
BONMIN Users’ Manual

Pierre Bonami and Jon Lee

Version 1.3
Updated November 2009

1 Introduction

BONMIN (Basic Open-source Nonlinear Mixed INteger programming) is an open-
source code for solving general MINLP (Mixed Integer NonLinear Program-
ming) problems. It is distributed on COIN-OR(www.coin-or.org) under the
CPL (Common Public License). The CPL is a license approved by the OSI1,
(Open Source Initiative), thus BONMIN is OSI Certified Open Source Software.

There are several algorithmic choices that can be selected with BONMIN. B-BB
is a NLP-based branch-and-bound algorithm, B-OA is an outer-approximation
decomposition algorithm, B-iFP is an iterated feasibility pump algorithm, B-QG
is an implementation of Quesada and Grossmann’s branch-and-cut algorithm,
B-Hyb is a hybrid outer-approximation based branch-and-cut algorithm and
B-Ecp is a variant of B-QG based on adding additional ECP cuts.

Some of the algorithmic choices require the ability to solve MILP (Mixed
Integer Linear Programming) problems and NLP (NonLinear Programming)
problems. The default solvers for these are, respectively, the COIN-OR codes
Cbc and Ipopt. In turn, Cbc uses further COIN-OR modules: Clp (for LP
(Linear Programming) problems), Cgl (for generating MILP cutting planes), as
well as various other utilities. It is also possible to step outside the open-source
realm and use Cplex as the MILP solver and FilterSQP as the NLP solver.

Additional documentation can be found on the Bonmin homepage at

http://www.coin-or.org/Bonmin

and wiki at
https://projects.coin-or.org/Bonmin

Types of problems solved

BONMIN solves MINLPs of the form
1http://www.opensource.org

1

http://www.coin-or.org
http://www.opensource.org
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Clp
https://projects.coin-or.org/Cgl
http://www.ilog.com/products/cplex/product/mip.cfm

min f(x)
s.t.

gL ≤ g(x) ≤ gU ,

xL ≤ x ≤ xU ,

x ∈ Rn, xi ∈ Z ∀i ∈ I,

where the functions f : {x ∈ Rn : xL ≤ x ≤ xU} → R and g : {x ∈ Rn :
xL ≤ x ≤ xU} → Rm are assumed to be twice continuously differentiable,
and I ⊆ {1, . . . , n}. We emphasize that BONMIN treats problems that are cast in
minimization form.

The different methods that BONMIN implements are exact algorithms when
the functions f and g are convex but are only heuristics when this is not the
case (i.e., BONMIN is not a global optimizer).

Algorithms

BONMIN implements six different algorithms for solving MINLPs:

• B-BB: a simple branch-and-bound algorithm based on solving a continu-
ous nonlinear program at each node of the search tree and branching on
variables [7] ; we also allow the possibility of SOS (Type 1) branching

• B-OA: an outer-approximation based decomposition algorithm [6, 8]

• B-QG: an outer-approximation based branch-and-cut algorithm [11]

• B-Hyb: a hybrid outer-approximation/nonlinear programming based branch-
and-cut algorithm [2]

• B-Ecp: another outer-approximation based branch-and-cut inspired by the
settings described in [1]

• B-iFP: an iterated feasibility pump algorithm [3] .

In this manual, we will not go into a further description of these algorithms.
Mathematical details of these algorithms and some details of their implementa-
tions can be found in [2] and [5] .

Whether or not you are interested in the details of the algorithms, you cer-
tainly want to know which one of these six algorithms you should choose to solve
your particular problem. For convex MINLPs, experiments we have made on a
reasonably large test set of problems point in favor of using B-Hyb (it solved the
most of the problems in our test set in 3 hours of computing time). Nevertheless,
there are cases where B-OA is much faster than B-Hyb and others where B-BB is
interesting. B-QG and B-ECP correspond mainly to a specific parameter setting

2

of B-Hyb but they can be faster in some case. B-iFP is more tailored at finding
quickly good solutions to very hard convex MINLP. For nonconvex MINLPs, we
strongly recommend using B-BB (the outer-approximation algorithms have not
been tailored to treat nonconvex problems at this point). Although even B-BB
is only a heuristic for such problems, we have added several options to try and
improve the quality of the solutions it provides (see Section 5.3). Because it is
appliable to more classes problem B-BB is the default algorithm in BONMIN.

Required third party code

In order to run BONMIN, you have to download other external libraries (and pay
attention to their licenses!):

• Lapack (Linear Algebra PACKage)

• Blas (Basic Linear Algebra Subroutines)

• a sparse linear solver that is supported by Ipopt, e.g., MA27 from the HSL
(Harwell Subroutine Library), MUMPS, or Pardiso.

Note that Lapack and the Blas are free for commercial use from the Netlib
Repository2, but they are not OSI Certified Open Source Software. The linear
solver MA27 is freely available for noncommercial use.

The above software is sufficient to run BONMIN as a stand-alone C++ code,
but it does not provide a modeling language. For functionality from a modeling
language, BONMIN can be invoked from Ampl3 (no extra installation is required
provided that you have a licensed copy of Ampl installed), though you need the
ASL (Ampl Solver Library) which is obtainable from the Netlib.

BONMIN can use FilterSQP [?] as an alternative to Ipopt for solving NLPs.
Also, in the outer approximation methods B-OA and B-iFP, some MILP

problems are solved. By default BONMIN uses Cbc to solve them, but it can also
be set up to use the commercial solver Cplex4.

Tested platforms

BONMIN has been installed on the following systems:

• Linux using g++ version 3.* and 4.* until 4.3 and Intel 9.* and 10.*

• Windows using version Cygwin 1.5.18

• Mac OS X using gcc 3.* and 4.* until 4.3 and Intel 9.* and 10.*

• SunOS 5 using gcc 4.3
2http://www.netlib.org
3http://www.ampl.com
4http://www.ilog.com/products/cplex/product/mip.cfm

3

http://www.netlib.org/lapack/
http://www.netlib.org/blas/
http://www.cse.clrc.ac.uk/nag/hsl/contents.shtml
http://www.netlib.org
http://www.netlib.org
http://www.ampl.com
https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Cbc
http://www.ilog.com/products/cplex/product/mip.cfm
http://www.ilog.com/products/cplex/product/mip.cfm

2 Obtaining BONMIN

The BONMIN package consists of the source code for the BONMIN project but also
source code from other COIN-OR projects:

• BuildTools

• Cbc

• Cgl

• Clp

• CoinUtils

• Ipopt

• Osi

When downloading the BONMIN package you will download the source code
for all these and libraries of problems to test the codes.

Before downloading BONMIN you need to know which branch of Bonmin you
want to download. In particular you need to know if you want to download the
latest version from:

• the Stable branch, or from

• the Released branch.

These different version are made according to the guidelines of COIN-OR. The
interpretation of these guidelines for the Bonmin project is explained on the
wiki pages of Bonmin.

The main distinction between the Stable and Release branch is that a stable
version that we propose to download may evolve over time to include bug fixes
while a released version will never change. The released versions present an
advantage in particular if you want to make experiments which you want to be
able to reproduce the stable version presents the advantage that it is less work
for you to update in the event where we fix a bug.

The easiest way to obtain the released version is by downloading a com-
pressed archive from Bonmin archive directory. The latest release is Bonmin-
1.3.2.

The only way to obain one of the stable versions is through subversion.
In Unix5-like environments, to download the latest stable version of Bon-

min (1.3) in a sub-directory, say Bonmin-1.3 issue the following command

svn co https://projects.coin-or.org/svn/Bonmin/stable/1.3 Bonmin-1.3

5UNIX is a registered trademark of The Open Group.

4

http://www.coin-or.org
https://projects.coin-or.org/BuildTools
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cgl
https://projects.coin-or.org/Clp
https://projects.coin-or.org/CoinUtils
https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Osi
http://www.coin-or.org/Tarballs/Bonmin/
http://subversion.tigris.org/

This copies all the necessary COIN-OR files to compile BONMIN to Bonmin-1.3.
To download BONMIN using svn on Windows, follow the instructions provided at
COIN-OR.

2.1 Obtaining required third party code

BONMIN needs a few external packages which are not included in the BONMIN
package.

