
CMPL

Coliop Mathematical Programming Language

Version 1.5.0

February 2011

Manual

 M. Steglich, T. Schleiff

CMPL v.1.5.0 - Manual 1

Table of content

 1 About CMPL ...4

 2 Syntactic elements... 4

 2.1 General structure of a CMPL program.. 4

 2.2 Keywords and other syntactic elements... 5

 2.3 Objects..7

 2.3.1 Parameters...7

 2.3.2 Variables.. 8

 2.3.3 Indices and sets... 9

 2.3.4 Line names...12

 3 Expressions... 13

 3.1 Overview... 13

 3.2 Array functions .. 13

 3.3 Mathematical functions... 14

 3.4 Type casts..15

 3.5 String operations.. 16

 3.6 Set functions ... 18

 4 Input and output operations .. 18

 4.1 Error and user messages...19

 4.2 Readcsv and readstdin.. 19

 4.3 Include ... 20

 5 Statements ... 21

 5.1 parameters and variables section...21

 5.2 objectives and constraints section ...21

 6 Control structure.. 23

 6.1 Overview... 23

 6.2 Control header... 23

 6.2.1 Iteration headers.. 23

 6.2.2 Condition headers... 24

 6.2.3 Local assignments ..25

 6.3 Alternative bodies ..25

 6.4 Control statements... 26

 6.5 Specific control structures... 26

 6.5.1 For loop..26

 6.5.2 If-then clause... 27

 6.5.3 Switch clause..28

 6.5.4 While loop.. 29

 6.6 Set and sum control structure as expression.. 29

 6.7 Implicit loops..31

 7 Automatic code generating .. 34

 7.1 Overview..34

 7.2 Matrix reductions.. 34

CMPL v.1.5.0 - Manual 2

 7.3 Equivalent transformations of Variable Products ...34

 7.3.1 Variable Products with at least one binary variable.. 35

 7.3.2 Variable Product with at least one integer variable...35

 8 CMPL as command line tool ... 36

 8.1 Usage ... 36

 8.2 Input and output file formats.. 38

 8.2.1 Overview.. 38

 8.2.2 CMPL... 38

 8.2.3 MPS... 39

 8.2.4 Free - MPS..40

 8.2.5 OSiL...40

 8.2.6 OsoL.. 42

 8.2.7 MprL.. 42

 8.3 Using CMPL with several solvers.. 44

 8.3.1 Coliop3...45

 8.3.2 GLPK..45

 8.3.3 LPSolve.. 45

 9 Examples...46

 9.1 Selected decision problems... 46

 9.1.1 The diet problem ... 46

 9.1.2 Production mix..47

 9.1.3 Production mix including thresholds and step-wise fixed costs ..49

 9.1.4 The knapsack problem.. 51

 9.1.5 Quadratic assignment problem...54

 9.2 Using CMPL as a pre-solver .. 57

 9.2.1 Solving the knapsack problem ...57

 9.2.2 Finding the maximum of a negative convex function with the golden ratio method59

 9.3 Several selected CMPL applications ...60

 9.3.1 Calculating the Fibonacci sequence.. 60

 9.3.2 Calculating primes...61

 10 Authors and Contact...62

CMPL v.1.5.0 - Manual 3

 1 About CMPL

CMPL (Coliop Mathematical Programming Language) is a mathematical programming language and a system

for modelling, solving and analysing linear programming (LP) problems and mixed integer programming

(MIP) problems.

The CMPL syntax is similar in formulation to the original mathematical model but also includes syntactic ele -

ments from modern programming languages. CMPL is intended to combine the clarity of mathematical mod-

els with the flexibility of programming languages.

CMPL contains the COIN-OR OSSolverService including the COIN-OR solvers CLP and CBC and also the GNU

Linear Programming Kit GLPK. Since it is also possible to transform the mathematical problem into MPS,

Free-MPS or OSiL files alternative solvers can be used. CMPL is also a part of Coliop3 which is an IDE (Integ-

rated Development Environment) intended to solve LP and MIP problems.

CMPL is an open source project licensed under GPL. It is written in C++ and is available for all relevant oper-

ating systems. CMPL and Coliop3 are projects of the Technical University of Applied Sciences Wildau and the

Institute for Operations Research and Business Management at the Martin Luther University Halle-Witten-

berg.

For further information please visit the CMPL website (www.coliop.org/cmpl).

 2 Syntactic elements

 2.1 General structure of a CMPL program

The structure of a CMPL program follows the standard model of linear programming (LP), which is defined

by a linear objective function and linear constraints. Apart from the variable decision vector x all other com-

ponents are constant.

cT⋅xmax /min
s.t.
A⋅x≤b
x≥0

A CMPL program consists of four sections, the parameters section, the variables section, the ob

jectives section and the constraints section, which can be inserted several times and mixed in a dif-

ferent order. Each sector can contain one or more lines with user-defined expressions.

parameters:

 # definition of the parameters

variables:

 # definition of the variables

objectives:

 # definition of the objective(s)

constraints:

 # definition of the constraints

CMPL v.1.5.0 - Manual 4

A typical LP problem is optimal production planning. The aim is to find an optimal quantity for the products,

depending on given capacities. The objective function is defined by the profit contribution per unit c and the

variable quantity of the products x. The constraints consist of the use of the capacities and the ranges for

the decision variables. The use of the capacities is given by the product of the coefficient matrix A and the

vector of the decision variables x and restricted by the vector of the available capacities b.

For example,

1⋅x12⋅x 23⋅x3max !
s.t.
5.6⋅x17.7⋅x 210.5⋅x 3≤15
9.8⋅x14.2⋅x 211.1⋅x 3≤20
0≤xn ; n=113

can be formulated in CMPL as follows:

parameters:

 c[] := (1, 2, 3);

 b[] := (15, 20);

 A[,] := ((5.6, 7.7, 10.5),

 (9.8, 4.2, 11.1));

variables:

 x[1..dim(c[])]: real;

objectives:

 c[]T * x[] > max;

constraints:

 A[,] * x[] <= b[];

 x[] >= 0;

 2.2 Keywords and other syntactic elements

Keywords
parameters, variables, objectives,

constraints
section markers

real, integer, binary types of variable

real, integer, binary, string, set types of parameter expression

also used for type casts

max, min objective senses

set, in, element, len, defset key words for sets

max, min, dim, def, format, type functions for parameter expressions

sqrt, exp, ln, lg, ld, srand, rand,

sin, cos, tan, acos, asin, atan, sinh,

cosh, tanh, abs, ceil, floor, round

mathematical functions that can be used for para-

meter expressions

CMPL v.1.5.0 - Manual 5

include include of CMPL file

readcsv, readstdin data import from a CSV file or from user input

error, echo error and user message

sum summation

continue, break, default, repeat key words for control structures

Arithmetic operators
+ signs for parameters or addition/subtraction

^ to the power of

* / multiplication and division

div mod integer division and remainder on division

:= assignment operator

Condition operators
= <= >= conditions for constraints, while-loops and if-then

clauses

== < > != <> additional conditions in while-loops and if-then

clauses

&& || ! logical operations (and, or, not)

Other syntactic elements
() - arithmetical bracketing in constant expressions

- lists for initialising vectors of constants

- parameters for constant functions

- increment in an algorithmic set

[] - indexing of vectors

- range specification in variable definitions

{ } - control structures

.. - algorithmic set (e.g. range for indices or loop coun-

ters)

- range specification in variable definitions

, - element separation in an initialisation list for

 constant vectors and enumeration sets

- separation of function parameters

- separation of indices

- separation of loop heads in a loop

- separation of variables in a variable definition

: - mark indicating beginning of sections

- definition of variables

- definition of parameter type

- separation of loop header from loop body

- separation of line names

| - separation of alternative blocks in a control struc-

ture

CMPL v.1.5.0 - Manual 6

; - mark indicating end of a statement - every state-

ment is to be closed by a semicolon

- comment (up to end of line)

/* */ - comment (between /* and */)

 2.3 Objects

 2.3.1 Parameters

A parameters section consists of parameter definitions and assignments to parameters. A parameter can

only defined within the parameters section using a assignment.

Note that a parameter can be used as a constant in a linear optimization model as coefficients in objectives

and constraints. Otherwise parameters can be used like variables in programming languages. Parameters are

usable in expressions, for instance in the calculation and definition of other parameters. A user can assign a

value to a parameter and can then subsequently change the value with a new assignment.

A parameter is identified by name and, if necessary, by one or more indices. A type can be specified but is

not necessary. Possible types are real, integer, binary, string and set. A parameter can be a

scalar or an array of parameter values (e.g. vector, matrix or another multidimensional construct). A para-

meter is defined by an assignment with the assignment operator :=.

Usage:

name [: type] := scalarExpression;

name[index] [: type] := scalarExpression;

name[[set]] [: type] := non-scalarExpression;

name name of the parameter

type optional specification of the type of parameter

Possible types are real, integer, binary, string and set. If

the type is not defined, the type of the parameter is given by the expres-

sion on the right hand side.

index a position in an array of parameters

The index can be an integer or a string expression. For multidimensional

arrays it is necessary to set the index for every dimension separated by

commas.

scalarExpression A scalar parameter or a single part of an array of parameters is assigned a

single integer or real number, a single string, the scalar result of a math-

ematical function.

CMPL v.1.5.0 - Manual 7

The elements of an array can also be sets. But it is not possible to mix set

and non-set expressions in one array.

set an optional set expression for the definition of the dimension of the array

A set is a collection of distinct objects. Distinction can be made between

enumeration sets, algorithmic sets and sets which are based on set oper-

ations like unions or intersections.

non-scalarExpression A non-scalar expression consists of a list of scalarExpressions. The

elements of the list are separated by commas and imbedded in brackets.

The elements of the list can also be sets. But it is not possible to mix set

and non-set expressions.

Examples:
k := 10; parameter k with value 10

k[1..5] := (0.5, 1, 2, 3.3, 5.5);

k[] := (0.5, 1, 2, 3.3, 5.5);
vector of parameters with 5 elements

A[]: integer := (16, 45.4); Definition of a matrix with two integer values a[1]=16

and a[2]=45. Since A[] is defined as an integer mat-

rix the real value 45.4 is transformed to the rounded

value 45.

a[,] := ((5.6, 7.7, 10.5),

 (9.8, 4.2, 11.1));
matrix with 2 rows and 3 columns

products := set("bike1", "bike2");

machineHours[products]:= (5.4, 10);
defines a vector for machine hours based on the set
products

myString := "this is a string"; string parameter

q := 3; parameter q with value 3

g[1..q] := (1, 2, 3); usage of q for the definition of the parameter g

If a name is used for a defined parameter, different usages of this name with indices can only refer to para -

meter, but not to model variables (e.g. if a[1] is a parameter, then a[2], a or a[1,1] can only be de-

fined as parameter and not as model variables. a can also not be used as a local parameter like a loop

counter).

A special kind of parameter are local parameters, which can only be defined within the head of a control

structure. A local parameter is only valid in the body of the control structure and can be used like any other

parameter. Only scalar parameters are permitted as local parameters. The main application of local paramet-

ers are loop counters iterated over a set.

 2.3.2 Variables

The variables section is intended to declare the variables of a decision model, which are necessary

for the definition of objectives and constraints in the decision model. A model variable is identified by

CMPL v.1.5.0 - Manual 8

name and, if necessary, by an index. A type must be specified. A model variable can be a scalar or a part of

a vector, a matrix or another array of variables. A variable cannot be assigned a value.

Usage:

variables:

name : type [[[lowerBound]..[upperBound]]];

name[index] : type [[[lowerBound]..[upperBound]]];

name[set] : type [[[lowerBound]..[upperBound]]];

name name of model variable

type type of model variable.

Possible types are real, integer, binary.

[lowerBound..upperBound] optional parameter for limits of model variable

lowerBound and upperBound must be a real or integer expres-

sion. For the type binary it is not possible to specify bounds.

