
CMPL

<Coliop|Coin> Mathematical Programming Language

Version 1.6.2

March 2012

Manual

 M. Steglich, T. Schleiff

CMPL v.1.6.2 - Manual 1

Table of content
 1 About CMPL ...4

 2 CMPL elements.. 4

 2.1 General structure of a CMPL model..4

 2.2 Keywords and other syntactic elements... 5

 2.3 Objects..7

 2.3.1 Parameters...7

 2.3.2 Variables.. 9

 2.3.3 Indices and sets..10

 2.3.4 Line names...12

 2.4 CMPL header..13

 3 Expressions... 14

 3.1 Overview... 14

 3.2 Array functions .. 14

 3.3 Mathematical functions... 15

 3.4 Type casts..16

 3.5 String operations.. 17

 3.6 Set functions ... 19

 4 Input and output operations .. 19

 4.1 Error and user messages...20

 4.2 Readcsv and readstdin.. 20

 4.3 Include ... 21

 5 Statements ... 22

 5.1 parameters and variables section...22

 5.2 objectives and constraints section ...22

 6 Control structure.. 24

 6.1 Overview... 24

 6.2 Control header... 24

 6.2.1 Iteration headers.. 24

 6.2.2 Condition headers... 25

 6.2.3 Local assignments ..26

 6.3 Alternative bodies ..26

 6.4 Control statements... 27

 6.5 Specific control structures... 27

 6.5.1 For loop..27

 6.5.2 If-then clause... 28

 6.5.3 Switch clause..29

 6.5.4 While loop.. 30

 6.6 Set and sum control structure as expression.. 30

 7 Matrix-Vector notations...32

 8 Automatic model reformulations ...35

 8.1 Overview... 35

 8.2 Matrix reductions..35

 8.3 Equivalent transformations of Variable Products ...35

 8.3.1 Variable Products with at least one binary variable.. 35

CMPL v.1.6.2 - Manual 2

 8.3.2 Variable Product with at least one integer variable.. 36

 9 CMPL as command line tool ... 37

 9.1 Usage ... 37

 9.2 Input and output file formats.. 39

 9.2.1 Overview.. 39

 9.2.2 CMPL... 40

 9.2.3 MPS... 41

 9.2.4 Free - MPS..41

 9.2.5 OSiL...42

 9.2.6 OSoL..43

 9.2.7 MPrL.. 44

 9.2.8 OSrL.. 46

 9.2.9 GLPK plain text (result) format...48

 9.2.10 CPLEX solution file format ...48

 9.2.11 SCIP solution file format ... 49

 9.3 Using CMPL with several solvers.. 49

 9.3.1 COIN-OR OSSolverService... 49

 9.3.2 GLPK..51

 9.3.3 Gurobi..51

 9.3.4 SCIP...52

 9.3.5 CPLEX.. 53

 9.3.6 Other solvers.. 54

 9.4 Using CMPL with Coliop...54

 10 Examples...56

 10.1 Selected decision problems... 56

 10.1.1 The diet problem ..56

 10.1.2 Production mix..58

 10.1.3 Production mix including thresholds and step-wise fixed costs ...60

 10.1.4 The knapsack problem...62

 10.1.5 Transportation problem..65

 10.1.6 Quadratic assignment problem...67

 10.1.7 Generic travelling salesman problem...70

 10.2 Using CMPL as a pre-solver .. 72

 10.2.1 Solving the knapsack problem ...72

 10.2.2 Finding the maximum of a concave function using the bisection method74

 10.3 Several selected CMPL applications ... 75

 10.3.1 Calculating the Fibonacci sequence.. 75

 10.3.2 Calculating primes...76

 11 Authors and Contact...77

 12 Appendix... 78

 12.1 Selected CBC parameters.. 78

 12.2 Selected GLPK parameters.. 91

CMPL v.1.6.2 - Manual 3

 1 About CMPL

CMPL (<Coliop|Coin> Mathematical Programming Language) is a mathematical programming language and

a system for mathematical programming and optimization of linear optimization problems.

The CMPL syntax is similar in formulation to the original mathematical model but also includes syntactic ele -

ments from modern programming languages. CMPL is intended to combine the clarity of mathematical mod-

els with the flexibility of programming languages.

CMPL executes the COIN-OR OSSolverService, GLPK, Gurobi, SCIP or CPLEX directly to solve the generated

model instance. Because it is also possible to transform the mathematical problem into MPS, Free-MPS or

OSiL files, alternative solvers can be used.

CMPL is an open source project licensed under GPL. It is written in C++ and is available for most of the rel -

evant operating systems (Windows, OS X and Linux).

CMPL is a COIN-OR project initiated by the Technical University of Applied Sciences Wildau and the Institute

for Operations Research and Business Management at the Martin Luther University Halle-Wittenberg.

For further information please visit the CMPL website (www.coliop.org).

 2 CMPL elements

 2.1 General structure of a CMPL model

The structure of a CMPL model follows the standard model of linear programming (LP), which is defined by a

linear objective function and linear constraints. Apart from the variable decision vector x all other compon-

ents are constant.

cT⋅x→max !
s.t.
A⋅x≤b
x≥0

A CMPL model consists of four sections, the parameters section, the variables section, the object

ives section and the constraints section, which can be inserted several times and mixed in a different

order. Each sector can contain one or more lines with user-defined expressions.

parameters:

 # definition of the parameters

variables:

 # definition of the variables

objectives:

 # definition of the objective(s)

constraints:

 # definition of the constraints

CMPL v.1.6.2 - Manual 4

A typical LP problem is the production mix problem. The aim is to find an optimal quantity for the products,

depending on given capacities. The objective function is defined by the profit contribution per unit c and the

variable quantity of the products x. The constraints consist of the use of the capacities and the ranges for

the decision variables. The use of the capacities is given by the product of the coefficient matrix A and the

vector of the decision variables x and restricted by the vector of the available capacities b.

The simple example:

1⋅x1+2⋅x 2+3⋅x3→max !
s.t.
5.6⋅x1+7.7⋅x 2+10.5⋅x 3≤15
9.8⋅x1+4.2⋅x2+11.1⋅x3≤20
0≤xn ; n=1(1)3

can be formulated in CMPL as follows:

parameters:

 c[] := (1, 2, 3);

 b[] := (15, 20);

 A[,] := ((5.6, 7.7, 10.5),

 (9.8, 4.2, 11.1));

variables:

 x[defset(c[])]: real;

objectives:

 c[]T * x[] > max;

constraints:

 A[,] * x[] <= b[];

 x[] >= 0;

 2.2 Keywords and other syntactic elements

Keywords
parameters, variables, objectives,

constraints
section markers

real, integer, binary types of variable

real, integer, binary, string, set types only used for type casts

max, min objective senses

set, in, element, len, defset key words for sets

max, min, count, format, type functions for parameter expressions

sqrt, exp, ln, lg, ld, srand, rand,

sin, cos, tan, acos, asin, atan, sinh,

cosh, tanh, abs, ceil, floor, round

mathematical functions that can be used for para-

meter expressions

CMPL v.1.6.2 - Manual 5

include include of CMPL file

readcsv, readstdin data import from a CSV file or from user input

error, echo error and user message

sum summation

continue, break, default, repeat key words for control structures

Arithmetic operators
+ signs for parameters or addition/subtraction

^ to the power of

* / multiplication and division

div mod integer division and remainder on division

:= assignment operator

Condition operators
= <= >= conditions for constraints, while-loops and if-then

clauses

== < > != <> additional conditions in while-loops and if-then

clauses

&& || ! logical operations (and, or, not)

Other syntactic elements
() - arithmetical bracketing in constant expressions

- lists for initialising vectors of constants

- parameters for constant functions

- increment in an algorithmic set

[] - indexing of vectors

- range specification in variable definitions

{ } - control structures

.. - algorithmic set (e.g. range for indices or loop coun-

ters)

- range specification in variable definitions

, - element separation in an initialisation list for

 constant vectors and enumeration sets

- separation of function parameters

- separation of indices

- separation of loop heads in a loop

: - mark indicating beginning of sections

- definition of variables

- definition of parameter type

- separation of loop header from loop body

- separation of line names

| - separation of alternative blocks in a control struc-

ture

CMPL v.1.6.2 - Manual 6

; - mark indicating end of a statement - every state-

ment is to be closed by a semicolon

- comment (up to end of line)

/* */ - comment (between /* and */)

 2.3 Objects

 2.3.1 Parameters

A parameters section consists of parameter definitions and assignments to parameters. A parameter can

only be defined within the parameters section using an assignment.

Note that a parameter can be used as a constant in a linear optimization model as coefficients in objectives

and constraints. Otherwise parameters can be used like variables in programming languages. Parameters are

usable in expressions, for instance in the calculation and definition of other parameters. A user can assign a

value to a parameter and can then subsequently change the value with a new assignment.

A parameter is identified by name and, if necessary, by one or more indices. A parameter can be a scalar or

an array of parameter values (e.g. vector, matrix or another multidimensional construct). A parameter is

defined by an assignment with the assignment operator :=. The type of a parameter is defined by the as-

signed data. Possible types are real, integer, binary, string and set.

Usage:

name := scalarExpression;

name[index] := scalarExpression;

name[[set]] := arrayExpression;

name Name of the parameter

index A position in an array of parameters

The index can be an integer or a string expression. For multidimensional

arrays it is necessary to set the index for every dimension separated by

commas.

scalarExpression A scalar parameter or a single part of an array of parameters is assigned a

single integer or real number, a single string, the scalar result of a math-

ematical function.

set An optional set expression for the definition of the dimension of the array

A set is a collection of distinct objects. Distinction can be made between

enumeration sets, algorithmic sets and sets which are based on set oper-

ations like unions or intersections.

CMPL v.1.6.2 - Manual 7

arrayExpression A non-scalar expression consists of a list of scalarExpressions or

arrayExpression. The elements of the list are separated by commas

and imbedded in brackets.

The elements of the list can also be sets. But it is not possible to mix set

and non-set expressions.

If an array contains only one element, then it is necessary to include an

additional comma behind the element. Otherwise the expression is inter-

preted as an arithmetical bracket.

Examples:
k := 10; parameter k with value 10

k[1..5] := (0.5, 1, 2, 3.3, 5.5);

k[] := (0.5, 1, 2, 3.3, 5.5);
vector of parameters with 5 elements

A[]:= (16, 45.4); definition of a vector with two integer values a[1]=16

and a[2]=45.

a[,] := ((5.6, 7.7, 10.5),

 (9.8, 4.2, 11.1));
matrix with 2 rows and 3 columns

b[] := (22 ,); definition of the vector b with only one element.

b[] := (22); causes an error: array dimensions don't

match, since (22) is not interpreted as an array but

as an assignment of a scalar expression.

products := set("bike1", "bike2");

machineHours[products]:= (5.4, 10);
defines a vector for machine hours based on the set
products

myString := "this is a string"; string parameter

q := 3; parameter q with value 3

g[1..q] := (1, 2, 3); usage of q for the definition of the parameter g

x := 1(1)2;

y := 1(1)2;

z := 1(1)2;

cube[x,y,z]:= (((1,2),(3,4)) ,

 ((5,6),(7,8)));

definition of a parameter cube that is based on the

sets x,y and z.

If a name is used for a defined parameter, different usages of this name with indices can only refer to para -

meters, but not to model variables (e.g. if a[1] is a parameter, then a[2], a or a[1,1] can only be de-

fined as parameter and not as model variables. a can also not be used as a local parameter like a loop

counter).

A special kind of parameter is local parameters, which can only be defined within the head of a control struc -

ture. A local parameter is only valid in the body of the control structure and can be used like any other para -

meter. Only scalar parameters are permitted as local parameters. The main application of local parameters is

loop counters iterated over a set.

CMPL v.1.6.2 - Manual 8

 2.3.2 Variables

The variables section is intended to declare the variables of a decision model, which are necessary

for the definition of objectives and constraints in the decision model. A model variable is identified by

name and, if necessary, by an index. A type must be specified. A model variable can be a scalar or a part of

a vector, a matrix or another array of variables. A variable cannot be assigned a value.

Usage:

variables:

name : type [[[lowerBound]..[upperBound]]];

name[index] : type [[[lowerBound]..[upperBound]]];

name[set] : type [[[lowerBound]..[upperBound]]];

name name of model variable

type type of model variable.

Possible types are real, integer, binary.

[lowerBound..upperBound] optional parameter for limits of model variable

lowerBound and upperBound must be a real or integer expres-

sion. For the type binary it is not possible to specify bounds.

Examples:

x: real; x is a real model variable with no ranges

x: real[0..100]; x is a real model variable, 0≤x≤100

x[1..5]: integer[10..20]; vector with 5 elements, 10≤x n≤20 ; n=1 (1)5

x[1..5,1..5,1..5]: real[0..]; a three-dimensional array of real model variables with

125 elements identified by indices,

xi , j ,k≥0 ; i , j , k=1(1)5

parameters:

prod := set("bike1", "bike2");

variables:

x[prod]: real[0..];

defines a vector of non-negative real model variables

based on the set prod

y: binary; x is a binary model variable y∈{0,1}

Different indices may cause model variables to have different types. (e.g. the following is permissible: vari-

ables: x[1]: real; x[2]: integer;)

If a name is used for a model variable definition, different usages of this name with indices can only refer to

model variables and not to parameters (e.g. if x[1]is a model variable, then x[2], x or x[1,1] can

only be defined as model variables).

CMPL v.1.6.2 - Manual 9

 2.3.3 Indices and sets

Sets are used for the definitions of arrays of parameters or model variables and for the iterations in loops.

Indices are necessary to identify an element of an array like a vector or matrix of parameters or model vari -

ables. A set is a collection of distinct integer and string elements. Sets can be defined by an enumeration of

elements or by algorithms within the parameters section. It is also possible to build sets using set opera-

tions like condition sets or unions or intersections of defined sets. A set can be stored in a scalar parameter

or in an element of an array of parameters.

Usage of set definitions:

startNumber(in/decrementor)endNumber #algorithmic set

[startNumber]..[endNumber] #algorithmic set

.integer. #algorithmic set

.string. #algorithmic set

set(listOfIntAndStrings) #enumeration set

startNumber(in/decrementor)endNumber set of integers based on an algorithm

The set starts at the startNumber, is changed by an in

crementer or decrementer at every iteration and

ends at the endNumber.

startNumber..endNumber set of integers based on an algorithm

The set starts at the startNumber, is changed by the

number one at every iteration and ends at the endNum
ber.

startNumber and endNumber are optional elements.

startNumber.. infinite set with all integers greater than or equal to
startNumber

..endNumber infinite set with all integers less than or equal to
endNumber

.. infinite set with all integers and strings

.integer. infinite set with all integers

.string. infinite set with all strings

listOfIntAndStrings elements of an enumeration set

An enumeration set consists of one or more integer ex-

pressions or string expressions separated by commas and

embedded in brackets, and is described by the key word

set.

It is possible to define an empty set using an empty array

within the statement set().

CMPL v.1.6.2 - Manual 10

Examples:

s:=..; s is assigned an infinite set of all integers and strings

s:=..6; s is assigned s∈(… , 4,5,6)
s:=6..; s is assigned s∈(6,7,8 ,…)
s:=0..6;

s:=0(1)6;
s is assigned s∈(0,1 ,… ,6)

s:=10(2)4; s is assigned s∈(10,8,6, 4)
prod := set("bike1", "bike2"); enumeration set of strings

a:= set(1, "a", 3, "b", 5, "c");

x[a]:=(10,20,30,40,50,60);

enumeration set of strings and integers

vector x identified by the set a is assigned an integer

vector

echo x[1];

echo x["a"];

{i in a: echo x[i];}

The following user messages are displayed:
10

20

10 20 30 40 50 60

Usage of set operations and set construction:

set{ setIteration , condition: localParameter }; #condition set

set1 + set2; #union set

set1 * set2; #intersection set

Usage set operations and set construction:

set1 + set2 union of set1 and set2

set1 * set2 intersection of set1 and set2

set{ setIteration, condition: param }The local parameter param is to be used for the definition

of an iteration over a set (defined by setIteration)

and is to be evaluated in the condition condition. The

result is a set of all elements which are in the iterated set

and fulfil the condition.

Examples:

s1 := set("a","b","c","d");

s2 := set("a","e","c","f");

s3 := s1 + s2;

s4 := s1 * s2;

s3 is assigned ("a","b","c","d","e","f")

s4 is assigned ("a", "c")

s5 := set{i in 1..10, i mod 2 = 0: i}; s5 is assigned (2,4,6,8,10)

s6 := set{i in s1, !(i element s2): i}; s6 is assigned ("b", "d")

CMPL v.1.6.2 - Manual 11

 2.3.4 Line names

Line names are useful in huge models to provide a better overview of the model. In CMPL a line name can

be defined by characters, numbers and the underscore character _ followed by a colon. Names that are

used for parameters or model variables cannot be used for a line name. Within a control structure a line

name can include the current value of local parameters. This is especially useful for local parameters which

are used as a loop counter.

Usage:

lineName:

lineNamek:

lineName1:

lineName2:

loopName { controlStructure }

lineName: Defines a line name for a single row of the model. If more than one
row is to be generated by CMPL, then the line names are extended by
numbers in natural order.

k k is replaced by the value of the local parameter k

1 1 is replaced by the number of the current line of the matrix.

2 In an implicit loop 2 is replaced by the specific value of the free in-
dex.

loopName{controlStructure} Defines a line name subject to the following control structure. The val-
ues of loop counters in the control structure are appended automatic-
ally.

