
Building a Custom Solver with the COIN-OR
Branch, Cut, and Price Frameworks

Ted Ralphs and Menal Guzelsoy
Lehigh University

László Ladányi
IBM T. J. Watson Research Center

Matthew Saltzman
Clemson University

CORS/INFORMS Joint Int’l Meeting, Banff, Alberta, Canada, Sunday, May 16, 2004

Introduction to BCP Frameworks 1

Agenda

• Introduction to BCP Frameworks

• Introduction to SYMPHONY

– Callable library API
– OSI interface
– User callbacks

• Introduction to COIN/BCP

– Basic concepts
– Design of COIN/BCP
– User API
– Example

Introduction to SYMPHONY 2

Concept

• Concept: Provide a framework in which the user has only to define the
core relaxation, along with classes of dynamically generated variables and
constraints.

• SYMPHONY and COIN/BCP are two frameworks that can be used to
implement solvers for mixed-integer programs.

• They have similar design concepts and state-of-the-art implementations
of branch, cut and price.

• SYMPHONY

– is a callable library with C and OSI interfaces,
– works out of the box as a generic MIP solver,
– employs callbacks for customization,
– is a bit easier for the novice.

• COIN/BCP

– has more power for implementing column generation and integrating
cut and column generation,

– employs C++ inheritance for customization,
– is a bit more difficult to learn.

Introduction to SYMPHONY 3

SYMPHONY Overview

• Description

– A callable library for solving mixed-integer linear programs with a wide
variety of customization options.

– Fully integrated with the Computational Infrastructure for Operations
Research (COIN-OR) libraries (soon to be in the repository).

– Outfitted as a generic MILP solver, with cut generation from the CGL.
– Extensive documentation available.
– Source can be downloaded from www.branchandcut.org

• SYMPHONY Solvers

- Generic MILP
- Traveling Salesman Problem
- Vehicle Routing Problem
- Mixed Postman Problem

- Set Partitioning Problem
- Matching Problem
- Network Routing

Introduction to SYMPHONY 4

Supported Formats and Architectures

• Input formats

– MPS (COIN-OR parser)
– GMPL/AMPL (GLPK parser)
– User defined

• Output/Display formats

– Text
– IGD
– VbcTool

• Supported architectures

– Single-processor Linux, Unix, or Windows
– Distributed memory parallel (message-passing)
– Shared memory parallel (OpenMP)

Introduction to SYMPHONY 5

C Callable Library

• Primary subroutines

– sym open environment()
– sym parse command line()
– sym load problem()
– sym find initial bounds()
– sym solve()
– sym mc solve()
– sym resolve()
– sym close environment()

• Auxiliary subroutines

– Accessing and modifying problem data
– Accessing and modifying parameters
– User callbacks

Introduction to SYMPHONY 6

Implementing a MILP Solver with SYMPHONY

• Using the callable library, we only need a few lines to implement a solver.

• The file name and other parameters are specified on the command line.

• The code is exactly the same for all architectures, even parallel.

• Command line would be

symphony -F model.mps

int main(int argc, char **argv)
{

sym_environment *p = sym_open_environment();
sym_parse_command_line(p, argc, argv);
sym_load_problem(p);
sym_solve(p);
sym_close_environment(p);

}

Introduction to SYMPHONY 7

OSI interface

• For each method in OSI, SYMPHONY has a corresponding method.

• The OSI interface is implemented as wrapped C calls.

• The constructor calls sym open environment() and the destructor calls
sym close environment().

• The OSI initialSolve() method calls sym solve().

• The OSI resolve() method calls sym resolve().

• There is also a multicriteria solve method.

int main(int argc, char **argv)
{

OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.loadProblem();
si.branchAndBound();

}

Introduction to SYMPHONY 8

Customizing

• The main avenues for advanced customization are the parameters and
the user callback subroutines.

• There are more than 50 callbacks and over 100 parameters.

• The user can override SYMPHONY’s default behavior in a variety of
ways.

– Custom input
– Custom displays
– Branching
– Cut/column generation
– Cut pool management
– Search and diving strategies
– LP management

Introduction to COIN/BCP 9

Resources

• SYMPHONY 5.0 will be released soon and can be downloaded from

http://www.branchandcut.org/SYMPHONY

• SYMPHONY is well-documented, and includes sample codes and
tutorials.

