
A Javat universal vehicle router for routing unmanned aerial
vehicles

R.W. Hardera, R.R. Hillb and J.T. Moorec

aAir Force Personnel Operations Agency, Crystal City, Virginia, bDepartment of Biomedical, Industrial and Human

Factors Engineering, Wright State University, Dayton Ohio, and cDepartment of Operational Sciences,

Air Force Institute of Technology, Dayton, Ohio

Corresponding author e-mail: ray.hill@wright.edu

Received 3 January 2002; accepted 7 November 2002

Abstract

We consider vehicle routing problems in the context of the Air Force operational problem of routing
unmanned aerial vehicles from base locations to various reconnaissance sites. The unmanned aerial vehicle
routing problem requires consideration of heterogeneous vehicles, vehicle endurance limits, time windows,
and time walls for some of the sites requiring coverage, site priorities, and asymmetric travel distances. We
propose a general architecture for operational research problems, specified for vehicle routing problems,
that encourages object-oriented programming and code reuse. We create an instance of this architecture for
the unmanned aerial vehicle routing problem and describe the components of this architecture to include
the general user interface created for the operational users of the system. We employ route building
heuristics and tabu search in a symbiotic fashion to provide a user-defined level-of-effort solver interface.
Empirical tests of solution algorithms parameterized for solution speed reveal reasonable solution quality is
attained.

Keywords: vehicle routing, tabu search, object-oriented programming, empirical analysis

1 Introduction

The traveling salesman problem (TSP) and vehicle routing problem (VRP) are members of a
general class of extremely difficult problems. The TSP requires uniquely visiting a number of
customers using one or more salesmen or vehicles. The VRP adds vehicle capacities and customer
demands to the TSP. Often there are other considerations such as visiting a particular customer
within a certain time window, or specifying that certain customers must be visited before or after
other customers. Various problem extensions have pushed problem complexity closer to real-
world problem complexity so that traditional solution techniques, such as branch-and-bound,

Intl. Trans. in Op. Res. 11 (2004) 259–275

INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCH

r 2004 International Federation of Operational Research Societies.

Published by Blackwell Publishing Ltd.

become less applicable. There are a variety of non-traditional techniques available to solve TSP
and VRP problems, but tabu search appears to be the most effective (Laporte, 1992).
Tabu search is a heuristic developed by Glover (1986) to intelligently search a problem’s

solution space. Tabu search works on the principle that the intelligent use of memory can help a
search find and escape from local optima while fully investigating each local optimum’s region.
Common features of tabu search include intensification and diversification. Tabu search uses
these features to fully investigate regions about a particular solution (intensification) or to move
to a different part of the solution space (diversification). Details of tabu search are found in
Glover and Laguna (1997). For this work we assume a basic knowledge of tabu search.
A tabu search may save good solutions encountered during the search and produce an élite list

of solutions. Tabu search may then use élite list entries as a means to restart the search at those
solutions. Tabu search may spend some time building this élite list, but the search intensification
returns often outweigh the list-building effort.
Unmanned aerial vehicles (UAVs) serve military forces by flying in dangerous areas primarily

for surveillance missions. UAVs have flight times that far exceed those of manned aircraft. Long
flight times mean a UAV may visit many sites, or targets, during a mission. Because of the myriad
planning considerations, which include visitation time requirements and airspace flight
restrictions, finding a good path among the sites that the UAV must visit is a daunting task.
Even more daunting is to modify a path to accommodate new sites, or ‘pop-up targets’,
particularly when the path planning must be accomplished quickly, sometimes immediately.
Current UAV planning tools do not automate the UAV routing problem.
The routing of unmanned aerial vehicles in military environments is a perfect example of a

complex, real-world routing problem. We propose a layered architecture for, and present a
prototype application of, a routing tool to support both the preplanning and real-time re-tasking
phases of the UAV routing task. The architecture components and prototype application are
coded in Javat and designed to enhance UAV operator planning tasks. The routing algorithm
builds on initial work by O’Rourke et al. (2001) but adds new UAV considerations F site
priorities and restricted geographic operating zones F and new tabu search techniques.
Figure 1 depicts the main components of our layered architecture (shown left to right) and

suggests how these components collectively realize the AFIT Router specified for UAV routing
problems. The core feature of our architecture and prototype application is a universal vehicle
router (UVR). The UVR supervises the solution process (generating and improving routes) by

AFIT router (UAVs)

Knowledge:
Vehicle specifications
Geography
Wind effects
Imaging types

Universal vehicle
router (UVR)

Knowledge:
TSPs/VRPs
Service orders
Reduce travel
Order specifications

Add-in solvers

Knowledge:
Tabu search (included)
Genetic algorithms
Simulated annealing

Fig. 1. AFIT router layers.