Examples:

parameters:

A[1..2,1..3] :=((1,2,3),(4,5,6));

b[1..2] := (100,100);

c[1..3] := (20,10,10);

variables:

x[1..3]: real[0..];

objectives:

profit: c[]T *x[] >max; generates a line profit

constraints:

restriction: A[,] * x[] <=b[]; generates 2 lines restriction_1

 restriction_2

CMPL v.1.6.2 - Manual 12

{ i:=1(1)2:

restriction_i: A[,]*x[]<=b[];

}

generates 2 lines restriction_1

restriction_2

restriction { i:=1(1)3:

A[,]*x[]<=b[];

}

generates 2 lines restriction_1

restriction_2

parameters:

products:=set("P1", "P2", "P3");

machines:=set("M1","M2");

A[machines,products] :=((1,2,3),

(4,5,6));

b[machines] := (100,100);

c[products] := (20,10,10);

variables:

x[products]: real[0..];

objectives:

profit: c[]T *x[] >max;

constraints:

capa_2: A[,] * x[] <=b[];

generates 3 lines profit

capa_M1

capa_M2

 2.4 CMPL header

A CMPL header is intended to define CMPL options, solver options and display options for the specific CMPL

model. The elements of the CMPL header are not part of the CMPL model and are processed before the

CMPL model is interpreted.

Usage CMPL header:

%arg optionName [optionValue] #CMPL options

%opt solverName solverOption [solverOptionValue] #Solver options

%display var|con name[*] [name1[*]] ... #Display options

optionName [optionValue] All CMPL command line arguments excluding a new defini-

tion of the input file. Please see subchapter 9.1

solverName In this version are only solver options for cbc, glpk and

gurobi supported.

solverOption [solverOptionValue] Please see to the solver specific parameters subchapter 12

Appendix

name[*] [name1[*]] Sets variable name(s) or constraint name(s) that are to be

displayed in one of the solution reports. Different names

are to be separated by spaces.

If name is combined with the asterix * then all variables

or constraints with names that start with name are selec-

ted.

CMPL v.1.6.2 - Manual 13

Examples:

%arg solver glpk GLPK is used as the solver

%arg solutionAscii CMPL writes the optimization results in an ASCII file.

%arg solver cbc

%arg solverUrl ↵

 http://194.95.44.187:8080/ ↵

 OSServer/services/OSSolverService

CBC is to be executed on a OSServer located at

194.95.44.187.

%opt cbc threads 2 If CBC is chosen as solver then 2 threads are executed.

%opt glpk nopresol If GLPK is used then the presolver is switched off.

%display var x Only the variable x is to be displayed in the solution re-

port.

%display con x* y* All constraints with names that start with x or y are

shown in the solution report.

 3 Expressions

 3.1 Overview

Expressions are rules for computing a value during the run-time of a CMPL program. Therefore an expres-

sion generally cannot include a model variable. Exceptions to this include special functions whose value de-

pends solely on the definition of a certain model variable. Expressions are a part of an assignment to a para-

meter or are usable within the echo function. Assignments to a parameter are only permitted within the

parameters section or within a control structure. An expression can be a single number or string, a func-

tion or a set. Therefore only real, integer, binary, string or set expressions are possible in CMPL. An expres-

sion can contain the normal arithmetic operations.

 3.2 Array functions

With the following functions a user may identify specific characteristics of an array or a single parameter or

model variable.

Usage:

max(expressions) #returns the numerically largest of a list of values

min(expressions) #returns the numerically smallest of a list of values

count(parameter|variable|parameterArray|variableArray)

#returns the count of elements or 0 if the parameter

#or the variable does not exist

CMPL v.1.6.2 - Manual 14

expressions can be a list of numerical expressions separated by commas or can be a multi-
dimensional array of parameters

Examples:

a[]:= (1,2,5);

echo max(a[]); returns user message 5

echo min(a[]); returns user message 1

echo count(a[]); returns user message 3

echo count(a[1]);

echo count(a[5]);

echo count(a[]);

returns user message 1

returns user message 0

returns user message 3

b[,]:=((1,2,3,4), (2,3,4,5));

echo count(b[1,]);

echo count(b[,1]);

echo count(b[,]);

echo count(b[1,35]);

user messages:

4 - 4 elements in the first row
2 - 2 elements in the first column
8 - 4 x 2 elements in the entire matrix
0 - parameter does not exist

 3.3 Mathematical functions

In CMPL there are the following mathematical functions which can be used in expressions. Excluding div

and mod all these functions return a real value.

Usage:
p div q #integer division

p mod q #remainder on division

sqrt(x) #sqrt function

exp(x) #exp function

ln(x) #natural logarithm

lg(x) #common logarithm

ld(x) #logarithm to the basis 2

srand(x) #Initialisation of a pseudorandom number generator using the

argument x. Returns the value of the argument x.

rand(x) #returns an integer random number in the range 0<= rand <= x

sin(x) #sine measured in radians

cos(x) #cosine measured in radians

tan(x) #tangent measured in radians

acos(x) #arc cosine measured in radians

asin(x) #arc sine measured in radians

atan(x) #arc tangent measured in radians

sinh(x) #hyperbolic sine

cosh(x) #hyperbolic cosine

tanh(x) #hyperbolic tangent

CMPL v.1.6.2 - Manual 15

abs(x) #absolute value

ceil(x) #smallest integer value greater than or equal to a given value

floor(x) #largest integer value less than or equal to a given value

round(x) #simple round

p, q integer expression

x real or integer expression

Examples:

c[1] := sqrt(36);

c[2] := exp(10);

c[3] := ln(10);

c[4] := lg(10000);

c[5] := ld(8);

c[6] := rand(10);

c[7] := sin(2.5);

c[8] := cos(7.7);

c[9] := tan(10.1);

c[10] := acos(0.1);

c[11] := asin(0.4);

c[12] := atan(1.1);

c[13] := sinh(10);

c[14] := cosh(3);

c[15] := tanh(15);

c[16] := abs(12.55);

c[17] := ceil(12.55);

c[18] := floor(12.55);

c[19] := round(12.4);

c[20] := 35 div 4;

c[21] := 35 mod 4;

value is:

6.000000

22026.465795

2.302585

4.000000

3.000000

7.000000 (random number)

0.598472

0.153374

0.800789

1.470629

0.411517

0.832981

11013.232875

10.067662

1.000000

12.550000

13.000000

13.000000

12.000000

8

3

 3.4 Type casts

It is useful in some situations to change the type of an expression into another type. A set expression can

only be converted to a string. A string can only be converted to a numerical type if it contains a valid numer-

ical string. Every expression can be converted to a string.

Usage:

type(expression) #type cast

type Possible types are: real, integer, binary, string.

expression expression

CMPL v.1.6.2 - Manual 16

Examples:
returns the user messages:

a := 6.666;

echo integer(a);

echo binary(a);

a:=0;

echo binary(a);

a := 6.6666;

echo string(a);

7

1

0

6.666600

b := 100;

echo real(b);

echo binary(b);

b := 0;

echo binary(b);

b:= 100;

echo string(b);

100.000000

1

0

100

c :=1;

echo real(c);

echo integer(c);

echo string(c);

1.000000

1

1

e := "1.888";

echo real(e);

echo integer(e);

echo binary(e);

e := "";

echo binary(e);

1.888000

1

1

0

 3.5 String operations

Especially for displaying strings or numbers with the echo function there are string operations to concatenate

and format strings.

Usage:

expression + expression #concat strings if one expression

 #has the type string

format(formatString, expression) #converts a number into a

 #string using a format string

len(stringExpression) #length of a string

type(expression) #returns the type of the expression

#as a string

CMPL v.1.6.2 - Manual 17

expression expression which is converted to string

Cannot be a set expression. Such an expression must be converted to a string

expression by a type cast

formatString a string expression containing format parameters

CMPL uses the format parameters of the programming language C++. For fur-

ther information please consult a C++ manual.

Usage format parameters:

%<flags><width><.precision>specifier

specifier

d integer

f real

s string

flags

 left-justify

+ Forces the result to be preceded by a plus or minus sign (+ or) even for positive numbers.

By default only negative numbers are preceded with a sign.

width

(number) Minimum number of characters to be printed. If the value to be printed is shorter than this

number, the result is padded with blank spaces. The value is not truncated even if the result is

larger.

*
The width is not specified in the format string, but as an additional integer value argument

preceding the argument that has to be formatted.

.precision

.number For integer specifiers d: precision specifies the minimum number of digits to be written. If the

value to be written is shorter than this number, the result is padded with leading zeros. The

value is not truncated even if the result is longer. A precision of 0 means that no character is

written for the value 0.

For f: this is the number of digits to be printed after the decimal point.

For s: this is the maximum number of characters to be printed. By default all characters are

printed until the ending null character is encountered.

When no precision is specified, the default is 1. If the period is specified without an explicit

value for precision, 0 is assumed.

.* The precision is not specified in the format string, but as an additional integer value argument

preceding the argument that has to be formatted.

Examples:

a:=66.77777;

echo type(a)+ " " + a + " to string

" + format("%10.2f", a);
returns the user message
real 66.777770 to string 66.78

CMPL v.1.6.2 - Manual 18

If you would like to display an entire set concatenating with a string, then you have to use a string cast of

your set.

Example:

s:= set(7, "qwe", 6, "fe", 5, 8);

echo "set is " + string(s);
returns the user message
set is set(7, "qwe", 6, "fe", 5, 8)

 3.6 Set functions

With the following functions a user can identify the specific characteristics of a set.

Usage:

len(set) #count of the elements of the set returns an integer

defset(array) #returns the set of the first free index of the array

 element element set #returns 1 if the element is an element of the set

#returns 0 otherwise

array array of parameters or model variables with at least one

free index.

set set expression

element an integer or string that is to be checked

Examples:

a:= set(1, "a", 3, "b", 5, "c");

echo "length of the set: "+ len(a); returns the user message length of the set: 6

A[,] := ((1,2,3,4,5),

(1,2,3,4,5,6,7));

row := defset(A[,]);

col := defset(A[1,]);

row is assigned the set 1..2

col is assigned the set 1..5

a:= set(1, "a", 3, "b", 5, "c");

echo "a" element a;

echo 5 element a;

echo "bb" element a;

returns the user message 1

returns the user message 1

returns the user message 0

 4 Input and output operations

The CMPL input and output operations can be separated into message function, a function that reads the ex -

ternal data and the include statement that reads external CMPL code.

CMPL v.1.6.2 - Manual 19

 4.1 Error and user messages

Both kinds of message functions display a string as a message. In contrast to the echo function an error

message terminates the CMPL program after displaying the message.

Usage:

error expression; #error message terminates the CMPL program

echo expression; #user message

expression A message that is to be displayed. If the expression is not a string it will be auto -

matically converted to string.

Examples:

{a<0: error "negative value"; } If a is negative an error message is displayed and

the CMPL program will be terminated.

echo "constant definitions finished"; A user message is displayed.

{ i:=1(1)3: echo "value:" + i;} The following user messages are displayed:
value: 1

value: 2

value: 3

 4.2 Readcsv and readstdin

CMPL has two functions that enable a user to read external data. The function readstdin is designed to

read a user's numerical input and assign it to a parameter. The function readcsv reads numerical data from

a CSV file and assigns it to a vector or matrix of parameters.

Usage:

readstdin(message); #returns a user numerical input

readcsv(fileName); #reads numerical data from a csv file

 #for assigning these data to an array

message string expression for the message that is to be displayed

fileName string expression for the file name of the CSV file (relative to the directory in

which the current CMPL file resides)

In CMPL CSV files that use a comma or semicolon to separate values are permit-

ted.

CMPL v.1.6.2 - Manual 20

Example:
a := readstdin("give me a number"); reads a value from stdin to be used as value for a.

Only recommended when using CMPL as a command

line interpreter.

The following example uses three CSV files:

1;2;3 c.csv

5.6;7.7;10.5

9.8;4.2;11.1
a.csv

15;20 b.csv

parameters:

c[] := readcsv("c.csv");

b[] := readcsv("b.csv");

A[,] := readcsv("a.csv");

variables:

x[defset(c[])]: real[0..];

objectives:

c[]T * x[]>max;

constraints:

A[,] * x[] <= b[];

Using readcsv CMPL generates the

following model:

1⋅x 12⋅x23⋅x 3 max !
s.t.
5.6⋅x17.7⋅x210.5⋅x 3≤15
9.8⋅x14.2⋅x211.1⋅x3≤20
x j≥0 ; j=1 13

 4.3 Include

Using the include directive it is possible to read external CMPL code in a CMPL program. The CMPL code in

the external CMPL file can be used by several CMPL programs. This makes sense for sharing basic data in a

couple of CMPL programs or for the multiple use of specific CMPL statements in several CMPL programs. The

include directive can stand in any position in a CMPL file. The content of the included file is inserted at this

position before parsing the CMPL code. Because include is not a statement it is not closed with a semi-

colon.

Usage:

include "fileName" #include external CMPL code

fileName file name of the CMPL file (relative to the directory in which the current CMPL file

resides)

Note that fileName can only be a literal string value. It cannot be a string ex-

pression or a string parameter.

The following CMPL file "const-def.gen" is used for the definition of a couple of parameters:
c[] := (1, 2, 3);

b[] := (15, 20);

A[,] := ((5.6, 7.7, 10.5),

 (9.8,4.2,11.1));

constdef.gen

CMPL v.1.6.2 - Manual 21

parameters:

 include "constdef.cmpl"

variables:

 x[defset(c[])]: real[0..];

objectives:

 c[]T * x[] > max;

constraints:

 A[,] * x[] <= b[];

Using the include statement CMPL generates the

following model:

1⋅x1+ 2⋅x2+ 3⋅x3 → max !
s.t.
5.6⋅x1+ 7.7⋅x2+ 10.5⋅x 3≤15
9.8⋅x1+ 4.2⋅x 2+ 11.1⋅x3≤20
x j≥0 ; j=1 (1)3

Using the keyword include - it is possible to in-

clude the CMPL expressions in file "const-def.cmpl"

in another CMPL file.

 5 Statements

As mentioned earlier, every CMPL program consists of at least one of the following sections: parameters:,

variables:, objectives: and constraints:. Each section can be inserted several times and mixed in

a different order. Every section can contain special statements.

Every statement finishes with a semicolon.

 5.1 parameters and variables section

Statements in the parameters section are assignments to parameters. These assignments define paramet-

ers or reassign a new value to already defined parameters. Statements in the variables sections are

definitions of model variables.

All the syntactic and semantic requirements are described in the chapters above.

 5.2 objectives and constraints section

In the objectives and constraints sections a user has to define the content of the decision model in

linear terms. In general, an objective function of a linear optimization model has the form:

c1⋅x1c2⋅x 2cn⋅xn max ! or min!

with the objective function coefficient c j and model variables x j . Constraints in general have the

form:

k11⋅x1k 12⋅x 2k 1n⋅x n ≤ b1

k 21⋅x1k 22⋅x 2k2n⋅xn ≤ b2

⋮
k m1⋅x1km2⋅x2k mn⋅xn ≤ bm

with constraint coefficients k ij and model variables x j .

CMPL v.1.6.2 - Manual 22

An objective or constraint definition in CMPL must use exactly this form or a sum loop that expresses this

form. A coefficient can be an arbitrary numerical expression, but the model variables cannot stand in expres-

sions that are different from the general form formulated. The rule that model variables cannot stand in

bracketed expressions serves to enforce this.

Please note, it is not permissible to put model variables in brackets!

The example (a and b are parameters, x and y model variables)

a*x + a*y + b*x + b*y

can be written alternatively (with parameters in brackets) as:

(a + b)*x + (a + b)*y

but not (with model variables in brackets) as:

a*(x + y) + b*(x + y)

For the definition of the objective sense in the objectives section the syntactic elements >max or >min

are used. A line name is permitted and the definition of the objective function has to have a linear form.

Usage of an objective function:

objectives:

[lineName:] linearTerm ->max|->min;

lineName optional element

description of objective

linearTerm definition of linear objective function

The definition of a constraint has to consist of a linear definition of the use of the constraint and one or two

relative comparisons. Line names are permitted.

Usage of a constraint:

constraints:

[lineName:] linearTerm <=|>=|= linearTerm [<=|>=|= linearTerm];

lineName optional element

description of objective

linearTerm linear definition of the left-hand side or the right-hand side of a constraint

CMPL v.1.6.2 - Manual 23

 6 Control structure

 6.1 Overview

A control structure is imbedded in { } and defined by a header followed by a body separated off by :.

General usage of a control structure:

[controlName]|[sum|set] { controlHeader : controlBody }

A control structure can be started with an optional name for the control structure. In the objectives and

in the constraints section this name is also used as the line name.

It is possible to define different kinds of control structures based on different headers, control statements

and special syntactical elements. Thus the control structure can used for for loops, while loops, if-then-else

clauses and switch clauses. Control structures can be used in all sections.

A control structure can be used for the definition of statements. In this case the control body contains one or

more statements which are permissible in this section.

It is also possible to use control structures for sum and set as expressions. Then the body contains a single

expression. A control structure as an expression cannot have a name because this place is taken by the

keyword sum or set. Moreover a control structure as an expression cannot use control statements because

the body is an expression and not a statement.

 6.2 Control header

A control header consists of one or more control headers. Where there is more than one header, the headers

must be separated by commas. Control headers can be divided into iteration headers, condition headers,

local assignments and empty headers.

 6.2.1 Iteration headers

Iteration headers define how many repeats are to be executed in the control body. Iteration headers are

based on sets.

Usage:

localParam :=|in set # iteration over a set

localParam name of the local parameter

set The defined local parameter iterates over the elements of the set and the body is

executed for every element in the set.

CMPL v.1.6.2 - Manual 24

Examples:

s1 := set("a","b","c","d");

{k in s1: ... } k is iterated over all elements of the set s1

s2 := 1(1)10;

{k in s2: ... } k is iterated in the sequence k ∈{1,2,… ,10}

s3 := 2..6;

{k := s3: ... } k is iterated in the sequence k ∈{2,3,… , 6}

 6.2.2 Condition headers

A condition returns 1(True) or 0(False) subject to the result of a comparison or the properties of a para-

meter or a set. If the condition returns 1(True) the body is executed once or else the body is skipped.