• Lapack (Linear Algebra PACKage)

• Blas (Basic Linear Algebra Subroutines)

• A sparse linear solver.

• Optionally ASL (the Ampl Solver Library), to be able to use BONMIN from
Ampl.

Since these third-party software modules are released under licenses that
are incompatible with the CPL, they cannot be included for distribution with
BONMIN from COIN-OR, but you will find scripts to help you download them
in the subdirectory ThirdParty of the BONMIN distribution. In most Linux
distributions and CYGWIN, Lapack and Blas are available as prebuilt binary
packages in the distribution (and are probably already installed on your ma-
chine).

Linear solvers are used by Ipopt. The most up-to-date information regarding
the supported linear solvers and how to install them is found in Section 2.2 of
the Ipopt manual.

Several options are available for linear solvers: MA27 from the Harwell Sub-
routine Library (and optionally, but strongly recommended, MC19 to enable
automatic scaling in Ipopt), MA57 or Mumps. In our experiment MA27 and
MA57 usually perform significantly better but they are freely available only for
non-commercial, academic use. Note that linear solvers can also take advantage
of Metis.

3 Installing BONMIN

The build process for BONMIN should be fairly automatic as it uses GNU auto-
tools. It has been successfully compiled and run on the following platforms:

• Linux using g++ version 3.4 and 4.0

• Windows using version Cygwin 1.5.18

• Mac OS X using gcc 3.4 and 4.0

5

http://www.coin-or.org/faqs.html#q4
http://www.coin-or.org/Ipopt/documentation/node14.html
https://projects.coin-or.org/Ipopt
http://sources.redhat.com/autobook/autobook/
http://sources.redhat.com/autobook/autobook/

For Cygwin and OS X some specific setup has to be done prior to instala-
tion. These step are described on the wiki pages of Bonmin CygwinInstall6 and
OsxInstall7.

BONMIN is compiled and installed using the commands:

./configure -C
make
make install

This installs the executable bonmin in Bonmin-1.3/bin. In what follows, we
assume that you have put the executable bonmin on your path.

The configure script attempts to find all of the machine specific settings
(compiler, libraries,...) necessary to compile and run the code. Although
configure should find most of the standard ones, you may have to manually
specify a few of the settings. The options for the configure script can be found
by issuing the command

./configure --help

For a more in depth description of these options, the reader is invited to
refer to the COIN-OR BuildTools trac page8.

3.1 Specifying the location of Cplex libraries

If you have Cplex installed on your machine, you may want to use it as the
Mixed Integer Linear Programming subsolver in B-OA, B-Hyb and B-iFP. To
do so you have to specify the location of the header files and libraries. You
can either specify the location of the header files directory by passing it as an
argument to the configure script or by writing it into a config.site.

In the former case, specify the location of the Cplex header files by using
the argument --with-cplexincdir and the location of the Cplex library with
--with-cplexlib (note that on the Linux platform you will also need to add
-lpthread as an argument to --with-cplexlib).

For example, on a Linux machine if Cplex is installed in /usr/ilog , you
would invoke configure with the arguments as follows:

./configure --with-cplex-incdir=/usr/ilog/cplex/include/ilcplex \

6https://projects.coin-or.org/Bonmin/wiki/CygwinInstall
7https://projects.coin-or.org/Bonmin/wiki/OsxInstall
8https://projects.coin-or.org/BuildTools

6

https://projects.coin-or.org/Bonmin/wiki/CygwinInstall
https://projects.coin-or.org/Bonmin/wiki/OsxInstall
https://projects.coin-or.org/BuildTools

--with-cplex-lib="/usr/ilog/cplex/lib/libcplex.a -lpthread"

In the latter case, put a file called config.site in a subdirectory named
share of the installation directory (if you do not specify an alternate installation
directory to the configure script with the --prefix argument, the installation
directory is the directory where you execute the configure script). To specify
the location of Cplex , insert the following lines in the config.site file:

with_cplex_lib="/usr/ilog/cplex/lib/libcplex.a -lpthread"
with_cplex_incdir="/usr/ilog/cplex/include/ilcplex"

(You will find a config.site example in the subdirectory BuildTools of
coin-Bonmin.)

3.2 Compiling BONMIN in a external directory

It is recommended to compile BONMIN in a directory different from the source
directory (Bonmin-1.3 in our case). This is convenient if you want to have sev-
eral executables compiled for different architectures or have several executables
compiled with different options (debugging and production, shared and static
libraries) but also because you don’t modify the directory where the sources are.

To do this just create a new directory, for example Bonmin-build in the par-
ent directory of coin-Bonmin and run the configure command from Bonmin-build:

../Bonmin-\stableVersion/configure -C

This will create the makefiles in Bonmin-build, and you can then compile
with the usual make and make install (in Bonmin-build).

3.3 Building the documentation

The documentation for BONMIN consists of a users’ manual (this document)
and a reference manual. You can build a local copy of the reference manual
provided that you have Latex and Doxygen installed on your machine. Issue
the command make doxydoc in coin-Bonmin. It calls Doxygen to build a copy
of the reference manual. An html version of the reference manual can then be
accessed in doc/html/index.html.

3.4 Running the test programs

By issuing the command make test , you build and run the automatic test
program for BONMIN.

7

4 Running BONMIN

BONMIN can be run

(i) from a command line on a .nl file (see [10]),

(ii) from the modeling language Ampl9 (see [12]),

(iii) from the Gams10 modeling language,

(iv) by invoking it from a C/C++ program.

(v) remotely through the NEOS11 web interface.

In the subsections that follow, we give some details about the various ways
to run BONMIN.

4.1 On a .nl file

BONMIN can read a .nl file which could be generated by Ampl (for example
mytoy.nl in the Bonmin-dist/Bonmin/test subdirectory). The command line
takes just one argument which is the name of the .nl file to be processed.

For example, if you want to solve mytoy.nl, from the Bonmin-dist directory,
issue the command:

bonmin test/mytoy.nl

4.2 From Ampl

To use BONMIN from Ampl you just need to have the directory where the bonmin
executable is in your $PATH and to issue the command

option solver bonmin;

in the Ampl environment. Then the next solve will use BONMIN to solve
the model loaded in Ampl. After the optimization is finished, the values of the
variables in the best-known or optimal solution can be accessed in Ampl. If the
optimization is interrupted with <CTRL-C> the best known solution is accessible
(this feature is not available in Cygwin).

9http://www.ampl.com
10http://www.gams.com/
11http://neos.mcs.anl.gov/neos

8

http://www.ampl.com
http://www.gams.com/
http://neos.mcs.anl.gov/neos

4.2.1 Example Ampl model

simple Ampl example model follows:

An Ampl version of toy

reset;

var x binary;
var z integer >= 0 <= 5;
var y{1..2} >=0;
minimize cost:

- x - y[1] - y[2] ;

subject to
c1: (y[1] - 1/2)^2 + (y[2] - 1/2)^2 <= 1/4 ;
c2: x - y[1] <= 0 ;
c3: x + y[2] + z <= 2;

option solver bonmin; # Choose BONMIN as the solver (assuming that
bonmin is in your PATH

solve; # Solve the model
display x;
display y;

(This example can be found in the subdirectory Bonmin/examples/amplExamples/
of the BONMIN package.)

4.2.2 Setting up branching priorities, directions and declaring SOS1
constraints in ampl

Branching priorities, branching directions and pseudo-costs can be passed using
Ampl suffixes. The suffix for branching priorities is "priority" (variables with
a higher priority will be chosen first for branching), for branching direction is
"direction" (if direction is 1 the ≥ branch is explored first, if direction is −1
the ≤ branch is explored first), for up and down pseudo costs "upPseudoCost"
and "downPseudoCost" respectively (note that if only one of the up and down
pseudo-costs is set in the Ampl model it will be used for both up and down).