Examples:

x: real; x is a real model variable with no ranges

x: real[0..100]; x is a real model variable, 0≤x≤100

x[1..5]: integer[10..20]; vector with 5 elements, 10≤x n≤20 ; n=1 1 5

x[1..5,1..5,1..5]: real[0..]; a three-dimensional array of real model variables with

125 elements identified by indices,

x i , j ,k≥0 ; i , j , k=115

parameters:

prod := set("bike1", "bike2");

variables:

x[prod]: real[0..];

defines a vector of non-negative real model variables

based on the set prod

y: binary; x is a binary model variable y∈{0,1}

Different indices may cause model variables to have different types. (e.g. the following is permissible: vari-

ables: x[1]: real; x[2]: integer;)

If a name is used for a model variable definition, different usages of this name with indices can only refer to

model variables and not to parameters (e.g. if x[1]is a model variable, then x[2], x or x[1,1] can

only be defined as model variables).

 2.3.3 Indices and sets

Sets are used for the definitions of arrays of parameters or model variables and for the iterations in loops.

Indices are necessary to identify an element of an array like a vector or matrix of parameters or model vari -

ables.

CMPL v.1.5.0 - Manual 9

A set is a collection of distinct integer and string elements. Sets can be defined by an enumeration of ele -

ments or by algorithms within the parameters section. It is also possible to build sets using set operations

like condition sets or unions or intersections of defined sets. A set can be stored in a scalar parameter or in

an element of an array of parameters.

Usage set definitions:

startNumber(in/decrementor)endNumber #algorithmic set

[startNumber]..[endNumber] #algorithmic set

.integer. #algorithmic set

.string. #algorithmic set

set(listOfIntAndStrings) #enumeration set

startNumber(in/decrementor)endNumber set of integers based on an algorithm

The set starts at the startNumber, is changed by an in-

crementer or decrementer at every iteration and

ends at the endNumber.

startNumber..endNumber set of integers based on an algorithm

The set starts at the startNumber, is changed by the

number one at every iteration and ends at the endNum-

ber.

startNumber and endNumber are optional elements.

startNumber.. infinite set with all integers greater than or equal to
startNumber

..endNumber infinite set with all integers less than or equal to
endNumber

.. infinite set with all integers and strings

.integer. infinite set with all integers

.string. infinite set with all strings

listOfIntAndStrings elements of an enumeration set

An enumeration set consists of one or more integer ex-

pressions or string expressions separated by commas and

imbedded in brackets, and is described by the key word

set.

It is possible to define an empty set using an empty array

within the statement set().

CMPL v.1.5.0 - Manual 10

Examples:

s:=..; s is assigned an infinite set of all integers and strings

s:=..6; s is assigned s∈ ,4,5,6
s:=6..; s is assigned s∈6,7,8 ,
s:=0..6;

s:=0(1)6;
s is assigned s∈0,1 , ,6

s:=10(2)4; s is assigned s∈10,8, 6,4
prod := set("bike1", "bike2"); enumeration set of strings

a:= set(1, "a", 3, "b", 5, "c");

x[a]:=(10,20,30,40,50,60);

enumeration set of strings and integers

vector x identified by the set a is assigned an integer

vector

echo x[1];

echo x["a"];

{i in a: echo x[i];}

The following user messages are displayed:
10

20

10 20 30 40 50 60

Usage set operations and set construction:

set{ setIteration , condition: localParameter }; #condition set

set1 + set2; #union set

set1 * set2; #intersection set

Usage set operations and set construction:

set1 + set2 union of set1 and set2

set1 * set2 intersection of set1 and set2

set{ setIteration, condition: param }The local parameter param is to be used for the definition

of an iteration over a set (defined by setIteration)

and is to be evaluated in the condition condition. The

result is a set of all elements which are in the iterated set

and fulfil the condition.

Examples:

s1 := set("a","b","c","d");

s2 := set("a","e","c","f");

s3 := s1 + s2;

s4 := s1 * s2;

s3 is assigned ("a","b","c","d","e","f")

s4 is assigned ("a", "c")

s5 := set{i in 1..10, i mod 2 = 0: i}; s5 is assigned (2,4,6,8,10)

s6 := set{i in s1, !(i element s2): i}; s6 is assigned ("b", "d")

CMPL v.1.5.0 - Manual 11

 2.3.4 Line names

Line names are useful in huge models to provide a better overview of the model. In CMPL a line name can

be defined by characters, numbers and the underscore character _ followed by a colon. Names that are

used for cmpl variables or model variables cannot be used for a line name. Within a control structure a line

name can include the current value of local parameters. This is especially useful for local parameters which

are used as a loop counter. It is also possible to include the current matrix line number using a substitution

expression imbedded in $ $.

Usage:

lineName:

lineName1:

lineName2:

lineNamek:

loopName { controlStructure }

k k is replaced by the value of the local parameter k

1 1 is replaced by the number of the current line of the matrix.

2 In an implicit loop 2 is replaced by the specific value of the free in-
dex.

loopName{controlStructure} defines line name subject to the following control structure. The val-
ues of loop counters in the control structure are appended automatic-
ally.

Examples:

parameters:

A[1..2,1..3] :=((1,2,3),(4,5,6));

b[1..2] := (100,100);

c[1..3] := (20,10,10);

variables:

x[1..3]: real[0..];

objectives:

profit: c[]T *x[] >max; generates a line named profit

constraints:

restriction_1: A[,] * x[] <=b[]; generates 3 lines named restriction_2

 restriction_3

restriction_4

CMPL v.1.5.0 - Manual 12

restriction_2: A[,] * x[] <=b[]; generates 3 lines named restriction_1
restriction_2

restriction_3

{ i:=1(1)3:

restriction_i: A[,]*x[]<=b[];

}

generates 3 lines named restriction_1
restriction_2

restriction_3

restriction { i:=1(1)3:

A[,]*x[]<=b[];

}

generates 3 lines named restriction_1
restriction_2

restriction_3

 3 Expressions

 3.1 Overview

Expressions are rules for computing a value during the run-time of a CMPL program. Therefore an expres-

sion generally cannot include a model variable. Exceptions to this include special functions whose value de-

pends solely on the definition of a certain model variable. Expressions are a part of an assignment to a para-

meter or are usable within the echo function. Assignments to a parameter are only permitted within the

parameters section or within a control structure. An expression can be a single number or string, a func-

tion or a set. Therefore only real, integer, binary, string or set expressions are possible in CMPL. An expres-

sion can contain the normal arithmetic operations.

 3.2 Array functions

With the following functions a user may identify specific characteristics of an array or a single parameter or

model variable.

Usage:

max(expressions) #returns the numerically largest of a list of values

min(expressions) #returns the numerically smallest of a list of values

dim(vector) #returns the length of a vector

def(parameter|variable) #returns 1 (true) or 0 (false) whether or not a

#parameter or model variable is defined

def(array[[,[, ..]]]) #returns the length of the first free index

expressions can be a list of numerical expressions separated by commas or can be a multi-
dimensional array of parameters

vector one-dimensional array of parameters or model variables

CMPL v.1.5.0 - Manual 13

variable a scalar parameter or model variable or a multidimensional array of parameters
or model variables

array[[,[, ..]]] array of parameters or variables with at least one free index

Examples:

a[]:= (1,2,5);

echo max(a[]); returns user message 5

echo min(a[]); returns user message 1

echo dim(a[]); returns user message 3

echo def(a[1]);

echo def(a[5]);

echo def(a[]);

returns user message 1

returns user message 0

returns user message 3

 3.3 Mathematical functions

In CMPL there are the following mathematical functions which can be used in expressions. With the excep-

tion of div and mod all these functions return a real value.

Usage:
p div q #integer division

p mod q #remainder on division

sqrt(x) #sqrt function

exp(x) #exp function

ln(x) #natural logarithm

lg(x) #common logarithm

ld(x) #logarithm to the basis 2

srand(x) #Initialisation of a pseudorandom number generator using the

argument x. Returns the value of the argument x.

rand(x) #returns an integer random number in the range 0<= rand <= x

sin(x) #sine measured in radians

cos(x) #cosine measured in radians

tan(x) #tangent measured in radians

acos(x) #arc cosine measured in radians

asin(x) #arc sine measured in radians

atan(x) #arc tangent measured in radians

sinh(x) #hyperbolic sine

cosh(x) #hyperbolic cosine

tanh(x) #hyperbolic tangent

abs(x) #absolute value

ceil(x) #smallest integer value greater than or equal to a given value

floor(x) #largest integer value less than or equal to a given value

round(x) #simple round

CMPL v.1.5.0 - Manual 14

p, q integer expression

x real or integer expression

Examples:

c[1] := sqrt(36);

c[2] := exp(10);

c[3] := ln(10);

c[4] := lg(10000);

c[5] := ld(8);

c[6] := rand(10);

c[7] := sin(2.5);

c[8] := cos(7.7);

c[9] := tan(10.1);

c[10] := acos(0.1);

c[11] := asin(0.4);

c[12] := atan(1.1);

c[13] := sinh(10);

c[14] := cosh(3);

c[15] := tanh(15);

c[16] := abs(12.55);

c[17] := ceil(12.55);

c[18] := floor(12.55);

c[19] := round(12.4);

c[20] := 35 div 4;

c[21] := 35 mod 4;

value is:
6.000000

22026.465795

2.302585

4.000000

3.000000

3.000000 (random number)

0.598472

0.153374

0.800789

1.470629

0.411517

0.832981

11013.232875

10.067662

1.000000

12.000000

13.000000

13.000000

12.000000

8

3

 3.4 Type casts

It is useful in some situations to change the type of an expression into another type. A set expression can

only be converted to a string. A string can only be converted to a numerical type if it contains a valid numer-

ical string. Every expression can be converted to a string.

Usage:

type(expression) #type cast

type Possible types are: real, integer, binary, string.

expression expression

Examples:
returns the user messages:

a: real:= 6.666;

echo integer(a); 7

CMPL v.1.5.0 - Manual 15

echo binary(a);

a:=0;

echo binary(a);

a := 6.6666;

echo string(a);

1

0

6.666600

b: integer := 100;

echo real(b);

echo binary(b);

b := 0;

echo binary(b);

b:= 100;

echo string(b);

100.000000

1

0

100

c: binary :=1;

echo real(c);

echo integer(c);

echo string(c);

1.000000

1

1

e: string := "1.888";

echo real(e);

echo integer(e);

echo binary(e);

e := "";

echo binary(e);

1.888000

1

1

0

 3.5 String operations

Especially for displaying strings or numbers with the echo function there are string operations to concatenate

and format strings.

Usage:

expression + expression #concat strings if one expression

 #has the type string

format(formatString, expression) #converts a number into a

 #string using a format string

len(stringExpression) #length of a string

type(expression) #returns the type of the expression

#as a string

expression expression which is converted to string

Cannot be a set expression. Such an expression must be converted to a strin

expression by a type cast

CMPL v.1.5.0 - Manual 16

formatString a string expression containing format parameters

CMPL uses the format parameters of the programming language C. For further

information please consult a C manual.

Usage format parameters:

%<flags><width><.precision>specifier

specifier

ld integer

lf real

s string

flags

 left-justify

+ Forces the result to be preceded by a plus or minus sign (+ or) even for positive numbers.

By default only negative numbers are preceded with a sign.

width

(number) Minimum number of characters to be printed. If the value to be printed is shorter than this

number, the result is padded with blank spaces. The value is not truncated even if the result is

larger.

*
The width is not specified in the format string, but as an additional integer value argument

preceding the argument that has to be formatted.

.precision

.number For integer specifiers ld: precision specifies the minimum number of digits to be written. If

the value to be written is shorter than this number, the result is padded with leading zeros.

The value is not truncated even if the result is longer. A precision of 0 means that no character

is written for the value 0.

For lf: This is the number of digits to be printed after the decimal point.

For s: this is the maximum number of characters to be printed. By default all characters are

printed until the ending null character is encountered.

When no precision is specified, the default is 1. If the period is specified without an explicit

value for precision, 0 is assumed.

.* The precision is not specified in the format string, but as an additional integer value argument

preceding the argument that has to be formatted.