Comparison operators for parameters:

=, ==

<>, !=

<

>

<=

>=

equality

inequality

less than

greater than

equal to or less than

equal to or greater than

Comparison operators for sets:

=

==

<>

!=

<

>

<=

>=

equality

tests whether the iteration order of two sets is equal

inequality

tests whether the iteration order of two sets is not equal

subset or not equal

greater than

subset or equal

equal to or greater than

Logical operators:

&&

||

!

AND

OR

NOT

If a real or integer parameter is assigned 0, the condition returns 0 (false). Alternatively if the parameter

is assigned 1 the condition returns 1 (true).

Examples:

i:=1;

j:=2;

{i>j : … }

{!(i>j) : … }

{!i || j=2 : … }

{!i && j=2 : … }

condition is false
condition is true
condition is true
condition is false (!i is false, because i is not 0)

CMPL v.1.6.2 - Manual 25

 6.2.3 Local assignments

A local assignment as control header is useful if a user wishes to make several calculations in a local environ-

ment. Assigning expression to a parameter within the constraints section is generally not allowed with

the exception of a local assignment within a control structure. The body will be executed once.

Usage:

localParam := expression # assignment to a local parameter

localParam Defines a local parameter with this name.

expression Expression which is assigned to the local parameter.

Examples:

constraints:

{ k:=1 : … }
k is assigned 1 and used as local parameter within the

control structure.

 6.3 Alternative bodies

If a control header consists of at least one condition, it is possible to define alternative bodies. Structures

like that make sense if a user wishes to combine a for loop with an if-then clause.

The first defined body after the headers is the main body of the control structure. Subsequent bodies must

be separated by the syntactic element |. Alternative bodies are only executed if the main body is skipped.

Usage:

{ controlHeader: mainBody [| condition1: alternativeBody1]

[| ...] [| default: alternativeDefaultBody] }

controlHeader header of the control structure including at least one condition

The alternative bodies belong to last header of control header. This header

cannot be an assignment of a local parameter, because in this case the

main body is never skipped.

mainBody main body of control structure

condition1 Will be evaluated if alternative body is executed.

alternativeBody1 The first alternative body with a condition that evaluates to true is ex-

ecuted. The remaining alternative bodies are skipped without checking the

conditions.

alternativeDefaultBody If no condition evaluates to true then the alternative default body is ex-

ecuted. If the control structure has no alternative default body, then no

body is executed.

CMPL v.1.6.2 - Manual 26

 6.4 Control statements

It is possible to change or interrupt the execution of a control structure using the keywords continue,

break and repeat. A continue stops the execution of the specified loop, jumps to the loop header and

executes the next iteration. A break only interrupts the execution of the specified loop. The keyword re

peat starts the execution again with the referenced header.

Every control statement references one control header. If no reference is given, it references the innermost

header. Possible references are the name of the local parameter which is defined in this head, or the name

of the control structure. The name of the control structure belongs to the first head in this control structure.

Usage:

 continue [reference];

 break [reference];

 repeat [reference];

reference a reference to a control header specified by a name or a local parameter

break [reference] The execution of the body of the referenced head is cancelled. Remaining

statements are skipped.

If the referenced header contains iteration over a set, the execution for the

remaining elements of the set is skipped.

continue [reference] The execution of the body of the referenced head is cancelled. Remaining

statements are skipped.

If the referenced header contains iteration over a set, the execution is contin-

ued with the next element of the set. For other kinds of headers continue is

equivalent to break.

repeat [reference] The execution of the body of the referenced header is cancelled. Remaining

statements are skipped.

The execution starts again with the referenced header. The expression in this

header is to be evaluated again. If the header contains iteration over a set,

the execution starts with the first element. If this header is an assignment to

a local parameter, the assignment is executed again. If the header is a condi-

tion, the expression is to be checked prior to execution or skipping the body.

 6.5 Specific control structures

 6.5.1 For loop

A for loop is imbedded in { } and defined by at least one iteration header followed by a loop body separ-

ated off by :. The loop body contains user-defined instructions which are repeatedly carried out. The num-

ber of repeats is based on the iteration header definition.

CMPL v.1.6.2 - Manual 27

Usage:

{ iterationHeader [, iterationHeader1] [, ...] : controlBody }

iterationHeader

iterationHeader1
defined iteration headers

controlBody CMPL statements that are executed in every iteration

Examples:

{ i := 1(1)3 : ... } loop counter i with a start value of 1, an increment of 1

and an end condition of 3

{ i in 1..3 : ... } alternative definition of a loop counter; loop counter i

with a start value of 1 and an end condition of 3. (The in-

crement is automatically defined as 1)

products:= set("p1", "p2", "p3");

hours[products]:=(20,55,10);

{i in products:

 echo "hours of product " +

i + " : "+ hours[i];

}

for loop using the set products returns

user messages hours of product: p1 : 20

hours of product: p2 : 55

hours of product: p3 : 10

{i := 1(1)2:

 {j := 2(2)4: A[i,j] := i + j; }

}

defines A[1,2] = 3, A[1,4] = 5, A[2,2] = 4 and
A[2,4] = 6

Several loop heads can be combined. The above example can thus be abbreviated to:

{i := 1(1)2, j := 2(2)4:

A[i,j] := i + j;

}

defines A[1,2] = 3, A[1,4] = 5, A[2,2] = 4

and A[2,4] = 6

{i := 1(1)5, j := 1(1)i:

A[i,j] := i + j;

}

definition of a triangular matrix

 6.5.2 If-then clause

An if-then consists of one condition as control header and user-defined expressions which are executed if the

if condition or conditions are fulfilled. Using an alternative default body the if-then clause can be extended to

an if-then-else clause.

Usage:

{ condition: thenBody [| default: elseBody]}

CMPL v.1.6.2 - Manual 28

condition If the evaluated condition is true, the code within the body is executed.

thenBody This body is executed if the condition is true.

elseBody This body is executed if the condition is false.

Examples:
{i := 1(1)5, j := 1(1)5:

{i = j: A[i,j] := 1; }

{i != j: A[i,j] := 0; }

}

definition of the identity matrix with combined loops

and two if-then clauses

{i := 1(1)5, j := 1(1)5:

{i = j: A[i,j] := 1; |

 default: A[i,j] := 0; }

}

same example, but with one if-then-else clause

i:=10;

{ i<10: echo "i less than 10";

 | default: echo "i greater than 9";

}

example of an if-then-else clause

returns user message i greater than 9

sum{ i = j : 1 | default: 2 } conditional expression, evaluates to 1 if i = j, oth-

erwise to 2

 6.5.3 Switch clause

Using more than one alternative body the if-then clause can be extended to a switch clause.

Usage:

{ condition1: body1 [| condition2: body2>] [| ...] [| default: defaultBody]}

If the first condition returns TRUE, only body1 will be executed. Otherwise the next condition condi

tion1 will be verified. body2 is executed if all of the previous conditions are not fulfilled. If no condition

returns true, then the defaultBody is executed.

Example:

i:=2;

{ i=1: echo "i equals 1";

 | i=2: echo "i equals 2";

 | i=3: echo "i equals 3";

 | default: echo "any other value";

}

example of a switch clause
returns user message i equals 2

CMPL v.1.6.2 - Manual 29

 6.5.4 While loop

A while loop is imbedded in { } and defined by a condition header followed by a loop body separated off

by : and finished by the keyword repeat. The loop body contains user-defined instructions which are re-

peatedly carried out until the condition in the loop header is false.

Usage:

{ condition : statements repeat; }

condition If the evaluated condition is true, the code within the body is executed. This re-

peats until the condition becomes false.

statements one or more user-defined CMPL instructions

To prevent an infinite loop the statements in the control body must have an im-

pact on the condition.

Examples:

i:=2;

{i<=4:

A[i] := i;

 i := i+1;

repeat;

}

while loop with a global parameter

Can only be used in the parameters section, because

the assignment to a global parameter is not permitted in

other sections.

defines A[2] = 2, A[3] = 3 and A[4] = 4

{a := 1, a < 5:

echo a;

a := a + 1;

repeat;

}

while loop using a local parameter

Can be used in all sections.

returns user messages 1

2
3
4

{a:=1:

 xx {:

 echo a;

 a := a + 1;

 {a>=4: break xx;}

 repeat;

 }

}

Alternative formulation:

The outer control structure defines the local parameter a.

This control structure is used as a loop with a defined

name and an empty header. The name is necessary, be-

cause it is needed as reference for the break statement

in the inner control structure. (Without this reference the

break statement would refer to the condition a>=4)

 6.6 Set and sum control structure as expression

Starting with the keyword sum or the keyword set a control structure returns an expression. Only expres-

sions are permitted in the body of the control structure. Control statements are not allowed, because the

body cannot contain a statement. It is possible to define alternative bodies.

CMPL v.1.6.2 - Manual 30

Usage:

sum { controlHeader : bodyExpressions }

set { controlHeader : bodyExpressions }

controlHeader header of the control structure

The header of a sum or a set control structure is usually an iteration header,

but all kinds of control header can be used.

bodyExpressions user-defined expressions

A sum expression repeatedly summarises the user-defined expressions in the bodyExpressions. If the

body is never executed, it evaluates to 0. A set expression returns a set subject to the controlHeader

and the bodyExpressions. The element type included in bodyExpressions must be integer or string.

Examples:
x[1..3] := (2, 4, 6);

a := sum{i := 1(1)3 : x[i] }; a is assigned 12

products:= set("p1", "p2", "p3");

hours[products]:=(20,55,10);

totalHours:= sum{i in products: hours[i] }; totalHours is assigned 85

x[1..3,1..2]:=((1,2),(3,4),(5,6));

b:= sum{i := 1(1)3, j := 1(1)2: x[i,j] };

using sum with more than one con-

trol header

b is assigned 21.

s:=set();

d:= sum{i in s: i |default: 1 };
sums up all elements in the set s.

Since s is an empty set, d is as-

signed to the alternative default

value 1.

e:= set{i:= 1..10: i^2 }; e is assigned the set
(1, 4, 9, 16, 25, 36, 49,

64, 81, 100)

f:= set{i:= 1..100, round(sqrt(i))^2 = i: i }; f is assigned the set
(1, 4, 9, 16, 25, 36, 49,

64, 81, 100)

The sum expression can also be used in linear terms for the definition of objectives and constraints. In this

case the body of the control structure can contain model variables.

Examples:
parameters:

a[1..2,1..3] :=((1,2,3),(4,5,6));

b[1..2] := (100,100);

c[1..3] := (20,10,10);

CMPL v.1.6.2 - Manual 31

variables:

x[1..3]: real[0..];

objectives:

sum{j:=1..3: c[j] *x[j]}>max;
objective definition using a sum

20⋅x1+ 10⋅x2+ 10⋅x3 → max !

constraints:

{ i:=1..2:

 sum{j:=1..3: a[i,j] * x[j]}<= b[i];

}

constraints definition using a sum

1⋅x1+ 2⋅x 2+ 3⋅x3≤100
4⋅x1+ 5⋅x2+ 6⋅x3≤100

 7 Matrix-Vector notations

CMPL allows users to define objectives and constraints in a matrix-vector notation (e.g. matrix vector multi-

plication). CMPL generates all required rows and columns automatically by implicit loops.

Implicit loops are formed by matrices and vectors, which are defined by the use of free indices. A free index

is an index which is not specified by a position in an array. It can be specified by an entire set or without any

specification. But the separating commas between indices must in any case be specified. A multidimensional

array with one free index is always treated as a column vector, regardless of where the free index stands. A

column vector can be transposed to a row vector with T. A multidimensional array with two free indices is al-

ways treated as a matrix. The first free index is the row, the second the column.

Implicit loops are only possible in the objectives section and the constraints section.

Usage:

vector[[set]] #column vector

vector[[set]]T #transpose of column vector row vector

matrix[index, [set]] #column vector

matrix[[set], index] #also column vector

matrix[index, [set]]T #transpose of column vector row vector

matrix[[set], index]T #transpose of column vector row vector

 matrix[[set1], [set2]] #matrix

vector, matrix name of a vector or matrix

index a certain index value

[set] optional specification of a set for the free index

Examples:
x[] vector with free index across the entire defined area

x[2..5] vector with free index in the range 2 – 5

CMPL v.1.6.2 - Manual 32

A[,] matrix with two free indices

A[1,] matrix with one fixed and one free index; this is a column vector.

A[,1] matrix with one fixed and one free index; this is also a column vector.

The most important ways to define objectives and constraints with implicit loops are vector-vector multiplica-

tion and matrix-vector multiplication. A vector-vector multiplication defines a row of the model (e.g. an ob -

jective or one constraint). A matrix-vector multiplication can be used for the formulation of more than one

row of the model.

Usage of multiplication using implicit loops :

paramVector[[set]]T * varVector[[set]] #vectorvector multiplication

varVector[[set]]T * paramVector[[set]] #vectorvector multiplication

paramMatrix[[set1],[set2]] * varVector[[set2]]

#matrixvector multiplication

varVector[[set1]]T * paramMatrix[[set1],[set2]]

#matrixvector multiplication

paramVector name of a vector of parameters

varVector name of a vector of model variables

paramMatrix name of a matrix of parameters

T syntactic element for transposing a vector

Examples:

parameters:

a[1..2,1..3] :=((1,2,3),

(4,5,6));

b[1..2] := (100,100);

c[1..3] := (20,10,10);

variables:

x[1..3]: real[0..];

objectives:

c[]T * x[] >max;
objective definition using implicit loops

20⋅x110⋅x 210⋅x 3 max !

constraints:

a[,] * x[] <=b[];
constraint definition using implicit loops

1⋅x12⋅x 23⋅x3≤100
4⋅x 15⋅x26⋅x 3≤100

Aside from vector-vector multiplication and matrix-vector multiplication vector subtractions or additions are

also useful for the definition of constraints. The addition or subtraction of a variable vector adds new co-

lumns to the constraints. The addition or subtraction of a constant vector changes the right side of the con-

straints.

CMPL v.1.6.2 - Manual 33

Usage of additions or subtractions using implicit loops:

linearTerms + varVector[[set]] #variable vector addition

linearTerms - varVector[[set]] #variable vector subtraction

linearTerms + paramVector[[set]] #parameter vector addition

linearTerms - paramVector[[set]] #parameter vector subtraction

linearTerms other linear terms in an objective or constraint

Examples:

parameters:

a[1..2,1..3] :=((1,2,3),

(4,5,6));

b[1..2] := (100,100);

d[1..2] := (10,10);

c[1..3] := (20,10,10);

variables:

x[1..3]: real[0..];

objectives:

c[]T * x[] >max;

constraints:

a[,] * x[] + d[] <=b[];
constraints definition using implicit loops

1⋅x1+ 2⋅x 2+ 3⋅x3≤90
4⋅x 1+ 5⋅x2+ 6⋅x3≤90

equivalent to
a[,] * x[] <=b[] d[];

0 <= x[1..3]+y[1..3]+z[2]<= b[1..3]; implicit loops for a column vector

0 <= x[1] + y[1] + z[2] <= b[1];

0 <= x[2] + y[2] + z[2] <= b[2];

0 <= x[3] + y[3] + z[2] <= b[3];

equivalent formulation

parameters:

a[1..2,1..3] :=((1,2,3),

(4,5,6));

b[1..2] := (100,100);

d[1..2] := (10,10);

c[1..3] := (20,10,10);

variables:

x[1..3]: real[0..];

z[1..2]: real[0..];

objectives:

c[]T * x[] >max;

constraints:

a[,] * x[] + z[] <=b[];
constraints definition using implicit loops

1⋅x1+ 2⋅x 2+ 3⋅x3 + z1 ≤90
4⋅x 1+ 5⋅x2+ 6⋅x3 + z2 ≤90

CMPL v.1.6.2 - Manual 34

 8 Automatic model reformulations

 8.1 Overview

CMPL includes two types of automatic code generation which release the user from additional modelling

work. CMPL automatically optimizes the generated model by means of matrix reductions. The second type of

automatic code reformulations is the equivalent transformation of variable products.

 8.2 Matrix reductions

Matrix reductions are subject to constraints of a specific form.

a) If a constraint contains only one variable or only one of the variables with a coefficient not equal to

0, then the constraint is taken as a lower or upper bound.

For the following summation (x[] is a variable vector)

sum{i:=1(1)2: (i1) * x[i]} <= 10;

no matrix line is generated; rather x[2] has an upper bound of 10.

b) If there is a constraint in the coefficients of all variables proportional to another constraint, only the

more strongly limiting constraint is retained.

Only the second of the two constraints (x[] is a variable vector)

2*x[1] + 3*x[2] <= 20;

10*x[1] + 15*x[2] <= 50;

is used in generating a model line.

 8.3 Equivalent transformations of Variable Products

A product of variables cannot be a part of an LP or MIP model, because such a variable product is a non-lin -

ear term. But if one factor of the product is an integer variable then it is possible to formulate an equivalent

transformation using a set of specific linear inequations. [cf. Rogge/Steglich (2007)]

The automatic generation of an equivalent transformation of a variable product is a unique characteristic of

CMPL.