For example, to give branching priorities of 10 to variables y and 1 to variable
x and to set the branching directions to explore the upper branch first for all
variables in the simple example given, we add before the call to solve:

9

suffix priority IN, integer, >=0, <= 9999;
y[1].priority := 10;
y[2].priority := 10;
x.priority := 1;

suffix direction IN, integer, >=-1, <=1;
y[1].direction := 1;
y[2].direction := 1;
x.direction := 1;

SOS Type-1 branching is also available in BONMIN from Ampl. We follow the
conventional way of doing this with suffixes. Two type of suffixes should be
declared:

suffix sosno IN, integer, >=1; # Note that the solver assumes that these
values are positive for SOS Type 1

suffix ref IN;

Next, suppose that we wish to have variables

var X {i in 1..M, j in 1..N} binary;

and the “convexity” constraints:

subject to Convexity {i in 1..M}:
sum {j in 1..N} X[i,j] = 1;

(note that we must explicitly include the convexity constraints in the Ampl
model).

Then after reading in the data, we set the suffix values:

The numbers ‘val[i,j]’ are chosen typically as
the values ‘represented’ by the discrete choices.
let {i in 1..M, j in 1..N} X[i,j].ref := val[i,j];

These identify which SOS constraint each variable belongs to.
let {i in 1..M, j in 1..N} X[i,j].sosno := i;

4.3 From Gams

Thanks to the GAMSlinks12 project, Bonmin is available in Gams since release
22.5 of the GAMS13 modeling system. The system is available for download from

12http://projects.coin-or.org/GAMSlinks
13http://www.gams.com/

10

http://projects.coin-or.org/GAMSlinks
http://www.gams.com/
http://download.gams-software.com/
http://download.gams-software.com/
http://download.gams-software.com/
http://download.gams-software.com/

GAMS14. Without buying a license it works as a demo with limited capabilities.
Documentation for using BONMIN in GAMS is available at

http://www.gams.com/solvers/coin.pdf

4.4 From a C/C++ program

BONMIN can also be run from within a C/C++ program if the user codes the
functions to compute first- and second-order derivatives. An example of such
a program is available in the subdirectory CppExample of the examples direc-
tory. For further explanations, please refer to this example and to the reference
manual.

5 Options

5.1 Passing options to BONMIN

Options in BONMIN can be set in several different ways.
First, you can set options by putting them in a file called bonmin.opt in the

directory where bonmin is executing. If you are familiar with the file ipopt.opt
(formerly named PARAMS.DAT) in Ipopt, the syntax of the bonmin.opt is similar.
For those not familiar with ipopt.opt, the syntax is simply to put the name of
the option followed by its value, with no more than two options on a single line.
Anything on a line after a # symbol is ignored (i.e., treated as a comment).

Note that BONMIN sets options for Ipopt. If you want to set options for
Ipopt (when used inside BONMIN) you have to set them in the file bonmin.opt
(the standard Ipopt option file ipopt.opt is not read by BONMIN.) For a list and
a description of all the Ipopt options, the reader may refer to the documentation
of Ipopt15.

Since bonmin.opt contains both Ipopt and BONMIN options, for clarity all
BONMIN options should be preceded with the prefix “bonmin.” in bonmin.opt .
Note that some options can also be passed to the MILP subsolver used by BONMIN
in the outer approximation decomposition and the hybrid (see Subsection ??).

The most important option in BONMIN is the choice of the solution algorithm.
This can be set by using the option named bonmin.algorithm which can be
set to B-BB, B-OA, B-QG, or B-Hyb (it’s default value is B-BB). Depending on
the value of this option, certain other options may be available or not. Table 1
gives the list of options together with their types, default values and availability
in each of the four algorithms. The column labeled ‘type’ indicates the type
of the parameter (‘F’ stands for float, ‘I’ for integer, and ‘S’ for string). The
column labeled default indicates the global default value. Then for each of the

14http://download.gams-software.com/
15http://www.coin-or.org/Ipopt/documentation/node54.html

11

http://download.gams-software.com/
http://download.gams-software.com/
http://www.coin-or.org/Ipopt/documentation/node50.html
http://www.coin-or.org/Ipopt/documentation/node54.html
http://www.coin-or.org/Ipopt/documentation/node54.html

four algorithm B-BB, B-OA, B-QG, and B-Hyb, ‘+’ indicates that the option is
available for that particular algorithm while ‘−’ indicates that it is not.

An example of a bonmin.opt file including all the options with their default
values is located in the Test sub-directory.

A small example is as follows:

bonmin.bb_log_level 4
bonmin.algorithm B-BB
print_level 6

This sets the level of output of the branch-and-bound in BONMIN to 4, the algo-
rithm to branch-and-bound and the output level for Ipopt to 6.

When BONMIN is run from within Ampl, another way to set an option is
through the internal Ampl command options. For example

options bonmin_options "bonmin.bb_log-level 4 \
bonmin.algorithm B-BB print_level 6";

has the same affect as the bonmin.opt example above. Note that any BONMIN
option specified in the file bonmin.opt overrides any setting of that option from
within �Ampl.

A third way is to set options directly in the C/C++ code when running
BONMIN from inside a C/C++ program as is explained in the reference manual.

A detailed description of all of the BONMIN options is given in Appendix A.
In the following, we give some more details on options for the MILP subsolver
and on the options specifically designed for nonconvex problems.

12

Table 1: List of options and compatibility with the different algorithms.
Option type B-BB B-OA B-QG B-Hyb B-Ecp B-iFP Cbc Par

