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Abstract

The C++ package ADOL-C described here facilitates the evaluation of first and
higher derivatives of vector functions that are defined by computer programs written in
C or C++. The resulting derivative evaluation routines may be called from C, C++,
Fortran, or any other language that can be linked with C.

The numerical values of derivative vectors are obtained free of truncation errors
at a small multiple of the run time and random access memory required by the given
function evaluation program. Derivative matrices are obtained by columns, by rows or
in sparse format. For solution curves defined by ordinary differential equations, special
routines are provided that evaluate the Taylor coefficient vectors and their Jacobians
with respect to the current state vector. For explicitly or implicitly defined functions
derivative tensors are obtained with a complexity that grows only quadratically in their
degree. The derivative calculations involve a possibly substantial but always predictable
amount of data. Since the data is accessed strictly sequentially it can be automatically
paged out to external files.
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1 Preparing a Section of C or C++ Code for Differentiation

1.1 Introduction

The package ADOL-C utilizes overloading in C++4, but the user has to know only C. The
acronym stands for Automatic Differentiation by OverLoading in C+4. In contrast to
source transformation approaches, overloading does not generate intermediate source code.
As starting points to retrieve further information on techniques and application of automatic
differentiation, as well as on other AD tools, we refer to the book [8]. Furthermore, the
web page http://www.autodiff.org of the AD community forms a rich source of further
information and pointers.

ADOL-C facilitates the simultaneous evaluation of arbitrarily high directional deriva-
tives and the gradients of these Taylor coefficients with respect to all independent variables.
Relative to the cost of evaluating the underlying function, the cost for evaluating any such
scalar-vector pair grows as the square of the degree of the derivative but is still completely
independent of the numbers m and n.

This manual is organized as follows. This section explains the modifications required to
convert undifferentiated code to code that compiles with ADOL-C. covers aspects
of the tape of recorded data that ADOL-C uses to evaluate arbitrarily high order derivatives.
The discussion includes storage requirements and the tailoring of certain tape characteristics
to fit specific user needs. Descriptions of easy-to-use drivers for a convenient derivative
evaluation are contained in[Section 3l [Section 4loffers a more mathematical characterization
of the different modes of AD to compute derivatives. At the same time, the corresponding
drivers of ADOL-C are explained. The overloaded derivative evaluation routines using the
forward and the reverse mode of AD are explained in Advanced differentiation
techniques as the optimal checkpointing for time integrations, the exploitation of fixed point
iterations, the usages of external differentiated functions and the differentiation of OpenMP
parallel programs are described in The tapeless forward mode is presented in
[Section 7l [Section 9| details the installation and use of the ADOL-C package. Finally,
furnishes some example programs that incorporate the ADOL-C package to
evaluate first and higher-order derivatives. These and other examples are distributed with
the ADOL-C source code. The user should simply refer to them if the more abstract and
general descriptions of ADOL-C provided in this document do not suffice.

1.2 Declaring Active Variables

The key ingredient of automatic differentiation by overloading is the concept of an active
variable. All variables that may be considered as differentiable quantities at some time
during the program execution must be of an active type. ADOL-C uses one active scalar
type, called adouble, whose real part is of the standard type double. Typically, one will
declare the independent variables and all quantities that directly or indirectly depend on
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them as active. Other variables that do not depend on the independent variables but enter,
for example, as parameters, may remain one of the passive types double, float, or int. There
is no implicit type conversion from adouble to any of these passive types; thus, failure
to declare variables as active when they depend on other active variables will
result in a compile-time error message. In data flow terminology, the set of active
variable names must contain all its successors in the dependency graph. All components of
indexed arrays must have the same activity status.

The real component of an adouble x can be extracted as x.value(). In particular, such
explicit conversions are needed for the standard output procedure printf. The output stream
operator < is overloaded such that first the real part of an adouble and then the string
“(a)” is added to the stream. The input stream operator > can be used to assign a constant
value to an adouble. Naturally, adoubles may be components of vectors, matrices, and other
arrays, as well as members of structures or classes.

The C++ class adouble, its member functions, and the overloaded versions of all arith-
metic operations, comparison operators, and most ANSI C functions are contained in the
file adouble.cpp and its header <adolc/adouble.h>. The latter must be included for
compilation of all program files containing adoubles and corresponding operations.