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275260

exploiting object-oriented programming techniques to interface to more general purpose add-in
solvers.

2 An architecture for optimization applications

As problems grow in complexity and the time available to obtain solutions diminishes,
operational research analysts increasingly need flexible tools to solve classes versus specific
instances of problems (e.g. vehicle routing, assignment, scheduling). At an analysis level, we move
away from a focus on techniques (e.g. linear programming, integer programming, heuristic
libraries) to a focus on layered tools. Creating flexible tools requires an understanding of
situations facing analysts and how one can divorce the problem class/solution technique
relationship. Figure 2 depicts the analysis situation as a three-layer hierarchy.
The top level in Fig. 2 shows the messes that decision-makers deal with regularly and for which

analysis provides insight (Ackoff, 1979). An analyst examines and frames the mess as a particular
class of problem, such as a vehicle routing or scheduling problem. Once the problem is classified,
there are a variety of solution techniques available and an analyst can apply one or more to the
specific problem. The solution technique application should be readily available and decoupled
from the specifics of the problem class instance under examination.

2.1 The architecture

The analytic community needs an architecture that focuses analytic and development efforts by
facilitating reuse rather than reinvention or re-implementation. With such an architecture, an
analyst focused on applications can solve an instance from a problem class without recreating a
solution technique. Another analyst, focused on algorithm development, can test a new technique
on existing problems nearly in isolation of the specifics of the problem instance. Figure 3 lays out
such an architecture. The left side of Fig. 3 maps this architecture back to the analytical hierarchy
in Fig. 2. There is inherent flexibility in this architecture; many additional messes, problem classes,
and solution techniques are easily added to the architecture.
Developing software at each level requires an analyst identify that level’s common elements.

For example, at the technique level, setting a variable value is not common among tabu searches,
but evaluating a solution neighborhood and selecting a best move is common. At the problem
class level, not all TSPs use surface roads as routes, but all TSPs do involve a travel cost. Modules

Messes

Problem classes
VRP, assignment, scheduling

Solution techniques
Linear programming, tabu search

Fig. 2. The situation facing analysts.

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275 261

at each layer communicate via defined interfaces. For example, a capital budgeting application
passes information to a multi-dimensional knapsack problem class model, which then passes
information to an available solution technique. The solution technique could be a greedy heuristic,
a meta-heuristic, or some branch-and-bound optimization routine; the solution technique choice
is transparent to layers above the solver layer in the architecture.

2.2 An architecture instance for VRPs and TSPs

The general architecture proposed in Fig. 3 was instantiated to support the UAV routing
problem. More specifically, a UAV routing-specific interface was built on top of the routing
components within an instance of the architecture defined above. Although windows and buttons
in an interface may change, the elements of UAV routing remain constant: multiple starting
locations, wind speed, flying distances between sites, etc. Thus, the UAV routing software
application is partitioned into a prototype application and a core component identified as ‘core
AFIT router’. The core AFIT router is derived from a vehicle routing class and employs a layer
called the ‘universal vehicle router’. At the lowest level of this architecture, we defined and
deployed a general tabu search (general TS) solution technique. The entire application is coded in
Javat for flexibility in distribution (in fact, modifications to this AFIT router application resulted
in the OpenTS application available at www.iHarder.net). The highlighted sections in Fig. 4 are
the components built for this specific instance, each of which is described in the next section. Non-
highlighted blocks represent alternative components one could employ within this general
architecture.

3 Prototype application

The prototype application was designed for simplicity, practicality, and rapid response to
encourage its use in solving actual UAV routing problems. In our case, the application was
designed as a pop-up application within a larger software system in use within the UAV
operational environment. The UAV operational environment involves multiple targets,
heterogeneous vehicles, environmental considerations, and a variety of operational considerations
that constrain the routing. The front panel (Fig. 5) contains important summary information and
allows quick access to more detailed information concerning the multiple sites and multiple
vehicles within a typical UAV routing problem.

Solver interface

Algorithm Heuristic Guesses

Routing

Applications SimulationsMesses:

Problem classes:

Solution techniques:

Scheduling

Fig. 3. Architecture for the general operations research software.

