl getTreeLocal (CbcTreeLocal x&localTree, CbcModel xmodel, bool
alwaysCreate=true)
Obtain a local search tree object.
void setTreeLocalAction (CGControl action)
Set action state for use of local tree.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 105

Status Functions
Convenience routines for status codes.

+ void setBaBStatus (BACMajor majorStatus, BACMinor minorStatus, BACWhere
where, bool haveAnswer, OsiSolverinterface xanswerSolver)
Set the result of branch-and-cut search.
« void setBaBStatus (const CbcModel xmodel, BACWhere where, bool haveAn-
swer=false, OsiSolverinterface xanswerSolver=0)

Set the result of branch-and-cut search.
» BACMajor translateMajor (int status)

Translate CbcModel major status to BACMajor.
* BACMinor translateMinor (int status)

Translate CbcModel minor status to BACMinor.

» BACMinor translateMinor (const OsiSolverinterface *osi)
Translate OsiSolverinterface status to BACMinor.

« void printBaBStatus ()

Print the status block.

Public Attributes

Parameter parsing and input/output.

« std::string version_
cbc-generic version
« std::string dfltDirectory
Default directory prefix.
* std::string lastMpsin_
Last MPS input file.
* bool allowlmportErrors_
Allow/disallow errors when importing a model.
* std::string lastSolnOut_
Last solution output file.
« int printMode__
Solution printing mode.
* std::string printMask_
Print mask.
» CoinParamVec * paramVec_
The parameter vector.
« struct CbcGenCilIBlk::genParamsinfo_struct genParams__
« struct CbcGenCtIBlk::cbcParamslinfo_struct cbcParams_
« struct CbcGenCitlBIk::osiParamsinfo_struct osiParams_
* int verbose_
Verbosity level for help messages.
* int paramsProcessed_
Number of parameters processed.
« std::vector< bool > setByUser_
Record of parameters changed by user command.
bool defaultSettings_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 106

False if the user has made nontrivial modifications to the default control settings.
* std::string debugCreate_

Control debug file creation.
« std::string debugFile_
Last debug input file.
« struct CbcGenCitIBIk::debugSolinfo_struct debugSol_

» double totalTime_

Total elapsed time for this run.

Models of various flavours

¢ CbcModel * model_

The reference CbcModel object.
» OsiSolverInterface * dfltSolver_

The current default LP solver.
* bool goodModel_

True if we have a valid model loaded, false otherwise.
« struct CbcGenCtIBlk::babState struct bab_

Various algorithm control variables and settings
« struct CbcGenCilIBIk::djFixCtl_struct djFix_
» BPControl priorityAction_
Control the assignment of branching priorities to integer variables.

Branching Method Control

Usage control and prototypes for branching methods.

Looking to the future, this covers only OsiChoose methods.

« struct CbcGenCilIBlk::chooseStrongCitl_struct chooseStrong_

Messages and statistics

* int printOpt_
When greater than 0, integer presolve gives more information and branch-and-cut
provides statistics.
+ CoinMessageHandler & message (CbcGenMsgCode inID)
Print a message.
+ void passIinMessageHandler (CoinMessageHandler xhandler)
Supply a new message handler.
+ CoinMessageHandler * messageHandler () const
Return a pointer to the message handler.
+ void setMessages (CoinMessages::Language lang=CoinMessages::us_en)

Set up messages in the specified language.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 107

+ void setLogLevel (int Ivl)

Set log level.
« int logLevel () const

Get log level.

4.39.1 Detailed Description

Definition at line 67 of file CbcGenCilIBIk.hpp.

4.39.2 Member Enumeration Documentation

4.39.2.1 enum CbcGenCitlIBIk::IPPControl

Codes to control integer preprocessing.

 IPPO(f: Integer preprocessing is off.

» IPPOn: Integer preprocessing is on.

» IPPSave: IPPOn, plus preprocessed system will be saved to presolved.mps.
» IPPEqual: IPPOn, plus ‘<=’ cliques are converted to ‘=’ cliques.

» IPPSOS: IPPOn, plus will create SOS sets (see below).

