
sbb

COIN-OR Simple Branch-and-Cut

Additional Notes for sbb
COIN-OR Tutorial

CORS/INFORMS Joint Meeting, Banff, May, 2004

Lou Hafer
Computing Science

Simon Fraser University

May 14, 2004

The material on these pages augments the tutorial slides and provides some
pointers to additional resources.

1 Branching Concepts

A branching object has:

• One or more feasible regions.

For a binary variable, the feasible regions would be the values 0 and 1.
For a general integer variable, the feasibile regions would be all integer
values between the lower and upper bounds. For a set of binary variables
forming a clique, it would be an assignment of values to the variables such
that exactly one variable had the value 1 and all others were 0.

• A way to evaluate the infeasibility of a solution.

For an integer variable x with value x∗ in the optimal solution to a relax-
ation, the infeasibility is usually defined as max(x∗ − bx∗c, dx∗e − x∗).

Sbb adopts the convention that the infeasibility of a branching object
should be scaled to the range [0, .5] so that infeasibility can be compared
between different branching objects.

• Some set of branching actions which, when executed, will force the relax-
ation closer to feasibility.

These are the actions taken to restrict a relaxation. For an integer vari-
able, the common branching actions for a standard two-way branch are

1

to tighten the upper bound to bx∗c in one branch and the lower bound to
dx∗e in the other. For a clique of size k, the branch would be k-ary, with
one member variable set to 1 in each branch.

• A method to rank the desireability of a branch alternative vs. other branch-
ing alternatives, so that it’s possible to specify a preferred branching di-
rection.

This is in the context of a single branching object. A general integer
branching object might use reduced costs to estimate the cost of forcing
x = x∗ to bx∗c vs. dx∗e.

2 Customizing Sbb

If you plan on developing custom methods for branching or node selection, you
should do ‘make doc’ to extract the documentation embedded in the code and
format it as HTML files (cf. §4). Read the detailed descriptions (the link labelled
‘More...’) for the top level classes; this is the single best source of conceptual
overview information about Sbb1. The detailed descriptions for SbbObject and
SbbCompareBase provide the overview information presented in the tutorial.
Additional details are provided in the documentation for the derived classes
and their member functions.

1And OSI, and many of the specific solver interfaces. Hey, if you’re doing serious develop-
ment, you’re going to have to read at least some of the code in any event. Make your life easy
and start with the embedded documentation.

2

3 A Minimal Branch-and-Bound Example

Here’s a listing of the file dsbbclp.cpp, a minimal branch-and-bound solver,
with comments. This version uses the clp lp solver.

/*
dsbb: dead simple branch-and-bound
A *really* minimal example of using the sbb library.

*/
#include <iostream>
#include "OsiSolverInterface.hpp"
#define COIN_USE_CLP
#include "OsiClpSolverInterface.hpp"
#include "SbbModel.hpp"
/*
Here are the basic steps you need to perform in order to solve a MIP:

Step 1: Make a solver interface.
Step 2: Create a model. The solver interface is held as an attribute

of the model.
Step 3: Load a problem. Here I’ve used the solver’s readMps() routine.

You can also build the problem from scratch using other OSI
solver interface routines.

Step 4: Invoke the solver to do the initial optimization.
Step 5: Perform branch-and-bound search.
Step 6: Extract the solution. The code here just checks that a

solution was found and prints the objective.

If you want to use cut generators, heuristics, or otherwise
tweak the search, the code would be interleaved with steps
2, 3, and 4. There are more complex examples in the COIN/Sbb
directory tree.

*/

int main (int argc, const char *argv[])
{
OsiSolverInterface *osi = new OsiClpSolverInterface ; // Step 1
SbbModel *model = new SbbModel(*osi) ; // Step 2
model->solver()->readMps("p0033") ; // Step 3
model->initialSolve() ; // Step 4
model->branchAndBound() ; // Step 5
if (model->bestSolution()) // Step 6
{ std::cout << "Best solution "

<< model->solver()->getObjValue() << std::endl ;
return (0) ; }

else
{ std::cout << "No integer solution found." << std::endl ;
return (1) ; } }

3

The above file is part of an example that can be found in the COIN distribu-
tion in the directory Examples/Sbb. The example also includes dsbbdylp.cpp,
an alternate version which uses the dylp solver, and a makefile, Makefile.dsbb.
These are described in a bit more detail below.