• There is a mailing list, but it is better to just send me e-mail directly to
me.

• SYMPHONY will be added to the COIN-OR repository once it moves to
INFORMS.

Introduction to COIN/BCP 10

COIN/BCP Overview

• COIN/BCP is focused on the implementation of full-blown branch, cut,
and price algorithms.

• The framework centers around the management of classes of dynamically
generated cut and variables, generically called objects.

• Subproblems are composed of dynamic lists of these objects.

• The goal is to keep the lists as small as possible, while not sacrificing
bound quality.

• Defining a class of objects consists of defining methods for

– generating new objects, given the primal/dual solution to the current
LP relaxation,

– representing the object (for storage and/or sharing), and
– adding objects to a given LP relaxation.

Introduction to COIN/BCP 11

Getting Started

• The source can be obtained from www.coin-or.org as “tarball” or using
CVS.

• Platforms/Requirements

– Linux, gcc 2.95.3/2.96RH/3.2/3.3
– Windows, Visual C++, CygWin make (untested)
– Sun Solaris, gcc 2.95.3/3.2 or SunWorkshop C++
– AIX gcc 2.95.3/3.3
– Mac OS X

• Editing the Makefiles

– Makefile.location
– Makefile.<operating system>

• Make the necessary libraries. They’ll be installed in ${CoinDir}/lib.

– Change to appropriate directory and type make.

Introduction to COIN/BCP 12

COIN/BCP Modules

• The COIN/BCP library is divided into three basic modules:

– Tree Manager Controls overall execution by maintaining the search
tree and dispatching subproblems to the node processors.

– Node Processor Perform processing and branching operations.

– Object Generation Generate objects (cuts and/or variables).

• The division into separate modules is what allows the code to be
parallelizable.

Introduction to COIN/BCP 13

The User API

• The user API is implemented via a C++ class hierarchy.

• To develop an application, the user must derive the appropriate classes
and override the appropriate methods.

• Classes for customizing the behavior of the modules

– BCP tm user
– BCP lp user
– BCP cg user
– BCP vg user

• Classes for defining user objects

– BCP cut
– BCP var
– BCP solution

• Allowing COIN/BCP to create instances of the user classes.

– The user must derive the class USER initialize.
– The function BCP user init() returns an instance of the derived

initializer class.

Introduction to COIN/BCP 14

Objects in COIN/BCP

• Most application-specific methods are related to handling of objects.

• Since representation is independent of the current LP, the user must
define methods to add objects to a given subproblem.

• For parallel execution, the objects need to be packed into (and unpacked
from) a buffer.

• Object Types

– Core objects are objects that are active in every subproblem
(BCP xxx core).

– Indexed objects are extra objects that can be uniquely identified by an
index (such as the edges of a graph) (BCP xxx indexed).

– Algorithmic objects are extra objects that have an abstract
representation (BCP xxx algo).

Introduction to COIN/BCP 15

Forming the LP Relaxations in COIN/BCP

The current LP relaxation looks like this:

core vars

co
re

 c
ut

s

core matrix

extra vars

ex
tr

a
cu

ts

Reason for this split: efficiency.

Introduction to COIN/BCP 16

COIN/BCP Methods: Initialization

create_root()

initialize_core()

xx_init()

pack_module_data()

Create and initialize the

user’s data structures

Set the core and extra

variables and cuts

Solver

Initialization

(Tree Manager)

Send data to the modules

BCP_user_init()

Introduction to COIN/BCP 17

COIN/BCP Methods: Steady State

Tree Manager Cut Generator

LP Solver Variable Generator

compare_tree_nodes()

unpack_module_data()

initialize_search_tree_node()

See the solver loop figure

unpack_module_data()

unpack_module_data()(un)pack_xxx_algo()

display_feasible_solution() generate_cuts()

pack_cut_algo()

generate_vars()

pack_var_algo()

Introduction to COIN/BCP 18

COIN/BCP Methods: Node Processing Loop

pack_feasible_solution()

Send primal and dual

solutions to CG and VG

generate_heuristic solution()

test_feasibility()

modify_LP_parameters()

pack_{primal/dual}_solution()

Strong branching functions

select_branching_candidates()

logical_fixing()

purge_slack_pool()

set_actions_for_children()

compare_branching_candidates()

unpack_{var/cut}_algo()

vars_to_cols() / cuts_to_rows()

generate_{vars/cuts}_in_lp()

compare_{vars/cuts}()

Generating and comparing

cuts and variables

Possible fathoming

Introduction to COIN/BCP 19

Parameters and using the finished code

• Create a parameter file

• Run your code with the parameter file name as an argument (command
line switches will be added).