» IPPTrySOS: IPPOnN, plus will create SOS sets (see below).

« IPPEqualAll: IPPOn, plus turns all valid inequalities into equalities with integer
slacks.

+ |IPPStrategy: look to CbcStrategy object for instructions.
IPPSOS will create SOS sets if all binary variables (except perhaps one) can be covered

by SOS sets with no overlap between sets. IPPTrySOS will allow any number of binary
variables to be uncovered.

Definition at line 99 of file CbcGenCtIBIk.hpp.
4.39.2.2 enum CbcGenCtIBIk::CGControl

Codes to control the use of cut generators and heuristics.

» CGOff: the cut generator will not be installed

+ CGOn: the cut generator will be installed; exactly how often it’s activated depends
on the settings at installation

» CGRoot: the cut generator will be installed with settings that restrict it to activation
at the root node only.

+ CGlfMove: the cut generator will be installed with settings that allow it to remain
active only so long as it’'s generating cuts that tighten the relaxation.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 108

» CGForceOn: the cut generator will be installed with settings that force it to be
called at every node

» CGForceBut: the cut generator will be installed with settings that force it to be
called at every node, but more active at root (probing only)

* CGMarker: a convenience to mark the end of the codes.

The same codes are used for heuristics.

Definition at line 129 of file CbcGenCtIBIk.hpp.
4.39.2.3 enum CbcGenCtIBIk::BPControl

Codes to specify the assignment of branching priorities.

« BPO(ff: no priorities are passed to cbc
« BPCost: a priority vector is constructed based on objective coefficients
« BPOrder: a priority vector is constructed based on column order

» BPEXxt: the user has provided a priority vector

Definition at line 141 of file CbcGenCitIBIk.hpp.
4.39.2.4 enum CbcGenCtlBlk::BACMajor

Major status codes for branch-and-cut.

» BACInvalid: status not yet set

» BACNOotRun: branch-and-cut has not yet run for the current problem
» BACFinish: branch-and-cut has finished normally

» BACStop: branch-and-cut has stopped on a limit

« BACAbandon: branch-and-cut abandoned the problem

« BACUser: branch-and-cut stopped on user signal

Consult minorStatus_ for details.

These codes are (mostly) set to match the codes used by CbcModel. Additions to
CbcModel codes should be reflected here and in translateMajor.

Definition at line 158 of file CbcGenCtIBIk.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 109

4.39.2.5 enum CbcGenCtIBlk::BACMinor

Minor status codes.

« BACminvalid status not yet set
+ BACmPFinish search exhausted the tree; optimal solution found
+ BACminfeas problem is infeasible
+ BACmUbnd problem is unbounded
+ BACmGap stopped on integrality gap
+ BACmNodeLimit stopped on node limit
+ BACmTimeLimit stopped on time limit
+ BACmSolnLimit stopped on number of solutions limit
+ BACmUser stopped due to user event
+ BACmOther nothing else is appropriate
It's not possible to make these codes agree with CbcModel. The meaning varies ac-

cording to context: if the BACWhere code specifies a relaxation, then the minor status
reflects the underlying OSI solver. Otherwise, it reflects the integer problem.

Definition at line 181 of file CbcGenCitIBIk.hpp.
4.39.2.6 enum CbcGenCtIBlk::BACWhere

Codes to specify where branch-and-cut stopped.

+ BACwNotStarted stopped before we ever got going

« BACwBareRoot stopped after initial solve of root relaxation

» BACWIPP stopped after integer preprocessing

+ BACwIPPRelax stopped after initial solve of preprocessed problem

+ BACWBAC stopped at some point in branch-and-cut

Definition at line 195 of file CbcGenCtIBIk.hpp.

4.39.3 Member Function Documentation

4.39.3.1 int CbcGenCtIBlk::getCutDepth() [inline]

Get cut depth setting.

The name is a bit of a misnomer. Essentially, this overrides the ‘every so many nodes
control with ‘execute when (depth in tree) mod (cut depth) == 0’.