1.3 Marking Active Sections
All calculations involving active variables that occur between the void function calls
trace_on(tag,keep) and trace_off(file)

are recorded on a sequential data set called tape. Pairs of these function calls can appear
anywhere in a C++ program, but they must not overlap. The nonnegative integer argument
tag identifies the particular tape for subsequent function or derivative evaluations. Unless
several tapes need to be kept, tag = 0 may be used throughout. The optional integer
arguments keep and file will be discussed in We will refer to the sequence of
statements executed between a particular call to trace_on and the following call to trace_off
as an active section of the code. The same active section may be entered repeatedly, and
one can successively generate several traces on distinct tapes by changing the value of tag.
Both functions trace_on and trace_off are prototyped in the header file <adolc/taputil.h>,
which is included by the header <adolc/adouble.h> automatically.

Active sections may contain nested or even recursive calls to functions provided by
the user. Naturally, their formal and actual parameters must have matching types. In
particular, the functions must be compiled with their active variables declared as adoubles
and with the header file <adolc/adouble.h> included. Variables of type adouble may be
declared outside an active section and need not go out of scope before the end of an active
section. It is not necessary — though desirable — that free-store adoubles allocated within an
active section be deleted before its completion. The values of all adoubles that exist at the
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beginning and end of an active section are automatically recorded by trace_on and trace_off,
respectively.

1.4 Selecting Independent and Dependent Variables

One or more active variables that are read in or initialized to the values of constants or
passive variables must be distinguished as independent variables. Other active variables that
are similarly initialized may be considered as temporaries (e.g., a variable that accumulates
the partial sums of a scalar product after being initialized to zero). In order to distinguish
an active variable x as independent, ADOL-C requires an assignment of the form

x K= px // px of any passive numeric type

This special initialization ensures that x.value() = px, and it should precede any other
assignment to x. However, x may be reassigned other values subsequently. Similarly, one or
more active variables y must be distinguished as dependent by an assignment of the form

y >=py // py of any passive type ,

which ensures that py = y.value() and should not be succeeded by any other assignment to
y. However, a dependent variable y may have been assigned other real values previously,
and it could even be an independent variable as well. The derivative values calculated after
the completion of an active section always represent derivatives of the final values of
the dependent variables with respect to the initial values of the independent
variables.

The order in which the independent and dependent variables are marked by the <=
and >= statements matters crucially for the subsequent derivative evaluations. However,
these variables do not have to be combined into contiguous vectors. ADOL-C counts the
number of independent and dependent variable specifications within each active section and
records them in the header of the tape.

1.5 A Subprogram as an Active Section

As a generic example let us consider a C(++) function of the form shown in

If eval is to be called from within an active C(++) section with x and y as vectors
of adoubles and the other parameters passive, then one merely has to change the type
declarations of all variables that depend on x from double or float to adouble. Subsequently,
the subprogram must be compiled with the header file <adolc/adouble.h> included as
described in Now let us consider the situation when eval is still to be called
with integer and real arguments, possibly from a program written in Fortran77, which does
not allow overloading.
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void eval(int n, int m, // number of independents and dependents
double *x, // independent variable vector
double *y, // dependent variable vector
int *k, // integer parameters
double *z) // real parameters
{ // beginning of function body
double t = 0; // local variable declaration
for (int i=0; i < n; i++) // begin of computation
t += z[i]*x[i]; // continue
............ // continue
y[m-1] = t/m; // end of computation
} // end of function

Figure 1: Generic example of a subprogram to be activated

To automatically compute derivatives of the dependent variables y with respect to the
independent variables x, we can make the body of the function into an active section. For
example, we may modify the previous program segment as in The renaming and
doubling up of the original independent and dependent variable vectors by active counter-
parts may seem at first a bit clumsy. However, this transformation has the advantage that
the calling sequence and the computational part, i.e., where the function is really evaluated,
of eval remain completely unaltered. If the temporary variable t had remained a double,
the code would not compile, because of a type conflict in the assignment following the
declaration. More detailed example codes are listed in

1.6 Overloaded Operators and Functions

As in the subprogram discussed above, the actual computational statements of a C(++)
code need not be altered for the purposes of automatic differentiation. All arithmetic
operations, as well as the comparison and assignment operators, are overloaded, so any or
all of their operands can be an active variable. An adouble x occurring in a comparison
operator is effectively replaced by its real value x.value(). Most functions contained in
the ANSI C standard for the math library are overloaded for active arguments. The only
exceptions are the non-differentiable functions fmod and modf. Otherwise, legitimate C
code in active sections can remain completely unchanged, provided the direct output of
active variables is avoided. The rest of this subsection may be skipped by first time users
who are not worried about marginal issues of differentiability and efficiency.