 8.3.1 Variable Products with at least one binary variable

A product of variables with at least one binary variable can be transformed equivalently in a system of linear

inequations as follows [Rogge/Steglich (2007), p. 25ff.] :

CMPL v.1.6.2 - Manual 35

w :=u⋅v , u≤u≤ū (u real or integer) ,v∈ {0,1 }
is equivalent to

u real or integer, v∈{0,1 } and
u⋅v≤w≤ū⋅v
u⋅(1−v)≤u−w≤ ū⋅(1−v)

CMPL is able to perform these transformations automatically. For the following given variables

variables: x: binary;

y: real[YU..YO];

each occurrence of the term x*y in the CMPL model description is replaced by an implicit newly-defined

variable x_y, and the following additional statements are generated automatically:

constraints:

min(YU, 0) <= x_y <= max(YO, 0);

{YU < 0: x_y – YU*x >= 0; }

{YO > 0: x_y – YO*x <= 0; }

y – x_y + YU*x >= YU;

y – x_y + YO*x <= YO;

 8.3.2 Variable Product with at least one integer variable

Also for products of variables with at least one integer variable it is possible to formulate an equivalent sys-

tem of linear inequation [Rogge/Steglich (2007), p. 28ff.] :

w :=u⋅v ,
u≤u≤ū , (u real or integer, if u integer then v−v̄≤u−ū) ,
v≤v≤ v̄ (v integer)
is equivalent to

u real or integer and

v=v+ ∑
j=0

d

2 j⋅y j , v≤v̄ , with d=⌈ld (v̄−v+ 1)⌉−1

w=u⋅v+ ∑
j=0

d

2 j⋅w j

u⋅y j≤w j≤ ū⋅y j

u⋅(1− y j)≤u−w j≤ū⋅(1− y j)

y j∈{0,1 } , j=0(1)d

CMPL is able to perform these transformations automatically as described above. For the following given

variables

variables: x: integer[XU..XO];

y: real[YU..YO];

CMPL v.1.6.2 - Manual 36

each occurrence of the term x*y in the CMPL model description is replaced by an implicit newly-defined

variable x_y, and the following additional statements are generated automatically (here d stands for the

number of binary positions needed for XOXU+1):

variables:

_x[1..d]: binary;

_x_y[1..d]: real;

constraints:

min(XU*YU,XU*YO,XO*YU,XO*YO) <= x_y <= max(XU*YU,XU*YO,XO*YU,XO*YO);

x = XU + sum{i=1(1)d: (2^(i1))*_x[i]};

x_y = XU*y + sum{i=1(1)d: (2^(i1))*_x_y[i]};

{i = 1(1)d:

min(YU, 0) <= _x_y[i] <= max(YO, 0);

{YU < 0: _x_y[i] – YU*_x[i] >= 0; }

{YO > 0: _x_y[i] – YO*_x[i] <= 0; }

y – _x_y[i] + YU*_x[i] >= YU;

y – _x_y[i] + YO*_x[i] <= YO;

}

 9 CMPL as command line tool

 9.1 Usage

The CMPL command line tool can be used in two modes. Using the solver mode, an LP or MIP can be formu-

lated, solved and analysed. In this mode, OSSolverService, GLPK or Gurobi is invoked. In the model mode it

is possible to transform the mathematical problem into MPS, Free-MPS or OSiL files that can be used by cer -

tain alternative LP or MIP solvers.

cmpl [<options>] <cmplFile>

Usage: cmpl [options] <cmplFile>

Model mode:

 -i <cmplFile> : input file

 -m [<File>] : export model in MPS format in a file or stdout

 -x [<File>] : export model in OSiL XML format in a file or stdout

 -noOutput : no generating of a MPS or OSiL file

CMPL v.1.6.2 - Manual 37

Solver mode:

 -solver <solver> : name of the solver you want to use

 possible options: glpk, clp, cbc, symphony, gurobi, scip

 -solverUrl <url> : URL of the solver service

 w/o a defined remote solver service, a local solver is used

 -solutionCsv : optimization results in CSV format

 A file <cmplFileName>.csv will be created.

 -solutionAscii : optimization results in ASCII format

 A file <cmplFileName>.sol will be created.

 -silent : optimization results are not displayed

 -obj <objName> : name of the objective function

 -objSense <max/min> : objective sense

 -maxDecimals <x> : maximal number of decimals in the solution report (max 12)

 -zeroPrecision <x> : Precision of zero values in the solution report (default 1e-9)

 -ignoreZeros : display only variables and constraints with non-zero values in the solution report

 -dontRemoveTmpFiles : Don't remove temporary files (mps,osil,osrl,osol,gsol)

General options:

 -e [<File>] : output for error messages and warnings

 -e simple output to stderr (default)

 -e<File> output in MprL XML format to file

 -silent : suppresses CMPL and solver messages (assuming -e <problemName>.mprl)

 -matrix [<File>] : Writes the generated matrix in a file or on stdout.

 -l [<File>] : output for replacements for products of variables

 -s [<File>] : short statistic info

 -p [<File>] : output for protocol

 -gn : no matrix reductions

 -gf : Generated constraints for products of variables are included at the original position

 of the product.

 -cd : no warning at multiple parameter definition

 -ca : no warning for deprecated '=' assignment expression

 -ci <x> : mode for integer expressions (0 - 3), (default 1)

If the result of an integer operation is outside the range of a long integer then the

type of result will change from integer to real. This flag defines the integer range

check behaviour.

-ci 0 no range check

-ci 1 default, range check with a type change if necessary

CMPL v.1.6.2 - Manual 38

-ci 2 range check with error message if necessary

-ci 3 Each numerical operation returns a real result

 -ff : format option: generate free MPS

 -f% <format> : format option for MPS or OSiL files (C++ style - default %f)

 -h : get this help

 -v : version

Examples - solver mode:

cmpl test.cmpl solves the problem test.cmpl locally with the de-

fault solver and displays a standard solution report

cmpl solver glpk test.cmpl solves the problem test.cmpl locally using GLPK

and displays a standard solution report

cmpl solverUrl ↵

 http://194.95.44.187:8080/ ↵

 OSServer/services/OSSolverService ↵

 test.cmpl

solves the problem test.cmpl remotely with the

defined web service and displays a standard solution

report

cmpl solutionCsv test.cmpl solves the problem test.cmpl locally with the de-

fault solver writes the solution in the CSV-file

test.csv and displays a standard solution report

cmpl "/Users/test/Documents/ ↵

Projects/Project 1/test.cmpl"
If the file name or the path contains blanks then one

can enclose the entire file name in double quotes.

Examples - model mode:

cmpl i test.cmpl m test.mps reads the file test.cmpl and generates the MPS-

file test.mps.

cmpl ff i test.cmpl m test.mps reads the file test.cmpl and generates the Free-

MPS-file test.mps.

cmpl i test.cmpl x test.osil reads the file test.cmpl and generates the OSiL-

file test.osil.

 9.2 Input and output file formats

 9.2.1 Overview

CMPL uses several ASCII files for the communication with the user and other programs such as solvers.

CMPL input file for CMPL - syntax as described above

MPS output file for the generated model in MPS format

Can be used with most solvers.

This format is very restrictive and therefore not recommended.

CMPL v.1.6.2 - Manual 39

Free-MPS output file for the generated model in Free-MPS format

Can be used with most solvers.

OSiL output file for the generated model in OSiL format

The OSiL XML schema is developed by the COIN-OR community (COmputational IN-

frastructure for Operations Research - open source for the operations research com-

munity).

Can be used with solvers which are supported by the COIN-OR Optimization Services

(OS) Framework.

OSoL OSoL is an XML-based language for representing options that get passed to an op-

timization solver or a hosted optimization solver Web service. CMPL creates an OsoL

file automatically if CBC is chosen and some CBC options are defined in the CMPL

header.

OSrL Optimization Services result Language

OSrL (result) is a format for optimization results, if a COIN-OS solver is used.

GLPK plain text (res

ult) format

GLPK can write the results of an optimization in the form of a plain text file. Only

used if GLPK or Gurobi is chosen as solver.

CPLEX solution

format

an XML based solution file format

SCIP solution format a plain text file format for SCIP solutions

MPrL output file for the status of the results or errors of a CMPL model

XML file in accordance with the MPrL schema

 9.2.2 CMPL

A CMPL file is an ASCII file that includes the user-defined CMPL code with a syntax as described in this
manual.

The example

1⋅x 12⋅x23⋅x 3 max !
s.t.
5.6⋅x17.7⋅x210.5⋅x 3≤15
9.8⋅x14.2⋅x211.1⋅x3≤20
0≤xn ;n=113

can be formulated in CMPL as follows:

parameters:

 c[] := (1, 2, 3);

 b[] := (15, 20);

 A[,] := ((5.6, 7.7, 10.5),

 (9.8, 4.2, 11.1));

variables:

 x[defset(c[])]: real[0..];

objectives:

 profit: c[]T * x[] > max;

CMPL v.1.6.2 - Manual 40

constraints:

 machine: A[,] * x[] <= b[];

 9.2.3 MPS

An MPS (Mathematical Programming System) file is a ASCII file for presenting linear programming (LP) and

mixed integer programming problems.

MPS is an old format and was the de facto standard for most LP solvers. MPS is column-oriented and is set

up for punch cards with defined positions for fields. Owing to these requirements the length of column or

row names and the length of a data field are restricted. MPS is very restrictive and therefore not recommen-

ded. For more information please see http://en.wikipedia.org/wiki/MPS_(format).

The MPS file for the CMP example given in the section above is generated as follows:

* CMPL MPS Export

NAME test.cmpl

* OBJNAME profit

* OBJSENSE max

ROWS

 N profit

 L machine_1

 L machine_2

COLUMNS

 x[1] profit 1 machine_1 5.600000

 x[1] machine_2 9.800000

 x[2] profit 2 machine_1 7.700000

 x[2] machine_2 4.200000

 x[3] profit 3 machine_1 10.500000

 x[3] machine_2 11.100000

RHS

 RHS machine_1 15 machine_2 20

RANGES

BOUNDS

 PL BOUND x[1]

 PL BOUND x[2]

 PL BOUND x[3]

ENDATA

 9.2.4 Free - MPS

The Free-MPS format is an improved version of the MPS format. There is no standard for this format but it is

widely accepted. The structure of a Free-MPS file is the same as an MPS file. But most of the restricted MPS

format requirements are eliminated, e.g. there are no requirements for the position or length of a field. For

more information please visit the project website of the lp_solve project. [http://lpsolve.sourceforge.net]

CMPL v.1.6.2 - Manual 41

The Free-MPS file for the given CMP example is generated as follows:

* CMPL FreeMPS Export

NAME test.cmpl

* OBJNAME profit

* OBJSENSE max

ROWS

 N profit

 L machine_1

 L machine_2

COLUMNS

 x[1] profit 1 machine_1 5.600000

 x[1] machine_2 9.800000

 x[2] profit 2 machine_1 7.700000

 x[2] machine_2 4.200000

 x[3] profit 3 machine_1 10.500000

 x[3] machine_2 11.100000

RHS

 RHS machine_1 15 machine_2 20

RANGES

BOUNDS

 PL BOUND x[1]

 PL BOUND x[2]

 PL BOUND x[3]

ENDATA

 9.2.5 OSiL

OSiL is an XML-based format which can be used for presenting linear programming (LP) and mixed integer

programming problems. The OSiL XML schema was developed by the COIN-OR community (COmputational

INfrastructure for Operations Research - open source for the operations research community). The format

makes it very easy to save and present a model and so is particularly suitable for defining an interface to

several solvers. An OSiL file can be used with solvers which are supported by the COIN-OR Optimization Ser -

vices (OS) Framework. [cf. Gassmann, Ma, Martin, Sheng, 2011, p. 38ff.]

The OSiL file for the given CMP example is generated as follows:

<?xml version="1.0" encoding="UTF8"?>

<osil xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance" xsi:schemaLocation="os.

optimizationservices.org http://www.optimizationservices.org/schemas/2.0/OS

iL.xsd">

<instanceHeader>

<name>test.cmpl</name>

<description>generated by CMPL</description>

</instanceHeader>

<instanceData>

<variables numberOfVariables="3">

<var name="x[1]" type="C" lb="0"/>

CMPL v.1.6.2 - Manual 42

<var name="x[2]" type="C" lb="0"/>

<var name="x[3]" type="C" lb="0"/>

</variables>

<objectives numberOfObjectives="1">

<obj name="profit" maxOrMin="max" numberOfObjCoef="3">

<coef idx="0">1</coef>

<coef idx="1">2</coef>

<coef idx="2">3</coef>

</obj>

</objectives>

<constraints numberOfConstraints="2">

<con name="machine_1" ub="15"/>

<con name="machine_2" ub="20"/>

</constraints>

<linearConstraintCoefficients numberOfValues="6">

<start>

<el>0</el>

<el>2</el>

<el>4</el>

<el>6</el>

</start>

<rowIdx>

<el>0</el>

<el>1</el>

<el>0</el>

<el>1</el>

<el>0</el>

<el>1</el>

</rowIdx>

<value>

<el>5.600000</el>

<el>9.800000</el>

<el>7.700000</el>

<el>4.200000</el>

<el>10.500000</el>

<el>11.100000</el>

</value>

</linearConstraintCoefficients>

</instanceData>

 9.2.6 OSoL

"OSoL is an XML-based language for representing options that get passed to an optimization solver or a hos -

ted optimization solver Web service. For more information please visit the project website of COIN-OR OS

project." [Gassmann, Ma, Martin, Sheng, 2011, p. 41ff.]

CMPL v.1.6.2 - Manual 43

The following OSoL-file describes a couple of parameters for the CBC solver.

<?xml version="1.0" encoding="UTF8"?>

<osol xmlns="os.optimizationservices.org"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"

 xsi:schemaLocation="os.optimizationservices.org http://www.optimization

services.org/schemas/OSoL.xsd">

 <optimization>

 <solverOptions numberOfSolverOptions="1">

 <solverOption name="threads" solver="cbc" value="2" />

 </solverOptions>

 </optimization>

</osol>

 9.2.7 MPrL

MPrL is an XML-based format for representing the general status and/or errors of the transformation of a

CMPL model in one of the described output files. MPrL is intended for communication with other software

that uses CMPL for modelling linear optimization problems.

An MPrL file consists of two major sections. The <general> section describes the general status and the

name of the model and a general message after the transformation. The <mplResult> section consists of

one or more messages about specific lines in the CMPL model.

After the transformation of the given CMPL model, CMPL will fnish without errors. The general status is

represented in the following MPrL fle.

<?xml version="1.0" encoding="UTF8"?>

<mprl xmlns="www.coliop.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema

instance" xsi:schemaLocation="www.coliop.org

http://www.coliop.org/schemas/Mprl.xsd">

<general>

<generalStatus>normal</generalStatus>

<mplName>CMPL</mplName>

<instanceName>test.cmpl</instanceName>

<message>cmpl finished normal</message>

</general>

</mprl>

If a semicolon is not set in line 26, CMPL will fnish with errors that are represented in the following MPrL
fle.

<?xml version="1.0" encoding="UTF8"?>

<mprl xmlns="www.coliop.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema

instance" xsi:schemaLocation="www.coliop.org

http://www.coliop.org/schemas/Mprl.xsd">

<general>

<generalStatus>error</generalStatus>

<mplName>CMPL</mplName>

<instanceName>test.cmpl</instanceName>

CMPL v.1.6.2 - Manual 44

<message>cmpl finished with errors</message>

</general>

<mplResult numberOfMessages="1">

<mplmessage type ="error" file="test.cmpl" line="26" description="syntax

error"/>

</mplResult>

</mprl>

The MPrL schema is defned as follows:

<?xml version="1.0" encoding="UTF8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="mprl">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="general" minOccurs="1" maxOccurs="1"/>

<xsd:element ref="mplResult" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="general">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="generalStatus" minOccurs="1" maxOccurs="1"/>

<xsd:element name="instanceName" type="xsd:string" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="mplName" type="xsd:string" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="message" type="xsd:string" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="generalStatus">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="error"/>

<xsd:enumeration value="warning"/>

<xsd:enumeration value="normal"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="mplResult">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="mplMessage" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="numberOfMessages" type="xsd:nonNegativeInteger"

use="required"/>

</xsd:complexType>

CMPL v.1.6.2 - Manual 45

</xsd:element>

<xsd:element name="mplMessage">

<xsd:complexType>

<xsd:attribute name="type" use="required">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="error"/>

<xsd:enumeration value="warning"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name="file" type="xsd:string" use="required"/>

<xsd:attribute name="line" type="xsd:nonNegativeInteger"

use="required"/>

<xsd:attribute name="description" type="xsd:string" use="required"/>

</xsd:complexType>

</xsd:element>

</xsd:schema>

 9.2.8 OSrL

"OSrL is an XML-based language for representing the solution of large-scale optimization problems including

linear programs, mixed-integer programs, quadratic programs, and very general nonlinear programs."
[Gassmann, Ma, Martin, Sheng, 2011, p. 39ff.]

The following OSrL-file contains the results of the given problem.

<?xml version="1.0" encoding="UTF8"?><?xmlstylesheet type="text/xsl"

href="http://www.coinor.org/OS/stylesheets/OSrL.xslt"?>

<osrl xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance" xsi:schemaLocation="os.

optimizationservices.org http://www.optimizationservices.org/schemas/2.0/OS

rL.xsd" >

<general>

<generalStatus type="normal">

</generalStatus>

<serviceName>

Optimization Services Solver

Main Authors: Horand Gassmann, Jun Ma, and Kipp Martin

Distributed under the Eclipse Public License

OS Version: 2.4.4

Build Date: Feb 26 2012

SVN Version: 4456

</serviceName>

<instanceName>test.cmpl</instanceName>

<solverInvoked>COINOR clp</solverInvoked>

</general>

CMPL v.1.6.2 - Manual 46

<job>

<timingInformation numberOfTimes="1">

<time type="elapsedTime" unit="second" category="total">

5.699999999999998e4</time>

</timingInformation>

</job>

<optimization numberOfSolutions="1" numberOfVariables="3"

numberOfConstraints="2" numberOfObjectives="1">

<solution targetObjectiveIdx="1">

<status type="optimal">

</status>

<variables numberOfOtherVariableResults="1">

<values numberOfVar="3">

<var idx="0">0</var>

<var idx="1">0</var>

<var idx="2">1.4285714285714284</var>

</values>

<basisStatus>

<basic numberOfEl="1"><el>2</el></basic>

<atLower numberOfEl="2"><el>0</el><el>1</el></atLower>

</basisStatus>

<other numberOfVar="3" name="reduced costs"

description="the variable reduced costs">

<var idx="0">.5999999999999996</var>

<var idx="1">.20000000000000012</var>

<var idx="2">0</var>

</other>

</variables>

<objectives >

<values numberOfObj="1">

<obj idx="1">4.285714285714285</obj>

</values>

</objectives>

<constraints >

<dualValues numberOfCon="2">

<con idx="0">.2857142857142857</con>

<con idx="1">0</con>

</dualValues>

<basisStatus>

<basic numberOfEl="1"><el>1</el></basic>

<atLower numberOfEl="1"><el>0</el></atLower>

</basisStatus>

</constraints>

</solution>

</optimization>

</osrl>

CMPL v.1.6.2 - Manual 47

 9.2.9 GLPK plain text (result) format

GLPK is able to write the solution of an optimization in the form of a plain text file in a specific structure.