Definition at line 236 of file CbcGenCtIBlk.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 110

4.39.3.2 void CbcGenCtIBlk::setCutDepth (int cutDepth) [inline]

Set cut depth setting.
See comments for getCutDepth().

Definition at line 245 of file CbcGenCtIBIk.hpp.

4.39.3.3 CGControl ChcGenCtiBlk::getProbing (CglCutGenerator & gen)
Obtain a prototype for a probing cut generator.

4.39.3.4 void ChcGenCtIBIk::setProbingAction (CGControl action) [inline]

Set action state for use of probing cut generator.

Definition at line 267 of file CbcGenCtIBlk.hpp.

4.39.3.5 CGControl CbcGenCtIBlk::getClique (CglCutGenerator «& gen)
Obtain a prototype for a clique cut generator.

4.39.3.6 void ChcGenCtlIBlk::setCliqueAction (CGControl action) [inline]

Set action state for use of clique cut generator.

Definition at line 277 of file CbcGenCtIBlk.hpp.

4.39.3.7 CGControl CbcGenCtIBIk::getFlow (CglCutGenerator <& gen)
Obtain a prototype for a flow cover cut generator.

4.39.3.8 void CbcGenCtiBlk::setFlowAction (CGControl action) [inline]

Set action state for use of flow cover cut generator.

Definition at line 287 of file CbcGenCtIBIk.hpp.

4.39.3.9 CGControl ChcGenCtiBlk::getGomory (CglCutGenerator <& gen)

Obtain a prototype for a Gomory cut generator.

4.39.3.10 void CbcGenCtIBlk::setGomoryAction (CGControl action) [inline]

Set action state for use of Gomory cut generator.

Definition at line 297 of file CbcGenCtIBIk.hpp.

4.39.3.11 CGControl CbcGenCtlIBlk::getKnapsack (CglCutGenerator & gen)
Obtain a prototype for a knapsack cover cut generator.

4.39.3.12 void CbcGenCtiBIk::setKnapsackAction (CGControl action) [inline]

Set action state for use of knapsack cut generator.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 111

Definition at line 307 of file CbcGenCitIBlk.hpp.
4.39.3.13 void ChcGenCtiBlk::setMirAction (CGControl action) [inline]

Set action state for use of MIR cut generator.

Definition at line 329 of file CbcGenCtIBIk.hpp.

4.39.3.14 CGControl CbcGenCtlIBlk::getRedSplit (CglCutGenerator & gen)
Obtain a prototype for a reduce and split cut generator.

4.39.3.15 void CbcGenCtIBlk::setRedSplitAction (CGControl action) [inline]

Set action state for use of reduce and split cut generator.

Definition at line 339 of file CbcGenCitIBIk.hpp.

4.39.3.16 CGControl CbhcGenCtIBlk::getTwomir (CglCutGenerator <& gen)
Obtain a prototype for a 2-MIR cut generator.

4.39.3.17 void CbcGenCtlBIk::setTwomirAction (CGControl action) [inline]

Set action state for use of 2-MIR cut generator.

Definition at line 349 of file CbcGenCitIBlk.hpp.

4.39.3.18 CGControl CbcGenCitIBlk::getFPump (CbcHeuristic <& gen, CbcModel
model, bool alwaysCreate =t rue)

Obtain a feasibility pump heuristic.

By default, any existing object is deleted and a new object is created and loaded with
model. Set alwaysCreate = false to return an existing object if one exists.

4.39.3.19 void ChcGenCtIBlk::setFPumpAction (CGControl action) [inline]

Set action state for use of feasibility pump heuristic.

Definition at line 366 of file CbcGenCtIBlk.hpp.

4.39.3.20 CGControl CbcGenCtIBlk::getCombine (CbcHeuristic «& gen, CbcModel
model, bool alwaysCreate =t rue)

Obtain a local search/combine heuristic.

By default, any existing object is deleted and a new object is created and loaded with
model. Set alwaysCreate = false to return an existing object if one exists.

4.39.3.21 void ChcGenCtIBlk::setCombineAction (CGControl action) [inline]

Set action state for use of local search/combine heuristic.