Examples:

a:=66.77777;

echo type(a)+ " " + a + " to string

" + format("%10.2lf", a);
returns the user message
real 66.777770 to string 66.78

If you would like to display an entire set concatenating with a string, then you have to use a string cast of

your set.

CMPL v.1.5.0 - Manual 17

Example:

s:= set(7, "qwe", 6, "fe", 5, 8);

echo "set is " + string(s);
returns the user message
set is set(7, "qwe", 6, "fe", 5, 8)

 3.6 Set functions

With the following functions a user can identify the specific characteristics of a set.

Usage:

len(set) #count of the elements of the set returns an integer

defset(array) #returns the set of the first free index of the array

 element element set #returns 1 if the element is an element of the set

#returns 0 otherwise

array array of parameters or model variables with at least one

free index.

set set expression

element an integer or string that is to be checked

Examples:

a:= set(1, "a", 3, "b", 5, "c");

echo "length of the set: "+ len(a); returns the user message length of the set: 6

A[,] := ((1,2,3,4,5),

(1,2,3,4,5,6,7));

row := defset(A[,]);

col := defset(A[1,]);

row is assigned the set 1..2

col is assigned the set 1..5

a:= set(1, "a", 3, "b", 5, "c");

echo "a" element a;

echo 5 element a;

echo "bb" element a;

returns the user message 1

returns the user message 1

returns the user message 0

 4 Input and output operations

The CMPL input and output operations can be separated into message function, a function that reads the ex -

ternal data and the include statement that reads external CMPL code.

CMPL v.1.5.0 - Manual 18

 4.1 Error and user messages

Both kinds of message functions display a string as a message. In contrast to the echo function an error

message terminates the CMPL program after displaying the message.

Usage:

error expression; #error message terminates the CMPL program

echo expression; #user message

expression A message that is to be displayed. If the expression is not a string it will be auto -

matically converted to string.

Examples:

{a<0: error "negative value"; } If a is negative an error message is displayed and

the CMPL program will be terminated.

echo "constant definitions finished"; A user message is displayed.

{ i:=1(1)3: echo "value:" + i;} The following user messages are displayed:
value: 1

value: 2

value: 3

 4.2 Readcsv and readstdin

CMPL has two functions that enable a user to read external data. The function readstdin is designed to

read a user's numerical input and assign it to a parameter. The function readcsv reads numerical data from

a CSV file and assigns it to a vector or matrix of parameters.

Usage:

readstdin(message); #returns a user numerical input

readcsv(fileName); #reads numerical data from a csv file

 #for assigning these data to an array

message string expression for the message that is to be displayed

fileName string expression for the file name of the CSV file (relative to the directory in

which the current CMPL file resides)

In CMPL CSV files that use a comma or semicolon to separate values are permit-

ted.

CMPL v.1.5.0 - Manual 19

Example:
a := readstdin("give me a number"); reads a value from stdin to be used as value for a.

Only recommended when using CMPL as a command

line interpreter.

The following example uses three CSV files:

1;2;3 c.csv

5.6;7.7;10.5

9.8;4.2;11.1
a.csv

15;20 b.csv

parameters:

c[] := readcsv("c.csv");

b[] := readcsv("b.csv");

A[,] := readcsv("a.csv");

variables:

x[1..dim(c[])]: real[0..];

objectives:

c[]T * x[]>max;

constraints:

A[,] * x[] <= b[];

Using readcsv CMPL generates the

following model:

1⋅x 12⋅x23⋅x 3max !
s.t.
5.6⋅x17.7⋅x210.5⋅x 3≤15
9.8⋅x14.2⋅x211.1⋅x3≤20
x j≥0 ; j=1 13

 4.3 Include

Using the include directive it is possible to read external CMPL code in a CMPL program. The CMPL code in

the external CMPL file can be used by several CMPL programs. This makes sense for sharing basic data in a

couple of CMPL programs or for the multiple use of specific CMPL statements in several CMPL programs. The

include directive can stand in any position in a CMPL file. The content of the included file is inserted at this

position before parsing the CMPL code. Because include is not a statement it is not closed with a semi-

colon.

Usage:

include "fileName" #include external CMPL code

fileName file name of the CMPL file (relative to the directory in which the current CMPL file

resides)

Note that fileName can only be a literal string value. It cannot be a string ex-

pression or a string parameter.

The following CMPL file "const-def.gen" is used for the definition of a couple of parameters:
c[] := (1, 2, 3);

b[] := (15, 20);

A[,] := ((5.6, 7.7, 10.5),

 (9.8,4.2,11.1));

constdef.gen

CMPL v.1.5.0 - Manual 20

parameters:

 include "constdef.gen"

variables:

 x[1..dim(c[])]: real[0..];

objectives:

 c[]T * x[] > max;

constraints:

 A[,] * x[] <= b[];

Using the include statement CMPL generates the

following model:

1⋅x 12⋅x23⋅x 3max !
s.t.
5.6⋅x17.7⋅x210.5⋅x 3≤15
9.8⋅x14.2⋅x211.1⋅x3≤20
x j≥0 ; j=1 13

Using the keyword include - it is possible to in-

clude the CMPL expressions in file "const-def.gen" in

another CMPL file.

 5 Statements

As mentioned earlier, every CMPL program consists of at least one of the following sections: parameters:,

variables:, objectives: and constraints:. Each section can be inserted several times and mixed in

a different order. Every section can contain special statements.

Every statement finishes with a semicolon.

 5.1 parameters and variables section

Statements in the parameters section are assignments to parameters. These assignments define paramet-

ers or reassign a new value to already defined parameters. Statements in the variables sections are

definitions of model variables.

All the syntactic and semantic requirements are described in the chapters above.

 5.2 objectives and constraints section

In the objectives and constraints sections a user has to define the content of the decision model in

linear terms. In general, an objective function of a linear optimization model has the form:

c1⋅x1c2⋅x 2cn⋅xn max ! ormin!

with the objective function coefficient c j and model variables x j . Constraints in general have the

form:

k11⋅x1k 12⋅x 2k 1n⋅x n ≤ b1

k 21⋅x1k 22⋅x 2k2n⋅xn ≤ b2

⋮
km1⋅x1km2⋅x2kmn⋅xn ≤ bm

with constraint coefficients k ij and model variables x j .

CMPL v.1.5.0 - Manual 21

An objective or constraint definition in CMPL must use exactly this form or a sum loop that expresses this

form. A coefficient can be an arbitrary numerical expression, but the model variables cannot stand in expres-

sions that are different from the general form formulated. The rule that model variables cannot stand in

bracketed expressions serves to enforce this.

Please note, it is not permissible to put model variables in brackets!

The example (a and b are parameters, x and y model variables)

a*x + a*y + b*x + b*y

can be written alternatively (with parameters in brackets) as:

(a + b)*x + (a + b)*y

but not (with model variables in brackets) as:

a*(x + y) + b*(x + y)

For the definition of the objective sense in the objectives section the syntactic elements >max or >min

are used. A line name is permitted and the definition of the objective function has to have a linear form.

Usage of an objective function:

objectives:

[lineName:] linearTerm ->max|->min;

lineName optional element

description of objective

linearTerm definition of linear objective function

The definition of a constraint has to consist of a linear definition of the use of the constraint and one or two

relative comparisons. Line names are permitted.

Usage of a constraint:

constraints:

[lineName:] linearTerm <=|>=|= linearTerm [<=|>=|= linearTerm];

lineName optional element

description of objective

linearTerm linear definition of use of constraint

CMPL v.1.5.0 - Manual 22

 6 Control structure

 6.1 Overview

A control structure is imbedded in { } and defined by a header followed by a body separated off by :.

General usage of a control structure:

[controlName]|[sum|set] { controlHeader : controlBody }

A control structure can be started with an optional name for the control structure. In the objectives and

in the constraints section this name is also used as the line name.

It is possible to define different kinds of control structures based on different headers, control statements

and special syntactical elements. Thus the control structure can used for for loops, while loops, if-then-else

clauses and switch clauses. Control structures can be used in all sections.

A control structure can be used for the definition of statements. In this case the control body contains one or

more statements which are permissible in this section.

It is also possible to use control structures for sum and set as expressions. Then the body contains a single

expression. A control structure as an expression cannot have a name because this place is taken by the

keyword sum or set. Moreover a control structure as an expression cannot use control statements because

the body is an expression and not a statement.

 6.2 Control header

A control header consists of one or more control headers. Where there is more than one header, the headers

must be separated by commas. Control headers can be divided into iteration headers, condition headers,

local assignments and empty headers.

 6.2.1 Iteration headers

Iteration headers define how many repeats are to be executed in the control body. Iteration headers are

based on sets.

Usage:

localParam :=|in set # iteration over a set

localParam name of the local parameter

set The defined local parameter iterates over the elements of the set and the body is

executed for every element in the set.

CMPL v.1.5.0 - Manual 23

Examples:

s1 := set("a","b","c","d");

{k in s1: ... } k is iterated over all elements of the set s1

s2 := 1(1)10;

{k in s2: ... } k is iterated in the sequence k∈{1, 2, ,10}

s3 := 2..6;

{k := s3: ... } k is iterated in the sequence k∈{2,3,, 6}

 6.2.2 Condition headers

A condition returns 1(True) or 0(False) subject to the result of a comparison or the properties of a para-

meter or a set. If the condition returns 1(True) the body is executed once or else the body is skipped.

Comparison operators for parameters:

=, ==

<>, !=

<

>

<=

>=

equality

inequality

less than

greater than

equal to or less than

equal to or greater than

Comparison operators for sets:

=

==

<>

!=

<

>

<=

>=

equality

tests whether the iteration order of two sets is equal

inequality

tests whether the iteration order of two sets is not equal

subset or not equal

greater than

subset or equal

equal to or greater than

Logical operators:

&&

||

!

AND

OR

NOT

If a real or integer parameter is assigned 0, the condition returns 0 (false). Alternatively if the parameter

is assigned 1 the condition returns 1 (true).

Examples:

i:=1;

j:=2;

{i>j : … }

{!(i>j) : … }

{!i || j=2 : … }

{!i && j=2 : … }

condition is false
condition is true
condition is true
condition is false (!i is false, because i is not 0)

CMPL v.1.5.0 - Manual 24

 6.2.3 Local assignments

A local assignment as control header is useful if a user wishes to make several calculations in a local environ-

ment. Assigning expression to a parameter within the constraints section is generally not allowed with

the exception of a local assignment within a control structure. The body will be executed once.

Usage:

localParam := expression # assignment to a local parameter

localParam Defines a local parameter with this name.

expression Expression which is assigned to the local parameter.

Examples:

constraints:

{ k:=1 : … }
k is assigned 1 and used as local parameter within the

control structure.

 6.3 Alternative bodies

If a control header consists of at least one condition, it is possible to define alternative bodies. Structures

like that make sense if a user wishes to combine a for loop with an if-then clause.

The first defined body after the headers is the main body of the control structure. Subsequent bodies must

be separated by the syntactic element |. Alternative bodies are only executed if the main body is skipped.

Usage:

{ controlHeader: mainBody [| condition1: alternativeBody1]

[| ...] [| default: alternativeDefaultBody] }

controlHeader header of the control structure including at least one condition

The alternative bodies belong to last header of control header. This header

cannot be an assignment of a local parameter, because in this case the

main body is never skipped.

mainBody main body of control structure

condition1 will be evaluated if alternative body is executed

alternativeBody1 The first alternative body with a condition that evaluates to true is ex-

ecuted. The remaining alternative bodies are skipped without checking the

conditions.

alternativeDefaultBody If no condition evaluates to true then the alternative default body is ex-

ecuted. If the control structure has no alternative default body, then no

body is executed.

CMPL v.1.5.0 - Manual 25

 6.4 Control statements

It is possible to change or interrupt the execution of a control structure using the keywords continue,

break and repeat. A continue stops the execution of the specified loop, jumps to the loop header and

executes the next iteration. A break only interrupts the execution of the specified loop. The keyword re

peat starts the execution again with the referenced header.

Every control statement references one control header. If no reference is given, it references the innermost

header. Possible references are the name of the local parameter which is defined in this head, or the name

of the control structure. The name of the control structure belongs to the first head in this control structure.