Algorithm choice
algorithm S

√ √ √ √ √ √ √

Branch-and-bound options
allowable fraction gap F

√ √ √ √ √ √ √

allowable gap F
√ √ √ √ √ √ √

cutoff F
√ √ √ √ √ √ √

cutoff decr F
√ √ √ √ √ √ √

enable dynamic nlp S - -
√ √ √

- -
integer tolerance F

√ √ √ √ √ √ √

iteration limit I
√ √ √ √ √ √ √

nlp failure behavior S
√

- - - - - -
node comparison S

√ √ √ √ √ √
-

node limit I
√ √ √ √ √ √ √

num cut passes I - -
√ √ √

- -
num cut passes at root I - -

√ √ √
- -

number before trust I
√ √ √ √ √ √ √

number strong branch I
√ √ √ √ √ √ √

solution limit I
√ √ √ √ √ √ √

sos constraints S
√ √ √ √ √ √

-
time limit F

√ √ √ √ √ √ √

tree search strategy S
√ √ √ √ √ √

-
variable selection S

√
- - - - - -

MILP cutting planes in hybrid
2mir cuts I -

√ √ √ √ √ √

Gomory cuts I -
√ √ √ √ √ √

clique cuts I -
√ √ √ √ √ √

cover cuts I -
√ √ √ √ √ √

flow cover cuts I -
√ √ √ √ √ √

lift and project cuts I -
√ √ √ √ √ √

mir cuts I -
√ √ √ √ √ √

reduce and split cuts I -
√ √ √ √ √ √

MINLP Heuristics
feasibility pump objective norm I

√ √ √ √ √ √
-

heuristic RINS S
√ √ √ √ √ √

-
heuristic dive MIP vectorLength S

√ √ √ √ √ √
-

heuristic dive fractional S
√ √ √ √ √ √

-
heuristic dive vectorLength S

√ √ √ √ √ √
-

heuristic feasibility pump S
√ √ √ √ √ √

-
pump for minlp S

√ √ √ √ √ √
-

MINLP heuristics
continued on next page

13

Option type B-BB B-OA B-QG B-Hyb B-Ecp B-iFP Cbc Par

heuristic dive MIP fractional S
√ √ √ √ √ √

-
Nlp solution robustness

max consecutive failures I
√

- - - - - -
max random point radius F

√
- - - - - -

num iterations suspect I
√ √ √ √ √ √ √

num retry unsolved random point I
√ √ √ √ √ √ √

random point perturbation interval F
√

- - - - - -
random point type S

√
- - - - - -

Nlp solve options in B-Hyb
nlp solve frequency I - - -

√
- - -

nlp solve max depth I - - -
√

- - -
nlp solves per depth F - - -

√
- - -

Options for MILP solver
milp log level I - - - - - -

√

milp solver S - - - - - -
√

Options for OA decomposition
oa decomposition S - -

√ √ √
- -

oa log frequency F
√

- -
√ √

- -
oa log level I

√
- -

√ √
- -

Options for ecp cuts generation
ecp abs tol F - -

√ √
- - -

ecp max rounds I - -
√ √

- - -
ecp propability factor F - -

√ √
- - -

ecp rel tol F - -
√ √

- - -
filmint ecp cuts I - -

√ √
- - -

Options for feasibility checker using OA cuts
feas check cut types S - -

√ √ √
- -

feas check discard policy S - -
√ √ √

- -
generate benders after so many oa I - -

√ √ √
- -

Options for feasibility pump
fp log frequency F - -

√ √
- - -

fp log level I - -
√ √

- - -
Options for non-convex problems

coeff var threshold F
√

- - - - - -
dynamic def cutoff decr S

√
- - - - - -

first perc for cutoff decr F
√

- - - - - -
max consecutive infeasible I

√
- - - - - -

num resolve at infeasibles I
√

- - - - - -
num resolve at node I

√
- - - - - -

num resolve at root I
√

- - - - - -
second perc for cutoff decr F

√
- - - - - -

Outer Approximation cuts generation
add only violated oa S -

√ √ √ √ √ √

continued on next page

14

Option type B-BB B-OA B-QG B-Hyb B-Ecp B-iFP Cbc Par

oa cuts log level I -
√ √ √ √ √ √

oa cuts scope S -
√ √ √ √ √ √

tiny element F -
√ √ √ √ √ √

very tiny element F -
√ √ √ √ √ √

Output ond log-levels options
bb log interval I

√ √ √ √ √ √ √

bb log level I
√ √ √ √ √ √ √

lp log level I -
√ √ √ √ √ √

nlp log at root I
√ √ √ √ √ √

-
Strong branching setup

candidate sort criterion S
√ √ √ √ √ √

-
maxmin crit have sol F

√ √ √ √ √ √
-

maxmin crit no sol F
√ √ √ √ √ √

-
min number strong branch I

√ √ √ √ √ √
-

number before trust list I
√ √ √ √ √ √

-
number look ahead I

√ √ √ √ √
- -

number strong branch root I
√ √ √ √ √ √

-
setup pseudo frac F

√ √ √ √ √ √
-

trust strong branching for pseudo cost S
√ √ √ √ √ √

-
nlp interface option

file solution S
√ √ √ √ √ √ √

nlp log level I
√ √ √ √ √ √ √

nlp solver S
√ √ √ √ √ √ √

warm start S
√

- - - - - -

15

5.2 Passing options to local search based heuristics and
oa generators

Several parts of the algorithms in BONMIN are based on solving a simplified ver-
sion of the problem with another instance of BONMIN: Outer Approximation De-
composition (called in B-Hyb at the root node) and Feasibility Pump for MINLP
(called in B-Hyb or B-BB at the root node), RINS, RENS, Local Branching.

In all these cases, one can pass options to the sub-algorithm used through
the bonmin.opt file. The basic principle is that the “bonmin.” prefix is replaced
with a prefix that identify the sub-algorithm used:

• to pass options to Outer Approximation Decomposition: oa decomposition.,

• to pass options to Feasibility Pump for MINLP: pump for minlp.,

• to pass options to RINS: rins.,

• to RENS: rens.,

• to Local Branching: local branch.

For example, we may want to run a maximum of 60 seconds of FP for MINLP
until 6 solutions are found at the beginning of the hybrid algorithm. To do so
we set the following option in bonmin.opt

bonmin.algorithm B-Hyb

bonmin.pump_for_minlp yes #Tells to run fp for MINLP
pump_for_minlp.time_limit 60 #set a time limit for the pump
pump_for_minlp.solution_limit 6 # set a solution limit

Note that the actual solution and time limit will be the minimum of the
global limits set for BONMIN.

A slightly more complicated set of options may be used when using RINS.
Say for example that we want to run RINS inside B-BB. Each time RINS is
called we want to solve the small-size MINLP generated using B-QG (we may
run any algorithm available in bonmin for solving an MINLP) and want to stop
as soon as B-QG found 1 solution. We set the following options in bonmin.opt

bonmin.algorithm B-BB

bonmin.rins yes
rins.algorithm B-QG
rins.solution_limit 1

This example shows that it is possible to set any option used in the sub=algorithm
to be different than the one used for the main algorithm.

16

In the context of OA and FP for MINLP, a standard MILP solver is used.
Several option are available for configuring this MILP solver. BONMIN allows a
choice of different MILP solvers through the option bonmin.milp subsolver.
Values for this option are: Cbc D which uses Cbc with its default settings, Cplex
which uses Cplex with its default settings, and Cbc Par which uses a version
of Cbc that can be parameterized by the user. The options that can be set in
Cbc Par are the number of strong-branching candidates, the number of branches
before pseudo costs are to be trusted, and the frequency of the various cut
generators (these options are signaled in Table 1).

5.3 Getting good solutions to nonconvex problems

To solve a problem with non-convex constraints, one should only use the branch-
and-bound algorithm B-BB.

A few options have been designed in BONMIN specifically to treat problems
that do not have a convex continuous relaxation. In such problems, the solutions
obtained from Ipopt are not necessarily globally optimal, but are only locally
optimal. Also the outer-approximation constraints are not necessarily valid
inequalities for the problem.

No specific heuristic method for treating nonconvex problems is implemented
yet within the OA framework. But for the pure branch-and-bound B-BB, we
implemented a few options having in mind that lower bounds provided by Ipopt
should not be trusted, and with the goal of trying to get good solutions. Such
options are at a very experimental stage.

First, in the context of nonconvex problems, Ipopt may find different local
optima when started from different starting points. The two options num re-
solve at root and num resolve at node allow for solving the root node or
each node of the tree, respectively, with a user-specified number of different
randomly-chosen starting points, saving the best solution found. Note that the
function to generate a random starting point is very näıve: it chooses a random
point (uniformly) between the bounds provided for the variable. In particular
if there are some functions that can not be evaluated at some points of the
domain, it may pick such points, and so it is not robust in that respect.

Secondly, since the solution given by Ipopt does not truly give a lower
bound, we allow for changing the fathoming rule to continue branching even if
the solution value to the current node is worse than the best-known solution.
This is achieved by setting allowable gap and allowable fraction gap and
cutoff decr to negative values.

5.4 Notes on Ipopt options

Ipopt has a very large number of options, to get a complete description of them,
you should refer to the Ipopt manual. Here we only mention and explain some
of the options that have been more important to us, so far, in developing and
using BONMIN.

17

https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt

5.4.1 Default options changed by BONMIN

Ipopt has been tailored to be more efficient when used in the context of the
solution of a MINLP problem. In particular, we have tried to improve Ipopt’s
warm-starting capabilities and its ability to prove quickly that a subproblem
is infeasible. For ordinary NLP problems, Ipopt does not use these options
by default, but BONMIN automatically changes these options from their default
values.

Note that options set by the user in bonmin.opt will override these settings.

mu strategy and mu oracle are set, respectively, to adaptive and probing
by default (these are newly implemented strategies in Ipopt for updating the
barrier parameter [13] which we have found to be more efficient in the context
of MINLP).

gamma phi and gamma theta are set to 10−8 and 10−4 respectively. This has
the effect of reducing the size of the filter in the line search performed by Ipopt.

required infeasibility reduction is set to 0.1. This increases the required
infeasibility reduction when Ipopt enters the restoration phase and should thus
help detect infeasible problems faster.

expect infeasible problem is set to yes which enables some heuristics to
detect infeasible problems faster.

warm start init point is set to yes when a full primal/dual starting point
is available (generally all the optimizations after the continuous relaxation has
been solved).

print level is set to 0 by default to turn off Ipopt output.

5.4.2 Some useful Ipopt options

bound relax factor is by default set to 10−8 in Ipopt. All of the bounds
of the problem are relaxed by this factor. This may cause some trouble when
constraint functions can only be evaluated within their bounds. In such cases,
this option should be set to 0.

References

[1] K. Abhishek, S. Leyffer, and J. T. Linderoth. FilMINT: An outer-
approximation-based solver for nonlinear mixed integer programs. Preprint
ANL/MCS-P1374-0906, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, 2006.