• BCP_ for COIN/BCP’s parameters

• Defined and documented in BCP tm par, BCP lp par, etc.

• Helper class for creating your parameters.

• Output controlled by verbosity parameters.

Introduction to COIN/BCP 20

Example: Uncapacitated Facility Location

• Data

– a set N of facilities and a set M of clients,
– transportation cost cij to service client i from depot j,
– fixed cost fj for using depot j, and
– the demand of di of client i.

• Variables

– xij is the amount of the demand for client i satisfied from depot j
– yj is 1 if the depot is used, 0 otherwise

min
∑

i∈M

∑

j∈N

cij

di
xij +

∑

j∈N

fjyj

s.t.
∑

j∈N

xij = di ∀i ∈ M,

∑

i∈M

xij ≤ (
∑

i∈M

di)yj ∀j ∈ N,

yj ∈ {0, 1} ∀j ∈ N

0≤ xij ≤ di ∀i ∈ M, j ∈ N

Introduction to COIN/BCP 21

UFL: Solution Approach

• The code for this example is available at

http://sagan.ie.lehigh.edu/coin/uflBCP.tar.gz

• We use a simple branch and cut scheme.

• We dynamically generate the following class disaggregated logical cuts

xij ≤ djyj, ∀i ∈ M, j ∈ N (1)

• These can be generated by complete enumeration.

• The indices i and j uniquely identify the cut., so we will use this to
create the packed form.

• The core relaxation will consist of the LP relaxation.

Introduction to COIN/BCP 22

UFL: User classes

User classes and methods

• UFL init

– tm init()
– lp init()

• UFL lp

– unpack module data()
– pack cut algo()
– unpack cut algo()
– generate cuts in lp()
– cuts to rows()

• UFL tm

– read data()
– initialize core()
– pack module data()

• UFL cut

Introduction to COIN/BCP 23

UFL: Initialization Methods

USER_initialize * BCP_user_init()
{

return new UFL_init;
}

BCP_lp_user *
UFL_init::lp_init(BCP_lp_prob& p)
{

return new UFL_lp;
}

BCP_tm_user * UFL_init::tm_init(BCP_tm_prob& p, const int argnum,
const char * const * arglist)

{
UFL_tm* tm = new UFL_tm;
tm->tm_par.read_from_file(arglist[1]);
tm->lp_par.read_from_file(arglist[1]);
return tm;

}

Introduction to COIN/BCP 24

COIN/BCP Buffers

• One construct that is pervasive in COIN/BCP is the BCP buffer.

• A BCP buffer consists of a character string into which data can be
packed for storage or communication (parallel code).

• The usual way of adding data to a buffer is to use the pack() method.

• The pack method returns a reference to the buffer, so that multiple calls
to pack() can be strung together.

• To pack integers i and j into a buffer and then unpack from the same
buffer again, the call would be:

int i = 0, j = 0;
BCP_buffer buf;

buf.pack(i).pack(j);
buf.unpack(i).unpack(j);

Introduction to COIN/BCP 25

UFL: Module Data

• Because COIN/BCP is a parallel code, there is no shared memory between
modules.

• The pack module data() and unpack module data() methods allow
instance data to be broadcast to other modules.

• In the UFL, the data to be broadcast consists of the number of facilities
(N), the number of clients (N), and the demands.

• Here is what the pack and unpack methods look like.

void UFL_tm::pack_module_data(BCP_buffer& buf, BCP_process_t ptype)
{

lp_par.pack(buf);
buf.pack(M).pack(N).pack(demand,M);

}

void UFL_lp::unpack_module_data(BCP_buffer& buf) {
lp_par.unpack(buf);
buf.unpack(M).unpack(N).unpack(demand,M).unpack(capacity,N);

}

Introduction to COIN/BCP 26

UFL: Initializing the Core

• The core is specified as an instance of the BCP lp relax class, which can
be constructed from

– either a vector of BCP rows or BCP cols, and
– a set of rim vectors.