Definition at line 382 of file CbcGenCtIBIk.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 112

4.39.3.22 CGControl CbcGenCtIBlk::getGreedyCover (CbcHeuristic <& gen, CbcModel
* model, bool alwaysCreate =t rue)

Obtain a greedy cover heuristic.

By default, any existing object is deleted and a new object is created and loaded with
model. Set alwaysCreate = false to return an existing object if one exists.

4.39.3.23 void CbcGenCtiBlk::setGreedyCoverAction (CGControl action) [inline]

Set action state for use of greedy cover heuristic.

Definition at line 398 of file CbcGenCtIBlk.hpp.

4.39.3.24 CGControl CbhcGenCtIBlk::getGreedyEquality (CbcHeuristic <& gen,
CbcModel « model, bool alwaysCreate =t rue)

Obtain a greedy equality heuristic.

By default, any existing object is deleted and a new object is created and loaded with
model. Set alwaysCreate = false to return an existing object if one exists.

4.39.3.25 void CbcGenCtIBlk::setGreedyEqualityAction (CGControl action) [inline]

Set action state for use of greedy equality heuristic.

Definition at line 414 of file CbcGenCtIBIk.hpp.

4.39.3.26 CGControl CbcGenCtiBlk::getRounding (CbcHeuristic <& gen, CbcModel
model, bool alwaysCreate =t rue)

Obtain a simple rounding heuristic.

By default, any existing object is deleted and a new object is created and loaded with
model. Set alwaysCreate = false to return an existing object if one exists.

4.39.3.27 void CbcGenCtiBlk::setRoundingAction (CGControl action) [inline]

Set action state for use of simple rounding heuristic.

Definition at line 430 of file CbcGenCitIBIk.hpp.

4.39.3.28 CGControl CbcGenCtIBlk::getTreeLocal (CbcTreeLocal & localTree,
CbcModel * model, bool alwaysCreate =t rue)

Obtain a local search tree object.

By default, any existing object is deleted and a new object is created and loaded with
model. Set alwaysCreate = false to return an existing object if one exists.

4.39.3.29 void CbcGenCtiBlk::setTreeLocalAction (CGControl action) [inline]

Set action state for use of local tree.

Definition at line 446 of file CbcGenCtIBIk.hpp.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 113

4.39.3.30 void ChcGenCtiBlk::setBaBStatus (const CbcModel « model, BACWhere where,
bool haveAnswer = false, OsiSolverinterface « answerSolver =0)

Set the result of branch-and-cut search.

This version will extract the necessary information from the CbcModel object and set
appropriate status based on the value passed for where.

4.39.3.31 BACMajor ChcGenCtIBlk::translateMajor (int status)

Translate CbcModel major status to BACMajor.

See the BACMajor enum for details.
4.39.3.32 BACMinor CbhcGenCtlBlk::translateMinor (int status)

Translate CbcModel minor status to BACMinor.

See the BACMinor enum for details.
4.39.3.33 BACMinor CbcGenCtlBIk::translateMinor (const OsiSolverinterface * osi)

Translate OsiSolverinterface status to BACMinor.
See the BACMinor enum for details. Optimal, infeasible, and unbounded get their own
codes; everything else maps to BACmOther.

4.39.3.34 CoinMessageHandler& CbcGenCilBlk::message (CbcGenMsgCode iniD)

Print a message.

Uses the current message handler and messages.
4.39.3.35 void CbcGenCtlBIk::passinMessageHandler (CoinMessageHandler x handler)

Supply a new message handler.
Replaces the current message handler. The current handler is destroyed if ourMsgHandler_-
is true, and the call will set ourMsgHandler_ = true.

4.39.3.36 void ChcGenCtIBlk::setMessages (CoinMessages::Language lang =
CoinMessages::us_en)

Set up messages in the specified language.

Building a set of messages in a given language implies rebuilding the whole set of
messages, for reasons explained in the body of the code. Hence there’'s no separate
setLanguage routine. Use this routine for the initial setup of messages and any subse-
quent change in language. Note that the constructor gives you a message handler by
default, but not messages. You need to call setMessages explicitly.