The modulus fabs(x) is everywhere Lipschitz continuous but not properly differentiable
at the origin, which raises the question of how this exception ought to be handled. For-



8 1 PREPARING A SECTION OF C OR C++ CODE FOR DIFFERENTIATION

void eval( int n,m, // number of independents and dependents
double *px, // independent passive variable vector
double *py, // dependent passive variable vector
int *k, // integer parameters
double *z) // parameter vector
{ // beginning of function body
short int tag = 0; // tape array and/or tape file specifier
trace_on(tag); // start tracing
adouble *x, *y; // declare active variable pointers
x = new adouble[n]; // declare active independent variables
y = new adouble[m]; // declare active dependent variables
for (int i=0; i < n; i++)
x[i] <= px][il; // select independent variables
adouble t = 0; // local variable declaration
for (int i=0; i < n; i++) // begin crunch
t += z[i*x[i]; // continue crunch

............ // continue crunch
............ // continue crunch

y[m-1] = t/m; // end crunch as before
for (int j=0; j < m; j++)
y[i] >= py[i]; // select dependent variables
delete[] y; // delete dependent active variables
delete[] x; // delete independent active variables
trace_off(); // complete tape
} // end of function

Figure 2: Activated version of the code listed in

tunately, one can easily see that fabs(x) and all its compositions with smooth functions
are still directionally differentiable. These directional derivatives of arbitrary order can be
propagated in the forward mode without any ambiguity. In other words, the forward mode
as implemented in ADOL-C computes Gateaux derivatives in certain directions, which re-
duce to Fréchet derivatives only if the dependence on the direction is linear. Otherwise,
the directional derivatives are merely positively homogeneous with respect to the scaling of
the directions. For the reverse mode, ADOL-C sets the derivative of fabs(x) at the origin
somewhat arbitrarily to zero.

We have defined binary functions fmin and fmax for adouble arguments, so that function
and derivative values are obtained consistent with those of fabs according to the identities

min(a,b) =[a+b—|a—b[]/2 and max(a,b) =[a+b+ |a—b|]/2



1.6 Overloaded Operators and Functions 9

These relations cannot hold if either a or b is infinite, in which case fmin or fmax and their
derivatives may still be well defined. It should be noted that the directional differentiation
of fmin and fmax yields at ties a = b different results from the corresponding assignment
based on the sign of a — b. For example, the statement

if (a < b) c=a;else c=b;

yields for a = b and a’ < b’ the incorrect directional derivative value ¢’ = b’ rather than
the correct ¢’ = a’. Therefore this form of conditional assignment should be avoided by
use of the function fmin(a,b). There are also versions of fmin and fmax for two passive
arguments and mixed passive/active arguments are handled by implicit conversion. On the
function class obtained by composing the modulus with real analytic functions, the concept
of directional differentiation can be extended to the propagation of unique one-sided Taylor
expansions. The branches taken by fabs, fmin, and fmax, are recorded on the tape.

The functions sqrt, pow, and some inverse trigonometric functions have infinite slopes
at the boundary points of their domains. At these marginal points the derivatives are
set by ADOL-C to either +InfVal, 0 or NoNum, where InfVal and NoNum are user-defined
parameters, see On IEEE machines InfVal can be set to the special value
Inf = 1.0/0.0 and NoNum to NaN = 0.0/0.0. For example, at a = 0 the first derivative b’ of
b = sqrt(a) is set to

InfVal if &’ >0
b'=1¢ 0 if a¥ =0
NoNum if a’ <0
In other words, we consider a and consequently b as a constant when a’ or more generally
all computed Taylor coefficients are zero.

The general power function pow(x,y) = xY is computed whenever it is defined for the
corresponding double arguments. If x is negative, however, the partial derivative with respect
to an integral exponent is set to zero. The derivatives of the step functions floor, ceil, frexp,
and Idexp are set to zero at all arguments x. The result values of the step functions are
recorded on the tape and can later be checked to recognize whether a step to another level
was taken during a forward sweep at different arguments than at taping time.

Some C implementations supply other special functions, in particular the error function
erf(x). For the latter, we have included an adouble version in <adouble.cpp>, which has
been commented out for systems on which the double valued version is not available. The
increment and decrement operators ++, —— (prefix and postfix) are available for adoubles.
Ambiguous statements like a += a++; must be avoided because the compiler may sequence
the evaluation of the overloaded expression differently from the original in terms of doubles.