Please see for details [GLPK, 2011, p. 105ff.] Despite that Gurobi does not support this format CMPL uses

this file format also for Gurobi because the interaction with Gurobi is established by a python script that is

able to write the Gurobi optimization results in the GLPK plain text (result) format.

The following GLPK result file describes the solution of the example.

3 3

2 2 4.28571428571429

1 4.28571428571429 0

3 15 0.285714285714286

1 15.8571428571429 0

2 0 0.6

2 0 0.2

1 1.42857142857143 0

 9.2.10 CPLEX solution file format

"CPLEX … writes solution files, formatted in XML, for all problem types, for all application programming inter -

faces (APIs). ... The XML solution file format makes it possible for you to display and view these solution files

in most browsers as well as to pass the solution to XML-aware applications." [CPLEX manual → File formats

supported by CPLEX → SOL file format: solution files]

CMPL is able to read the CMPL solution file.

The following CPLEX result file describes the solution of the example.

<?xml version = "1.0" encoding="UTF8" standalone="yes"?>

<CPLEXSolution version="1.2">

 <header

 problemName="test.mps"

 objectiveValue="4.28571428571429"

 solutionTypeValue="1"

 solutionTypeString="basic"

 solutionStatusValue="1"

 solutionStatusString="optimal"

 solutionMethodString="dual"

 primalFeasible="1"

 dualFeasible="1"

 simplexIterations="1"

 writeLevel="1"/>

 <quality

 epRHS="1e06"

 epOpt="1e06"

 maxPrimalInfeas="0"

 maxDualInfeas="0"

 maxPrimalResidual="1.99840144432528e15"

 maxDualResidual="0"

 maxX="1.42857142857143"

CMPL v.1.6.2 - Manual 48

 maxPi="0.285714285714286"

 maxSlack="4.14285714285715"

 maxRedCost="0.6"

 kappa="3.83642857142857"/>

 <linearConstraints>

 <constraint name="machine_1" index="0" status="LL" slack="0"

dual="0.285714285714286"/>

 <constraint name="machine_2" index="1" status="BS" slack="4.14285714285715"

dual="0"/>

 </linearConstraints>

 <variables>

 <variable name="x[1]" index="0" status="LL" value="0" reducedCost="0.6"/>

 <variable name="x[2]" index="1" status="LL" value="0" reducedCost="0.2"/>

 <variable name="x[3]" index="2" status="BS" value="1.42857142857143"

reducedCost="0"/>

 </variables>

</CPLEXSolution>

 9.2.11 SCIP solution file format

SCIP writes the solution of the variables in the form of a plain text file in a specific structure. Because SCIP is

only used for MIPs the result file format does not contain information about reduced costs or shadow prices.

The following SCIP result file describes the solution of the example if the variables defined as integers.

solution status: optimal solution found

objective value: 3

x[3] 1 (obj:3)

 9.3 Using CMPL with several solvers

There are two ways to interact with several solvers. It is recommended to use one of the solvers which are

directly supported and executed by CMPL. The CMPL installation routine installs a customized version of the

COIN-OR OSSolverService (including the COIN-OR solvers CLP, CBC and Symphony) and GLPK. OSSolverSer-

vice is the default optimization environment. If you have installed Gurobi, CPLEX or SCIP then you can also

use these solvers directly.

Because CMPL transforms a CMPL model into an MPS, a Free-MPS or an OSiL file, the generated model in-

stance can be solved by using most of the free or commercial solvers.

 9.3.1 COIN-OR OSSolverService

"The objective of Optimization Services (OS) is to provide a general framework consisting of a set of stand-

ards for representing optimization instances, results, solver options, and communication between clients and

solvers in a distributed environment using Web Services. … A command line executable OSSolverService for

CMPL v.1.6.2 - Manual 49

reading problem instances (OSiL format, AMPL nl format, MPS format) and calling a solver either locally or

on a remote server." [Gassmann, Ma, Martin, Sheng, 2011, p. 4.]

For more information please visit https://projects.coin-or.org/OS.

The CMPL distribution contains a customized version of OSSolverService including the COIN-OR solvers CLP,

CBC and Symphony. OSSolverService is the default solver environment for CMPL. It is possible but not neces-

sary to specify which solver is to be used. The default solver for LPs is CLP and for MIPs CBC.

OSSolverService can be used in two modes:

 cmpl <problem>.cmpl #Solves the problem locally

#with Clp (LP) or CBC (MIP)

 cmpl <problem>.cmpl ↵

-solverUrl http://<domain>:8080/OSServer/services/OSSolverService

#Solves the problem using

#OSServer located at <domain>

 #with Clp (LP) or CBC (MIP)

For more information about the OSServer please visit the COIN-OS website: https://projects.coin-or.org/OS.

It is possible to use most of the CBC solver options within the CMPL header. Please see for a list of useful

CBC parameters in Appendix 12.1.

Usage of CBC parameters within the CMPL header:

%opt cbc solverOption [solverOptionValue]

CMPL interacts with the OSSolverService directly as shown in the picture below.

CMPL v.1.6.2 - Manual 50

https://projects.coin-or.org/OS
https://projects.coin-or.org/OS

The user has to formulate the CMPL model. CMPL transforms the CMPL model into an OSiL file. If some CBC

solver parameters are defined in the CMPL header, then CMPL generates an OSoL file.

After generating the OSiL file (and if needed the OSoL file) CMPL executes OSSolverService directly as an ex-

ternal process. OSSolverService executes either a local solver or a remote solver. CMPL waits for the OSSolv-

erService process. After finishing OSSolverService - and if no error occurs - the result file (OSrL) is to be read

by CMPL. After that CMPL creates a standard report or exports the solver results in an ASCII or CSV file.

 9.3.2 GLPK

The GLPK (GNU Linear Programming Kit) package is intended for solving large-scale linear programming

(LP), mixed integer programming (MIP), and other related problems.

"The GLPK package includes the program glpsol, which is a stand-alone LP/MIP solver. This program can be

invoked from the command line ... to read LP/MIP problem data in any format supported by GLPK, solve the

problem, and write the problem solution obtained to an output text file." [GLPK, 2011, p. 212.]. For more

information please visit the GLPK project website: http://www.gnu.org/software/glpk.

The CMPL package contains GLPK and it can be used by the following command:

 cmpl <problem>.cmpl -solver glpk

or by the CMPL header flag:

 %arg -solver glpk

Most of the GLPK solver options can be used by defining solver options within the CMPL header. Please see

Appendix 12.2 for a list of useful GLPK parameters.

Usage of GLPK parameters within the CMPL header:

%opt glpk solverOption [solverOptionValue]

 9.3.3 Gurobi

"The Gurobi Optimizer is a state-of-the-art solver for linear programming (LP), quadratic programming (QP)

and mixed-integer programming (MIP including MILP and MIQP). It was designed from the ground up to ex-

ploit modern multi-core processors. For solving LP and QP models, the Gurobi Optimizer includes high-per-

formance implementations of the primal simplex method, the dual simplex method, and a parallel barrier

solver. For MILP and MIQP models, the Gurobi Optimizer incorporates the latest methods including cutting

planes and powerful solution heuristics." [www.gurobi.com]

If Gurobi is installed on the same computer as CMPL then Gurobi can be executed directly only by using the

command

CMPL v.1.6.2 - Manual 51

http://www.gnu.org/software/glpk

 cmpl <problem>.cmpl -solver gurobi

or by the CMPL header flag:

 %arg -solver gurobi

All Gurobi parameters (excluding NodefileDir, LogFile and ResultFile) described in the Gurobi manual can be

used in the CMPL header. Please see: http://www.gurobi.com/doc/46/refman/node591.html

Usage of Gurobi parameters within the CMPL header:

 %opt gurobi solverOption [solverOptionValue]

 9.3.4 SCIP

SCIP is a project of the Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB).

"SCIP is a framework for Constraint Integer Programming oriented towards the needs of Mathematical Pro-

gramming experts who want to have total control of the solution process and access detailed information

down to the guts of the solver. SCIP can also be used as a pure MIP solver or as a framework for branch-cut-

and-price. SCIP is implemented as C callable library and provides C++ wrapper classes for user plugins. It

can also be used as a standalone program to solve mixed integer programs."

[http://scip.zib.de/whatis.shtml]

SCIP can be used only for mixed integer programming (MIP) problems. If SCIP is chosen as solver and the

problem is an LP then CLP is executed as solver.

If SCIP is installed on the same computer as CMPL then SCIP can be connected to CMPL by changing the

entry ScipFileName in the file <cmplhome>/bin/cmpl.opt.

Examples:

ScipFileName = /Applications/Scip/scip The binary scip is located in the folder /Applica-

tions/Scip

ScipFileName = /Program Files/Scip/scip.exe Example for a Windows system. Please keep in

mind to use a slash as a path separator.

If this entry is correct then you can execute SCIP directly by using the command

 cmpl <problem>.cmpl -solver scip

or by the CMPL header flag:

 %arg -solver scip

CMPL v.1.6.2 - Manual 52

http://scip.zib.de/whatis.shtml
http://www.gurobi.com/doc/46/refman/node591.html

All SCIP parameters described in the SCIP Doxygen Documentation can be used in the CMPL header.

Please see: http://scip.zib.de/doc/html/PARAMETERS.html

Usage SCIP parameters within the CMPL header:

%opt scip solverOption solverOptionValue

Please keep in mind, that in contrast to the SCIP Doxygen Documentation you do not have to use = as as-

signment operator between the solverOption and the solverOptionValue.

Examples:

%opt scip branching/scorefunc p CMPL solver parameter description for the parameter

branching score function which is described in the

SCIP Doxygen Documentation as follows:
branching score function ('s'um, 'p'roduct)

[type: char, range: {sp}, default: p]

branching/scorefunc = p

%opt scip lp/checkfeas TRUE # should LP solutions be checked, resolving

LP when numerical troubles occur?

[type: bool, range: {TRUE,FALSE}, default:

TRUE]

lp/checkfeas = TRUE

%opt scip lp/fastmip 1 # which FASTMIP setting of LP solver should

be used? 0: off, 1: low

[type: int, range: [0,1], default: 1]

lp/fastmip = 1

 9.3.5 CPLEX

CPLEX is a part of the IBM ILOG CPLEX Optimization Studio and includes simplex, barrier, and mixed integer

optimizers. "IBM ILOG CPLEX Optimization Studio provides the fastest way to build efficient optimization

models and state-of-the-art applications for the full range of planning and scheduling problems. With its in-

tegrated development environment, descriptive modeling language and built-in tools, it supports the entire

model development process." [IBM ILOG CPLEX Optimization Studio manual]

If CPLEX is installed on the same computer as CMPL then CPLEX can be connected to CMPL by changing the

entry CplexFileName in the file <cmplhome>/bin/cmpl.opt.

Example:

CplexFileName = /Applications/IBM/ILOG/ ↵

CPLEX_Studio_Academic124/cplex/ ↵

bin/x8664_darwin9_gcc4.0/cplex

The binary scip is located in the specified folder

Please note that for Windows installations you also have to use slashes as a path separators (instead of the

usual backslashes). If this entry is correct then you can execute CPLEX directly by using the command

CMPL v.1.6.2 - Manual 53

http://scip.zib.de/doc/html/PARAMETERS.html

 cmpl <problem>.cmpl -solver cplex

or by the CMPL header flag:

 %arg -solver cplex

All CPLEX parameters described in the CPLEX manual (Parameters of CPLEX → Parameters Reference

Manual) can be used in the CMPL header.

Usage CPLEX parameters within the CMPL header:

%opt cplex solverOption solverOptionValue

You have to use the parameters for the Interactive Optimizer. The names of sub-parameters of hierarchical

parameters are to be separated by slashes.

Examples:

%opt cplex threads 2 Sets the default number of parallel threads that will be in

voked.

%opt cplex mip/limits/aggforcut 4 Limits the number of constraints that can be aggregated

for generating flow cover and mixed integer rounding

(MIR) cuts to 4.

%opt cplex ↵

simplex/tolerances/optimality ↵

1e8

Sets the reducedcost tolerance for optimality to 1e8.

 9.3.6 Other solvers

Since CMPL transforms a CMPL model into an MPS, a Free-MPS or an OSiL file, the model can be solved us -

ing most free or commercial solvers. To create MPS, Free-MPS or OSiL files please use the following com-

mands:

cmpl -m <problemname>.mps <problemname>.cmpl #MPS export

cmpl -ff -m <problemname>.mps <problemname>.cmpl #FreeMPS export

cmpl -x <problemname>.osil <problemname>.cmpl #OSiL export

 9.4 Using CMPL with Coliop

Coliop is an (simple) IDE (Integrated Development Environment) for CMPL intended to solve linear program-

ming (LP) problems and mixed integer programming (MIP) problems. Coliop is a project of the Technical Uni -

versity of Applied Sciences Wildau and the Institute for Operations Research and Business Management at

CMPL v.1.6.2 - Manual 54

the Martin Luther University Halle-Wittenberg. Coliop is an open source project licensed under GPL. It is writ -

ten in Java and is as an integral part of the CMPL distribution available for most of the relevant operating

systems (OS X, Linux and Windows). Because Coliop is written in Java it is necessary to install the java

runtime environment. Please visit to install java: http://java.com/de/download/index.jsp.

The first working step is to create or to open a CMPL model. By pushing the button <Solve> the model can

be solved.

If a syntax error occurs then a user can analyse it by checking the CMPL messages. If CMPL is executed w/o

any problems the standard solution report appears.

CMPL v.1.6.2 - Manual 55

http://java.com/de/download/index.jsp
file:///Users/mike/Documents/Projekte/Projekte/CMPL/manual/

It is also possible to check the generated model matrix in the tab <Generated Model>.

 10 Examples

 10.1 Selected decision problems

 10.1.1 The diet problem

The goal of the diet problem is to find the cheapest combination of foods that will satisfy all the daily nutri-

tional requirements of a person for a week.

The following data is given [example cf. Fourer/Gay/Kernigham, 2003, p. 27ff.] :

food cost per

package

provision of daily vitamin requirements in percentages

A B1 B2 C

BEEF 3.19 60 20 10 15

CHK 2.59 8 2 20 520

FISH 2.29 8 10 15 10

HAM 2.89 40 40 35 10

MCH 1.89 15 35 15 15

MTL 1.99 70 30 15 15

SPG 1.99 25 50 25 15

TUR 2.49 60 20 15 10

The decision is to be made for one week. Therefore the combination of foods has to provide at least 700%

of daily vitamin requirements. To promote variety, the weekly food plan must contain between 2 and 10

packages of each food.

CMPL v.1.6.2 - Manual 56

The mathematical model can be formulated as follows:

3.19⋅xBEEF2.59⋅xCHK2.29⋅xFISH2.89⋅xHAM1.89⋅xMCH 1.99⋅xMTL1.99 x SPG2.49⋅xTUR min!
s.t.
60⋅xBEEF8⋅xCHK8⋅xFISH40⋅xHAM15⋅xMCH 70⋅xMTL25 xSPG60⋅xTUR≤700
20⋅xBEEF0⋅xCHK10⋅xFISH40⋅xHAM35⋅xMCH30⋅xMTL50 xSPG20⋅xTUR≤700
10⋅xBEEF20⋅xCHK15⋅xFISH35⋅xHAM 15⋅xMCH 15⋅xMTL25 x SPG15⋅xTUR≤700
15⋅xBEEF20⋅xCHK10⋅xFISH10⋅xHAM15⋅xMCH 15⋅xMTL15 xSPG10⋅xTUR≤700

x j∈{2,3 , ,10} ; j∈{BEEF , CHK , DISH , HAM , MCH , MTL , SPG ,TUR}

The CMPL model diet.cmpl is formulated as follows:

parameters:

NUTR := set("A","B1", "B2", "C");

FOOD := set("BEEF", "CHK", "FISH", "HAM", "MCH", "MTL", "SPG", "TUR");

#cost per package

costs[FOOD] := (3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49);

#provision of the daily requirements for vitamins in percentages

vitamin[NUTR, FOOD] := ((60, 8, 8, 40, 15, 70, 25, 60) ,

 (20, 0, 10, 40, 35, 30, 50, 20) ,

 (10, 20, 15, 35, 15, 15, 25, 15),

 (15, 20, 10, 10, 15, 15, 15, 10)

);

#weekly vitamin requirements

vitMin[NUTR]:= (700,700,700,700);

variables:

x[FOOD]: integer[2..10];

objectives:

cost: costs[]T * x[]>min;

constraints:

capacity restriction

2: vitamin[,] * x[] >= vitMin[];

CMPL command:

cmpl diet.cmpl

Solution:

Problem diet.cmpl

Nr. of variables 8

Nr. of constraints 4

Status optimal

CMPL v.1.6.2 - Manual 57

Solver name COINOR cbc

Objective name cost

Objective value 101.14 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[BEEF] I 2 2 10

x[CHK] I 8 2 10

x[FISH] I 2 2 10

x[HAM] I 2 2 10

x[MCH] I 10 2 10

x[MTL] I 10 2 10

x[SPG] I 10 2 10

x[TUR] I 2 2 10

Constraints

Name Type Activity Lower bound Upper bound Marginal

A G 1500 700 Infinity

B1 G 1330 700 Infinity

B2 G 860 700 Infinity

C G 700 700 Infinity

 10.1.2 Production mix

This model calculates the production mix that maximizes profit subject to available resources. It will identify

the mix (number) of each product to produce and any remaining resource.