Usage:

 continue [reference];

 break [reference];

 repeat [reference];

reference a reference to a control header specified by a name or a local parameter

break [reference] The execution of the body of the referenced head is cancelled. Remaining

statements are skipped.

If the referenced header contains iteration over a set, the execution for the

remaining elements of the set is skipped.

continue [reference] The execution of the body of the referenced head is cancelled. Remaining

statements are skipped.

If the referenced header contains iteration over a set, the execution is contin-

ued with the next element of the set. For other kinds of headers continue is

equivalent to break.

repeat [reference] The execution of the body of the referenced header is cancelled. Remaining

statements are skipped.

The execution starts again with the referenced header. The expression in this

header is to be evaluated again. If the header contains iteration over a set,

the execution starts with the first element. If this header is an assignment to

a local parameter, the assignment is executed again. If the header is a condi-

tion, the expression is to be checked prior to execution or skipping the body.

 6.5 Specific control structures

 6.5.1 For loop

A for loop is imbedded in { } and defined by at least one iteration header followed by a loop body separ-

ated off by :. The loop body contains user-defined instructions which are repeatedly carried out. The num-

ber of repeats are based on the iteration header definition.

CMPL v.1.5.0 - Manual 26

Usage:

{ iterationHeader [, iterationHeader1] [, ...] : controlBody }

iterationHeader

iterationHeader1
defined iteration headers

controlBody CMPL statements that are executed in every iteration

Examples:

{ i := 1(1)3 : ... } loop counter i with a start value of 1, an increment of 1

and an end condition of 3

{ i in 1..3 : ... } alternative definition of a loop counter; loop counter i

with a start value of 1 and an end condition of 3. (The in-

crement is automatically defined as 1)

products:= set("p1", "p2", "p3");

hours[products]:=(20,55,10);

{i in products:

 echo "hours of product " +

i + " : "+ hours[i];

}

for loop using the set products returns

user messages hours of product: p1 : 20

hours of product: p2 : 55

hours of product: p3 : 10

{i := 1(1)2:

 {j := 2(2)4: A[i,j] := i + j; }

}

defines A[1,2] = 3, A[1,4] = 5, A[2,2] = 4 and
A[2,4] = 6

Several loop heads can be combined. The above example can thus be abbreviated to:

{i := 1(1)2, j := 2(2)4:

A[i,j] := i + j;

}

defines A[1,2] = 3, A[1,4] = 5, A[2,2] = 4

and A[2,4] = 6

{i := 1(1)5, j := 1(1)i:

A[i,j] := i + j;

}

definition of a triangular matrix

 6.5.2 If-then clause

An if-then consists of one condition as control header and user-defined expressions which are executed if the

if condition or conditions are fulfilled. Using an alternative default body the if-then clause can be extended to

an if-then-else clause.

Usage:

{ condition: thenBody [| default: elseBody]}

CMPL v.1.5.0 - Manual 27

condition If the evaluated condition is true, the code within the body is executed.

thenBody This body is executed if the condition is true.

elseBody This body is executed if the condition is false.

Examples:
{i := 1(1)5, j := 1(1)5:

{i = j: A[i,j] := 1; }

{i != j: A[i,j] := 0; }

}

definition of the identity matrix with combined loops

and two if-then clauses

{i := 1(1)5, j := 1(1)5:

{i = j: A[i,j] := 1; |

 default: A[i,j] := 0; }

}

same example, but with one if-then-else clause

i:=10;

{ i<10: echo "i less than 10";

 | default: echo "i greater than 9";

}

example of an if-then-else clause

returns user message i greater than 9

sum{ i = j : 1 | default: 2 } conditional expression, evaluates to 1 if i = j, oth-

erwise to 2

 6.5.3 Switch clause

Using more than one alternative body the if-then clause can be extended to a switch clause.

Usage:

{ condition1: body1 [| condition2: body2>] [| ...] [| default: defaultBody]}

If the first condition returns TRUE, only body1 will be executed. Otherwise the next condition condi-

tion1 will be verified. body2 is executed if all of the previous conditions are not fulfilled. If no condition

returns true, then the defaultBody is executed.

Example:

i:=2;

{ i=1: echo "i equals 1";

 | i=2: echo "i equals 2";

 | i=3: echo "i equals 3";

 | default: echo "any other value";

}

example of a switch clause
returns user message i equals 2

CMPL v.1.5.0 - Manual 28

 6.5.4 While loop

A while loop is imbedded in { } and defined by a condition header followed by a loop body separated off

by : and finished by the keyword repeat. The loop body contains user-defined instructions which are re-

peatedly carried out until the condition in the loop header is false.

Usage:

{ condition : statements repeat; }

condition If the evaluated condition is true, the code within the body is executed. This re-

peats until the condition becomes false.

statements one or more user-defined CMPL instructions

To prevent an infinite loop the statements in the control body must have an im-

pact on the condition.

Examples:

i:=2;

{i<=4:

A[i] := i;

 i := i+1;

repeat;

}

while loop with a global parameter

Can only be used in the parameters section, because

the assignment to a global parameter is not permitted in

other sections.

defines A[2] = 2, A[3] = 3 and A[4] = 4

{a := 1, a < 5:

echo a;

a := a + 1;

repeat;

}

while loop using a local parameter

Can be used in all sections.

returns user messages 1

2
3
4

{a:=1:

 xx {:

 echo a;

 a := a + 1;

 {a>=4: break xx;}

 repeat;

 }

}

Alternative formulation:

The outer control structure defines the local parameter a.

This control structure is used as a loop with a defined

name and an empty header. The name is necessary, be-

cause it is needed as reference for the break statement

in the inner control structure. (Without this reference the

break statement would refer to the condition a>=4)

 6.6 Set and sum control structure as expression

Starting with the keyword sum or the keyword set a control structure returns an expression. Only expres-

sions are permitted in the body of the control structure. Control statements are not allowed, because the

body cannot contain a statement. It is possible to define alternative bodies.

CMPL v.1.5.0 - Manual 29

Usage:

sum { controlHeader : bodyExpressions }

set { controlHeader : bodyExpressions }

controlHeader header of the control structure

The header of a sum or a set control structure is usually an iteration header,

but all kinds of control header can be used.

bodyExpressions user-defined expressions

A sum expression repeatedly summarises the user-defined expressions in the bodyExpressions. If the

body is never executed, it evaluates to 0. A set expression returns a set subject to the controlHeader

and the bodyExpressions. The element type included in bodyExpressions must be integer or string.

Examples:
x[1..3] := (2, 4, 6);

a := sum{i := 1(1)3 : x[i] }; a is assigned 12

products:= set("p1", "p2", "p3");

hours[products]:=(20,55,10);

totalHours:= sum{i in products: hours[i] }; totalHours is assigned 85

x[1..3,1..2]:=((1,2),(3,4),(5,6));

b:= sum{i := 1(1)3, j := 1(1)2: x[i,j] };

using sum with more then one con-

trol header

b is assigned 21.

s:=set();

d:= sum{i in s: i |default: 1 };
sums up all elements in the set s.

Since s is an empty set, d is as-

signed to the alternative default

value 1.

e:= set{i:= 1..10: i^2 }; e is assigned the set
(1, 4, 9, 16, 25, 36, 49,

64, 81, 100)

f:= set{i:= 1..100, round(sqrt(i))^2 = i: i }; f is assigned the set
(1, 4, 9, 16, 25, 36, 49,

64, 81, 100)

The sum expression can also be used in linear terms for the definition of objectives and constraints. In this

case the body of the control structure can contain model variables.

Examples:
parameters:

a[1..2,1..3] :=((1,2,3),(4,5,6));

b[1..2] := (100,100);

c[1..3] := (20,10,10);

CMPL v.1.5.0 - Manual 30

variables:

x[1..3]: real[0..];

objectives:

sum{j:=1..3: c[j] *x[j]}>max;
objective definition using a sum

20⋅x110⋅x 210⋅x 3max !

constraints:

{ i:=1..2:

 sum{j:=1..3: a[i,j] * x[j]}<= b[i];

}

constraints definition using a sum

1⋅x12⋅x 23⋅x3≤100
4⋅x 15⋅x26⋅x 3≤100

 6.7 Implicit loops

As mentioned above it is possible to define objectives and constraints using control structures as loops. The

syntax of these control structures is easy to understand and to use, but it follows the idea of programming

languages. For a formulation of objectives and constraints in a more mathematical way it is simpler to use

implicit loops. Implicit loops allow users to define objectives and constraints in a mathematical notation (e.g.

matrix vector multiplication). All mathematical requirements are applied for implicit loops. Implicit loops are

only possible in the objectives section and the constraints section.

Implicit loops are formed by matrices and vectors, which are defined by the use of free indices.

A free index is an index which is not specified by a position in an array. It can be specified by an entire set or

without any specification. But the separating commas between indices must in any case be specified.

A multidimensional array with one free index is always treated as a column vector, regardless of where the

free index stands. A column vector can be transposed to a row vector with T. A multidimensional array with

two free indices is always treated as a matrix. The first free index is the row, the second the column.

Usage:

vector[[set]] #column vector

vector[[set]]T #transpose of column vector row vector

matrix[index, [set]] #column vector

matrix[[set], index] #also column vector

matrix[index, [set]]T #transpose of column vector row vector

matrix[[set], index]T #transpose of column vector row vector

 matrix[[set1], [set2]] #matrix

vector, matrix name of a vector or matrix

index a certain index value

[set] optional specification of a set for the free index

CMPL v.1.5.0 - Manual 31

Examples:
x[] vector with free index across the entire defined area

x[2..5] vector with free index in the range 2 – 5

A[,] matrix with two free indices

A[1,] matrix with one fixed and one free index; this is a

column vector.

A[,1] matrix with one fixed and one free index; this is also a

column vector.

The most important ways to define objectives and constraints with implicit loops are vector-vector multiplica-

tion and matrix-vector multiplication. A vector-vector multiplication defines a row of the model (e.g. an ob -

jective or one constraint). A matrix-vector multiplication can be used for the formulation of more than one

row of the model.

Usage of multiplication using implicit loops :

paramVector[[set]]T * varVector[[set]] #vectorvector multiplication

varVector[[set]]T * paramVector[[set]] #vectorvector multiplication

paramMatrix[[set1],[set2]] * varVector[[set2]]

#matrixvector multiplication

varVector[[set1]]T * paramMatrix[[set1],[set2]]

#matrixvector multiplication

paramVector name of a vector of parameters

varVector name of a vector of model variables

paramMatrix name of a matrix of parameters

T syntactic element for transposing a vector

Examples:

parameters:

a[1..2,1..3] :=((1,2,3),

(4,5,6));

b[1..2] := (100,100);

c[1..3] := (20,10,10);

variables:

x[1..3]: real[0..];

objectives:

c[]T * x[] >max;
objective definition using implicit loops

20⋅x110⋅x 210⋅x 3max !

constraints:

a[,] * x[] <=b[];
constraint definition using implicit loops

1⋅x12⋅x 23⋅x3≤100
4⋅x 15⋅x26⋅x 3≤100

CMPL v.1.5.0 - Manual 32

Aside from vector-vector multiplication and matrix-vector multiplication vector subtractions or additions are

also useful for the definition of constraints. The addition or subtraction of a variable vector adds new co-

lumns to the constraints. The addition or subtraction of a constant vector changes the right side of the con-

straints.

Usage of additions or subtractions using implicit loops:

linearTerms + varVector[[set]] #variable vector addition

linearTerms - varVector[[set]] #variable vector subtraction

linearTerms + paramVector[[set]] #parameter vector addition

linearTerms - paramVector[[set]] #parameter vector subtraction

linearTerms other linear terms in an objective or constraint

Examples:

parameters:

a[1..2,1..3] :=((1,2,3),

(4,5,6));

b[1..2] := (100,100);

d[1..2] := (10,10);

c[1..3] := (20,10,10);

variables:

x[1..3]: real[0..];

objectives:

c[]T * x[] >max;

constraints:

a[,] * x[] + d[] <=b[];
constraints definition using implicit loops

1⋅x12⋅x 23⋅x3≤90
4⋅x 15⋅x26⋅x 3≤90

equivalent to
a[,] * x[] <=b[] d[];

0 <= x[1..3]+y[1..3]+z[2]<= b[1..3]; implicit loops for a column vector.