18

https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt

[2] P. Bonami, A. Wächter, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Gross-
mann, C.D. Laird, J. Lee, A. Lodi, F. Margot and N. Sawaya. An algo-
rithmic framework for convex mixed integer nonlinear programs. Discrete
Optimization 5:186–204, 2008.

[3] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump for
mixed integer nonlinear programs. Mathematical Programming, 119 (2009),
pp. 331–352.

[4] P. Bonami and J. Gonçalves. Primal heuristics for mixed integer nonlinear
programs. Research Report, IBM T. J. Watson Research Center, Yorktown,
USA, September 2008.

[5] P. Bonami, M. Kılınç and J. Linderoth. Algorithms and Software for Convex
Mixed Integer Nonlinear Programs. Technical Report #1664, Computer
Sciences Department, University of Wisconsin-Madison, 2009.

[6] M. Duran and I.E. Grossmann. An outer-approximation algorithm for a
class of mixed-integer nonlinear programs. Mathematical Programming,
36:307–339, 1986.

[7] O.K. Gupta and V. Ravindran. Branch and bound experiments in convex
nonlinear integer programming. Management Science, 31:1533–1546, 1985.

[8] R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by
outer approximation. Mathematical Programming, 66:327–349, 1994.

[9] R. Fletcher and S. Leyffer. User manual for filterSQP. University of Dundee
Numerical Analysis Report NA-181, 1998.

[10] D.M. Gay. Writing .nl files. Sandia National Laboratories, Technical Re-
port No. 2005-7907P, 2005.

[11] I. Quesada and I.E. Grossmann. An LP/NLP based branched and bound al-
gorithm for convex MINLP optimization problems. Computers and Chem-
ical Engineering, 16:937–947, 1992.

[12] R. Fourer and D.M. Gay and B.W. Kernighan. AMPL: A Modeling Lan-
guage for Mathematical Programming, Second Edition, Duxbury Press
Brooks Cole Publishing Co., 2003.

[13] J. Nocedal, A. Wächter, and R. A. Waltz. Adaptive Barrier Strategies for
Nonlinear Interior Methods. Research Report RC 23563, IBM T. J. Watson
Research Center, Yorktown, USA (March 2005; revised January 2006)

[14] A. Wächter and L. T. Biegler. On the Implementation of a Primal-Dual
Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Pro-
gramming. Mathematical Programming 106(1), pp. 25-57, 2006

19

A List of BONMIN options

A.1 Algorithm choice

sec:algorithm

algorithm: Choice of the algorithm.
This will preset some of the options of bonmin depending on the algorithm
choice. The default value for this string option is ”B-BB”.
Possible values:

• B-BB: simple branch-and-bound algorithm,

• B-OA: OA Decomposition algorithm,

• B-QG: Quesada and Grossmann branch-and-cut algorithm,

• B-Hyb: hybrid outer approximation based branch-and-cut,

• B-Ecp: ecp cuts based branch-and-cut a la FilMINT.

• B-iFP: Iterated Feasibility Pump for MINLP.

A.2 Branch-and-bound options

sec:allowable fraction gap

allowable fraction gap: Specify the value of relative gap under which the
algorithm stops.
Stop the tree search when the gap between the objective value of the best known
solution and the best bound on the objective of any solution is less than this
fraction of the absolute value of the best known solution value. The valid range
for this real option is −1 · 10+20 ≤ allowable fraction gap ≤ 1 · 10+20 and its
default value is 0.

sec:allowable gap

allowable gap: Specify the value of absolute gap under which the algorithm
stops.
Stop the tree search when the gap between the objective value of the best known
solution and the best bound on the objective of any solution is less than this.
The valid range for this real option is −1 · 10+20 ≤ allowable gap ≤ 1 · 10+20

and its default value is 0.
sec:cutoff

20

cutoff: Specify cutoff value.
cutoff should be the value of a feasible solution known by the user (if any). The
algorithm will only look for solutions better than cutoof. The valid range for
this real option is −1 · 10+100 ≤ cutoff ≤ 1 · 10+100 and its default value is
1 · 10+100.

sec:cutoff decr

cutoff decr: Specify cutoff decrement.
Specify the amount by which cutoff is decremented below a new best upper-
bound (usually a small positive value but in non-convex problems it may be a
negative value). The valid range for this real option is−1·10+10 ≤ cutoff decr ≤
1 · 10+10 and its default value is 1 · 10−05.

sec:enable dynamic nlp

enable dynamic nlp: Enable dynamic linear and quadratic rows addition in
nlp

The default value for this string option is ”no”.
Possible values:

• no:

• yes:

sec:integer tolerance

integer tolerance: Set integer tolerance.
Any number within that value of an integer is considered integer. The valid
range for this real option is 0 < integer tolerance < +inf and its default
value is 1 · 10−06.

sec:iteration limit

iteration limit: Set the cumulated maximum number of iteration in the algo-
rithm used to process nodes continuous relaxations in the branch-and-bound.
value 0 deactivates option. The valid range for this integer option is 0 ≤
iteration limit < +inf and its default value is 2147483647.

sec:nlp failure behavior

nlp failure behavior: Set the behavior when an NLP or a series of NLP are
unsolved by Ipopt (we call unsolved an NLP for which Ipopt is not able to
guarantee optimality within the specified tolerances).
If set to ”fathom”, the algorithm will fathom the node when Ipopt fails to find a
solution to the nlp at that node whithin the specified tolerances. The algorithm
then becomes a heuristic, and the user will be warned that the solution might
not be optimal. The default value for this string option is ”stop”.
Possible values:

21

• stop: Stop when failure happens.

• fathom: Continue when failure happens.

sec:node comparison

node comparison: Choose the node selection strategy.
Choose the strategy for selecting the next node to be processed. The default
value for this string option is ”best-bound”.
Possible values:

• best-bound: choose node with the smallest bound,

• depth-first: Perform depth first search,

• breadth-first: Perform breadth first search,

• dynamic: Cbc dynamic strategy (starts with a depth first search and turn
to best bound after 3 integer feasible solutions have been found).

• best-guess: choose node with smallest guessed integer solution

sec:node limit

node limit: Set the maximum number of nodes explored in the branch-and-
bound search.
The valid range for this integer option is 0 ≤ node limit < +inf and its default
value is 2147483647.

sec:num cut passes

num cut passes: Set the maximum number of cut passes at regular nodes of
the branch-and-cut.
The valid range for this integer option is 0 ≤ num cut passes < +inf and its
default value is 1.

sec:num cut passes at root

num cut passes at root: Set the maximum number of cut passes at regular
nodes of the branch-and-cut.
The valid range for this integer option is 0 ≤ num cut passes at root < +inf
and its default value is 20.

sec:number before trust

number before trust: Set the number of branches on a variable before its
pseudo costs are to be believed in dynamic strong branching.
A value of 0 disables pseudo costs. The valid range for this integer option is
0 ≤ number before trust < +inf and its default value is 8.

sec:number strong branch

22

number strong branch: Choose the maximum number of variables consid-
ered for strong branching.
Set the number of variables on which to do strong branching. The valid range
for this integer option is 0 ≤ number strong branch < +inf and its default
value is 20.

sec:solution limit

solution limit: Abort after that much integer feasible solution have been
found by algorithm
value 0 deactivates option The valid range for this integer option is 0 ≤ solution limit <
+inf and its default value is 2147483647.

sec:sos constraints

sos constraints: Wether or not to activate SOS constraints.
(only type 1 SOS are supported at the moment) The default value for this string
option is ”enable”.
Possible values:

• enable:

• disable:

sec:time limit

time limit: Set the global maximum computation time (in secs) for the algo-
rithm.
The valid range for this real option is 0 ≤ time limit < +inf and its default
value is 1 · 10+10.

sec:tree search strategy

tree search strategy: Pick a strategy for traversing the tree
All strategies can be used in conjunction with any of the node comparison
functions. Options which affect dfs-dive are max-backtracks-in-dive and max-
dive-depth. The dfs-dive won’t work in a non-convex problem where objective
does not decrease down branches. The default value for this string option is
”probed-dive”.
Possible values:

• top-node: Always pick the top node as sorted by the node comparison
function

• dive: Dive in the tree if possible, otherwise pick top node as sorted by the
tree comparison function.