• In the initialize core() method, the user must also construct a vector of
BCP cut core and BCP var core objects.

Introduction to COIN/BCP 27

UFL: Initializing the Solver Interface

• In the BCP lp user class, we must initialize the solver interface to let
COIN/BCP know what solver we want to use.

• Here is what that looks like:

OsiSolverInterface* UFL_lp::initialize_solver_interface(){
#if COIN_USE_OSL

OsiOslSolverInterface* si = new OsiOslSolverInterface();
#endif
#if COIN_USE_CPX
OsiCpxSolverInterface* si = new OsiCpxSolverInterface();

#endif
#if COIN_USE_CLP

OsiClpSolverInterface* si = new OsiClpSolverInterface();
#endif

return si;
}

Introduction to COIN/BCP 28

UFL: Cut Class

class UFL_cut : public BCP_cut_algo{
public:

int i,j;
public:
UFL_cut(int ii, int jj):
BCP_cut_algo(-1 * INF, 0.0), i(ii), j(jj) {

}
UFL_cut(BCP_buffer& buf):

BCP_cut_algo(-1 * INF, 0.0), i(0), j(0) {
buf.unpack(i).unpack(j);

}
void pack(BCP_buffer& buf) const;

};

inline void UFL_cut::pack(BCP_buffer& buf) const{
buf.pack(i).pack(j);

}

Introduction to COIN/BCP 29

UFL: Generating Cuts

• To find violated cuts, we simply enumerate, as in this code snippet.

double violation;
vector< pair<int,int> > cut_v;
map<double,int> cut_violation; //map keeps violations sorted
map<double,int>::reverse_iterator it;

for (i = 0; i < M; i++){
for (j = 0; j < N; j++){

xind = xindex(i,j);
yind = yindex(j);
violation = lpres.x()[xind]-(demand[i]*lpres.x()[yind]);
if (violation > tolerance){

cut_v.push_back(make_pair(i,j));
cut_violation.insert(make_pair(violation,cutindex++));

}
}

}

Introduction to COIN/BCP 30

UFL: Constructing Cuts

• Next, we pass the most violated cuts back to COIN/BCP.

//Add the xxx most violated ones.
maxcuts = min((int)cut_v.size(),

lp_par.entry(UFL_lp_par::UFL_maxcuts_iteration));
it = cut_violation.rbegin();
while(newcuts<maxcuts){

cutindex = it->second;
violation = it->first;
new_cuts.push_back(new UFL_cut(cut_v[cutindex].first,

cut_v[cutindex].second));
newcuts++;
it++;

}

Introduction to COIN/BCP 31

UFL: Adding Cuts to the LP

• Here is the cuts to rows function that actually generates the rows to be
added to the LP relaxation.

void UFL_lp::cuts_to_rows(const BCP_vec<BCP_var*>& vars,
BCP_vec<BCP_cut*>& cuts,
BCP_vec<BCP_row*>& rows,
const BCP_lp_result& lpres,
BCP_object_origin origin, bool allow_multiple){
const int cutnum = cuts.size();
rows.reserve(cutnum);
for (int c = 0; c < cutnum; ++c) {

UFL_cut* mcut = dynamic_cast<const UFL_cut*>(cuts[c]);
if (mcut != 0){

CoinPackedVector cut;
cut.insert(xindex(mcut->i,mcut->j), 1.0);
cut.insert(yindex(mcut->j), -1.0 * demand[mcut->i]);
rows.push_back(new BCP_row(cut,-1.0 * INF, 0.0));

}
}

}

Introduction to COIN/BCP 32

Resources

• Documentation

– There is a user’s manual for COIN/BCP, but it is out of date.
– The most current documentation is in the source code—don’t be

afraid to use it.

• Other resources

– There are several mailing lists on which to post questions and we make
an effort to answer quickly.

– Also, there is a lot of good info at www.coin-or.org.
– There are some basic tutorials and other information, including the

example you saw today at sagan.ie.lehigh.edu/coin/.

• There is a user’s meeting today at 1:00.

• There are also two other sessions revolving around COIN software.

Introduction to COIN/BCP 33

Final advice

Use the source, Luke...

...and feel free to ask questions either by email or on the discussion list.