0 <= x[1] + y[1] + z[2] <= b[1];

0 <= x[2] + y[2] + z[2] <= b[2];

0 <= x[3] + y[3] + z[2] <= b[3];

equivalent formulation

parameters:

a[1..2,1..3] :=((1,2,3),

(4,5,6));

b[1..2] := (100,100);

d[1..2] := (10,10);

c[1..3] := (20,10,10);

variables:

x[1..3]: real[0..];

z[1..2]: real[0..];

CMPL v.1.5.0 - Manual 33

objectives:

c[]T * x[] >max;

constraints:

a[,] * x[] + z[] <=b[];
constraints definition using implicit loops

1⋅x12⋅x 23⋅x3 z1 ≤90
4⋅x 15⋅x26⋅x 3 z 2 ≤90

 7 Automatic code generating

 7.1 Overview

CMPL includes two types of automatic code generation which release the user from additional modelling

work. CMPL automatically optimizes the generated model by means of matrix reductions. The second type

of automatic code generation is the equivalent transformation of variable products. If a CMPL program in -

cludes a variable product with at least one integer factor, CMPL will transform this non-linear form equivalent

in a set of linear inequations.

 7.2 Matrix reductions

Matrix reductions are subject to constraints of a specific form.

a) If a constraint contains only one variable or only one of the variables with a coefficient not equal to

0, then the constraint is taken as a lower or upper bound.

For the following summation (x[] is a variable vector)

sum{i:=1(1)2: (i1) * x[i]} <= 10;

no matrix line is generated; rather x[2] has an upper bound of 10.

b) If there is a constraint in the coefficients of all variables proportional to another constraint, only the

more strongly limiting constraint is retained.

Only the second of the two constraints (x[] is a variable vector)

2*x[1] + 3*x[2] <= 20;

10*x[1] + 15*x[2] <= 50;

is used in generating a model line.

 7.3 Equivalent transformations of Variable Products

In general a product of variables like x⋅y cannot be a part of an LP or MIP model, because such a vari-

able product is a non-linear term. But it is possible to formulate an equivalent transformation using a set of

CMPL v.1.5.0 - Manual 34

specific inequations. The automatic generation of an equivalent transformation of a variable product is a spe -

cial capability characteristic of CMPL.

 7.3.1 Variable Products with at least one binary variable

For the following given variables

variables: x: binary;

y: real[YU..YO];

each occurrence of the term x*y in the CMPL model description is replaced by an implicit newly-defined

variable x_y, and the following additional statements are generated automatically:

constraints:

min(YU, 0) <= x_y <= max(YO, 0);

{YU < 0: x_y – YU*x >= 0; }

{YO > 0: x_y – YO*x <= 0; }

y – x_y + YU*x >= YU;

y – x_y + YO*x <= YO;

 7.3.2 Variable Product with at least one integer variable

For the following given variables

variables: x: integer[XU..XO];

y: real[YU..YO];

each occurrence of the term x*y in the CMPL model description is replaced by an implicit newly-defined

variable x_y, and the following additional statements are generated automatically (here n stands for the

number of binary positions needed for XOXU+1):

variables:

_x[1..n]: binary;

_x_y[1..n]: real;

constraints:

min(XU*YU,XU*YO,XO*YU,XO*YO) <= x_y <= max(XU*YU,XU*YO,XO*YU,XO*YO);

x = XU + sum{i=1(1)n: (2^(i1))*_x[i]};

x_y = XU*y + sum{i=1(1)n: (2^(i1))*_x_y[i]};

CMPL v.1.5.0 - Manual 35

{i = 1(1)n:

min(YU, 0) <= _x_y[i] <= max(YO, 0);

{YU < 0: _x_y[i] – YU*_x[i] >= 0; }

{YO > 0: _x_y[i] – YO*_x[i] <= 0; }

y – _x_y[i] + YU*_x[i] >= YU;

y – _x_y[i] + YO*_x[i] <= YO;

}

 8 CMPL as command line tool

 8.1 Usage

The CMPL command line tool can be used in two modes. Using the solver mode, an LP or MIP can be formu-

lated, solved and analysed. In this mode, the OSSolverservice is invoked. In the model mode it is possible to

transform the mathematical problem into MPS, Free-MPS or OSiL files that can be used by certain alternative

LP or MIP solvers.

cmpl [<options>] <input file>

 Model mode:

 -i <cmplFile> : input file

 -m [<File>] : export model in MPS format in a file or stdout

 -x [<File>] : export model in OSiL XML format in a file or stdout

 -noOutput : no generating of a MPS or OSiL file

 Solver mode:

 -solver <solver> : name of the solver you want to use

 Possible values are clp (COIN-OR Clp), cbc (COIN-OR Cbc), symphony

(COIN Symphony) and glpk (glpk)

 -solverUrl <url> : URL of the solver service

 w/o a defined remote solver service, a local solver is used

 -osol <file> : name of the file that contains the solver options

 -solutionCsv : optimization results in CSV format

 A file <cmplFileName>.csv will be created.

CMPL v.1.5.0 - Manual 36

 -solutionStd : optimization results on stdout

 -silent : optimization results are not displayed

 -obj <objName> : name of the objective function

 -objSense <max/min> : objective sense

 General options:

 -e [<File>] : output for error messages and warnings

 -e simple output to stderr

 -e<File> ouput in MprL XML format to file

 -l [<File>] : output for replacements for products of variables

 -s [<File>] : output for short statistic info

 -p [<File>] : output for protocol

 -gn : generation option: do not make reductions

 -gf : generation option: constraints for products of variables follow the product

 -cd : no warning at multiple parameter definition

 -ca : no warning at deprecated '=' assignment

 -ci<X> : mode for integer expressions (0 - 3), defaults to 1

 -fc<X> : format option: maximal length of comment, defaults to 60

 -ff : format option: generate free MPS

 -f%<format> : format option: format spezifier for float number output, defaults to %f

 -h : get this help

 -v : version

Examples - solver mode:

cmpl test.cmpl solves the problem test.cmpl locally with the de-

fault solver and displays a standard solution report

cmpl solver glpk test.cmpl solves the problem test.cmpl locally using GLPK

and displays a standard solution report

cmpl solverUrl http://gsbkip.chica

gogsb.edu/os/OSSolverService.jws

test.cmpl

solves the problem test.cmpl remotely with the

defined web service and displays a standard solution

report

cmpl solutionCsv test.cmpl solves the problem test.cmpl locally with the de-

fault solver writes the solution in the CSV-file

test.csv and displays a standard solution report

CMPL v.1.5.0 - Manual 37

Examples - model mode:

cmpl i test.cmpl m test.mps reads the file test.cmpl and generates the MPS-

file test.mps.

cmpl ff i test.cmpl m test.mps reads the file test.cmpl and generates the Free-

MPS-file test.mps.

cmpl i test.cmpl x test.osil reads the file test.cmpl and generates the OS-

iL-file test.osil.

 8.2 Input and output file formats

 8.2.1 Overview

CMPL uses several ASCII files for the communication with the user and other programs such as solvers.

CMPL input file for CMPL - syntax as described above

MPS output file for the generated model in MPS format

Can be used with most solvers.

This format is very restrictive and therefore not recommended.

Free-MPS output file for the generated model in Free-MPS format

Can be used with most solvers.

OSiL output file for the generated model in OSiL format

The OSiL XML schema is developed by the COIN-OR community (COmputational IN-

frastructure for Operations Research - open source for the operations research com-

munity).

Can be used with solvers which are supported by the COIN-OR Optimization Services

(OS) Framework.

OSoL OSoL is an XML-based language for representing options that get passed to an op-

timization solver or a hosted optimization solver Web service.

MprL output file for the status of the results or errors of a CMPL model

XML file in accordance with the MprL schema

 8.2.2 CMPL

A CMPL file is an ASCII file that includes the user-defined CMPL code with a syntax as described in this
manual.

The example

1⋅x 12⋅x23⋅x 3max !
s.t.
5.6⋅x17.7⋅x210.5⋅x 3≤15
9.8⋅x14.2⋅x211.1⋅x3≤20
0≤xn ;n=113

CMPL v.1.5.0 - Manual 38

can be formulated in CMPL as follows:

parameters:

 c[] := (1, 2, 3);

 b[] := (15, 20);

 A[,] := ((5.6, 7.7, 10.5),

 (9.8, 4.2, 11.1));

variables:

 x[1..dim(c[])]: real[0..];

objectives:

 profit: c[]T * x[] > max;

constraints:

 machine2: A[,] * x[] <= b[];

 8.2.3 MPS

An MPS (Mathematical Programming System) file is a ASCII file for presenting linear programming (LP) and

mixed integer programming problems.

MPS is an old format and was the de facto standard for most LP solvers. MPS is column-oriented and is set

up for punch cards with defined positions for fields. Owing to these requirements the length of column or

row names and the length of a data field are restricted. MPS is very restrictive and therefore not recommen-

ded. For more information please see http://en.wikipedia.org/wiki/MPS_(format).

The MPS file for the CMP example given in the section above is generated as follows:

* CMPL MPS Export

NAME test.mps

* OBJNAME profit

* OBJSENSE max

ROWS

 N profit

 L machine1

 L machine2

COLUMNS

 x1 profit 1 machine1 5.600000

 x1 machine2 9.800000

 x2 profit 2 machine1 7.700000

 x2 machine2 4.200000

 x3 profit 3 machine1 10.500000

 x3 machine2 11.100000

RHS

 RHS machine1 15 machine2 20

RANGES

BOUNDS

ENDATA

CMPL v.1.5.0 - Manual 39

 8.2.4 Free - MPS

The Free-MPS format is an improved version of the MPS format. There is no standard for this format but it is

widely accepted. The structure of a Free-MPS file is the same as an MPS file. But most of the restricted MPS

format requirements are eliminated, e.g. there are no requirements for the position or length of a field. For

more information please visit the project website of the lp_solve project. (http://lpsolve.sourceforge.net)

The Free-MPS file for the given CMP example is generated as follows:

* CMPL FreeMPS Export

NAME test.mps

* OBJNAME profit

* OBJSENSE max

ROWS

 N profit

 L machine1

 L machine2

COLUMNS

 x1 profit 1 machine1 5.600000

 x1 machine2 9.800000

 x2 profit 2 machine1 7.700000

 x2 machine2 4.200000

 x3 profit 3 machine1 10.500000

 x3 machine2 11.100000

RHS

 RHS machine1 15 machine2 20

RANGES

BOUNDS

ENDATA

 8.2.5 OSiL

OSiL is an XML-based format which can be used for presenting linear programming (LP) and mixed integer

programming problems. The OSiL XML schema was developed by the COIN-OR community (COmputational

INfrastructure for Operations Research - open source for the operations research community). The format

makes it very easy to save and present a model and so is particularly suitable for defining an interface to

several solvers. An OSiL file can be used with solvers which are supported by the COIN-OR Optimization Ser -

vices (OS) Framework.