The default value specified here for lang effectively sets the default language.

4.39.4 Member Data Documentation

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.39 CbcGenCtiBIk Class Reference 114

4.39.4.1 int CbcGenCtlBIk::printMode_

Solution printing mode.

Controls the amount of information printed when printing a solution. Coding is set by
the keyword declarations for the printingOptions command.

Definition at line 583 of file CbcGenCitIBIk.hpp.
4.39.4.2 std::string CbcGenCtlBIk::printMask_

Print mask.

Used to specify row/column names to be printed. Not implemented as of 060920.
Definition at line 590 of file CbcGenCtIBlk.hpp.

4.39.4.3 int CbcGenCtiBlk::verbose

Verbosity level for help messages.

Interpretation is bitwise:

* (0): short help
* (1): long help
* (2): unused (for compatibility with cbc; indicates AMPL)

* (3): show parameters with display = false.
Definition at line 628 of file CbcGenCtIBIk.hpp.
4.39.4.4 bool CbcGenCtIBlk::defaultSettings__

False if the user has made nontrivial modifications to the default control settings.

Initially true. Specifying DJFIX, TIGHTENFACTOR, or any cut or heuristic parameter
will set this to false.

Definition at line 644 of file CbcGenCtIBIk.hpp.
4.39.4.5 std::string CbcGenCtlBlk::debugCreate_

Control debug file creation.

At the conclusion of branch-and-cut, dump the full solution in a binary format to de-
bug.file in the current directory. When set to "createAfterPre", the solution is dumped
before integer presolve transforms are removed. When set to "create", the solution is
dumped after integer presolve transforms are backed out.

Definition at line 654 of file CbcGenCtIBlk.hpp.
4.39.4.6 std::string CbcGenCitlBlk::debugFile_

Last debug input file.

The file is expected to be in a binary format understood by activateRowCutDebugger.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.40 CbcGeneral Class Reference 115

Definition at line 662 of file CbcGenCtIBlk.hpp.
4.39.4.7 double CbcGenCtIBlk::totalTime_

Total elapsed time for this run.

Definition at line 680 of file CbcGenCtIBlk.hpp.
4.39.48 CbcModelx CbcGenCtlBlk::model_

The reference CbcModel object.

This is the CbcModel created when cbc-generic boots up. It holds the default solver
with the current constraint system. CbcCbcParam parameters are applied here, and
CbcOsiParam parameters are applied to the solver. Major modifications for branch-and-
cut (integer preprocessing, installation of heuristics and cut generators) are performed
on a clone. The solution is transferred back into this object.

Definition at line 697 of file CbcGenCtIBIk.hpp.
4.39.4.9 OsiSolverinterfacex CbcGenCtlIBIk::dfltSolver_

The current default LP solver.

This is a pointer to a reference copy. If you want the solver associated with model_, ask
for it directly.

Definition at line 705 of file CbcGenCitIBIk.hpp.
4.39.4.10 bool CbcGenCtIBIk::goodModel_

True if we have a valid model loaded, false otherwise.
Definition at line 709 of file CbcGenCtIBlk.hpp.

The documentation for this class was generated from the following file:

+ CbcGenCtIBIk.hpp

4.40 CbcGeneral Class Reference

Define a catch all class.

#include <CbcGeneral.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.40 CbcGeneral Class Reference 116

Inheritance diagram for CbcGeneral:

CbcObject

CbcGeneral

Collaboration diagram for CbcGeneral:

evertandir.
SRR powm—r——

/ - GocCuaGanarior
, e R
T e o
Chcrarsichon N - Farnt

Public Member Functions

» CbcGeneral (CbcModel xmodel)

Useful constructor Just needs to point to model.
« virtual CbcObiject * clone () const =0
Clone.