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275262

Figure 6 is the site definition window providing access to relevant site information. Site
information may be loaded from files or copied from spreadsheets. Sites are designated by a name,
a latitude, and a longitude. Each site has a service time in minutes (Servicey) that includes the
amount of time spent loitering at or around the site. Site priorities (Priority) allow the user to
specify site priorities to use if all sites cannot be visited. Other windows in the application allow
the user to specify priority handling. The requirements field (Requirey) provides a matching of
operational need at a site (laser designation, synthetic aperture radar, etc.) to any vehicle with
matching capability. No requirement specified means that any vehicle may service the site. The
time window and time wall fields (in order depicted, earliest arrival (Earliesty), latest departure
(Latesty), earliest restricted (Earliesty), and latest restricted (Latesty)) provide a means to
specify when a site may or may not be visited. This window is intentionally spreadsheet compliant
to enhance ease of use in operational settings where ‘target decks’ are often provided through
receipt of a spreadsheet file.

Shipping/
trucking

Other
VRPs/TSPs

program
Genetic

algorithm
Etc.

General TS

Core AFIT Router

Mapping
software

SimulationsPrototype

VRP tabu search

Windows MacOS Solaris Linux WWW

Interface

Problem
class

Heuristic

Messes

Shipping/ Other
VRPs/TSPs

Linear Etc.

General TS

Core AFIT Router

Mapping Simulations
application

Windows MacOS Solaris Linux WWW

Universal vehicle router

Solver interface

Java virtual machine

Fig. 4. Architecture for vehicle routing and traveling salesman class of problems.

Fig. 5. Screenshot of main prototype AFIT router panel (MacOS).

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275 263

Figure 7 is the vehicle and base definition window. A base (Home) may be specified for a UAV
and by default, the UAV will leave from and return to the specified base. Since an important
operational consideration is to dynamically alter defined routes to accommodate real-time re-
tasking, we implemented a means to define new or alternate starting locations. Selecting Use
Alternate Location (Use Aly) treats the UAV as leaving from the alternate latitude (Alt. Laty)
and longitude (Alt. Loy) location and returning to the home base. The capabilities field
(Capabiy) is used to match a site’s requirement to vehicle capabilities. A UAV may only cover a
site for which it is operationally equipped. The speed (Speedy) in knots, range (Rangey) in
hours, and altitude (Altitudy) in feet are used to calculate travel and endurance times. The start-
time field (Start Tiy) specifies when the vehicle is available for take-off, in the case of preplanning
a mission, or the current time, in the case of real-time re-tasking.
An academic researcher prefers ‘best’ solutions to a problem. An operator would like best

solutions but would accept a ‘good’ solution received ‘in time’ to a best solution received late. We
adopted a novel approach to straddle the solution quality to solution-time issue.
Upon clicking the solve button on the main panel (Fig. 5), the user is presented with choices

(Fig. 8) regarding how to treat site priorities and how much time to spend solving the problem.
Three priority schemes are depicted. The Absolute Priorities scheme covers the higher priority
sites before including lower priority sites. The Flex Priorities scheme provides substitutability
among sites (e.g. five priority-2 sites can replace a priority-1 site). Finally, the Custom Priorities
scheme allows the user to combine features of Absolute and Flex priority. The Solve Time slider
lets the user decide how quickly the solution must be returned. The Use post-optimization box
invokes the longer running, more comprehensive tabu search algorithm to obtain better solutions
to the particular routing problem. Prior to commencing activities, when time is available, a user
might select Longer and use post-optimization. In a dynamic environment, the user will likely
move the slider to Shorter and not use post-optimization.
Figure 9 shows a sample solution summary and a visual display of the routing solution.

Clicking the ‘Detailsy’ button yields the solution details depicted in Fig. 10. Solution details
include estimated arrival and departure times for the sites visited by the vehicles in the solution.
Data (solutions) can be saved using the ‘copy to clipboard’ button.

Fig. 6. Screenshot of sites screen (Solaris/CDE).

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275264

Fig. 7. Screenshot of vehicles and bases screen (Linux/KDE).

Fig. 8. Solve dialog for prototype AFIT Router (MacOS).

Fig. 9. Screenshot of multiple solutions screen (Windows).

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275 265

Our focus in developing this prototype AFIT Router application was the UAV operators who
must route UAVs to sites specified on a tasking order or site list. The site list is typically provided
in spreadsheet form so we provided a copy and paste function. Although the prototype is specific
to the needs of the Air Force’s 11th Reconnaissance Squadron, it does serve as a presentation
mechanism for the architecture’s use in other areas, most recently with the Navy global command
and control system intelligence surveillance and reconnaissance capability (GISRC) system
(Burdell, 2001).