For more information please visit the project website of COIN-OR OS project. (https://projects.coin-or.org/OS

or http://www.optimizationservices.org)

The OSiL file for the given CMP example is generated as follows:

<?xml version="1.0" encoding="UTF8"?>

<osil xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance" xsi:schemaLocation=

"os.optimizationservices.org http://www.optimizationservices.org/

schemas/2.0/OSiL.xsd">

<instanceHeader>

CMPL v.1.5.0 - Manual 40

<name>test.gen</name>

<description>generated by CMPL v1.4.2</description>

</instanceHeader>

<instanceData>

<variables numberOfVariables="3">

<var name="x1" type="C" lb="0"/>

<var name="x2" type="C" lb="0"/>

<var name="x3" type="C" lb="0"/>

</variables>

<objectives numberOfObjectives="1">

<obj name="profit" maxOrMin="max" numberOfObjCoef="3">

<coef idx="0">1</coef>

<coef idx="1">2</coef>

<coef idx="2">3</coef>

</obj>

</objectives>

<constraints numberOfConstraints="2">

<con name="machine1" ub="15"/>

<con name="machine2" ub="20"/>

</constraints>

<linearConstraintCoefficients numberOfValues="6">

<start>

<el>0</el>

<el>2</el>

<el>4</el>

<el>6</el>

</start>

<rowIdx>

<el>0</el>

<el>1</el>

<el>0</el>

<el>1</el>

<el>0</el>

<el>1</el>

</rowIdx>

<value>

<el>5.600000</el>

<el>9.800000</el>

<el>7.700000</el>

<el>4.200000</el>

<el>10.500000</el>

<el>11.100000</el>

</value>

</linearConstraintCoefficients>

</instanceData>

</osil>

CMPL v.1.5.0 - Manual 41

 8.2.6 OsoL

OSoL is an XML-based language for representing options that get passed to an optimization solver or a hos-

ted optimization solver Web service. For more information please visit the project website of COIN-OR OS

project. (https://projects.coin-or.org/OS or http://www.optimizationservices.org)

The following OSoL-file describes a couple of parameters for the CBC solver. (See the Optimization Ser

vices User’s Manual by Horand Gassmann, Jun Ma, Kipp Martin, and Wayne Sheng)

<?xml version="1.0" encoding="UTF8"?>

<osol xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSoL.xsd">

<general>

<solverToInvoke>cbc</solverToInvoke>

</general>

<job>

</job>

<optimization>

<solverOptions numberOfSolverOptions="4">

<solverOption name="reslim" solver="cbc" type="numeric" value="1"/>

<solverOption name="maxN" solver="cbc" value="5" />

<solverOption name="cuts" solver="cbc" value="off" />

<solverOption name="max_active_nodes" solver="symphony" value="2" />

</solverOptions>

</optimization>

</osol>

 8.2.7 MprL

MprL is an XML-based format for representing the general status and/or errors of the transformation of a

CMPL model in one of the described output files. MprL is intended for communication with other software

that uses CMPL for modelling linear optimization problems.

An MprL file consists of two major sections. The <general> section describes the general status and the

name of the model and a general message after the transformation. The <mplResult> section consists of

one or more messages about specific lines in the CMPL model.

After the transformation of the given CMPL model, CMPL will fnish without errors. The general status is

represented in the following MprL fle.

<?xml version="1.0" encoding="UTF8"?>

<mprl xmlns="www.coliop.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema

instance" xsi:schemaLocation="www.coliop.org

http://www.coliop.org/schemas/Mprl.xsd">

<general>

<generalStatus>normal</generalStatus>

<mplName>CMPL</mplName>

<instanceName>test.cmpl</instanceName>

CMPL v.1.5.0 - Manual 42

<message>cmpl finished normal</message>

</general>

</mprl>

If a semicolon is not set in line 26, CMPL will fnish with errors that are represented in the following

MprL fle.

<?xml version="1.0" encoding="UTF8"?>

<mprl xmlns="www.coliop.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema

instance" xsi:schemaLocation="www.coliop.org

http://www.coliop.org/schemas/Mprl.xsd">

<general>

<generalStatus>error</generalStatus>

<mplName>CMPL</mplName>

<instanceName>test.cmpl</instanceName>

<message>cmpl finished with errors</message>

</general>

<mplResult numberOfMessages="1">

<mplmessage type ="error" file="test.cmpl" line="26" description="syntax

error"/>

</mplResult>

</mprl>

The MprL schema is defned as follows:

<?xml version="1.0" encoding="UTF8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

<xsd:element name="mprl">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="general" minOccurs="1" maxOccurs="1"/>

<xsd:element ref="mplResult" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="general">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="generalStatus" minOccurs="1" maxOccurs="1"/>

<xsd:element name="instanceName" type="xsd:string" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="mplName" type="xsd:string" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="message" type="xsd:string" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="generalStatus">

CMPL v.1.5.0 - Manual 43

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="error"/>

<xsd:enumeration value="warning"/>

<xsd:enumeration value="normal"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="mplResult">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="mplMessage" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="numberOfMessages" type="xsd:nonNegativeInteger"

use="required"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="mplMessage">

<xsd:complexType>

<xsd:attribute name="type" use="required">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="error"/>

<xsd:enumeration value="warning"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name="file" type="xsd:string" use="required"/>

<xsd:attribute name="line" type="xsd:nonNegativeInteger"

use="required"/>

<xsd:attribute name="description" type="xsd:string" use="required"/>

</xsd:complexType>

</xsd:element>

</xsd:schema>

 8.3 Using CMPL with several solvers

Since CMPL transforms a CMPL model into an MPS, a Free-MPS or an OSiL file, the model can be solved us -

ing most free or commercial solvers.

 8.3.1 Coliop3

CMPL is recommended for use as an integral part of Coliop3. Coliop3 is an IDE (Integrated Development En -

vironment) intended to solve linear programming (LP) problems and mixed integer programming (MIP) prob-

lems. This project contains CMPL and two solvers for LP and MIP problems (glpk and lpsolve). CMPL and

Coliop3 are projects of the Technical University of Applied Sciences Wildau and the Institute for Operations

Research and Business Management at the Martin Luther University Halle-Wittenberg. Coliop3 and CMPL are

CMPL v.1.5.0 - Manual 44

open source projects licensed under GPL and available for all relevant operating systems. For more informa-

tion please visit the Coliop3 project website: http://www.coliop.org.

 8.3.2 GLPK

The GLPK (GNU Linear Programming Kit) package is intended for solving large-scale linear programming

(LP), mixed integer programming (MIP), and other related problems. It is a set of routines written in ANSI C

and organized in the form of a callable library. For more information please visit the GLPK project website:

http://www.gnu.org/software/glpk/. The CMPL package contains GLPK. But it is also possible to use CMPL

and GLPK separately.

Using CMPL with glpk:

cmpl -ff -i cmplFilename -m mpsFileName

glpsol --freemps --max|min --output solutionName mpsFileName

cmplFilename name of the CMPL file - CMPL input

mpsFileName name of the MPS file - CMPL output

solutionName name of the solution file - GLPK output

 8.3.3 LPSolve

Mixed Integer Linear Programming (MILP) solver lp_solve solves pure linear, (mixed) integer/binary, semi-

continuous and special ordered set (SOS) models. lp_solve is written in ANSI C and can be compiled on

many different platforms including Linux and WINDOWS.

For more information please visit the GLPK project website: http://sourceforge.net/projects/lpsolve/.

Using CMPL with LPSolve:

cmpl -ff -i cmplFilename -m mpsFileName

lp_solve -max|min -fmps mpsFileName -S4 solutionName

cmplFilename name of the CMPL file - CMPL input

mpsFileName name of the MPS file - CMPL output

solutionName name of the solution file - LPSolve output

CMPL v.1.5.0 - Manual 45

 9 Examples

 9.1 Selected decision problems

 9.1.1 The diet problem

The goal of the diet problem is to find the cheapest combination of foods that will satisfy all the daily nutri-

tional requirements of a person for a week.

The following data is given (example based on Fourer/Gay/Kernigham: AMPL, 2nd ed., Thomson 2003, p.

27ff.) :

food cost per

package

provision of daily vitamin requirements in percentages

A B1 B2 C

BEEF 3.19 60 20 10 15

CHK 2.59 8 2 20 520

FISH 2.29 8 10 15 10

HAM 2.89 40 40 35 10

MCH 1.89 15 35 15 15

MTL 1.99 70 30 15 15

SPG 1.99 25 50 25 15

TUR 2.49 60 20 15 10

The decision is to be made for one week. Therefore the combination of foods has to provide at least 700%

of daily vitamin requirements. To promote variety, the weekly food plan must contain between 2 and 10

packages of each food.

The mathematical model can be formulated as follows:

3.19⋅xBEEF2.59⋅xCHK2.29⋅xFISH2.89⋅xHAM1.89⋅xMCH1.99⋅xMTL1.99 x SPG2.49⋅xTURmin!
s.t.
60⋅xBEEF8⋅xCHK8⋅xFISH40⋅xHAM15⋅xMCH70⋅xMTL25 xSPG60⋅xTUR≤700
20⋅xBEEF0⋅xCHK10⋅xFISH40⋅xHAM35⋅xMCH30⋅xMTL50 xSPG20⋅xTUR≤700
10⋅xBEEF20⋅xCHK15⋅xFISH35⋅xHAM15⋅xMCH15⋅xMTL25 x SPG15⋅xTUR≤700
15⋅xBEEF20⋅xCHK10⋅xFISH10⋅xHAM15⋅xMCH15⋅xMTL15 xSPG10⋅xTUR≤700

x j∈{2,3 , ,10} ; j∈{BEEF ,CHK , DISH ,HAM , MCH ,MTL , SPG ,TUR}

The CMPL model diet.cmpl is formulated as follows:

parameters:

NUTR := set("A","B1", "B2", "C");

FOOD := set("BEEF", "CHK", "FISH", "HAM", "MCH", "MTL", "SPG", "TUR");

CMPL v.1.5.0 - Manual 46

#cost per package

costs[FOOD] := (3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49);

#provision of the daily requirements for vitamins in percentages

vitamin[NUTR, FOOD] := ((60, 8, 8, 40, 15, 70, 25, 60) ,

 (20, 0, 10, 40, 35, 30, 50, 20) ,

 (10, 20, 15, 35, 15, 15, 25, 15),

 (15, 20, 10, 10, 15, 15, 15, 10)

);

#weekly vitamin requirements

vitMin[NUTR]:= (700,700,700,700);

variables:

x[FOOD]: integer[2..10];

objectives:

cost: costs[]T * x[]>min;

constraints:

capacity restriction

2: vitamin[,] * x[] >= vitMin[];

CMPL command:

cmpl diet.cmpl

Solution:

General status: normal

Problem : diet.cmpl

SolverName COINOR cbc

Nr. of Solutions: 1

Solution nr.: 1

Objective name : cost

Objective value : 101.14 (min!)

Variables

Nr. of variables: 8

Name Type Activity Lower Bound Upper Bound Marginal

x_BEEF I 2.00 2.00 10.00

x_CHK I 8.00 2.00 10.00

x_FISH I 2.00 2.00 10.00

x_HAM I 2.00 2.00 10.00

x_MCH I 10.00 2.00 10.00

x_MTL I 10.00 2.00 10.00

x_SPG I 10.00 2.00 10.00

x_TUR I 2.00 2.00 10.00

CMPL v.1.5.0 - Manual 47

Constraints

Nr. of constraints: 4

Name Type Activity Lower Bound Upper Bound Marginal

A G 1500.00 700.00 Infinity

B1 G 1330.00 700.00 Infinity

B2 G 860.00 700.00 Infinity

C G 700.00 700.00 Infinity

 9.1.2 Production mix

This model calculates the production mix that maximizes profit subject to available resources. It will identify

the mix (number) of each product to produce and any remaining resource.

The example involves three products which are to be produced with two machines. The following data is

given:

P1 P2 P3 upper bounds [h]

upper bound of a product [units] 250 240 250

selling price per unit [€/unit] 500 600 450

direct costs per unit [€/unit] 425 520 400

profit contribution per unit [€/unit] 75 80 50

machine hours required per unit

machine 1 [h/unit] 8 15 12 1,000

machine 2 [h/unit] 15 10 8 1,000

The mathematical model can be formulated as follows:

75⋅x 180⋅x250⋅x3max !
s.t.
8⋅x115⋅x212⋅x 3≤1,000
15⋅x 110⋅x28⋅x 3≤1,000

x 1∈{0,1 , ,250}
x 2∈{0,1 , ,240}
x 3∈{0,1 , ,250}

The CMPL model productionmix.cmpl is formulated as follows:

parameters:

price[] := (500, 600, 450);

costs[] := (425, 520, 400);

#machine hours required per unit

a[,] := ((8, 15, 12), (15, 10, 8));

#upper bounds of the machines

b[] := (1000, 1000);

CMPL v.1.5.0 - Manual 48

#profit contribution per unit

{j:=1(1)dim(price[]): c[j] := price[j]costs[j]; }

#upper bound of the products

xMax[] := (250, 240, 250);

variables:

x[1..dim(price[])]: integer;

objectives:

profit: c[]T * x[] >max;

constraints:

res_2: a[,] * x[] <= b[];

0<=x[]<=xMax[];

CMPL command:

cmpl productionmix.cmpl solver glpk

Solution:

General status: normal

Problem : productionmix.cmpl

SolverName COINOR glpk

Nr. of Solutions: 1

Solution nr.: 1

Objective name : profit

Objective value : 6395 (max!)