The file dsbbdylp.cpp shows the changes that are required to use a different
OSI solver, dylp. There are two:

• The solver-specific #include file must be changed from

#define COIN_USE_CLP
#include "OsiClpSolverInterface.hpp"

to

#define COIN_USE_DYLP
#include "OsiDylpSolverInterface.hpp"

The compile-time symbols COIN USE CLP and COIN USE DYLP are used in
the context of the full COIN-OR library to control inclusion of solver
specific code. Normally they would be part of a makefile or equivalent
build control file. To keep the example and its accompanying makefile
as simple as possible, the symbol is hardcoded here.

• The solver-specific constructor must be changed from

OsiSolverInterface *osi = new OsiClpSolverInterface ;

to

OsiSolverInterface *osi = new OsiDylpSolverInterface ;

4

Here’s a slightly abridged listing for Makefile.dsbb, with comments.

Dead simple makefile for dead simple branch-and-bound (dsbb)

So that standard makefile tricks do not obscure the necessary actions,
this file is hardwired for locations and programming environment.

Standard locations for COIN libraries and include files. Edit if you’ve
installed COIN somewhere else.

COINHOME := $(HOME)/COIN
COININC := $(COINHOME)/include
COINLIB := $(COINHOME)/lib

You only need these to build dsbbdylp with the dylp solver, one of the
alternative solvers with COIN/OSI interfaces.

DYLPHOME := $(HOME)/Bonsai/OsiDylp
DYLPINC := $(HOME)/Bonsai/OsiDylp
DYLPLIB := $(HOME)/Libraries/DylpLib
DYLPLIBINC := $(HOME)/Libraries/DylpLib

In the Sun Solaris/Workshop environment, CC is the name of the C++
compiler. Change to suit your environment (g++ if you use GCC under
Solaris or Linux).

‘-R’ is the flag that tells the Solaris linker to add a directory
to the run-time library search path. Change to suit your environment
(for GCC, use ‘-Wl,-R’ under Solaris, ‘-Wl,-rpath’ under Linux)

dsbbdylp: dsbbdylp.cpp
CC -I$(COININC) -I$(DYLPINC) -I$(DYLPLIBINC) \

-L$(COINLIB) -lSbb -lOsiDylp -lOsiClp -lOsi -lCoin -lClp -lCgl \
-L$(DYLPHOME) -lOsiDylpSolver.sparc \
-L$(DYLPLIB) -ldylpstd.sparc \
-lz \
-R$(COINLIB) -R$(DYLPHOME) -R$(DYLPLIB) \
-o dsbbdylp dsbbdylp.cpp

The clp link requires only components from the COIN software distribution.

dsbbclp: dsbbclp.cpp
CC -I$(COININC) \

-L$(COINLIB) -lSbb -lOsiClp -lOsi -lCoin -lClp -lCgl \
-lz \
-R$(COINLIB) -R$(DYLPLIB) \
-o dsbbclp dsbbclp.cpp

5

As the makefile comments state, the reason for including the clp library
(-lClp) in the link step for dsbbdylp is that in my environment both solvers
are enabled. Also, COIN makefiles will enable clp by default. For efficiency, sbb
includes a few pieces of code which are specialized for clp. Rather than rebuild
the sbb library without clp just for this example, I chose the easy solution and
added the clp library to the link.

Similarly, sbb is a branch-and-cut code, and support for cutting planes is
built in by default. The Cgl library is needed to satisfy the references, even
though the code will not be executed unless cut generators and/or heuristics
are actually installed.

4 Resources

Specifically for sbb, be sure to consider:

• The documentation embedded in the code.

Typing ‘make doc’ in the Sbb directory of the COIN-OR distribution will
use doxygen to extract embedded documentation, format it in HTML,
and store it in a subdirectory named Doc. Point your browser to the file
Doc/html/index.html.

If you don’t have doxygen installed on your system, check the doxygen
web site, http://www.stack.nl/ dimitri/doxygen.

• The samples included with the distribution, in the Sbb/Samples directory.

The following are general resoources for COIN-OR:

• COIN-OR website: www.coin-or.org

• COIN-OR tutorials site: http://sagan.ie.lehigh.edu/coin/

The following are on-line resources for C++:

• C++ Annotations by Frank B. Brokken. In the author’s words, “. . . in-
tended for knowledgeable users of C who would like2 to make the transition
to C++.”

http://www.icce.rug.nl/documents/cplusplus

• C/C++ Reference by Nate Kohl. Strictly reference, but comprehensive.

http://www.cppreference.com/

2And just as useful if you’re being dragged kicking and screaming out of your nice, comfy
C environment into the wholly incomprehensible world of C++.

6