• probed-dive: Dive in the tree exploring two childs before continuing the
dive at each level.

23

• dfs-dive: Dive in the tree if possible doing a depth first search. Backtrack
on leaves or when a prescribed depth is attained or when estimate of best
possible integer feasible solution in subtree is worst than cutoff. Once a
prescribed limit of backtracks is attained pick top node as sorted by the
tree comparison function

• dfs-dive-dynamic: Same as dfs-dive but once enough solution are found
switch to best-bound and if too many nodes switch to depth-first.

sec:variable selection

variable selection: Chooses variable selection strategy

The default value for this string option is ”strong-branching”.
Possible values:

• most-fractional: Choose most fractional variable

• strong-branching: Perform strong branching

• reliability-branching: Use reliability branching

• curvature-estimator: Use curvature estimation to select branching variable

• qp-strong-branching: Perform strong branching with QP approximation

• lp-strong-branching: Perform strong branching with LP approximation

• nlp-strong-branching: Perform strong branching with NLP approximation

• osi-simple: Osi method to do simple branching

• osi-strong: Osi method to do strong branching

• random: Method to choose branching variable randomly

A.3 MILP cutting planes in hybrid

sec:2mir cuts

2mir cuts: Frequency (in terms of nodes) for generating 2-MIR cuts in branch-
and-cut
If k ¿ 0, cuts are generated every k nodes, if -99 ¡ k ¡ 0 cuts are generated
every -k nodes but Cbc may decide to stop generating cuts, if not enough are
generated at the root node, if k=-99 generate cuts only at the root node, if
k=0 or 100 do not generate cuts. The valid range for this integer option is
−100 ≤ 2mir cuts < +inf and its default value is 0.

sec:Gomory cuts

24

Gomory cuts: Frequency k (in terms of nodes) for generating Gomory cuts
in branch-and-cut.
If k ¿ 0, cuts are generated every k nodes, if -99 ¡ k ¡ 0 cuts are generated
every -k nodes but Cbc may decide to stop generating cuts, if not enough are
generated at the root node, if k=-99 generate cuts only at the root node, if
k=0 or 100 do not generate cuts. The valid range for this integer option is
−100 ≤ Gomory cuts < +inf and its default value is −5.

sec:clique cuts

clique cuts: Frequency (in terms of nodes) for generating clique cuts in branch-
and-cut
If k ¿ 0, cuts are generated every k nodes, if -99 ¡ k ¡ 0 cuts are generated
every -k nodes but Cbc may decide to stop generating cuts, if not enough are
generated at the root node, if k=-99 generate cuts only at the root node, if
k=0 or 100 do not generate cuts. The valid range for this integer option is
−100 ≤ clique cuts < +inf and its default value is −5.

sec:cover cuts

cover cuts: Frequency (in terms of nodes) for generating cover cuts in branch-
and-cut
If k ¿ 0, cuts are generated every k nodes, if -99 ¡ k ¡ 0 cuts are generated
every -k nodes but Cbc may decide to stop generating cuts, if not enough are
generated at the root node, if k=-99 generate cuts only at the root node, if
k=0 or 100 do not generate cuts. The valid range for this integer option is
−100 ≤ cover cuts < +inf and its default value is −5.

sec:flow cover cuts

flow cover cuts: Frequency (in terms of nodes) for generating flow cover cuts
in branch-and-cut
If k ¿ 0, cuts are generated every k nodes, if -99 ¡ k ¡ 0 cuts are generated
every -k nodes but Cbc may decide to stop generating cuts, if not enough are
generated at the root node, if k=-99 generate cuts only at the root node, if
k=0 or 100 do not generate cuts. The valid range for this integer option is
−100 ≤ flow cover cuts < +inf and its default value is −5.

sec:lift and project cuts

lift and project cuts: Frequency (in terms of nodes) for generating lift-and-
project cuts in branch-and-cut
If k ¿ 0, cuts are generated every k nodes, if -99 ¡ k ¡ 0 cuts are generated
every -k nodes but Cbc may decide to stop generating cuts, if not enough are
generated at the root node, if k=-99 generate cuts only at the root node, if
k=0 or 100 do not generate cuts. The valid range for this integer option is
−100 ≤ lift and project cuts < +inf and its default value is 0.

sec:mir cuts

25

mir cuts: Frequency (in terms of nodes) for generating MIR cuts in branch-
and-cut
If k ¿ 0, cuts are generated every k nodes, if -99 ¡ k ¡ 0 cuts are generated
every -k nodes but Cbc may decide to stop generating cuts, if not enough are
generated at the root node, if k=-99 generate cuts only at the root node, if
k=0 or 100 do not generate cuts. The valid range for this integer option is
−100 ≤ mir cuts < +inf and its default value is −5.

sec:reduce and split cuts

reduce and split cuts: Frequency (in terms of nodes) for generating reduce-
and-split cuts in branch-and-cut
If k ¿ 0, cuts are generated every k nodes, if -99 ¡ k ¡ 0 cuts are generated
every -k nodes but Cbc may decide to stop generating cuts, if not enough are
generated at the root node, if k=-99 generate cuts only at the root node, if
k=0 or 100 do not generate cuts. The valid range for this integer option is
−100 ≤ reduce and split cuts < +inf and its default value is 0.

A.4 MINLP Heuristics

sec:feasibility pump objective norm

feasibility pump objective norm: Norm of feasibility pump objective func-
tion
The valid range for this integer option is 1 ≤ feasibility pump objective norm ≤
2 and its default value is 1.

sec:heuristic RINS

heuristic RINS: if yes runs the RINS heuristic

The default value for this string option is ”no”.
Possible values:

• no: don’t run it

• yes: runs the heuristic

sec:heuristic dive MIP vectorLength

heuristic dive MIP vectorLength: if yes runs the Dive MIP VectorLength
heuristic

The default value for this string option is ”no”.
Possible values:

• no: don’t run it

• yes: runs the heuristic

sec:heuristic dive fractional

26

heuristic dive fractional: if yes runs the Dive Fractional heuristic

The default value for this string option is ”no”.
Possible values:

• no: don’t run it

• yes: runs the heuristic

sec:heuristic dive vectorLength

heuristic dive vectorLength: if yes runs the Dive VectorLength heuristic

The default value for this string option is ”no”.
Possible values:

• no: don’t run it

• yes: runs the heuristic

sec:heuristic feasibility pump

heuristic feasibility pump: whether the heuristic feasibility pump should
be used

The default value for this string option is ”no”.
Possible values:

• no: don’t use it

• yes: use it

sec:pump for minlp

pump for minlp: if yes runs FP for MINLP

The default value for this string option is ”no”.
Possible values:

• no: don’t run it

• yes: runs the heuristic

A.5 MINLP heuristics

sec:heuristic dive MIP fractional

27

heuristic dive MIP fractional: if yes runs the Dive MIP Fractional heuris-
tic

The default value for this string option is ”no”.
Possible values:

• no: don’t run it

• yes: runs the heuristic

A.6 Nlp solution robustness

sec:max consecutive failures

max consecutive failures: (temporarily removed) Number n of consecutive
unsolved problems before aborting a branch of the tree.
When n > 0, continue exploring a branch of the tree until n consecutive prob-
lems in the branch are unsolved (we call unsolved a problem for which Ipopt can
not guarantee optimality within the specified tolerances). The valid range for
this integer option is 0 ≤ max consecutive failures < +inf and its default
value is 10.

sec:max random point radius

max random point radius: Set max value r for coordinate of a random
point.
When picking a random point coordinate i will be in the interval [min(max(l,-
r),u-r), max(min(u,r),l+r)] (where l is the lower bound for the variable and u is
its upper bound) The valid range for this real option is 0 < max random point radius <
+inf and its default value is 100000.

sec:num iterations suspect

num iterations suspect: Number of iterations over which a node is consid-
ered ”suspect” (for debugging purposes only, see detailed documentation).
When the number of iterations to solve a node is above this number, the sub-
problem at this node is considered to be suspect and it will be outputed in
a file (set to -1 to deactivate this). The valid range for this integer option is
−1 ≤ num iterations suspect < +inf and its default value is −1.