As we have indicated above, all subroutines called with active arguments must be mod-
ified or suitably overloaded. The simplest procedure is to declare the local variables of the
function as active so that their internal calculations are also recorded on the tape. Unfor-
tunately, this approach is likely to be unnecessarily inefficient and inaccurate if the original
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subroutine evaluates a special function that is defined as the solution of a particular math-
ematical problem. The most important examples are implicit functions, quadratures, and
solutions of ordinary differential equations. Often the numerical methods for evaluating
such special functions are elaborate, and their internal workings are not at all differentiable
in the data. Rather than differentiating through such an adaptive procedure, one can obtain
first and higher derivatives directly from the mathematical definition of the special function.
Currently this direct approach has been implemented only for user-supplied quadratures as

described in

1.7 Reusing the Tape for Arbitrary Input Values

In some situations it may be desirable to calculate the value and derivatives of a function at
arbitrary arguments by using a tape of the function evaluation at one argument and reeval-
uating the function and its derivatives using the given ADOL-C routines. This approach
can significantly reduce run times, and it also allows to port problem functions, in the
form of the corresponding tape files, into a computing environment that does not support
C++ but does support C or Fortran. Therefore, the routines provided by ADOL-C for the
evaluation of derivatives can be used to at arguments x other than the point at which the
tape was generated, provided there are no user defined quadratures and all comparisons
involving adoubles yield the same result. The last condition implies that the control flow is
unaltered by the change of the independent variable values. Therefore, this sufficient con-
dition is tested by ADOL-C and if it is not met the ADOL-C routine called for derivative
calculations indicates this contingency through its return value. Currently, there are six

return values, see [Iable 1

+3 | The function is locally analytic.

The function is locally analytic but the sparsity structure (compared to the sit-
+2 | uation at the taping point) may have changed, e.g. while at taping arguments
fmax(a,b) returned a we get b at the argument currently used.

At least one of the functions fmin, fmax or fabs is evaluated at a tie or zero,
+1 | respectively. Hence, the function to be differentiated is Lipschitz-continuous but
possibly non-differentiable.

Some arithmetic comparison involving adoubles yields a tie. Hence, the function
to be differentiated may be discontinuous.

An adouble comparison yields different results from the evaluation point at which
the tape was generated.

The argument of a user-defined quadrature has changed from the evaluation point
at which the tape was generated.

Table 1: Description of return values
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Figure 3: Return values around the taping point

In these return values are illustrated. If the user finds the return value of an
ADOL-C routine to be negative the taping process simply has to be repeated by executing
the active section again. The crux of the problem lies in the fact that the tape records only
the operations that are executed during one particular evaluation of the function. It also
has no way to evaluate integrals since the corresponding quadratures are never recorded
on the tape. Therefore, when there are user-defined quadratures the retaping is necessary
at each new point. If there are only branches conditioned on adouble comparisons one
may hope that re-taping becomes unnecessary when the points settle down in some small
neighborhood, as one would expect for example in an iterative equation solver.

1.8 Conditional Assignments

It appears unsatisfactory that, for example, a simple table lookup of some physical property
forces the re-recording of a possibly much larger calculation. However, the basic philosophy
of ADOL-C is to overload arithmetic, rather than to generate a new program with jumps
between “instructions”, which would destroy the strictly sequential tape access and require
the infusion of substantial compiler technology. Therefore, we introduce the two constructs
of conditional assignments and active integers as partial remedies to the branching problem.

In many cases, the functionality of branches can be replaced by conditional assign-
ments. For this purpose, we provide a special function called condassign(a,b,c,d). Its calling
sequence corresponds to the syntax of the conditional assignment

a=(b>0)7c:d
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which C++ inherited from C. However, here the arguments are restricted to be active or
passive scalar arguments, and all expression arguments are evaluated before the test on b,
which is different from the usual conditional assignment or the code segment.

Suppose the original program contains the code segment
if (b >0)a=c; elsea=d;

Here, only one of the expressions (or, more generally, program blocks) ¢ and d is eval-
uated, which exactly constitutes the problem for ADOL-C. To obtain the correct value
a with ADOL-C, one may first execute both branches and then pick either ¢ or d using
condassign(a,b,c,d). To maintain consistency with the original code, one has to make sure
that the two branches do not have any side effects that can interfere with each other or
may be important for subsequent calculations. Furthermore the test parameter b has to
be an adouble or an adouble expression. Otherwise the test condition b is recorded on the
tape as a constant with its run time value. Thus the original dependency of b on active
variables gets lost, for instance if b is a comparison expression, see If there is
no else part in a conditional assignment, one may call the three argument version condas-
sign(a,b,c), which is logically equivalent to condassign(a,b,c,a) in that nothing happens if b is
non-positive. The header file <adolc/adouble.h> contains also corresponding definitions of
condassign(a,b,c,d) and condassign(a,b,c) for passive double arguments so that the modified
code without any differentiation can be tested for correctness.