Variables

Nr. of variables: 3

Name Type Activity Lower Bound Upper Bound Marginal

x1 I 33.00 0.00 250.00

x2 I 49.00 0.00 240.00

x3 I 0.00 0.00 250.00

Constraints

Nr. of constraints: 2

Name Type Activity Lower Bound Upper Bound Marginal

res_1 L 999.00 Infinity 1000.00

res_2 L 985.00 Infinity 1000.00

 9.1.3 Production mix including thresholds and step-wise fixed costs

This model calculates the production mix that maximizes profit subject to available resources. When a

product is produced, there are fixed set-up costs. There is also a threshold for each product. The quantity of

a product is zero or greater than the threshold.

CMPL v.1.5.0 - Manual 49

The example involves three products which are to be produced with two machines. The following data is

given:

P1 P2 P3
upper

bounds [h]

production minimum of a product [units] 45 45 45

upper bound of a product [units] 250 240 250

selling price per unit [€/unit] 500 600 450

direct costs per unit [€/unit] 425 520 400

profit contribution per unit [€/unit] 75 80 50

set-up costs [€] 500 400 500

machine hours required per unit

machine 1 [h/unit] 8 15 12 1,000

machine 2 [h/unit] 15 10 8 1,000

The mathematical model can be formulated as follows:

75⋅x 180⋅x250⋅x3−500⋅y1−400⋅y2−500⋅y3max !
s.t.
8⋅x115⋅x212⋅x 3≤1,000
15⋅x 110⋅x28⋅x 3≤1,000

45⋅y1≤ x1≤250⋅y1

45⋅y2≤ x2≤240⋅y2

45⋅y3≤x 3≤250⋅y3

x 1∈{0,1 , ,250}
x 2∈{0,1 , ,240}
x 3∈{0,1 , ,250}

y j∈{0,1} ; j=113

The CMPL model productionmixfixedcosts.cmpl is formulated as follows:

parameters:

price[] := (500, 600, 450);

costs[] := (425, 520, 400);

#machine hours required per unit

a[,] := ((8, 15, 12), (15, 10, 8));

#upper bounds of the machines

b[] := (1000, 1000);

#profit contribution per unit

{j:=1(1)dim(price[]): c[j] := price[j]costs[j]; }

CMPL v.1.5.0 - Manual 50

#upper bound of a product

xMax[] := (250, 240, 250);

xMin[] := (45, 45, 45);

#fixed setup costs

FC[] := (500, 400, 500);

variables:

{j:=1(1)dim(c[]): x[j]: integer[0..xMax[j]]; }

y[1..dim(c[])] : binary;

objectives:

profit: c[]T * x[] FC[]T * y[] >max;

constraints:

res_2: a[,] * x[] <= b[];

{j:=1(1)dim(c[]): xMin[j] * y[j] <= x[j] <= xMax[j] * y[j]; }

CMPL command:

cmpl productionmixfixedcosts.cmpl

Solution:

General status: normal

Problem : productionmixfixedcosts.cmpl

SolverName COINOR cbc

Nr. of Solutions: 1

Solution nr.: 1

Objective name : profit

Objective value : 4880 (max!)

Variables

Nr. of variables: 6

Name Type Activity Lower Bound Upper Bound Marginal

x1 I 0.00 0.00 250.00

x2 I 66.00 0.00 240.00

x3 I 0.00 0.00 250.00

y1 B 0.00 0.00 1.00

y2 B 1.00 0.00 1.00

y3 B 0.00 0.00 1.00

Constraints

Nr. of constraints: 8

Name Type Activity Lower Bound Upper Bound Marginal

res_1 L 990.00 Infinity 1000.00

res_2 L 660.00 Infinity 1000.00

line_4 L 0.00 Infinity 0.00

line_5 L 0.00 Infinity 0.00

line_6 L 21.00 Infinity 0.00

line_7 L 174.00 Infinity 0.00

line_8 L 0.00 Infinity 0.00

line_9 L 0.00 Infinity 0.00

CMPL v.1.5.0 - Manual 51

 9.1.4 The knapsack problem

Given a set of items with specified weights and values, the problem is to find a combination of items that fills

a knapsack (container, room, …) to maximize the value of the knapsack subject to its restricted capacity or

to minimize the weight of items in the knapsack subject to a predefined minimum value.

In this example there are 10 boxes, which can be sold on the market at a defined price.

box number weight

[pounds]

price

[€/box]

1 100 10

2 80 5

3 50 8

4 150 11

5 55 12

6 20 4

7 40 6

8 50 9

9 200 10

10 100 11

1. What is the optimal combination of boxes if you are seeking to maximize the total sales and are able to

carry a maximum of 60 pounds?

2. What is the optimal combination of boxes if you are seeking to minimize the weight of the transported

boxes bearing in mind that the minimum total sales must be at least €600 ?

Model 1: maximize the total sales

The mathematical model can be formulated as follows:

100⋅x180⋅x 250⋅x3150⋅x 455⋅x520⋅x640⋅x750⋅x 8200⋅x9100⋅x10max !
s.t.
10⋅x15⋅x28⋅x311⋅x 412⋅x 54⋅x66⋅x 79⋅x810⋅x 911⋅x10≤60
x j∈{0,1} ; j=1110

The basic data is saved in the CMPL file knapsack-data.cmpl:

parameters:

boxes := 1(1)10;

#weight of the boxes

w[boxes] := (10,5,8,11,12,4,6,9,10,11);

#price per box

p[boxes] := (100,80,50,150,55,20,40,50,200,100);

#max capacity

maxWeight := 60;

CMPL v.1.5.0 - Manual 52

#min sales

minSales := 600;

A simple CMPL model knapsackmaxbasic.cmpl can be formulated as follows:

include "knapsackdata.cmpl"

variables:

x[boxes] : binary;

objectives:

sales: p[]T * x[] >max;

constraints:

weight: w[]T * x[] <= maxWeight;

CMPL command:

cmpl knapsackmaxbasic.cmpl

Solution:

General status: normal

Problem : knapsackmaxbasic.cmpl

SolverName COINOR cbc

Nr. of Solutions: 1

Solution nr.: 1

Objective name : sales

Objective value : 700 (max!)

Variables

Nr. of variables: 10

Name Type Activity Lower Bound Upper Bound Marginal

x1 B 1.00 0.00 1.00

x2 B 1.00 0.00 1.00

x3 B 0.00 0.00 1.00

x4 B 1.00 0.00 1.00

x5 B 0.00 0.00 1.00

x6 B 1.00 0.00 1.00

x7 B 0.00 0.00 1.00

x8 B 1.00 0.00 1.00

x9 B 1.00 0.00 1.00

x10 B 1.00 0.00 1.00

Constraints

Nr. of constraints: 1

Name Type Activity Lower Bound Upper Bound Marginal

weight L 60.00 Infinity 60.00

Model 2: minimize the weight

The mathematical model can be formulated as follows:

10⋅x15⋅x28⋅x311⋅x 412⋅x 54⋅x66⋅x 79⋅x810⋅x 911⋅x10min !
s.t.
100⋅x180⋅x 250⋅x3150⋅x 455⋅x520⋅x640⋅x750⋅x 8200⋅x9100⋅x10≥600
x j∈{0,1} ; j=1110

CMPL v.1.5.0 - Manual 53

A simple CMPL model knapsackminbasic.cmpl can be formulated as follows:

include "knapsackdata.cmpl"

variables:

x[boxes] : binary;

objectives:

weight: w[]T * x[] >min;

constraints:

sales: p[]T * x[] >= minSales;

CMPL command:

cmpl knapsackminbasic.cmpl

Solution:

General status: normal

Problem : knapsackminbasic.cmpl

SolverName COINOR glpk

Nr. of Solutions: 1

Solution nr.: 1

Objective name : weight

Objective value : 47 (min!)

Variables

Nr. of variables: 10

Name Type Activity Lower Bound Upper Bound Marginal

x1 B 1.00 0.00 1.00

x2 B 1.00 0.00 1.00

x3 B 0.00 0.00 1.00

x4 B 1.00 0.00 1.00

x5 B 0.00 0.00 1.00

x6 B 0.00 0.00 1.00

x7 B 0.00 0.00 1.00

x8 B 0.00 0.00 1.00

x9 B 1.00 0.00 1.00

x10 B 1.00 0.00 1.00

Constraints

Nr. of constraints: 1

Name Type Activity Lower Bound Upper Bound Marginal

sales G 630.00 600.00 Infinity

 9.1.5 Quadratic assignment problem

Assignment problems are special types of linear programming problems which assign assignees to tasks or

locations. The goal of this quadratic assignment problem is to find the cheapest assignments of n machines

to n locations. The transport costs are influenced by

• the distance d jk between location j and location k and

• the quantity t hi between machine h and machine i, which is to be transported.

The assignment of a machine h to a location j can be formulated with the Boolean variables

CMPL v.1.5.0 - Manual 54

x hj={1 , if machine h is assigned to location j
0 , if not

The general model can be formulated as follows:

∑
h=1

n

∑
i=1
i≠h

n

∑
j=1

n

∑
k=1
i≠ j

n

t hi⋅d jk⋅x hj⋅x ikmin!

s.t.

∑
j=1

n

xhj=1 ; h=11n

∑
h=1

n

xhj=1 ; j=1 1n

x hj∈{0,1} ;h=11n , j=11n

Because of the product x hj⋅x ik in the objective function the model is not a linear model. But it is possible

to use a set of inequations to make an equivalent transformation of such multiplications of variables. This

transformation is implemented in CMPL and the set of inequations will be generated automatically.

Consider the following case:

There are 5 machines and 5 locations in the given factory. The quantities of goods which are to be transpor -

ted between the machines are indicated in the figure below.

The distances between the locations are given in the following table:

from/to 1 2 3 4 5

1 M 1 2 3 4

2 1 M 1 2 3

3 2 1 M 1 2

4 3 2 1 M 1

5 4 3 2 1 M

The CMPL model quadraticassignment.cmpl can be formulated as follows:

parameters:

n:=5;

M:=100;

d[,]:= ((M, 1, 2, 3, 4),

(1, M, 1, 2, 3),

(2, 1, M, 1, 2),

(3, 2, 1, M, 1),

(4, 3, 2, 1, M));

CMPL v.1.5.0 - Manual 55

t[,]:= ((0, 10, 10, 0, 20),

 (0, 0, 15, 0, 0),

 (0, 0, 0, 5, 20),

 (0, 0, 0, 0, 35),

 (0, 0, 0, 0, 0));

variables:

x[1..n,1..n]: binary;

#dummy variables to store the products x_hj * x_ik

w[1..n,1..n,1..n,1..n]: real[0..1];

objectives:

costs: sum{ h:=1(1)n, i:=1(1)n, j:=1(1)n, k:=1(1)n :

t[h,i]*d[j,k]*w[h,j,i,k] } >min;

constraints:

{ h:=1(1)n, i:=1(1)n, j:=1(1)n, k:=1(1)n:

{ t[h,i] = 0: w[h,j,i,k] = 0; |

 # definition of the products x_hj * x_ik

 default: w[h,j,i,k] = x[h,j] * x[i,k]; }

}

{ h:=1(1)n: sos1_h: sum{ j:=1(1)n: x[h,j] } = 1; }

{ j:=1(1)n: sos2_j: sum{ h:=1(1)n: x[h,j] } = 1; }

CMPL command:

cmpl quadraticassignment.cmpl solver glpk

Solution:

OSSolverServices running

General status: normal

Problem : quadraticassignment.cmpl

SolverName COINOR glpk

Nr. of Solutions: 1

Solution nr.: 1

Objective name : costs

Objective value : 155 (min!)