+ virtual double infeasibility (const OsiBranchinglnformation xinfo, int &preferred-
Way) const

Infeasibility - large is 0.5.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.41 CbcGenParam Class Reference 117

virtual void feasibleRegion ()=0

This looks at solution and sets bounds to contain solution.
virtual CbcBranchingObject * createCbcBranch (OsiSolverInterface *solver, const
OsiBranchingInformation xinfo, int way)

Creates a branching object.
virtual void redoSequenceEtc (CbcModel xmodel, int numberColumns, const int
xoriginalColumns)=0

Redoes data when sequence numbers change.

4.40.1 Detailed Description

Define a catch all class.
This will create a list of subproblems
Definition at line 17 of file CbcGeneral.hpp.

The documentation for this class was generated from the following file:

» CbcGeneral.hpp

4.41 CbcGenParam Class Reference

Class for cbc-generic control parameters.

#include <CbcGenParam.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.41 CbcGenParam Class Reference

118

Collaboration diagram for CbcGenParam:

Public Types

Subtypes

* enum CbcGenParamCode

Enumeration for cbc-generic parameters.

Public Member Functions

Constructors and Destructors

L onaee

rowang

CocGonGuB: oG st ¥ < =
CocGenCHBl e st

e T——

e r—

CocGanCiBlro3SpiCI et

Be careful how you specify parameters for the constructors! There’s great

potential for confusion.

* CbcGenParam ()
Default constructor.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.41 CbcGenParam Class Reference 119

» CbcGenParam (CbcGenParamCode code, std::string name, std::string help,
double lower, double upper, double dflt=0.0, bool display=true)
Constructor for a parameter with a double value.
» CbcGenParam (CbcGenParamCode code, std::string name, std::string help,
int lower, int upper, int dflt=0, bool display=true)
Constructor for a parameter with an integer value.
* CbcGenParam (CbcGenParamCode code, std::string name, std::string help,
std::string firstValue, int dflt, bool display=true)
Constructor for a parameter with keyword values.
» CbcGenParam (CbcGenParamCode code, std::string name, std::string help,
std::string dflt, bool display=true)
Constructor for a string parameter.
* CbcGenParam (CbcGenParamCode code, std::string name, std::string help,
bool display=true)
Constructor for an action parameter.
» CbcGenParam (const CbcGenParam &orig)

Copy constructor.
* CbcGenParam clone ()

Clone.
* CbcGenParam & operator= (const CocGenParam &rhs)

Assignment.
* ~CbcGenParam ()

Destructor.

Methods to query and manipulate a parameter object

* CbcGenParamCode paramCode () const

Get the parameter code.
« void setParamCode (CbcGenParamCode code)

Set the parameter code.
* CbcGenCilIBlk * obj () const

Get the underlying cbc-generic control object.
« void setObj (CbcGenCiIBlk *obj)

Set the underlying cbc-generic control object.

4.41.1 Detailed Description

Class for cbc-generic control parameters.
Adds parameter type codes and push/pull functions to the generic parameter object.

Definition at line 34 of file CbcGenParam.hpp.

4.41.2 Member Enumeration Documentation

441.2.1 enum CbcGenParam::CbcGenParamCode

Enumeration for cbc-generic parameters.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42 CbcHeuristic Class Reference 120

These are parameters that control the operation of the cbc-generic main program by op-
erating on a CbcGenCitIBlk object. CBCGEN_FIRSTPARAM and CBCGEN_LASTPARM
are markers to allow convenient separation of parameter groups.

Definition at line 49 of file CbcGenParam.hpp.

4.41.3 Constructor & Destructor Documentation

4.41.3.1 CbcGenParam::CbcGenParam (CbcGenParamCode code, std::string name,
std::string help, double lower, double upper, double dflt=0 . O, bool display =t rue

)
Constructor for a parameter with a double value.

The default value is 0.0. Be careful to clearly indicate that 1ower and upper are
real (double) values to distinguish this constructor from the constructor for an integer
parameter.

4.41.3.2 CbcGenParam::CbcGenParam (CbcGenParamCode code, std::string name,
std::string help, int lower, int upper, int dflt = 0, bool display =t rue)
Constructor for a parameter with an integer value.

The default value is 0.

4.41.3.3 CbcGenParam::CbcGenParam (CbcGenParamCode code, std::string name,
std::string help, std::string firstValue, int dflt, bool display =t rue)
Constructor for a parameter with keyword values.