sec:num retry unsolved random point

num retry unsolved random point: Number k of times that the algorithm
will try to resolve an unsolved NLP with a random starting point (we call un-
solved an NLP for which Ipopt is not able to guarantee optimality within the
specified tolerances).
When Ipopt fails to solve a continuous NLP sub-problem, if k > 0, the al-
gorithm will try again to solve the failed NLP with k new randomly chosen
starting points or until the problem is solved with success. The valid range for

28

this integer option is 0 ≤ num retry unsolved random point < +inf and its
default value is 0.

sec:random point perturbation interval

random point perturbation interval: Amount by which starting point is
perturbed when choosing to pick random point by perturbating starting point
The valid range for this real option is 0 < random point perturbation interval <
+inf and its default value is 1.

sec:random point type

random point type: method to choose a random starting point

The default value for this string option is ”Jon”.
Possible values:

• Jon: Choose random point uniformly between the bounds

• Andreas: perturb the starting point of the problem within a prescribed
interval

• Claudia: perturb the starting point using the perturbation radius suffix
information

A.7 Nlp solve options in B-Hyb

sec:nlp solve frequency

nlp solve frequency: Specify the frequency (in terms of nodes) at which
NLP relaxations are solved in B-Hyb.
A frequency of 0 amounts to to never solve the NLP relaxation. The valid range
for this integer option is 0 ≤ nlp solve frequency < +inf and its default value
is 10.

sec:nlp solve max depth

nlp solve max depth: Set maximum depth in the tree at which NLP relax-
ations are solved in B-Hyb.
A depth of 0 amounts to to never solve the NLP relaxation. The valid range for
this integer option is 0 ≤ nlp solve max depth < +inf and its default value is
10.

sec:nlp solves per depth

nlp solves per depth: Set average number of nodes in the tree at which
NLP relaxations are solved in B-Hyb for each depth.
The valid range for this real option is 0 ≤ nlp solves per depth < +inf and
its default value is 1 · 10+100.

29

A.8 Options for MILP solver

sec:milp log level

milp log level: specify MILP solver log level.
Set the level of output of the MILP subsolver in OA : 0 - none, 1 - minimal,
2 - normal low, 3 - normal high The valid range for this integer option is 0 ≤
milp log level ≤ 3 and its default value is 0.

sec:milp solver

milp solver: Choose the subsolver to solve MILP sub-problems in OA de-
compositions.
To use Cplex, a valid license is required and you should have compiled OsiCpx
in COIN-OR (see Osi documentation). The default value for this string option
is ”Cbc D”.
Possible values:

• Cbc D: Coin Branch and Cut with its default

• Cbc Par: Coin Branch and Cut with passed parameters

• Cplex: Ilog Cplex

A.9 Options for OA decomposition

sec:oa decomposition

oa decomposition: If yes do initial OA decomposition

The default value for this string option is ”no”.
Possible values:

• no:

• yes:

sec:oa log frequency

oa log frequency: display an update on lower and upper bounds in OA every
n seconds
The valid range for this real option is 0 < oa log frequency < +inf and its
default value is 100.

sec:oa log level

oa log level: specify OA iterations log level.
Set the level of output of OA decomposition solver : 0 - none, 1 - normal, 2 -
verbose The valid range for this integer option is 0 ≤ oa log level ≤ 2 and its
default value is 1.

30

A.10 Options for ecp cuts generation

sec:ecp abs tol

ecp abs tol: Set the absolute termination tolerance for ECP rounds.
The valid range for this real option is 0 ≤ ecp abs tol < +inf and its default
value is 1 · 10−06.

sec:ecp max rounds

ecp max rounds: Set the maximal number of rounds of ECP cuts.
The valid range for this integer option is 0 ≤ ecp max rounds < +inf and its
default value is 5.

sec:ecp propability factor

ecp propability factor: Factor appearing in formula for skipping ECP cuts.

Choosing -1 disables the skipping. The valid range for this real option is
−inf < ecp propability factor < +inf and its default value is 10.

sec:ecp rel tol

ecp rel tol: Set the relative termination tolerance for ECP rounds.
The valid range for this real option is 0 ≤ ecp rel tol < +inf and its default
value is 0.

sec:filmint ecp cuts

filmint ecp cuts: Specify the frequency (in terms of nodes) at which some a
la filmint ecp cuts are generated.
A frequency of 0 amounts to to never solve the NLP relaxation. The valid range
for this integer option is 0 ≤ filmint ecp cuts < +inf and its default value is
0.

A.11 Options for feasibility checker using OA cuts

sec:feas check cut types

feas check cut types: Choose the type of cuts generated when an integer
feasible solution is found
If it seems too much memory is used should try Benders to use less The default
value for this string option is ”outer-approximations”.
Possible values:

• outer-approximations: Generate a set of Outer Approximations cuts.

• Benders: Generate a single Benders cut.

sec:feas check discard policy

31

feas check discard policy: How cuts from feasibility checker are discarded
Normally to avoid cycle cuts from feasibility checker should not be discarded in
the node where they are generated. However Cbc sometimes does it if no care is
taken which can lead to an infinite loop in Bonmin (usualy on simple problems).
To avoid this one can instruct Cbc to never discard a cut but if we do that for
all cuts it can lead to memory problems. The default policy here is to detect
cycles and only then impose to Cbc to keep the cut. The two other alternative
are to instruct Cbc to keep all cuts or to just ignore the problem and hope for
the best The default value for this string option is ”detect-cycles”.
Possible values:

• detect-cycles: Detect if a cycle occurs and only in this case force not to
discard.

• keep-all: Force cuts from feasibility checker not to be discarded (memory
hungry but sometimes better).

• treated-as-normal: Cuts from memory checker can be discarded as any
other cuts (code may cycle then)

sec:generate benders after so many oa

generate benders after so many oa: Specify that after so many oa cuts
have been generated Benders cuts should be generated instead.
It seems that sometimes generating too many oa cuts slows down the optimiza-
tion compared to Benders due to the size of the LP. With this option we specify
that after so many OA cuts have been generated we should switch to Benders
cuts. The valid range for this integer option is 0 ≤ generate benders after so many oa <
+inf and its default value is 5000.

A.12 Options for feasibility pump

sec:fp log frequency

fp log frequency: display an update on lower and upper bounds in FP every
n seconds
The valid range for this real option is 0 < fp log frequency < +inf and its
default value is 100.

sec:fp log level

fp log level: specify FP iterations log level.
Set the level of output of OA decomposition solver : 0 - none, 1 - normal, 2 -
verbose The valid range for this integer option is 0 ≤ fp log level ≤ 2 and its
default value is 1.

A.13 Options for non-convex problems

sec:coeff var threshold

32

coeff var threshold: Coefficient of variation threshold (for dynamic defini-
tion of cutoff decr).
Coefficient of variation threshold (for dynamic definition of cutoff decr). The
valid range for this real option is 0 ≤ coeff var threshold < +inf and its
default value is 0.1.

sec:dynamic def cutoff decr

dynamic def cutoff decr: Do you want to define the parameter cutoff decr
dynamically?

The default value for this string option is ”no”.
Possible values:

• no: No, define it statically

• yes: Yes, define it dynamically

sec:first perc for cutoff decr

first perc for cutoff decr: The percentage used when, the coeff of variance
is smaller than the threshold, to compute the cutoff decr dynamically.
The percentage used when, the coeff of variance is smaller than the threshold,
to compute the cutoff decr dynamically. The valid range for this real option is
−inf < first perc for cutoff decr < +inf and its default value is −0.02.

sec:max consecutive infeasible

max consecutive infeasible: Number of consecutive infeasible subproblems
before aborting a branch.
Will continue exploring a branch of the tree until ”max consecutive infeasible”consecutive
problems are infeasibles by the NLP sub-solver. The valid range for this integer
option is 0 ≤ max consecutive infeasible < +inf and its default value is 0.

sec:num resolve at infeasibles

num resolve at infeasibles: Number k of tries to resolve an infeasible node
(other than the root) of the tree with different starting point.
The algorithm will solve all the infeasible nodes with k different random starting
points and will keep the best local optimum found. The valid range for this
integer option is 0 ≤ num resolve at infeasibles < +inf and its default
value is 0.

sec:num resolve at node

num resolve at node: Number k of tries to resolve a node (other than the
root) of the tree with different starting point.
The algorithm will solve all the nodes with k different random starting points
and will keep the best local optimum found. The valid range for this integer
option is 0 ≤ num resolve at node < +inf and its default value is 0.

sec:num resolve at root

33

num resolve at root: Number k of tries to resolve the root node with dif-
ferent starting points.
The algorithm will solve the root node with k random starting points and will
keep the best local optimum found. The valid range for this integer option is
0 ≤ num resolve at root < +inf and its default value is 0.

sec:second perc for cutoff decr

second perc for cutoff decr: The percentage used when, the coeff of vari-
ance is greater than the threshold, to compute the cutoff decr dynamically.
The percentage used when, the coeff of variance is greater than the threshold,
to compute the cutoff decr dynamically. The valid range for this real option is
−inf < second perc for cutoff decr < +inf and its default value is −0.05.