4 Core AFIT router

The core AFIT router is concerned with how the data are stored and manipulated. The core AFIT
router kernel (Fig. 11) links the data structures within the architecture and the application software.
Any component needing a route interacts with the AFIT router core kernel to obtain the route
The kernel provides access to lists of vehicles, sites, winds, restricted operating zones, and

solutions. Applications using the core AFIT router kernel ‘listen’ for changes to these lists and
when triggered, reflect these changes by updating the summary information presented to the user
via the application layer. Table 1 shows the information tracked for the various components in the
core AFIT router. Restricted operating zones are used to specify time windows and time walls for
particular geographic regions. Travel times between sites are calculated using great circle distance
methods and accounting for effects of winds aloft.

5 Universal vehicle router

The core AFIT router kernel employs the services of the universal vehicle router (UVR) for
routing. The UVR provides a means to solve a wide variety of VRPs and TSPs. The UVR

Fig. 10. Screenshot of single solution screen (Solaris/OpenWindows).

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275266

interfaces to an application/data structure, abstracts out the common routing features, and passes
this ‘common’ problem to the solution technique, which then solves the problem.
The UVR interface is straightforward. From the higher level, the UVR requests information

about vehicles and orders (UVR terminology for sites or customers). From the lower levels, it
requests solutions that route vehicles to orders. Table 2 shows the information and control
requested from higher-level software by the UVR. Priority values are assumed in ascending order
where lower values mean higher priority.
The UVR stores solution information concerning each vehicle and its assigned orders as well as

any vehicles not employed and orders not visited. Figure 12 provides a graphical depiction of the
solution data structure. Note a ‘Solution’ contains one to many tours and each ‘tour’ contains
tour specific information along with the list of orders assigned the vehicle for that tour. Unvisited
orders are maintained in a similar data structure dubbed the ‘dummy tour’.
The UVR lets users define an ‘evaluator’, which is used by the lower-level solvers to determine

solution quality. A typical evaluator might specify minimizing the number of exceeded vehicle
ranges as a primary goal, the number of skipped orders as a secondary goal, and the total travel
time as a tertiary goal. The UVR default ‘evaluator’ minimizes the following: the number of
exceeded vehicle ranges, the number of violated time windows, the number of skipped orders of
descending priority (variable number of priorities), travel time penalties, and total wait time. For

Fig. 11. AFIT router core kernel as a point of contact.

Table 1

Information tracked by the core AFIT router kernel

Component Information tracked

Site Name, latitude, longitude, priority, requirement, enabled status, service time, earliest

arrival time, latest departure time, earliest restricted time, latest restricted time

Vehicle Name, home base, capabilities, speed, range, altitude, enabled status, earliest starting

time, at home status, alternate latitude, alternate longitude

Wind Speed, bearing, lower altitude, upper altitude

Restricted operating zone Name, earliest arrival time, latest departure time, earliest restricted time, latest

restricted time, list of latitudes and longitudes defining its geographic region

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275 267

UAV applications, we employ travel time penalties to force routes away from identified threat
areas.

6 Solver interface

The solver interface does not preclude any viable solution technique from use by the UVR.
Rather, our approach encourages a diverse set by defining a solver interface between the UVR
and the actual solution technique. The solver interface receives all orders initially placed in the
dummy tour, accesses pertinent vehicle information, formulates the appropriate problem, and
requests a solution from one of the lower-level solvers.

Table 2

Information and control requested by the UVR of higher level software

Component Information and control requested

Order Earliest arrival time, latest departure time, earliest restricted time, latest restricted time, priority,

order type, amount needed

Vehicle Range, earliest departure time, time to service order A, time to travel A to B, penalty to travel A to B,

supports order type C, current amount available for order type C, remove product for order type C,

replace product for order type C, reset products for all order types

Solution

Costs (array of doubles)

Validated (boolean)

Tour 1

Tour 2

Tour nv

Dummy tour

Tour

Travel time (double)

Wait time (double)

Vehicle

Order 1

Order nc

Penalties (double)

Departure time (double)

Return time (double)

Busted time windows (integer)

Busted time walls (integer)

ETA for order i (double)

ETD for order i (double)

Validated (boolean)

Fig. 12. Representation of a solution in the UVR.

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275268

As previously discussed, a novel aspect of the application level of the architecture is the solution
effort parameter. This is a capability particularly suited to the needs and operational requirements
of the UAV routing community. Variable solution effort is enabled using two interconnected
solution methods and the architecture’s ability to accommodate multiple solution techniques. A
tour-building heuristic, detailed by Kinney et al. (2001), generates a list of starting solutions
ranked by solution quality. Shorter solution time might involve returning the best starting
solution found. Additional allotted time is used to start local searches using as many starting
solutions as time permits, with the best overall solution returned. Long search time or post-
optimization involves a tabu search solver described below.