The string supplied as £irstValue becomes the first keyword. Additional keywords
can be added using appendKwd(). Keywords are numbered from zero. It's necessary to
specify both the first keyword (firstvalue) and the default keyword index (df1t)in
order to distinguish this constructor from the string and action parameter constructors.

4.41.3.4 CbcGenParam::ChcGenParam (CbcGenParamCode code, std::string name,
std::string help, std::string dflt, bool display =t rue)

Constructor for a string parameter.

The default string value must be specified explicitly to distinguish a string constructor
from an action parameter constructor.

The documentation for this class was generated from the following file:

* CbcGenParam.hpp

4.42 CbcHeuristic Class Reference

Heuristic base class.

#include <CbcHeuristic.hpp>

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42 CbcHeuristic Class Reference

121

Inheritance diagram for CbcHeuristic:

| CbcHeuristicDiveCoefficient |

| CbcHeuristicCrossover |

| CbcHeuristicDiveFractional |

CbcHeuristicDINS

_ CbcHeuristicDiveGuided |

CbcHeuristicDive F

SN

CbcHeuristicDivelLineSearch |

| CbcHeuristicDynamic3 |

| CbcHeuristicDivePseudoCost |

CbcHeuristicFPump |

| CbcHeuristicDiveVectorLength |

| CbcHeuristicGreedyCover |

| CbcHeuristicGreedy Equality |

CbcHeuristicGreedySOS |

| CbcHeuristicJustOne |

CbcHeuristic
"N

CbcHeuristicLocal

CbcHeuristicNaive

CbcHeuristicPartial

CbcHeuristicPivotAndFix |

CbcHeuristicRandRound |

CbcHeuristicRENS

CbcHeuristicRINS

CbcHeuristicVND

CbcRounding

CbcSerendipity

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42 CbcHeuristic Class Reference 122

Collaboration diagram for CbcHeuristic:

Public Member Functions

« virtual CbcHeuristic * clone () const =0
Clone.
+ CbcHeuristic & operator= (const CbcHeuristic &rhs)
Assignment operator.
virtual void setModel (CbcModel xmodel)

update model (This is needed if cliques update matrix etc)
virtual void resetModel (CbcModel xmodel)=0

Resets stuff if model changes.
virtual int solution (double &objectiveValue, double xnewSolution)=0

returns 0 if no solution, 1 if valid solution with better objective value than one passed
in Sets solution values if good, sets objective value This is called after cuts have been
added - so can not add cuts

virtual int solution2 (double &, double *, OsiCuts &)

returns 0 if no solution, 1 if valid solution, -1 if just returning an estimate of best possible
solution with better objective value than one passed in Sets solution values if good,
sets objective value (only if nonzero code) This is called at same time as cut generators
- s0 can add cuts Default is do nothing

virtual void validate ()

Validate model i.e. sets when_ to 0 if necessary (may be NULL)
void setWhen (int value)

Sets "when" flag - 0 off, 1 at root, 2 other than root, 3 always.
int when () const

Gets "when" flag - 0 off, 1 at root, 2 other than root, 3 always.
+ void setNumberNodes (int value)
Sets number of nodes in subtree (default 200)
int numberNodes () const

Gets number of nodes in a subtree (default 200)
void setSwitches (int value)

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42

CbcHeuristic Class Reference 123

Switches (does not apply equally to all heuristics) 1 bit - stop once allowable gap on
objective reached 2 bit - always do given number of passes 4 bit - weaken cutoff by 5%
every 50 passes? 8 bit - if has cutoff and suminf bobbling for 20 passes then first try
halving distance to best possible then try keep halving distance to known cutoff 1024
bit - stop all heuristics on max time.
int switches () const

Switches (does not apply equally to all heuristics) 1 bit - stop once allowable gap on
objective reached 2 bit - always do given number of passes 4 bit - weaken cutoff by 5%
every 50 passes? 8 bit - if has cutoff and suminf bobbling for 20 passes then first try
halving distance to best possible then try keep halving distance to known cutoff 1024
bit - stop all heuristics on max time.