A generalization of this concept for more than two branches, e.g., akin to a switch state-
ment or a cascade of if...else if, may be done by enabling ADOLC_ADVANCED_BRANCHING
and performing selection on elements of an advector with active indices.

1.9 Step-by-Step Modification Procedure

To prepare a section of given C or C++ code for automatic differentiation as described
above, one applies the following step-by-step procedure.

1. Use the statements trace_on(tag) or trace_on(tag,keep) and trace_off() or trace_off(file)
to mark the beginning and end of the active section.

2. Select the set of active variables, and change their type from double or float to adouble.

3. Select a sequence of independent variables, and initialize them with <= assignments
from passive variables or vectors.

4. Select a sequence of dependent variables among the active variables, and pass their
final values to passive variable or vectors thereof by >>= assignments.

5. Compile the codes after including the header file <adolc/adouble.h>.
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Typically, the first compilation will detect several type conflicts — usually attempts to con-
vert from active to passive variables or to perform standard I/O of active variables. Since
all standard C programs can be activated by a mechanical application of the procedure
above, the following section is of importance only to advanced users.

2 Numbering the Tapes and Controlling the Buffer

The trace generated by the execution of an active section may stay within a triplet of
internal arrays or it may be written out to three corresponding files. We will refer to these
triplets as the tape array or tape file, in general tape, which may subsequently be used to
evaluate the underlying function and its derivatives at the original point or at alternative
arguments. If the active section involves user-defined quadratures it must be executed and
re-taped at each new argument. Similarly, if conditions on adouble values lead to a different
program branch being taken at a new argument the evaluation process also needs to be re-
taped at the new point. Otherwise, direct evaluation from the tape by the routine function
(Section 3.1)) is likely to be faster. The use of quadratures and the results of all comparisons
on adoubles are recorded on the tape so that function and other forward routines stop and
return appropriate flags if their use without prior re-taping is unsafe. To avoid any re-
taping certain types of branches can be recorded on the tape through the use of conditional

assignments described before in

Several tapes may be generated and kept simultaneously. A tape array is used as a
triplet of buffers or a tape file is generated if the length of any of the buffers exceeds the
maximal array lengths of OBUFSIZE, VBUFSIZE or LBUFSIZE. These parameters are defined
in the header file <adolc/usrparms.h> and may be adjusted by the user in the header file
before compiling the ADOL-C library, or on runtime using a file named .adolcrc. The
filesystem folder, where the tapes files may be written to disk, can be changed by changing
the definition of TAPE_DIR in the header file <adolc/dvlparms.h> before compiling the
ADOL-C library, or on runtime by defining TAPE_DIR in the .adolcrc file. By default this
is defined to be the present working directory (.).

For simple usage, trace_on may be called with only the tape tag as argument, and
trace_off may be called without argument. The optional integer argument keep of trace_on
determines whether the numerical values of all active variables are recorded in a buffered
temporary array or file called the taylor stack. This option takes effect if keep = 1 and
prepares the scene for an immediately following gradient evaluation by a call to a routine
implementing the reverse mode as described in the [Section 4] and [Section 5| A file is used
instead of an array if the size exceeds the maximal array length of TBUFSIZE defined in
<adolc/usrparms.h> and may be adjusted in the same way like the other buffer sizes
mentioned above. Alternatively, gradients may be evaluated by a call to gradient, which
includes a preparatory forward sweep for the creation of the temporary file. If omitted, the
argument keep defaults to 0, so that no temporary taylor stack file is generated.
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By setting the optional integer argument file of trace_off to 1, the user may force a
numbered tape file to be written even if the tape array (buffer) does not overflow. If the
argument file is omitted, it defaults to 0, so that the tape array is written onto a tape file
only if the length of any of the buffers exceeds [OLVT]|BUFSIZE elements.

After the execution of an active section, if a tape file was generated, i.e., if the length of
some buffer exceeded [OLVT]|BUFSIZE elements or if the argument file of trace_off was set to
1, the files will be saved in the directory defined as ADOLC_TAPE_DIR (by default the current
working directory) under filenames formed by the strings ADOLC_OPERATIONS_NAME,
ADOLC_LOCATIONS_NAME, ADOLC_VALUES_NAME and ADOLC_TAYLORS_NAME defined
in the header file <adolc/dvlparms.h> appended with the number given as the tag argu-
ment to trace_on and have the extension .tap.