Variables

Nr. of variables: 375

Name Type Activity Lower Bound Upper Bound Marginal

x1_1 B 0.00 0.00 1.00

x1_2 B 0.00 0.00 1.00

x1_3 B 0.00 0.00 1.00

x1_4 B 1.00 0.00 1.00

x1_5 B 0.00 0.00 1.00

x2_1 B 0.00 0.00 1.00

x2_2 B 0.00 0.00 1.00

x2_3 B 0.00 0.00 1.00

x2_4 B 0.00 0.00 1.00

CMPL v.1.5.0 - Manual 56

x2_5 B 1.00 0.00 1.00

x3_1 B 0.00 0.00 1.00

x3_2 B 0.00 0.00 1.00

x3_3 B 1.00 0.00 1.00

x3_4 B 0.00 0.00 1.00

x3_5 B 0.00 0.00 1.00

x4_1 B 1.00 0.00 1.00

x4_2 B 0.00 0.00 1.00

x4_3 B 0.00 0.00 1.00

x4_4 B 0.00 0.00 1.00

x4_5 B 0.00 0.00 1.00

x5_1 B 0.00 0.00 1.00

x5_2 B 1.00 0.00 1.00

x5_3 B 0.00 0.00 1.00

x5_4 B 0.00 0.00 1.00

x5_5 B 0.00 0.00 1.00

...

Constraints

Nr. of constraints: 710

Name Type Activity Lower Bound Upper Bound Marginal

...

sos1_1 E 1.00 1.00 1.00

sos1_2 E 1.00 1.00 1.00

sos1_3 E 1.00 1.00 1.00

sos1_4 E 1.00 1.00 1.00

sos1_5 E 1.00 1.00 1.00

sos2_1 E 1.00 1.00 1.00

sos2_2 E 1.00 1.00 1.00

sos2_3 E 1.00 1.00 1.00

sos2_4 E 1.00 1.00 1.00

sos2_5 E 1.00 1.00 1.00

The optimal assignments of machines to locations are given in the the table below:

locations

1 2 3 4 5

m
ac

hi
ne

s

1 x

2 x

3 x

4 x

5 x

 9.2 Using CMPL as a pre-solver

CMPL is not only intended to generate models in the MPS or OSIL format. CMPL can also be used as a pre-

solver or simple solver. In this way it is possible to find a preliminary solution of a problem as a basis for the

model which is to be generated.

CMPL v.1.5.0 - Manual 57

 9.2.1 Solving the knapsack problem

The knapsack problem is a very simple problem that does not necessarily have to be solved by an MIP solv -

er. CMPL can be used as a simple solver for knapsack problems to approximate the optimal solution.

The idea of the following models is to evaluate each item using the relation between the value per item and

weight per item. The knapsack will be filled with the items sorted in descending order until the capacity limit

or the minimum value is reached.

Using the data from the examples in section 9.1.4 a CMPL model to maximize the total sales relative to capa-

city can be formulated as follows.

 Model 1: maximize the total sales knapsackmaxpresolved.cmpl

include "knapsackdata.cmpl"

#calculating the relative value of each box

{j in boxes: val[j]:= p[j]/w[j]; }

sumSales:=0;

sumWeight:=0;

#initial solution

x[]:=(0,0,0,0,0,0,0,0,0,0);

{ i in boxes:

maxVal:=max(val[]);

{j in boxes:

{ maxVal=val[j] :

{ sumWeight+w[j] <= maxWeight:

x[j]:=1;

sumSales:=sumSales + p[j];

sumWeight:=sumWeight + w[j];

}

val[j]:=0;

break j;

}

}

}

echo "Solution found";

echo "Optimal total sales: "+ sumSales;

echo "Total weight : " + sumWeight;

{j in boxes: echo "x_"+ j + ": " + x[j]; }

CMPL command:

cmpl knapsackmaxpresolved.cmpl noOutput cd

Solution:

Solution found

Optimal total sales: 690

CMPL v.1.5.0 - Manual 58

Total weight : 57

x_1: 1

x_2: 1

x_3: 0

x_4: 1

x_5: 0

x_6: 1

x_7: 1

x_8: 0

x_9: 1

x_10: 1

This solution is not identical to the optimal solution on page 52 but good enough as an approximate solution.

Model 2: minimize the total weight knapsackminpresolved.cmpl

include "knapsackdata.cmpl"

#calculating the relative value of each box

{j in boxes: val[j]:= w[j]/p[j]; }

M:=10000;

sumSales:=0;

sumWeight:=0;

#initial solution

x[]:=(0,0,0,0,0,0,0,0,0,0);

{sumSales < minSales:

maxVal:=min(val[]);

{j in boxes:

{ maxVal=val[j] :

{ sumSales < minSales:

x[j]:=1;

sumSales:=sumSales + p[j];

sumWeight:=sumWeight + w[j];

}

val[j]:=M;

break j;

}

}

repeat;

}

echo "Solution found";

echo "Optimal total weight : " + sumWeight;

echo "Total sales: "+ sumSales;

{j in boxes: echo "x_"+ j + ": " + x[j]; }

CMPL command:

cmpl knapsackminpresolved.cmpl noOutput cd

CMPL v.1.5.0 - Manual 59

Solution:

Optimal total weight : 47

Total sales: 630

x_1: 1

x_2: 1

x_3: 0

x_4: 1

x_5: 0

x_6: 0

x_7: 0

x_8: 0

x_9: 1

x_10: 1

This solution is identical to the optimal solution in section 9.1.4 .

 9.2.2 Finding the maximum of a negative convex function with the golden ra-

tio method

One of the alternative methods for finding the maximum of a negative convex function is the golden ratio

method. (see e.g. http://math.fullerton.edu/mathews/n2003/GoldenRatioSearchMod.html)

A CMPL program to find the maximum of f x =−0.5⋅x 2−e−x can be formulated as follows

(maxnegativeconvexfunction.cmpl):

parameters:

#golden ratio delta

d:=0.382;

#distance epsilon

e:=0.0001;

#initial solution

a:= 0;

b:= 1;

l:= a + d*(ba);

m:= a+ (1d)*(ba);

Fl:= 0.5 * l^2 exp(l);

Fm:= 0.5 * m^2 exp(m);

{ (ba)>=e :

{ Fl<Fm:

a:=l;

l:=m;

m:=a+(1d)*(ba);

Fl:=Fm;

Fm:=0.5 * m^2 exp(m);

}

{ Fl>=Fm:

CMPL v.1.5.0 - Manual 60

b:=m;

m:=l;

l:=a+d*(ba);

Fm:=Fl;

Fl:= 0.5 * l^2 exp(l);

}

repeat;

}

echo "Optimal solution found";

x:=round(b*1000)/1000;

echo "x: "+ format("%2.3lf",x);

echo "function value: " + (0.5 * x^2 exp(x));

CMPL command:

cmpl knapsackminpresolved.cmpl noOutput cd

Solution:

Optimal solution found

x: 0.562

function value: 0.727990

 9.3 Several selected CMPL applications

 9.3.1 Calculating the Fibonacci sequence

By definition, the first Fibonacci sequence starts with the numbers 0 and 1, and each remaining number is

the sum of the previous two.

an1=anan−1 ; a1=0,a2=1,n∈ℕ

CMPL code to calculate the Fibonacci sequence (fibonacci.cmpl):

parameters:

initializing the first elements

F[1..2] := (0, 1);

Calculating the Fibonacci sequence until the 10th element

{i:=3(1)10: F[i] := F[i2] + F[i1]; }

echo "The Fibonacci sequence for the first 10 elements";

{i:=1(1)10: echo "element " + i + ": " + F[i]; }

CMPL command:

cmpl fibonacci.cmpl noOutput

CMPL v.1.5.0 - Manual 61

Calculated sequence:

The Fibonacci sequence for the first 10 elements

element 1: 0

element 2: 1

element 3: 1

element 4: 2

element 5: 3

element 6: 5

element 7: 8

element 8: 13

element 9: 21

element 10: 34

 9.3.2 Calculating primes

A prime is defined as a natural number that has exactly two distinct natural number divisors: 1 and itself.

CMPL code to calculate the sequence of primes (primes.cmpl):

parameters:

Initialing the first element

P[1] := 2;

Calculating a prime sequence in the range 3 until 10

{i := 3(1)10:

#Test whether number is prime

t := 1;

{j := 1(1)dim(P[]), t != 0:

t := i mod P[j];

}

If number is prime, save then as prime number

{t != 0:

P[dim(P[]) + 1] := i;

}

}

echo "The prime sequence in the range 3 until 10";

{i:=1(1)dim(P[]): echo "element " + i + ": " + P[i]; }

CMPL command:

cmpl primes.cmpl noOutput

Calculated sequence:

The prime sequence in the range 3 until 10

element 1: 2

element 2: 3

element 3: 5

element 4: 7

CMPL v.1.5.0 - Manual 62

 10 Authors and Contact

Thomas Schleiff - Halle(Saale), Germany

Mike Steglich - Technical University of Applied Sciences Wildau, Germany - mike.steglich@tfh-wildau.de

Contact:

c/o Prof. Dr. Mike Steglich

Technical University of Applied Sciences Wildau

Faculty of Business, Administration and Law

Bahnhofstraße

D-15745 Wildau

Tel.: +493375 / 508-365

Fax.: +493375 / 508-566

mike.steglich@tfh-wildau.de

CMPL v.1.5.0 - Manual 63

	 1 About CMPL
	 2 Syntactic elements
	 2.1 General structure of a CMPL program
	 2.2 Keywords and other syntactic elements
	 2.3 Objects
	 2.3.1 Parameters
	 2.3.2 Variables
	 2.3.3 Indices and sets
	 2.3.4 Line names

	 3 Expressions
	 3.1 Overview
	 3.2 Array functions
	 3.3 Mathematical functions
	 3.4 Type casts
	 3.5 String operations
	 3.6 Set functions

	 4 Input and output operations
	 4.1 Error and user messages
	 4.2 Readcsv and readstdin
	 4.3 Include

	 5 Statements
	 5.1 parameters and variables section
	 5.2 objectives and constraints section

	 6 Control structure
	 6.1 Overview
	 6.2 Control header
	 6.2.1 Iteration headers
	 6.2.2 Condition headers
	 6.2.3 Local assignments

	 6.3 Alternative bodies
	 6.4 Control statements
	 6.5 Specific control structures
	 6.5.1 For loop
	 6.5.2 If-then clause
	 6.5.3 Switch clause
	 6.5.4 While loop

	 6.6 Set and sum control structure as expression
	 6.7 Implicit loops

	 7 Automatic code generating
	 7.1 Overview
	 7.2 Matrix reductions
	 7.3 Equivalent transformations of Variable Products
	 7.3.1 Variable Products with at least one binary variable
	 7.3.2 Variable Product with at least one integer variable

	 8 CMPL as command line tool
	 8.1 Usage
	 8.2 Input and output file formats
	 8.2.1 Overview
	 8.2.2 CMPL
	 8.2.3 MPS
	 8.2.4 Free - MPS
	 8.2.5 OSiL
	 8.2.6 OsoL
	 8.2.7 MprL

	 8.3 Using CMPL with several solvers
	 8.3.1 Coliop3
	 8.3.2 GLPK
	 8.3.3 LPSolve

	 9 Examples
	 9.1 Selected decision problems
	 9.1.1 The diet problem
	 9.1.2 Production mix
	 9.1.3 Production mix including thresholds and step-wise fixed costs
	 9.1.4 The knapsack problem
	 9.1.5 Quadratic assignment problem

	 9.2 Using CMPL as a pre-solver
	 9.2.1 Solving the knapsack problem
	 9.2.2 Finding the maximum of a negative convex function with the golden ratio method

	 9.3 Several selected CMPL applications
	 9.3.1 Calculating the Fibonacci sequence
	 9.3.2 Calculating primes

	 10 Authors and Contact