The example involves three products which are to be produced with two machines. The following data is

given:

P1 P2 P3 upper bounds [h]

upper bound of a product [units] 250 240 250

selling price per unit [€/unit] 500 600 450

direct costs per unit [€/unit] 425 520 400

profit contribution per unit [€/unit] 75 80 50

machine hours required per unit

machine 1 [h/unit] 8 15 12 1,000

machine 2 [h/unit] 15 10 8 1,000

The mathematical model can be formulated as follows:

75⋅x 180⋅x250⋅x3 max !
s.t.
8⋅x115⋅x212⋅x 3≤1,000
15⋅x 110⋅x28⋅x 3≤1,000

x 1∈{0,1 , ,250}
x 2∈{0,1 , ,240}
x 3∈{0,1 , ,250}

CMPL v.1.6.2 - Manual 58

The CMPL model productionmix.cmpl is formulated as follows:

parameters:

price[] := (500, 600, 450);

costs[] := (425, 520, 400);

#machine hours required per unit

a[,] := ((8, 15, 12), (15, 10, 8));

#upper bounds of the machines

b[] := (1000, 1000);

#profit contribution per unit

{j:=defset(price[]): c[j] := price[j]costs[j]; }

#upper bound of the products

xMax[] := (250, 240, 250);

variables:

x[defset(price[])]: integer;

objectives:

profit: c[]T * x[] >max;

constraints:

res: a[,] * x[] <= b[];

0<=x[]<=xMax[];

CMPL command:

cmpl productionmix.cmpl solver glpk

Solution:

Problem productionmix.cmpl

Nr. of variables 3

Nr. of constraints 2

Status normal

Solver name GLPK

Objective name profit

Objective value 6448.28 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1] C 34.4828 0 250 0

x[2] C 48.2759 0 240 0

x[3] C 0 0 250 14

CMPL v.1.6.2 - Manual 59

Constraints

Name Type Activity Lower bound Upper bound Marginal

res_1 L 1000 Infinity 1000 3.10345

res_2 L 1000 Infinity 1000 3.34483

 10.1.3 Production mix including thresholds and step-wise fixed costs

This model calculates the production mix that maximizes profit subject to available resources. When a

product is produced, there are fixed set-up costs. There is also a threshold for each product. The quantity of

a product is zero or greater than the threshold.

The example involves three products which are to be produced with two machines. The following data is

given:

P1 P2 P3
upper

bounds [h]

production minimum of a product [units] 45 45 45

upper bound of a product [units] 250 240 250

selling price per unit [€/unit] 500 600 450

direct costs per unit [€/unit] 425 520 400

profit contribution per unit [€/unit] 75 80 50

set-up costs [€] 500 400 500

machine hours required per unit

machine 1 [h/unit] 8 15 12 1,000

machine 2 [h/unit] 15 10 8 1,000

The mathematical model can be formulated as follows:

75⋅x 180⋅x250⋅x3−500⋅y1−400⋅y2−500⋅y3 max !
s.t.
8⋅x115⋅x212⋅x 3≤1,000
15⋅x 110⋅x28⋅x 3≤1,000

45⋅y1≤ x1≤250⋅y1

45⋅y2≤ x2≤240⋅y2

45⋅y3≤x 3≤250⋅y3

x 1∈{0,1 , ,250}
x 2∈{0,1 , ,240}
x 3∈{0,1 , ,250}

y j ∈{0,1} ; j=113

CMPL v.1.6.2 - Manual 60

The CMPL model productionmixfixedcosts.cmpl is formulated as follows:

parameters:

price[] := (500, 600, 450);

costs[] := (425, 520, 400);

#machine hours required per unit

a[,] := ((8, 15, 12), (15, 10, 8));

#upper bounds of the machines

b[] := (1000, 1000);

#profit contribution per unit

{j:=defset(price[]): c[j] := price[j]costs[j]; }

#upper bound of a product

xMax[] := (250, 240, 250);

xMin[] := (45, 45, 45);

#fixed setup costs

FC[] := (500, 400, 500);

variables:

{j:=1(1)dim(c[]): x[j]: integer[0..xMax[j]]; }

y[defset(price[])] : binary;

objectives:

profit: c[]T * x[] FC[]T * y[] >max;

constraints:

res: a[,] * x[] <= b[];

{j in defset(price[]): xMin[j] * y[j] <= x[j] <= xMax[j] * y[j]; }

CMPL command:

cmpl productionmixfixedcosts.cmpl

Solution:

Problem productionmixfixedcosts.cmpl

Nr. of variables 6

Nr. of constraints 8

Status optimal

Solver name COINOR cbc

Objective name profit

Objective value 4880 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1] I 0 0 250

x[2] I 66 0 240

x[3] I 0 0 250

y[1] B 0 0 1

y[2] B 1 0 1

CMPL v.1.6.2 - Manual 61

y[3] B 0 0 1

Constraints

Name Type Activity Lower bound Upper bound Marginal

res_1 L 990 Infinity 1000

res_2 L 660 Infinity 1000

line_4 L 0 Infinity 0

line_5 L 0 Infinity 0

line_6 L 21 Infinity 0

line_7 L 174 Infinity 0

line_8 L 0 Infinity 0

line_9 L 0 Infinity 0

 10.1.4 The knapsack problem

Given a set of items with specified weights and values, the problem is to find a combination of items that fills

a knapsack (container, room, …) to maximize the value of the knapsack subject to its restricted capacity or

to minimize the weight of items in the knapsack subject to a predefined minimum value.

In this example there are 10 boxes, which can be sold on the market at a defined price.

box number weight

[pounds]

price

[€/box]

1 100 10

2 80 5

3 50 8

4 150 11

5 55 12

6 20 4

7 40 6

8 50 9

9 200 10

10 100 11

1. What is the optimal combination of boxes if you are seeking to maximize the total sales and are able to

carry a maximum of 60 pounds?

2. What is the optimal combination of boxes if you are seeking to minimize the weight of the transported

boxes bearing in mind that the minimum total sales must be at least €600 ?

Model 1: maximize the total sales

The mathematical model can be formulated as follows:

100⋅x180⋅x 250⋅x3150⋅x 455⋅x520⋅x640⋅x750⋅x 8200⋅x9100⋅x10max !
s.t.
10⋅x15⋅x28⋅x311⋅x 412⋅x 54⋅x66⋅x 79⋅x810⋅x 911⋅x10≤60
x j∈{0,1} ; j=1110

CMPL v.1.6.2 - Manual 62

The basic data is saved in the CMPL file knapsack-data.cmpl:

parameters:

boxes := 1(1)10;

#weight of the boxes

w[boxes] := (10,5,8,11,12,4,6,9,10,11);

#price per box

p[boxes] := (100,80,50,150,55,20,40,50,200,100);

#max capacity

maxWeight := 60;

#min sales

minSales := 600;

A simple CMPL model knapsackmaxbasic.cmpl can be formulated as follows:

include "knapsackdata.cmpl"

variables:

x[boxes] : binary;

objectives:

sales: p[]T * x[] >max;

constraints:

weight: w[]T * x[] <= maxWeight;

CMPL command:

cmpl knapsackmaxbasic.cmpl

Solution:

Problem knapsackmaxbasic.cmpl

Nr. of variables 10

Nr. of constraints 1

Status optimal

Solver name COINOR cbc

Objective name sales

Objective value 700 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1] B 1 0 1

x[2] B 1 0 1

x[3] B 0 0 1

x[4] B 1 0 1

x[5] B 0 0 1

x[6] B 1 0 1

x[7] B 0 0 1

x[8] B 1 0 1

x[9] B 1 0 1

x[10] B 1 0 1

Constraints

Name Type Activity Lower bound Upper bound Marginal

weight L 60 Infinity 60

CMPL v.1.6.2 - Manual 63

Model 2: minimize the weight

The mathematical model can be formulated as follows:

10⋅x15⋅x28⋅x311⋅x 412⋅x 54⋅x66⋅x 79⋅x810⋅x 911⋅x10 min !
s.t.
100⋅x180⋅x 250⋅x3150⋅x 455⋅x520⋅x640⋅x750⋅x 8200⋅x9100⋅x10≥600
x j∈{0,1} ; j=1110

A simple CMPL model knapsackminbasic.cmpl can be formulated as follows:

include "knapsackdata.cmpl"

variables:

x[boxes] : binary;

objectives:

weight: w[]T * x[] >min;

constraints:

sales: p[]T * x[] >= minSales;

CMPL command:

cmpl knapsackminbasic.cmpl

Solution:

Problem knapsackminbasic.cmpl

Nr. of variables 10

Nr. of constraints 1

Status optimal

Solver name COINOR cbc

Objective name weight

Objective value 47 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1] B 1 0 1

x[2] B 1 0 1

x[3] B 0 0 1

x[4] B 1 0 1

x[5] B 0 0 1

x[6] B 0 0 1

x[7] B 0 0 1

x[8] B 0 0 1

x[9] B 1 0 1

x[10] B 1 0 1

Constraints

Name Type Activity Lower bound Upper bound Marginal

sales G 630 600 Infinity

CMPL v.1.6.2 - Manual 64

 10.1.5 Transportation problem

A transportation problem is a special kind of linear programming problem which seeks to minimize the total

shipping costs of transporting goods from several supply locations (origins or sources) to several demand

locations (destinations).

The following example is taken from Anderson/Sweeney/Williams/Martin: An Introduction to Management

Science - Quantitative Approaches to Decision Making, 13th ed., South-Western, Cengage Learning 2008, p.

261ff.

This problem involves the transportation of a product from three plants to four distribution centers. Foster

Generators operates plants in Cleveland, Ohio; Bedford, Indiana; and York, Pennsylvania. The supplies are

defined by the production capacities over the next three-month planning period for one particular type of

generator. The firm distributes its generators through four regional distribution centers located in Boston,

Chicago, St. Louis, and Lexington. It is to decide how much of its products should be shipped from each

plant to each distribution center. The objective is to minimize the transportation costs.

The problem can be formulated in the form of the general linear program below:

∑
i=1

m

∑
j =1

n

cij⋅xij →min!

s.t.

∑
j=1

n

xij≤s i ; i=1 (1)m

∑
i=1

m

xij=d j ; j=1(1)n

xij≥0 ; i=1 (1)m , j=1(1)n

CMPL v.1.6.2 - Manual 65

Plants Centers

3
York

2
Bedford

1
Cleveland

1
Boston

3
St. Louis

2
Chicago

4
Lexington

5000

6000

2500

6000

4000

2000

1500

3

2

5

2
3

2

4

6 7

7

5

5

xij − number of units shipped from plant i to center j
cij − cost per unit of shipping from plant i to center j
si − supply in units at plant i
d j − demand in units at desitination j

The CMPL model transportation.cmpl can be formulated as follows:

%arg ignoreZeros

parameters:

plants := 1(1)3;

centers := 1(1)4;

s[plants] := (5000,6000,2500);

d[centers] := (6000,4000,2000,1500);

c[plants,centers] := ((3,2,7,6), (7,5,2,3),(2,5,4,5));

variables:

x[plants,centers]: real[0..];

objectives:

costs: sum{i in plants, j in centers : c[i,j] * x[i,j] } >min;

constraints:

supplies {i in plants : sum{j in centers: x[i,j]} <= s[i];}

demands {j in centers : sum{i in plants : x[i,j]} = d[j];}

CMPL command:

cmpl transportation.cmpl

Solution:

Problem transportation.cmpl

Nr. of variables 12

Nr. of constraints 7

Status optimal

Solver name COINOR clp

Objective name costs

Objective value 39500 (min!)

Nonzero variables

Name Type Activity Lower bound Upper bound Marginal

x[1,1] C 3500 0 Infinity 0

x[1,2] C 1500 0 Infinity 0

x[2,2] C 2500 0 Infinity 0

x[2,3] C 2000 0 Infinity 0

x[2,4] C 1500 0 Infinity 0

x[3,1] C 2500 0 Infinity 0

Nonzero constraints

Name Type Activity Lower bound Upper bound Marginal

CMPL v.1.6.2 - Manual 66

supplies_1 L 5000 Infinity 5000 3

supplies_2 L 6000 Infinity 6000

supplies_3 L 2500 Infinity 2500 4

demands_1 E 6000 6000 6000 6

demands_2 E 4000 4000 4000 5

demands_3 E 2000 2000 2000 2

demands_4 E 1500 1500 1500 3

 10.1.6 Quadratic assignment problem

Assignment problems are special types of linear programming problems which assign assignees to tasks or

locations. The goal of this quadratic assignment problem is to find the cheapest assignments of n machines

to n locations. The transport costs are influenced by

• the distance d jk between location j and location k and

• the quantity t hi between machine h and machine i, which is to be transported.

The assignment of a machine h to a location j can be formulated with the Boolean variables

x hj={1 , if machine h is assigned to location j
0 , if not

The general model can be formulated as follows:

CMPL v.1.6.2 - Manual 67

Plants Centers

3
York

2
Bedford

1
Cleveland

1
Boston

3
St. Louis

2
Chicago

4
Lexington

5000

6000

2500

6000

4000

2000

1500

3500

1500

2500

2000

15002500

∑
h=1

n

∑
i=1
i≠h

n

∑
j=1

n

∑
k=1
i≠ j

n

t hi⋅d jk⋅x hj⋅x ik min !

s.t.

∑
j=1

n

xhj=1 ; h=11n

∑
h=1

n

xhj=1 ; j=1 1n

x hj∈{0,1} ;h=11n , j=11n

Because of the product x hj⋅x ik in the objective function the model is not a linear model. But it is possible

to use a set of inequations to make an equivalent transformation of such multiplications of variables. This

transformation is implemented in CMPL and the set of inequations will be generated automatically.

Consider the following case:

There are 5 machines and 5 locations in the given factory. The quantities of goods which are to be transpor -

ted between the machines are indicated in the figure below.

The distances between the locations are given in the following table:

from/to 1 2 3 4 5

1 M 1 2 3 4

2 2 M 1 2 3

3 3 1 M 1 2

4 2 3 1 M 1

5 5 3 2 1 M

The CMPL model quadraticassignment.cmpl can be formulated as follows:

%arg solver glpk

%arg ignoreZeros

%display var x[*

%display con sos*

parameters:

n:=5;

M:=1000;

d[,]:= ((M, 1, 2, 3, 4),

 (2, M, 1, 2, 3),

 (3, 1, M, 1, 2),

 (2, 3, 1, M, 1),

 (5, 3, 1, 1, M));

CMPL v.1.6.2 - Manual 68

t[,]:= ((0, 10, 10, 0, 20),

 (0, 0, 15, 0, 0),

 (0, 0, 0, 5, 20),

 (0, 0, 0, 0, 35),

 (0, 0, 0, 0, 0));

variables:

x[1..n,1..n]: binary;

#dummy variables to store the products x_hj * x_ik

w[1..n,1..n,1..n,1..n]: real[0..1];

objectives:

costs: sum{ h:=1(1)n, i:=1(1)n, j:=1(1)n, k:=1(1)n :

t[h,i]*d[j,k]*w[h,j,i,k] } >min;

constraints:

{ h:=1(1)n, i:=1(1)n, j:=1(1)n, k:=1(1)n:

{ t[h,i] = 0: w[h,j,i,k] = 0; |

 # definition of the products x_hj * x_ik

 default: w[h,j,i,k] = x[h,j] * x[i,k]; }

}

sos1 { h:=1(1)n: sum{ j:=1(1)n: x[h,j] } = 1; }

sos2 { j:=1(1)n: sum{ h:=1(1)n: x[h,j] } = 1; }

CMPL command:

cmpl quadraticassignment.cmpl

Solution:

Problem quadraticassignment.cmpl

Nr. of variables 375

Nr. of constraints 710

Status normal

Solver name GLPK

Objective name costs

Objective value 155 (min!)

Nonzero variables (x[*)

Name Type Activity Lower bound Upper bound Marginal

x[1,4] B 1 0 1

x[2,1] B 1 0 1

x[3,2] B 1 0 1

x[4,5] B 1 0 1

x[5,3] B 1 0 1

Nonzero constraints (sos*)

Name Type Activity Lower bound Upper bound Marginal

sos1_1 E 1 1 1

sos1_2 E 1 1 1

sos1_3 E 1 1 1

sos1_4 E 1 1 1

sos1_5 E 1 1 1

sos2_1 E 1 1 1

CMPL v.1.6.2 - Manual 69

sos2_2 E 1 1 1

sos2_3 E 1 1 1

sos2_4 E 1 1 1

sos2_5 E 1 1 1

The optimal assignments of machines to locations are given in the the table below:

locations

1 2 3 4 5

m
ac

hi
ne

s

1 x

2 x

3 x

4 x

5 x

 10.1.7 Generic travelling salesman problem

The travelling salesman problem is well known and often described. In the following CMPL model the (x,y)

coordinates of the cities are defined by random numbers and the distances are calculated by the euclidian

distance of the (x.y) coordinates.

The CMPL model tsp.cmpl can be formulated as follows:

%arg solver cbc

%arg cd

%arg ignoreZeros

%opt cbc threads 2

%display var x*

 parameters:

seed:=srand(100);

M:=10000;

nrOfCities:=10;

cities:=1..nrOfCities;

{i in cities:

 xp[i]:=rand(100);

 yp[i]:=rand(100);

}

{i in cities, j in cities:

 {i==j:

dist[i,j]:=M; |

 default:

dist[i,j]:= sqrt((xp[i]xp[j])^2 + (yp[i]yp[j])^2);

dist[j,i]:= dist[i,j]+rand(10)rand(10);

 }

CMPL v.1.6.2 - Manual 70

}

variables:

x[cities,cities]: binary;

u[cities]: real[0..];

objectives:

distance: sum{i in cities, j in cities: dist[i,j]* x[i,j]} >min;

constraints:

sos_i {j in cities: sum{i in cities: x[i,j]}=1; }

sos_j {i in cities: sum{j in cities: x[i,j]}=1; }

noSubs {i:=2..nrOfCities, j:=2..nrOfCities, i<>j: u[i] u[j] +

nrOfCities * x[i,j] <= nrOfCities1; }

CMPL command:

cmpl tsp.cmpl

Solution:

Problem tsp.cmpl

Nr. of variables 109

Nr. of constraints 92

Status optimal

Solver name COINOR cbc

Objective name distance

Objective value 321.319 (min!)