Later, all problem-independent routines like gradient, jacobian, forward, reverse, and
others expect as first argument a tag to determine the tape on which their respective
computational task is to be performed. By calling trace_on with different tape tags, one can
create several tapes for various function evaluations and subsequently perform function and
derivative evaluations on one or more of them.

For example, suppose one wishes to calculate for two smooth functions fi(x) and fa(z)

f(x) = max{fi(x), fa(x)},  V[(x),

and possibly higher derivatives where the two functions do not tie. Provided fi and fo are
evaluated in two separate active sections, one can generate two different tapes by calling
trace_on with tag = 1 and tag = 2 at the beginning of the respective active sections. Subse-
quently, one can decide whether f(z) = fi(z) or f(z) = fo(z) at the current argument and
then evaluate the gradient V f(x) by calling gradient with the appropriate argument value
tag = 1 or tag = 2.

2.1 Examining the Tape and Predicting Storage Requirements

At any point in the program, one may call the routine
void tapestats(unsigned short tag, size_t* counts)

with counts beeing an array of at least eleven integers. The first argument tag specifies the
particular tape of interest. The components of counts represent

counts[0]:  the number of independents, i.e. calls to K=,
counts[1]: the number of dependents, i.e. calls to >=,
counts[2]: the maximal number of live active variables,
counts[3]: the size of taylor stack (number of overwrites),
counts[4]: the buffer size (a multiple of eight),
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counts[5]: the total number of operations recorded,
counts[6-13]:  other internal information about the tape.

The values maxlive = counts[2] and tssize = counts[3] determine the temporary storage
requirements during calls to the routines implementing the forward and the reverse mode.
For a certain degree deg > 0, the scalar version of the forward mode involves apart from the
tape buffers an array of (deg+1)+maxlive doubles in core and, in addition, a sequential data
set called the value stack of tssizexkeep revreals if called with the option keep > 0. Here the
type revreal is defined as double or float. The latter choice halves the storage requirement
for the sequential data set, which stays in core if its length is less than TBUFSIZE bytes and
is otherwise written out to a temporary file. The parameter TBUFSIZE is defined in the
header file <adolc/usrparms.h>. The drawback of the economical revreal = float choice
is that subsequent calls to reverse mode implementations yield gradients and other adjoint
vectors only in single-precision accuracy. This may be acceptable if the adjoint vectors
represent rows of a Jacobian that is used for the calculation of Newton steps. In its scalar
version, the reverse mode implementation involves the same number of doubles and twice
as many revreals as the forward mode implementation. The storage requirements of the
vector versions of the forward mode and reverse mode implementation are equal to that of
the scalar versions multiplied by the vector length.

2.2 Customizing ADOL-C

Based on the information provided by the routine tapestats, the user may alter the following
types and constant dimensions in the header file <adolc/usrparms.h> to suit his problem
and environment.

OBUFSIZE, LBUFSIZE, VBUFSIZE: These integer determines the length of internal buffers
(default: 524 288). If the buffers are large enough to accommodate all required data,
any file access is avoided unless trace_off is called with a positive argument. This
desirable situation can be achieved for many problem functions with an execution
trace of moderate size. Primarily these values occur as an argument to malloc, so
that setting it unnecessarily large may have no ill effects, unless the operating system
prohibits or penalizes large array allocations. It is however recommended to leave the
values in <adolc/usrparms.h> unchanged and set them using the .adolcrc file in
the current working directory at runtime.

TBUFSIZE: This integer determines the length of the internal buffer for a taylor stack
(default: 524 288).

TBUFNUM: This integer determines the maximal number of taylor stacks (default: 32).
fint: The integer data type used by Fortran callable versions of functions.

fdouble: The floating point data type used by Fortran callable versions of functions.
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inf_num: This together with inf_.den sets the “vertical” slope InfVal = inf_num/inf_den of
special functions at the boundaries of their domains (default: inf_num = 1.0). On
IEEE machines the default setting produces the standard Inf. On non-IEEE machines
change these values to produce a small InfVal value and compare the results of two
forward sweeps with different InfVal settings to detect a “vertical” slope.

inf_den: See inf_-num (default: 0.0).

non_num: This together with non_den sets the mathematically undefined derivative value
NoNum = non_num/non_den of special functions at the boundaries of their domains
(default: non_num = 0.0). On IEEE machines the default setting produces the stan-
dard NaN. On non-IEEE machines change these values to produce a small NoNum
value and compare the results of two forward sweeps with different NoNum settings
to detect the occurrence of undefined derivative values.

non_den: See non_num (default: 0.0).
ADOLC_EPS: For testing on small numbers to avoid overflows (default: 10E-20).