A.14 Outer Approximation cuts generation

sec:add only violated oa

add only violated oa: Do we add all OA cuts or only the ones violated by
current point?

The default value for this string option is ”no”.
Possible values:

• no: Add all cuts

• yes: Add only violated Cuts

sec:oa cuts log level

oa cuts log level: level of log when generating OA cuts.
0: outputs nothing, 1: when a cut is generated, its violation and index of row
from which it originates, 2: always output violation of the cut. 3: output
generated cuts incidence vectors. The valid range for this integer option is
0 ≤ oa cuts log level < +inf and its default value is 0.

sec:oa cuts scope

oa cuts scope: Specify if OA cuts added are to be set globally or locally valid

The default value for this string option is ”global”.
Possible values:

• local: Cuts are treated as globally valid

• global: Cuts are treated as locally valid

sec:tiny element

34

tiny element: Value for tiny element in OA cut
We will remove ”cleanly” (by relaxing cut) an element lower than this. The
valid range for this real option is −0 ≤ tiny element < +inf and its default
value is 1 · 10−08.

sec:very tiny element

very tiny element: Value for very tiny element in OA cut
Algorithm will take the risk of neglecting an element lower than this. The valid
range for this real option is −0 ≤ very tiny element < +inf and its default
value is 1 · 10−17.

A.15 Output ond log-levels options

sec:bb log interval

bb log interval: Interval at which node level output is printed.
Set the interval (in terms of number of nodes) at which a log on node resolutions
(consisting of lower and upper bounds) is given. The valid range for this integer
option is 0 ≤ bb log interval < +inf and its default value is 100.

sec:bb log level

bb log level: specify main branch-and-bound log level.
Set the level of output of the branch-and-bound : 0 - none, 1 - minimal, 2
- normal low, 3 - normal high The valid range for this integer option is 0 ≤
bb log level ≤ 5 and its default value is 1.

sec:lp log level

lp log level: specify LP log level.
Set the level of output of the linear programming sub-solver in B-Hyb or B-QG
: 0 - none, 1 - minimal, 2 - normal low, 3 - normal high, 4 - verbose The valid
range for this integer option is 0 ≤ lp log level ≤ 4 and its default value is 0.

sec:nlp log at root

nlp log at root: Specify a different log level for root relaxtion.
The valid range for this integer option is 0 ≤ nlp log at root ≤ 12 and its
default value is 0.

A.16 Strong branching setup

sec:candidate sort criterion

candidate sort criterion: Choice of the criterion to choose candidates in
strong-branching

35

The default value for this string option is ”best-ps-cost”.
Possible values:

• best-ps-cost: Sort by decreasing pseudo-cost

• worst-ps-cost: Sort by increasing pseudo-cost

• most-fractional: Sort by decreasing integer infeasibility

• least-fractional: Sort by increasing integer infeasibility

sec:maxmin crit have sol

maxmin crit have sol: Weight towards minimum in of lower and upper branch-
ing estimates when a solution has been found.
The valid range for this real option is 0 ≤ maxmin crit have sol ≤ 1 and its
default value is 0.1.

sec:maxmin crit no sol

maxmin crit no sol: Weight towards minimum in of lower and upper branch-
ing estimates when no solution has been found yet.
The valid range for this real option is 0 ≤ maxmin crit no sol ≤ 1 and its
default value is 0.7.

sec:min number strong branch

min number strong branch: Sets minimum number of variables for strong
branching (overriding trust)
The valid range for this integer option is 0 ≤ min number strong branch <
+inf and its default value is 0.

sec:number before trust list

number before trust list: Set the number of branches on a variable before
its pseudo costs are to be believed during setup of strong branching candidate
list.
The default value is that of ”number before trust” The valid range for this
integer option is −1 ≤ number before trust list < +inf and its default
value is 0.

sec:number look ahead

number look ahead: Sets limit of look-ahead strong-branching trials
The valid range for this integer option is 0 ≤ number look ahead < +inf and
its default value is 0.

sec:number strong branch root

36

number strong branch root: Maximum number of variables considered for
strong branching in root node.
The valid range for this integer option is 0 ≤ number strong branch root <
+inf and its default value is 2147483647.

sec:setup pseudo frac

setup pseudo frac: Proportion of strong branching list that has to be taken
from most-integer-infeasible list.
The valid range for this real option is 0 ≤ setup pseudo frac ≤ 1 and its
default value is 0.5.

sec:trust strong branching for pseudo cost

trust strong branching for pseudo cost: Whether or not to trust strong
branching results for updating pseudo costs.

The default value for this string option is ”yes”.
Possible values:

• no:

• yes:

A.17 nlp interface option

sec:file solution

file solution: Write a file bonmin.sol with the solution

The default value for this string option is ”no”.
Possible values:

• yes:

• no:

sec:nlp log level

nlp log level: specify NLP solver interface log level (independent from ipopt
print level).
Set the level of output of the OsiTMINLPInterface : 0 - none, 1 - normal, 2 -
verbose The valid range for this integer option is 0 ≤ nlp log level ≤ 2 and
its default value is 1.

sec:nlp solver

37

nlp solver: Choice of the solver for local optima of continuous nlp’s
Note that option will work only if the specified solver has been installed. Ipopt
will usualy be installed with Bonmin by default. For FilterSQP please see
http://www-unix.mcs.anl.gov/ leyffer/solvers.html on how to obtain it and https://projects.coin-
or.org/Bonmin/wiki/HintTric- ks on how to configure Bonmin to use it. The
default value for this string option is ”Ipopt”.
Possible values:

• Ipopt: Interior Point OPTimizer (https://projects.coin-or.org/Ipopt)

• filterSQP: Sequential quadratic programming trust region algorithm (http://www-
unix.mcs.anl.gov/ leyffer/solvers.h- tml)

• all: run all available solvers at each node

sec:warm start

warm start: Select the warm start method
This will affect the function getWarmStart(), and as a consequence the warm
starting in the various algorithms. The default value for this string option is
”none”.
Possible values:

• none: No warm start

• optimum: Warm start with direct parent optimum

• interior point: Warm start with an interior point of direct parent

38

	Introduction
	Obtaining BONMIN
	Obtaining required third party code

	Installing BONMIN
	Specifying the location of Cplex libraries
	Compiling BONMIN in a external directory
	Building the documentation
	Running the test programs

	Running BONMIN
	On a .nl file
	From Ampl
	Example Ampl model
	Setting up branching priorities, directions and declaring SOS1 constraints in ampl

	From Gams
	From a C/C++ program

	Options
	Passing options to BONMIN
	Passing options to local search based heuristics and oa generators
	Getting good solutions to nonconvex problems
	Notes on Ipopt options
	Default options changed by BONMIN
	Some useful Ipopt options

	List of BONMIN options
	Algorithm choice
	Branch-and-bound options
	MILP cutting planes in hybrid
	MINLP Heuristics
	MINLP heuristics
	Nlp solution robustness
	Nlp solve options in B-Hyb
	Options for MILP solver
	Options for OA decomposition
	Options for ecp cuts generation
	Options for feasibility checker using OA cuts
	Options for feasibility pump
	Options for non-convex problems
	Outer Approximation cuts generation
	Output ond log-levels options
	Strong branching setup
	nlp interface option