Nonzero variables (x*)

Name Type Activity Lower bound Upper bound Marginal

x[1,4] B 1 0 1

x[2,1] B 1 0 1

x[3,6] B 1 0 1

x[4,10] B 1 0 1

x[5,8] B 1 0 1

x[6,9] B 1 0 1

x[7,2] B 1 0 1

x[8,7] B 1 0 1

x[9,5] B 1 0 1

x[10,3] B 1 0 1

The tour is optimal as follows:

1→4→10→3→6→9→5→8→7→2→1

CMPL v.1.6.2 - Manual 71

 10.2 Using CMPL as a pre-solver

CMPL is not only intended to generate models in the MPS or OSIL format. CMPL can also be used as a pre-

solver or simple solver. In this way it is possible to find a preliminary solution of a problem as a basis for the

model which is to be generated.

 10.2.1 Solving the knapsack problem

The knapsack problem is a very simple problem that does not necessarily have to be solved by an MIP

solver. CMPL can be used as a simple solver for knapsack problems to approximate the optimal solution.

The idea of the following models is to evaluate each item using the relation between the value per item and

weight per item. The knapsack will be filled with the items sorted in descending order until the capacity limit

or the minimum value is reached.

Using the data from the examples in section10.1.4a CMPL model to maximize the total sales relative to capa-

city can be formulated as follows.

 Model 1: maximize the total sales knapsackmaxpresolved.cmpl

include "knapsackdata.cmpl"

#calculating the relative value of each box

{j in boxes: val[j]:= p[j]/w[j]; }

sumSales:=0;

sumWeight:=0;

#initial solution

x[]:=(0,0,0,0,0,0,0,0,0,0);

{ i in boxes:

maxVal:=max(val[]);

{j in boxes:

{ maxVal=val[j] :

{ sumWeight+w[j] <= maxWeight:

x[j]:=1;

sumSales:=sumSales + p[j];

sumWeight:=sumWeight + w[j];

}

val[j]:=0;

break j;

}

}

}

echo "Solution found";

echo "Optimal total sales: "+ sumSales;

echo "Total weight : " + sumWeight;

{j in boxes: echo "x_"+ j + ": " + x[j]; }

CMPL v.1.6.2 - Manual 72

CMPL command:

cmpl knapsackmaxpresolved.cmpl noOutput cd

Solution:

Solution found

Optimal total sales: 690

Total weight : 57

x_1: 1

x_2: 1

x_3: 0

x_4: 1

x_5: 0

x_6: 1

x_7: 1

x_8: 0

x_9: 1

x_10: 1

This solution is not identical to the optimal solution on page 62 but good enough as an approximate solution.

Model 2: minimize the total weight knapsackminpresolved.cmpl

include "knapsackdata.cmpl"

#calculating the relative value of each box

{j in boxes: val[j]:= w[j]/p[j]; }

M:=10000;

sumSales:=0;

sumWeight:=0;

#initial solution

x[]:=(0,0,0,0,0,0,0,0,0,0);

{sumSales < minSales:

maxVal:=min(val[]);

{j in boxes:

{ maxVal=val[j] :

{ sumSales < minSales:

x[j]:=1;

sumSales:=sumSales + p[j];

sumWeight:=sumWeight + w[j];

}

val[j]:=M;

break j;

}

}

CMPL v.1.6.2 - Manual 73

repeat;

}

echo "Solution found";

echo "Optimal total weight : " + sumWeight;

echo "Total sales: "+ sumSales;

{j in boxes: echo "x_"+ j + ": " + x[j]; }

CMPL command:

cmpl knapsackminpresolved.cmpl noOutput cd

Solution:

Optimal total weight : 47

Total sales: 630

x_1: 1

x_2: 1

x_3: 0

x_4: 1

x_5: 0

x_6: 0

x_7: 0

x_8: 0

x_9: 1

x_10: 1

This solution is identical to the optimal solution in section10.1.4.

 10.2.2 Finding the maximum of a concave function using the bisection

method

One of the alternative methods for finding the maximum of a negative convex function is the bisection

method. [cf. Hillier/Liebermann (2010), p. 554f.]

A CMPL program to find the maximum of f (x)=12⋅x−3⋅x 4−2⋅x6 can be formulated as follows

(bisection.cmpl):

parameters:

#distance epsilon

e:=0.02;

#initial solution

xl:= 0;

xo:= 2;

xn:= (xl+xo)/2;

{ (xoxl) > e :

fd:= 12 12 * xn^3 12 * xn^5;

{ fd >= 0 : xl:=xn; |

 fd <= 0 : xo:=xn ;}

 xn:= (xl+xo)/2;

CMPL v.1.6.2 - Manual 74

fx := 12 * xn 3 * xn^4 2 * xn^6;

echo "f'(xn): " + format("%10.4f",fd) + " xl: " +

format("%6.4f",xl) +

" xo: " + format("%6.4f",xo) + " xn: " + format("%6.4f",xn) +

" f(xn): " + format("%6.4f",fx);

repeat;

}

echo "Optimal solution found";

x:=xn;

echo "x: "+ format("%2.3f",x);

echo "function value: " + (12 * x 3 * x^4 2 * x^6);

CMPL command:

cmpl bisection.cmpl noOutput cd

Solution:

f'(xn): 12.0000 xl: 0.0000 xo: 1.0000 xn: 0.5000 f(xn): 5.7812

f'(xn): 10.1250 xl: 0.5000 xo: 1.0000 xn: 0.7500 f(xn): 7.6948

f'(xn): 4.0898 xl: 0.7500 xo: 1.0000 xn: 0.8750 f(xn): 7.8439

f'(xn): 2.1940 xl: 0.7500 xo: 0.8750 xn: 0.8125 f(xn): 7.8672

f'(xn): 1.3144 xl: 0.8125 xo: 0.8750 xn: 0.8438 f(xn): 7.8829

f'(xn): 0.3397 xl: 0.8125 xo: 0.8438 xn: 0.8281 f(xn): 7.8815

f'(xn): 0.5113 xl: 0.8281 xo: 0.8438 xn: 0.8359 f(xn): 7.8839

Optimal solution found

x: 0.836

function value: 7.883868

 10.3 Several selected CMPL applications

 10.3.1 Calculating the Fibonacci sequence

By definition, the first Fibonacci sequence starts with the numbers 0 and 1, and each remaining number is

the sum of the previous two.

an1=anan−1 ; a1=0,a2=1, n∈ℕ

CMPL code to calculate the Fibonacci sequence (fibonacci.cmpl):

%arg noOutput

parameters:

initialing the first elements

F[1..2] := (0, 1);

Calculating the Fibonacci sequence until the 10th elelement

CMPL v.1.6.2 - Manual 75

{i:=3(1)10: F[i] := F[i2] + F[i1]; }

echo "The Fibonacci sequence for the first 10 elements";

{i:=1(1)10: echo "element " + i + ": " + F[i]; }

CMPL command:

cmpl fibonacci.cmpl

Calculated sequence:

The Fibonacci sequence for the first 10 elements

element 1: 0

element 2: 1

element 3: 1

element 4: 2

element 5: 3

element 6: 5

element 7: 8

element 8: 13

element 9: 21

element 10: 34

 10.3.2 Calculating primes

A prime is defined as a natural number that has exactly two distinct natural number divisors: 1 and itself.

CMPL code to calculate the sequence of primes (primes.cmpl):

%arg noOutput

parameters:

Initialing the first element

P[1] := 2;

Calculating a prime sequence in the range 3 until 10

{i := 3(1)10:

#Test whether number is prime

t := 1;

{j := defset(P[]), t != 0:

t := i mod P[j];

}

If number is prime, save then as prime number

{t != 0:

P[count(P[]) + 1] := i;

}

}

echo "The prime sequence in the range 3 until 10";

{i:=defset(P[]): echo "element " + i + ": " + P[i]; }

CMPL v.1.6.2 - Manual 76

CMPL command:

cmpl primes.cmpl

Calculated sequence:

The prime sequence in the range 3 until 10

element 1: 2

element 2: 3

element 3: 5

element 4: 7

 11 Authors and Contact

Thomas Schleiff - Halle(Saale), Germany

Mike Steglich - Technical University of Applied Sciences Wildau, Germany - mike.steglich@th-wildau.de

• Contact:

c/o Mike Steglich

Professor of Business Administration, Quantitative Methods and Management Accounting

Technical University of Applied Sciences Wildau

Faculty of Business, Administration and Law

Bahnhofstraße

D-15745 Wildau

Tel.: +493375 / 508-365

Fax.: +493375 / 508-566

mike.steglich@th-wildau.de

• Support via mailing list

Please use our CMPL mailing list hosted at COIN-OR http://list.coin-or.org/mailman/listinfo/Cmpl to get a

direct support, to post bugs or to communicate wishes.

CMPL v.1.6.2 - Manual 77

http://list.coin-or.org/mailman/listinfo/Cmpl

 12 Appendix

 12.1 Selected CBC parameters

The CBC parameters are taken (mostly unchanged) from the CBC command line help.

Only the CBC parameters that are useful in a CMPL context are described afterwards.

Usage CBC parameters:

%opt cbc solverOption [solverOptionValue]

Double parameters:

dualB(ound) doubleValue

Initially algorithm acts as if no gap between bounds exceeds this value

Range of values is 1e-20 to 1e+12, default 1e+10

dualT(olerance) doubleValue

For an optimal solution no dual infeasibility may exceed this value

Range of values is 1e-20 to 1e+12, default 1e-07

objective(Scale) doubleValue

Scale factor to apply to objective

Range of values is -1e+20 to 1e+20, default 1

primalT(olerance) doubleValue

For an optimal solution no primal infeasibility may exceed this value

Range of values is 1e-20 to 1e+12, default 1e-07

primalW(eight) doubleValue

Initially algorithm acts as if it costs this much to be infeasible

Range of values is 1e-20 to 1e+20, default 1e+10

rhs(Scale) doubleValue

Scale factor to apply to rhs and bounds

Range of values is -1e+20 to 1e+20, default 1

Branch and Cut double parameters:

allow(ableGap) doubleValue

Stop when gap between best possible and best less than this

Range of values is 0 to 1e+20, default 0

CMPL v.1.6.2 - Manual 78

artif(icialCost) doubleValue

Costs >= these are treated as artificials in feasibility pump 0.0 off - otherwise variables with

costs >= these are treated as artificials and fixed to lower bound in feasibility pump

Range of values is 0 to 1.79769e+308, default 0

cuto(ff) doubleValue

All solutions must be better than this value (in a minimization sense).

This is also set by code whenever it obtains a solution and is set to value of objective for

solution minus cutoff increment.

Range of values is -1e+60 to 1e+60, default 1e+50

fix(OnDj) doubleValue

Try heuristic based on fixing variables with reduced costs greater than this

If this is set integer variables with reduced costs greater than this will be fixed before branch

and bound - use with extreme caution!

Range of values is -1e+20 to 1e+20, default -1

fraction(forBAB) doubleValue

Fraction in feasibility pump

After a pass in feasibility pump, variables which have not moved about are fixed and if the

pre-processed model is small enough a few nodes of branch and bound are done on reduced

problem. Small problem has to be less than this fraction of original.

Range of values is 1e-05 to 1.1, default 0.5

inc(rement) doubleValue

A valid solution must be at least this much better than last integer solution

Whenever a solution is found the bound on solutions is set to solution (in a minimization

sense) plus this. If it is not set then the code will try and work one out.

Range of values is -1e+20 to 1e+20, default 1e-05

inf(easibilityWeight) doubleValue

Each integer infeasibility is expected to cost this much

Range of values is 0 to 1e+20, default 0

integerT(olerance) doubleValue

For an optimal solution no integer variable may be this away from an integer value

Range of values is 1e-20 to 0.5, default 1e-06

preT(olerance) doubleValue

Tolerance to use in presolve

Range of values is 1e-20 to 1e+12, default 1e-08

CMPL v.1.6.2 - Manual 79

pumpC(utoff) doubleValue

Fake cutoff for use in feasibility pump

0.0 off - otherwise add a constraint forcing objective below this value in feasibility pump

Range of values is -1.79769e+308 to 1.79769e+308, default 0

pumpI(ncrement) doubleValue

Fake increment for use in feasibility pump

0.0 off - otherwise use as absolute increment to cut off when solution found in feasibility

pump

Range of values is -1.79769e+308 to 1.79769e+308, default 0

ratio(Gap) doubleValue

If the gap between best solution and best possible solution is less than this fraction of the

objective value at the root node then the search will terminate.

Range of values is 0 to 1e+20, default 0

reallyO(bjectiveScale) doubleValue

Scale factor to apply to objective in place

Range of values is -1e+20 to 1e+20, default 1

sec(onds) doubleValue

maximum seconds

After this many seconds coin solver will act as if maximum nodes had been reached.

Range of values is -1 to 1e+12, default 1e+08

tighten(Factor) doubleValue

Tighten bounds using this times largest activity at continuous solution

Range of values is 0.001 to 1e+20, default -1

Integer parameters:

idiot(Crash) integerValue

This is a type of 'crash' which works well on some homogeneous problems. It works best on

problems with unit elements and rhs but will do something to any model. It should only be

used before primal. It can be set to -1 when the code decides for itself whether to use it, 0

to switch off or n > 0 to do n passes.

Range of values is -1 to 99999999, default -1

maxF(actor) integerValue

Maximum number of iterations between refactorizations

Range of values is 1 to 999999, default 200

CMPL v.1.6.2 - Manual 80

maxIt(erations) integerValue

Maximum number of iterations before stopping

Range of values is 0 to 2147483647, default 2147483647

passP(resolve) integerValue

How many passes in presolve

Range of values is -200 to 100, default 5

pO(ptions) integerValue

If this is > 0 then presolve will give more information and branch and cut will give statistics

Range of values is 0 to 2147483647, default 0

slp(Value) integerValue

Number of slp passes before primal

If you are solving a quadratic problem using primal then it may be helpful to do some se-

quential Lps to get a good approximate solution.

Range of values is -1 to 50000, default -1

slog(Level) integerValue

Level of detail in (LP) Solver output

Range of values is -1 to 63, default 1

subs(titution) integerValue

How long a column to substitute for in presolve

Normally Presolve gets rid of 'free' variables when there are no more than 3 variables in

column. If you increase this the number of rows may decrease but number of elements may

increase.

Range of values is 0 to 10000, default 3

Branch and Cut integer parameters:

cutD(epth) integerValue

Depth in tree at which to do cuts

Cut generators may be - off, on only at root, on if they look possible and on. If they are

done every node then that is that, but it may be worth doing them every so often. The ori -

ginal method was every so many nodes but it is more logical to do it whenever depth in tree

is a multiple of K. This option does that and defaults to -1 (off -> code decides).

Range of values is -1 to 999999, default -1

cutL(ength) integerValue

Length of a cut

At present this only applies to Gomory cuts. -1 (default) leaves as is. Any value >0 says that

all cuts <= this length can be generated both at root node and in tree. 0 says to use some

CMPL v.1.6.2 - Manual 81

dynamic lengths. If value >=10,000,000 then the length in tree is value%10000000 - so

10000100 means unlimited length at root and 100 in tree.

Range of values is -1 to 2147483647, default -1

dense(Threshold) integerValue

Whether to use dense factorization

Range of values is -1 to 10000, default -1

depth(MiniBab) integerValue

Depth at which to try mini BAB

Rather a complicated parameter but can be useful. -1 means off for large problems but on

as if -12 for problems where rows+columns<500, -2 means use Cplex if it is linked in. Oth-

erwise if negative then go into depth first complete search fast branch and bound when

depth>= -value-2 (so -3 will use this at depth>=1). This mode is only switched on after

500 nodes. If you really want to switch it off for small problems then set this to -999. If

>=0 the value doesn't matter very much. The code will do approximately 100 nodes of fast

branch and bound every now and then at depth>=5. The actual logic is too twisted to de -

scribe here.

Range of values is -2147483647 to 2147483647, default -1

diveO(pt) integerValue

Diving options

If >2 && <8 then modify diving options

–3 only at root and if no solution,

–4 only at root and if this heuristic has not got solution,

–5 only at depth <4,

–6 decay, 7 run up to 2 times

if solution found 4 otherwise.

Range of values is -1 to 200000, default 3

hOp(tions) integerValue

Heuristic options

1 says stop heuristic immediately allowable gap reached. Others are for feasibility pump - 2

says do exact number of passes given, 4 only applies if initial cutoff given and says relax

after 50 passes, while 8 will adapt cutoff rhs after first solution if it looks as if code is

stalling.

Range of values is -9999999 to 9999999, default 0

hot(StartMaxIts) integerValue

Maximum iterations on hot start

Range of values is 0 to 2147483647, default 100

CMPL v.1.6.2 - Manual 82

log(Level) integerValue

Level of detail in Coin branch and Cut output

If 0 then there should be no output in normal circumstances. 1 is probably the best value

for most uses, while 2 and 3 give more information.

Range of values is -63 to 63, default 1

maxN(odes) integerValue

Maximum number of nodes to do

Range of values is -1 to 2147483647, default 2147483647

maxS(olutions) integerValue

Maximum number of solutions to get

You may want to stop after (say) two solutions or an hour. This is checked every node in

tree, so it is possible to get more solutions from heuristics.

Range of values is 1 to 2147483647, default -1

passC(uts) integerValue

Number of cut passes at root node

The default is 100 passes if less than 500 columns, 100 passes (but stop if drop small if less

than 5000 columns, 20 otherwise

Range of values is -9999999 to 9999999, default -1

passF(easibilityPump) integerValue

How many passes in feasibility pump

This fine tunes Feasibility Pump by doing more or fewer passes.