DIAG_OUT: File identifier used as standard output for ADOL-C diagnostics (default: std-
out).

The following types and options may be set using the command-line options of the
./configure script.

locint: The range of the integer type locint determines how many adoubles can be simulta-
neously alive (default: unsigned int). In extreme cases when there are more than 232
adoubles alive at any one time, the type locint must be changed to unsigned long. This
can be done by passing --enable-ulong to ./configure.

revreal: The choice of this floating-point type trades accuracy with storage for reverse sweeps
(default: double). While functions and their derivatives are always evaluated in double
precision during forward sweeps, gradients and other adjoint vectors are obtained with
the precision determined by the type revreal. The less accurate choice revreal = float
nearly halves the storage requirement during reverse sweeps. This can be done by
passing —-disable-double to ./configure.

ATRIG_ERF: The overloaded versions of the inverse hyperbolic functions and the error func-
tion are enabled (default: undefined) by passing -—enable-atrig-erf to ./configure

ADOLC_USE_CALLOC: Selects the memory allocation routine used by ADOL-C. Malloc will
be used if this variable is undefined. ADOLC_USE_CALLOC is defined by default to
avoid incorrect result caused by uninitialized memory. It can be set undefined by
passing —--disable-use-calloc to ./configure.
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ADOLC_ADVANCED_BRANCHING: Enables routines required for automatic branch selec-
tion (default: disabled). The boolean valued comparison operators with two adouble
type arguments will not return boolean values anymore and may not be used in
branch control statements (if, while, for etc.). Instead conditional assignments
using condassign or selection operations on elements of advector type should be
used. Enabling this option and rewriting the function evaluation using condassign
or selections of advector elements will prevent the need for retracing the function at
branch switches. This can be enabled by passing --enable-advanced-branching to
./configure.

2.3 Warnings and Suggestions for Improved Efficiency

Since the type adouble has a nontrivial constructor, the mere declaration of large adouble
arrays may take up considerable run time. The user should be warned against the usual
Fortran practice of declaring fixed-size arrays that can accommodate the largest possible
case of an evaluation program with variable dimensions. If such programs are converted to
or written in C, the overloading in combination with ADOL-C will lead to very large run
time increases for comparatively small values of the problem dimension, because the actual
computation is completely dominated by the construction of the large adouble arrays. The
user is advised to create dynamic arrays of adoubles by using the C++ operator new and
to destroy them using delete. For storage efficiency it is desirable that dynamic objects are
created and destroyed in a last-in-first-out fashion.

Whenever an adouble is declared, the constructor for the type adouble assigns it a nom-
inal address, which we will refer to as its location. The location is of the type locint defined
in the header file <adolc/usrparms.h>. Active vectors occupy a range of contiguous loca-
tions. As long as the program execution never involves more than 65536 active variables,
the type locint may be defined as unsigned short. Otherwise, the range may be extended by
defining locint as (unsigned) int or (unsigned) long, which may nearly double the overall mass
storage requirement. Sometimes one can avoid exceeding the accessible range of unsigned
shorts by using more local variables and deleting adoubles created by the new operator in a
last-in-first-out fashion. When memory for adoubles is requested through a call to malloc()
or other related C memory-allocating functions, the storage for these adoubles is allocated;
however, the C++ adouble constructor is never called. The newly defined adoubles are never
assigned a location and are not counted in the stack of live variables. Thus, any results
depending upon these pseudo-adoubles will be incorrect. For these reasons DO NOT use
malloc() and related C memory-allocating functions when declaring adoubles
(see the following paragraph).