bool exitNow (double bestObjective) const
Whether to exit at once on gap.
void setFeasibilityPumpOptions (int value)
Sets feasibility pump options (-1 is off)
int feasibilityPumpOptions () const
Gets feasibility pump options (-1 is off)
void setModelOnly (CbcModel xmodel)
Just set model - do not do anything else.
void setFractionSmall (double value)
Sets fraction of new(rows+columns)/old(rows+columns) before doing small branch and
bound (default 1.0)
double fractionSmall () const
Gets fraction of new(rows+columns)/old(rows+columns) before doing small branch
and bound (default 1.0)
int numberSolutionsFound () const
Get how many solutions the heuristic thought it got.
void incrementNumberSolutionsFound ()
Increment how many solutions the heuristic thought it got.
int smallBranchAndBound (OsiSolverinterface *solver, int numberNodes, dou-
ble xnewSolution, double &newSolutionValue, double cutoff, std::string name)
const
Do mini branch and bound - return 0 not finished - no solution 1 not finished - solution
2 finished - no solution 3 finished - solution (could add global cut if finished)
virtual void generateCpp (FILE x)
Create C++ lines to get to current state.
void generateCpp (FILE *fp, const char xheuristic)
Create C++ lines to get to current state - does work for base class.
virtual bool canDealWithOdd () const
Returns true if can deal with "odd" problems e.g. sos type 2.
const char * heuristicName () const
return name of heuristic
void setHeuristicName (const char xname)
set name of heuristic
void setSeed (int value)

Set random number generator seed.

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42

CbcHeuristic Class Reference 124

void setDecayFactor (double value)

Sets decay factor (for howOften) on failure.
void setlnputSolution (const double *solution, double objValue)

Set input solution.
void setShallowDepth (int value)

Upto this depth we call the tree shallow and the heuristic can be called multiple times.
void setHowOftenShallow (int value)

How often to invoke the heuristics in the shallow part of the tree.
void setMinDistanceToRun (int value)
How "far" should this node be from every other where the heuristic was run in order to
allow the heuristic to run in this node, too.
virtual bool shouldHeurRun (int whereFrom)
Check whether the heuristic should run at all 0 - before cuts at root node (or from

doHeuristics) 1 - during cuts at root 2 - after root node cuts 3 - after cuts at other nodes
4 - during cuts at other nodes 8 added if previous heuristic in loop found solution.

bool shouldHeurRun_randomChoice ()

Check whether the heuristic should run this time.
int numRuns () const

how many times the heuristic has actually run
int numCouldRun () const

How many times the heuristic could run.
OsiSolverinterface * cloneBut (int type)

Clone, but ...

Protected Attributes

CbcModel * model
Model.
int when_
When flag - 0 off, 1 at root, 2 other than root, 3 always.
int numberNodes
Number of nodes in any sub tree.
int feasibilityPumpOptions_
Feasibility pump options (-1 is off)
double fractionSmall_
Fraction of new(rows+columns)/old(rows+columns) before doing small branch and bound.
CoinThreadRandom randomNumberGenerator_
Thread specific random number generator.
std::string heuristicName__
Name for printing.
int howOften__
How often to do (code can change)
double decayFactor_

Generated on Wed Nov 9 2011 10:27:17 for Cbc by Doxygen

4.42 CbcHeuristic Class Reference 125

How much to increase how often.
* int switches_

Switches (does not apply equally to all heuristics) 1 bit - stop once allowable gap on
objective reached 2 bit - always do given number of passes 4 bit - weaken cutoff by 5%
every 50 passes? 8 bit - if has cutoff and suminf bobbling for 20 passes then first try
halving distance to best possible then try keep halving distance to known cutoff 1024
bit - stop all heuristics on max time.

+ int shallowDepth_

Upto this depth we call the tree shallow and the heuristic can be called multiple times.
* int howOftenShallow

How often to invoke the heuristics in the shallow part of the tree.
* int numinvocationsinShallow__

How many invocations happened within the same