Range of values is 0 to 10000, default 30

passT(reeCuts) integerValue

Number of cut passes in tree

Range of values is -9999999 to 9999999, default 1

small(Factorization) integerValue

Whether to use small factorization

If processed problem <= this use small factorization

Range of values is -1 to 10000, default -1

strong(Branching) integerValue

Number of variables to look at in strong branching

Range of values is 0 to 999999, default 5

CMPL v.1.6.2 - Manual 83

thread(s) integerValue

Number of threads to try and use

To use multiple threads, set threads to number wanted. It may be better to use one or two

more than number of cpus available. If 100+n then n threads and search is repeatable

(maybe be somewhat slower), if 200+n use threads for root cuts, 400+n threads used in

sub-trees.

Range of values is -100 to 100000, default 0

trust(PseudoCosts) integerValue

Number of branches before we trust pseudocosts

Range of values is -3 to 2000000, default 5

Keyword parameters:

bscale option

Whether to scale in barrier (and ordering speed)

Possible options: off on off1 on1 off2 on2, default off

chol(esky) option

Which cholesky algorithm

Possible options: native dense fudge(Long_dummy) wssmp_dummy

crash option

Whether to create basis for problem

If crash is set on and there is an all slack basis then Clp will flip or put structural variables

into basis with the aim of getting dual feasible. On the whole dual seems to be better

without it and there are alternative types of 'crash' for primal e.g. 'idiot' or 'sprint'.

Possible options: off on so(low_halim) ha(lim_solow(JJF mods)), dfeault off

cross(over) option

Whether to get a basic solution after barrier

Interior point algorithms do not obtain a basic solution (and the feasibility criterion is a bit

suspect (JJF)). This option will crossover to a basic solution suitable for ranging or branch

and cut. With the current state of quadratic it may be a good idea to switch off crossover

for quadratic (and maybe presolve as well) - the option maybe does this.

Possible options: on off maybe presolve, default on

dualP(ivot) option

Dual pivot choice algorithm

Possible options: auto(matic) dant(zig) partial steep(est), default auto(matic)

fact(orization) option

Which factorization to use

Possible options: normal dense simple osl, default normal

CMPL v.1.6.2 - Manual 84

gamma((Delta)) option

Whether to regularize barrier

Possible options: off on gamma delta onstrong gammastrong deltastrong, default off

KKT option

Whether to use KKT factorization

Possible options: off on, default off

perturb(ation) option

Whether to perturb problem

Possible options: on off, default on

presolve option

Presolve analyzes the model to find such things as redundant equations, equations which fix

some variables, equations which can be transformed into bounds etc etc. For the initial

solve of any problem this is worth doing unless you know that it will have no effect. on will

normally do 5 passes while using 'more' will do 10. If the problem is very large you may

need to write the original to file using 'file'.

Possible options for presolve are: on off more file, default on

primalP(ivot) option

Primal pivot choice algorithm

Possible options: auto(matic) exa(ct) dant(zig) part(ial) steep(est) change sprint, default

auto(matic)

scal(ing) option

Whether to scale problem

Possible options: off equi(librium) geo(metric) auto(matic) dynamic rows(only), default

auto(matic)

spars(eFactor) option

Whether factorization treated as sparse

Possible options: on off, default on

timeM(ode) option

Whether to use CPU or elapsed time

cpu uses CPU time for stopping, while elapsed uses elapsed time. (On Windows, elapsed

time is always used).

Possible options: cpu elapsed, default cpu

vector option

If this parameter is set to on ClpPackedMatrix uses extra column copy in odd format.

Possible options: off on, default off

CMPL v.1.6.2 - Manual 85

Branch and Cut keyword parameters:

clique(Cuts) option

Whether to use Clique cuts

Possible options: off on root ifmove forceOn onglobal, default ifmove

combine(Solutions) option

Whether to use combine solution heuristic

This switches on a heuristic which does branch and cut on the problem given by just using

variables which have appeared in one or more solutions. It obviously only tries after two or

more solutions. See Rounding for meaning of on,both,before

Possible options: off on both before, default on

combine2(Solutions) option

Whether to use crossover solution heuristic

This switches on a heuristic which does branch and cut on the problem given by fixing vari-

ables which have same value in two or more solutions. It obviously only tries after two or

more solutions. See Rounding for meaning of on,both,before

Possible options: off on both before, default off

cost(Strategy) option

How to use costs as priorities

This orders the variables in order of their absolute costs - with largest cost ones being

branched on first. This primitive strategy can be surprsingly effective. The column order

option is obviously not on costs but easy to code here.

Possible options: off pri(orities) column(Order?) 01f(irst?) 01l(ast?) length(?), default off

cuts(OnOff) option

Switches all cuts on or off

This can be used to switch on or off all cuts (apart from Reduce and Split). Then you can do

individual ones off or on See branchAndCut for information on options.

Possible options: off on root ifmove forceOn, default on

Dins option

This switches on Distance induced neighborhood Search. See Rounding for meaning of

on,both,before

Possible options: off on both before often, default off

DivingS(ome) option

This switches on a random diving heuristic at various times. C - Coefficient, F - Fractional, G

- Guided, L - LineSearch, P - PseudoCost, V - VectorLength. You may prefer to use individual

on/off See Rounding for meaning of on,both,before

Possible options: off on both before, default off

CMPL v.1.6.2 - Manual 86

DivingC(oefficient) option

Whether to try DiveCoefficient

Possible options: off on both before, default on

DivingF(ractional) option

Whether to try DiveFractional

Possible options: off on both before, default off

DivingG(uided) option

Whether to try DiveGuided

Possible options: off on both before, default off

DivingL(ineSearch) option

Whether to try DiveLineSearch

Possible options: off on both before, default off

DivingP(seudoCost) option

Whether to try DivePseudoCost

Possible options: off on both before, default off

DivingV(ectorLength) option

Whether to try DiveVectorLength

Possible options: off on both before, default off

feas(ibilityPump) option

This switches on feasibility pump heuristic at root. This is due to Fischetti, Lodi and Glover

and uses a sequence of Lps to try and get an integer feasible solution. Some fine tuning is

available by passFeasibilityPump and also pumpTune. See Rounding for meaning of

on,both,before

Possible options: off on both before, default on

flow(CoverCuts) option

This switches on flow cover cuts (either at root or in entire tree)

See branchAndCut for information on options.

Possible options: off on root ifmove forceOn onglobal, default ifmove

gomory(Cuts) option

Whether to use Gomory cuts

The original cuts - beware of imitations! Having gone out of favor, they are now more fash-

ionable as LP solvers are more robust and they interact well with other cuts. They will al-

most always give cuts (although in this executable they are limited as to number of variables

in cut). However the cuts may be dense so it is worth experimenting (Long allows any

length). See branchAndCut for information on options.

CMPL v.1.6.2 - Manual 87

Possible options: off on root ifmove forceOn onglobal forceandglobal forceLongOn long, de-

fault ifmove

greedy(Heuristic) option

Whether to use a greedy heuristic

Switches on a greedy heuristic which will try and obtain a solution. It may just fix a percent-

age of variables and then try a small branch and cut run. See Rounding for meaning of

on,both,before

Possible options: off on both before, default on

heur(isticsOnOff) option

Switches most heuristics on or off

Possible options: off on, default on

knapsack(Cuts) option

This switches on knapsack cuts (either at root or in entire tree)

Possible options: off on root ifmove forceOn onglobal forceandglobal, default ifmove

lift(AndProjectCuts) option

Whether to use Lift and Project cuts

Possible options: off on root ifmove forceOn, default off

local(TreeSearch) option

This switches on a local search algorithm when a solution is found. This is from Fischetti and

Lodi and is not really a heuristic although it can be used as one. When used from Coin solve

it has limited functionality. It is not switched on when heuristics are switched on.

Possible options: off on, default off

mixed(IntegerRoundingCuts) option

This switches on mixed integer rounding cuts (either at root or in entire tree) See bran-

chAndCut for information on options.

Possible options: off on root ifmove forceOn onglobal, default ifmove

naive(Heuristics) option

Really silly stuff e.g. fix all integers with costs to zero!. Doh option does heuristic before pre-

processing

Possible options: off on both before, default off

node(Strategy) option

What strategy to use to select nodes

Normally before a solution the code will choose node with fewest infeasibilities. You can

choose depth as the criterion. You can also say if up or down branch must be done first (the

up down choice will carry on after solution). Default has now been changed to hybrid which

is breadth first on small depth nodes then fewest.

CMPL v.1.6.2 - Manual 88

Possible options: hybrid fewest depth upfewest downfewest updepth downdepth, default

fewest

pivotAndC(omplement) option

Whether to try Pivot and Complement heuristic

Possible options: off on both before, default off

pivotAndF(ix) option

Whether to try Pivot and Fix heuristic

Possible options: off on both before, default off

preprocess option

This tries to reduce size of model in a similar way to presolve and it also tries to strengthen

the model - this can be very useful and is worth trying. Save option saves on file pre-

solved.mps. equal will turn <= cliques into ==. sos will create sos sets if all 0-1 in sets

(well one extra is allowed) and no overlaps. trysos is same but allows any number extra.

equalall will turn all valid inequalities into equalities with integer slacks.

Possible options: off on save equal sos trysos equalall strategy aggregate forcesos, default

sos

probing(Cuts) option

This switches on probing cuts (either at root or in entire tree) See branchAndCut for inform-

ation on options. but strong options do more probing

Possible options: off on root ifmove forceOn onglobal forceonglobal forceOnBut forceOn-

Strong forceOnButStrong strongRoot, default forceOnStrong

rand(omizedRounding) option

Whether to try randomized rounding heuristic

Possible options: off on both before, default off

reduce(AndSplitCuts) option

This switches on reduce and split cuts (either at root or in entire tree) See branchAndCut

for information on options.

Possible options: off on root ifmove forceOn, default off

residual(CapacityCuts) option

Residual capacity cuts. See branchAndCut for information on options.

Possible options: off on root ifmove forceOn, default off

Rens option

This switches on Relaxation enforced neighborhood Search. on just does 50 nodes 200 or

1000 does that many nodes. Doh option does heuristic before preprocessing

Possible options: off on both before 200 1000 10000 dj djbefore, default off

CMPL v.1.6.2 - Manual 89

Rins option

This switches on Relaxed induced neighborhood Search. Doh option does heuristic before

preprocessing

Possible options: off on both before often, default on

round(ingHeuristic) option

This switches on a simple (but effective) rounding heuristic at each node of tree. On means

do in solve i.e. after preprocessing, Before means do if doHeuristics used, off otherwise, and

both means do if doHeuristics and in solve.

Possible options: off on both before, default on

two(MirCuts) option

This switches on two phase mixed integer rounding cuts (either at root or in entire tree)

See branchAndCut for information on options.

Possible options: off on root ifmove forceOn onglobal forceandglobal forceLongOn, default

root

Vnd(VariableNeighborhoodSearch) option

Whether to try Variable Neighborhood Search

Possible options: off on both before intree, default off

Actions:

 barr(ier) Solve using primal dual predictor corrector algorithm

dualS(implex) Do dual simplex algorithm

either(Simplex) Do dual or primal simplex algorithm

initialS Solve to continuous

This just solves the problem to continuous - without adding any cuts

outDup takes duplicate rows etc out of integer model

primalS Do primal simplex algorithm

reallyS Scales model in place

stat Print some statistics

tightLP Poor person's preSolve for now

Branch and Cut actions:

branch Do Branch and Cut

CMPL v.1.6.2 - Manual 90

 12.2 Selected GLPK parameters

The following parameters are taken from the GLPK command line help.

Only the GLPK parameters that are useful in a CMPL context are described afterwards.

Usage GLPK parameters:

%opt glpk solverOption [solverOptionValue]

General options:

simplex use simplex method (default)

interior use interior point method (LP only)

scale scale problem (default)

noscale do not scale problem

ranges filename write sensitivity analysis report to filename in

 printable format (simplex only)

tmlim nnn limit solution time to nnn seconds

memlim nnn limit available memory to nnn megabytes

wlp filename write problem to filename in CPLEX LP format

wglp filename write problem to filename in GLPK format

wcnf filename write problem to filename in DIMACS CNF-SAT format

log filename write copy of terminal output to filename

 LP basis factorization options:

luf LU + Forrest-Tomlin update

 (faster, less stable; default)

cbg LU + Schur complement + Bartels-Golub update

 (slower, more stable)

cgr LU + Schur complement + Givens rotation update

 (slower, more stable)

Options specific to simplex solver:

primal use primal simplex (default)

dual use dual simplex

std use standard initial basis of all slacks

adv use advanced initial basis (default)

bib use Bixby's initial basis

CMPL v.1.6.2 - Manual 91

steep use steepest edge technique (default)

nosteep use standard "textbook" pricing

relax use Harris' two-pass ratio test (default)

norelax use standard "textbook" ratio test

presol use presolver (default; assumes scale and adv)

nopresol do not use presolver

exact use simplex method based on exact arithmetic

xcheck check final basis using exact arithmetic

Options specific to interior-point solver:

nord use natural (original) ordering

qmd use quotient minimum degree ordering

amd use approximate minimum degree ordering (default)

symamd use approximate minimum degree ordering

Options specific to MIP solver:

nomip consider all integer variables as continuous (allows solving MIP as pure LP)

first branch on first integer variable

last branch on last integer variable

mostf branch on most fractional variable

drtom branch using heuristic by Driebeck and Tomlin (default)

pcost branch using hybrid pseudocost heuristic (may be useful for hard instances)

dfs backtrack using depth first search

bfs backtrack using breadth first search

bestp backtrack using the best projection heuristic

bestb backtrack using node with best local bound (default)

intopt use MIP presolver (default)

nointopt do not use MIP presolver

binarize replace general integer variables by binary ones (assumes intopt)

fpump apply feasibility pump heuristic

gomory generate Gomory's mixed integer cuts

mir generate MIR (mixed integer rounding) cuts

cover generate mixed cover cuts

clique generate clique cuts

cuts generate all cuts above

mipgap tol set relative mip gap tolerance to tol

CMPL v.1.6.2 - Manual 92

minisat translate integer feasibility problem to CNF-SAT and solve it with MiniSat

solver

objbnd bound add inequality obj <= bound (minimization) or obj >= bound (maximization)

to integer feasibility problem (assumes minisat)

References

• Anderson/Sweeney/Williams/Martin: An Introduction to Management Science - Quantitative Ap-

proaches to Decision Making, 13th ed., South-Western, Cengage Learning 2008.

• Fourer/Gay/Kernigham: AMPL, 2nd ed., Thomson 2003.

• Gassmann/Ma/Martin/Sheng: Optimization Services 2.4 User’s Manual, 2011.

• GLPK: GNU Linear Programming Kit Reference Manual for GLPK Version 4.45, 2010.

• Hillier/Lieberman: Introduction to Operations Research, 9th ed., McGraw-Hill Higher Education 2010.

• Rogge/Steglich: Betriebswirtschaftliche Entscheidungsmodelle zur Verfahrenswahl sowie Auflagen-

und Lagerpolitiken, in: Diskussionsbeiträge zu Wirtschaftsinformatik und Operations Research

10/2007, Martin-Luther-Universität Halle-Wittenberg 2007.

CMPL v.1.6.2 - Manual 93

	1 About CMPL
	2 CMPL elements
	2.1 General structure of a CMPL model
	2.2 Keywords and other syntactic elements
	2.3 Objects
	2.3.1 Parameters
	2.3.2 Variables
	2.3.3 Indices and sets
	2.3.4 Line names

	2.4 CMPL header

	3 Expressions
	3.1 Overview
	3.2 Array functions
	3.3 Mathematical functions
	3.4 Type casts
	3.5 String operations
	3.6 Set functions

	4 Input and output operations
	4.1 Error and user messages
	4.2 Readcsv and readstdin
	4.3 Include

	5 Statements
	5.1 parameters and variables section
	5.2 objectives and constraints section

	6 Control structure
	6.1 Overview
	6.2 Control header
	6.2.1 Iteration headers
	6.2.2 Condition headers
	6.2.3 Local assignments

	6.3 Alternative bodies
	6.4 Control statements
	6.5 Specific control structures
	6.5.1 For loop
	6.5.2 If-then clause
	6.5.3 Switch clause
	6.5.4 While loop

	6.6 Set and sum control structure as expression

	7 Matrix-Vector notations
	8 Automatic model reformulations
	8.1 Overview
	8.2 Matrix reductions
	8.3 Equivalent transformations of Variable Products
	8.3.1 Variable Products with at least one binary variable
	8.3.2 Variable Product with at least one integer variable

	9 CMPL as command line tool
	9.1 Usage
	9.2 Input and output file formats
	9.2.1 Overview
	9.2.2 CMPL
	9.2.3 MPS
	9.2.4 Free - MPS
	9.2.5 OSiL
	9.2.6 OSoL
	9.2.7 MPrL
	9.2.8 OSrL
	9.2.9 GLPK plain text (result) format
	9.2.10 CPLEX solution file format
	9.2.11 SCIP solution file format

	9.3 Using CMPL with several solvers
	9.3.1 COIN-OR OSSolverService
	9.3.2 GLPK
	9.3.3 Gurobi
	9.3.4 SCIP
	9.3.5 CPLEX
	9.3.6 Other solvers

	9.4 Using CMPL with Coliop

	10 Examples
	10.1 Selected decision problems
	10.1.1 The diet problem
	10.1.2 Production mix
	10.1.3 Production mix including thresholds and step-wise fixed costs
	10.1.4 The knapsack problem
	10.1.5 Transportation problem
	10.1.6 Quadratic assignment problem
	10.1.7 Generic travelling salesman problem

	10.2 Using CMPL as a pre-solver
	10.2.1 Solving the knapsack problem
	10.2.2 Finding the maximum of a concave function using the bisection method

	10.3 Several selected CMPL applications
	10.3.1 Calculating the Fibonacci sequence
	10.3.2 Calculating primes

	11 Authors and Contact
	12 Appendix
	12.1 Selected CBC parameters
	12.2 Selected GLPK parameters