When an adouble goes out of scope or is explicitly deleted, the destructor notices that
its location(s) may be freed for subsequent (nominal) reallocation. In general, this is not
done immediately but is delayed until the locations to be deallocated form a contiguous tail
of all locations currently being used.
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As a consequence of this allocation scheme, the currently alive adouble locations always
form a contiguous range of integers that grows and shrinks like a stack. Newly declared
adoubles are placed on the top so that vectors of adoubles obtain a contiguous range of
locations. While the C++ compiler can be expected to construct and destruct automatic
variables in a last-in-first-out fashion, the user may upset this desirable pattern by deleting
free-store adoubles too early or too late. Then the adouble stack may grow unnecessarily,
but the numerical results will still be correct, unless an exception occurs because the range
of locint is exceeded. In general, free-store adoubles should be deleted in a last-in-first-
out fashion toward the end of the program block in which they were created. When this
pattern is maintained, the maximum number of adoubles alive and, as a consequence, the
randomly accessed storage space of the derivative evaluation routines is bounded by a small
multiple of the memory used in the relevant section of the original program. Failure to
delete dynamically allocated adoubles may cause that the maximal number of adoubles alive
at one time will be exceeded if the same active section is called repeatedly. The same effect
occurs if static adoubles are used.

To avoid the storage and manipulation of structurally trivial derivative values, one
should pay careful attention to the naming of variables. Ideally, the intermediate values
generated during the evaluation of a vector function should be assigned to program vari-
ables that are consistently either active or passive, in that all their values either are or
are not dependent on the independent variables in a nontrivial way. For example, this
rule is violated if a temporary variable is successively used to accumulate inner products
involving first only passive and later active arrays. Then the first inner product and all its
successors in the data dependency graph become artificially active and the derivative eval-
uation routines described later will waste time allocating and propagating trivial or useless
derivatives. Sometimes even values that do depend on the independent variables may be
of only transitory importance and may not affect the dependent variables. For example,
this is true for multipliers that are used to scale linear equations, but whose values do not
influence the dependent variables in a mathematical sense. Such dead-end variables can
be deactivated by the use of the value function, which converts adoubles to doubles. The
deleterious effects of unnecessary activity are partly alleviated by run time activity flags in
the derivative routine hov_reverse presented in

The adouble default constructor sets to zero the associated value. This implies a certain
overhead that may seem unnecessary when no initial value is actually given, however, the
implicit initialization of arrays from a partial value list is the only legitimate construct
(known to us) that requires this behavior. An array instantiation such as

double x[3]={2.0};

will initialize x[0] to 2.0 and initialize (implicitly) the remaining array elements x[1] and x|2]
to 0.0. According to the C++ standard the array element construction of the type changed
instantiation



19

adouble x[3]={2.0};

will use the constructor adouble(const double&); for x[0] passing in 2.0 but will call the
adouble default constructor x[1] and x[2] leaving these array elements uninitialized unless the
default constructor does implement the initialization to zero. The C++ constructor syntax
does not provide a means to distinguish this implicit initialization from the declaration of
any simple uninitialized variable. If the user can ascertain the absence of array instantiations
such as the above then one can configure ADOL-C with the --disable-stdczero option ,
see to avoid the overhead of these initializations.

3 Easy-To-Use Drivers

For the convenience of the user, ADOL-C provides several easy-to-use drivers that compute
the most frequently required derivative objects. Throughout, we assume that after the
execution of an active section, the corresponding tape with the identifier tag contains a
detailed record of the computational process by which the final values y of the dependent
variables were obtained from the values = of the independent variables. We will denote this
functional relation between the input variables x and the output variables y by

F:R"— R™, x— F(x)=y.

The return value of all drivers presented in this section indicate the validity of the tape as
explained in The presented drivers are all C functions and therefore can be
used within C and C++ programs. Some Fortran-callable companions can be found in the
appropriate header files.

3.1 Drivers for Optimization and Nonlinear Equations

The drivers provided for solving optimization problems and nonlinear equations are proto-
typed in the header file <adolc/drivers/drivers.h>, which is included automatically by

the global header file <adolc/adolc.h> (see[Section 9.3)).

The routine function allows to evaluate the desired function from the tape instead of
executing the corresponding source code:

int function(tag,m,n,x,y)

short int tag; // tape identification

int m; // number of dependent variables m
int n; // number of independent variables n
double x[n]; // independent vector x

double y[m]; // dependent vector y = F(x)
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If the original evaluation program is available this double version should be used to compute
the function value in order to avoid the interpretative overhead.

For the calculation of whole derivative vectors and matrices up to order 2 there are the
following procedures:

int gradient(tag,n,x,g)

short int tag; // tape identification

int n; // number of independent variables n and m = 1
double x|[n]; // independent vector x

double g[n]; // resulting gradient VF'(z)

int jacobian(tag,m,n,x,J)

short int tag; // tape identification

int m; // number of dependent variables m
int n; // number of independent variables n
double x|[n]; // independent vector x

double J[m][n]; // resulting Jacobian F'(z)

int hessian(tag,n,x,H)