7 Adaptive tabu search solver

The tabu search solver builds on a general tabu search engine (described below) and features a
sorted élite list of starting solutions, a user-specified level of search effort, and an adaptive level of
search effort.
Each starting solution generated by the tour-building heuristic is used to initiate a tabu search.

When the search stalls, the next-best remaining solution is used to start a new search. The number
of solutions used to re-start the search is a function of the user-specified level of search effort: less
effort, fewer starting solutions; more effort, more starting solutions.
Each starting solution is evaluated for a minimum number of iterations. The search proceeds if

improvements continue and moves to the next starting solution when the search stalls (e.g. at a
local minimum). The entire search stops if (1) there are no further starting solutions, (2) the user
defined level of effort is reached, or (3) the overall search has stalled and further effort is likely
unproductive. Figure 13 outlines the steps in this adaptive tabu search solver.
The tabu search implements four move types: relocate orders within a tour, relocate orders to

another tour, relocate orders to the dummy tour, and relocate orders from the dummy tour. The
first two move types insert orders a maximum number of places as defined by

minfnt � 1; maxf5; 0:3 � ntgg ð1Þ

where nt is the number of orders currently in the tour at iteration t. These two move types are
generated in alternate iterations. This reduces the size of the search neighborhood thereby
reducing the computational burden. The last two move types, moving orders in and out of the
dummy tour, are generated each iteration. Each order in a tour is moved to the dummy tour, and
each order in the dummy tour is moved to each tour. Since this tabu search builds on a list of good
starting solutions, there are generally not many orders in the dummy tour, so this phase is not
computationally expensive.

8 General tabu search

The adaptive tabu search employed by the UVR was built on a general tabu search engine. This
general tabu search engine abstracts out the common elements in a tabu search and provides a

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275 269

framework to build specific tabu searches. We found tabu searches follow the pattern shown in
Fig. 14: a given solution is altered and evaluated before a new current solution is chosen.
The general tabu search engine (‘Engine’ in Fig. 15) allows analysts to concentrate on defining

the specific of the tabu search. Figure 15 depicts how an analyst can create objects that provide
specific capabilities to the engine. These objects, written in Javat, ‘listen’ for key events to trigger
specific tabu search strategies such as intensification, diversification, and strategic oscillation.
To create a specific tabu search, an analyst defines each of the required objects for the engine.

The engine then performs the search as defined by the analyst’s inputs.
The objective function and penalty function objects provide a means to evaluate a solution, as

defined by the solution definition objects. The move manager object determines which moves to

Initialize:

Set n = number of orders or sites

Set s = number of starting solutions

Set effort as requested by user, e � [0,1]

Set minimum number of iterations per starting solution, m = max{ 5, n * e / 2 }

Set extra iterations to give solutions, E = max{5, 0.3 * m }

Set recency of last best solution required for extra iterations to be given,

R = max{ 5, 0.3 * m }

Set number of bad consecutive starting solutions before quitting,

B = min{ n*s, max{ 3, s * e }}

Set tabu tenure, T = 3 n

Set current starting solution, c = 1

Set starting solution yielding last global best solution, b = 0

Steps:

1. Set iterations left to perform on starting solution c to g = m

2. Perform g iterations

3. If a better solution has been found within R iterations, set g = E and go to 2

4. If a new global best solution has been found set b = c.

5. If c – b >= B, quit.

6. Set c = c + 1. If c > s, quit, else go to step 1

Fig. 13. Steps for the adaptive tabu search.

Current
solution

Perform
moves

Evaluate
neighbors

Fig. 14. General cycle of a tabu search.

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275270

generate and evaluate with respect to the current solution. The best moves are then executed by
the engine for that iteration, subject to the defined tabu list object restrictions. Moves selected are
registered by the engine in the tabu list. A default aspiration criteria is implemented but more
sophisticated aspiration criteria are easily implemented.
The listener capability exploited by the engine is a perfect vehicle for building specific tabu

searches of varied complexity and applicability. Early examples include a large-scale goal
programming problem (Cullenbine, 2000), a TSP (Hall, 2000), and a project scheduling
application (Calhoun, 2000). A free version, complete with developer specifications, can be found
at www.iHarder.net.

9 Empirical analysis

Any tabu search requires parameterization. An empirical analysis led to our tabu search
parameterization and a general impression of algorithm performance when solution speed is
favored over better solution quality. The Solomon data set was used for the testing (Solomon,
1987). As an aside, all that was required to enable the testing with the UAV router was a Solomon
application in place of the UAV application since our architecture decouples application and
algorithm efforts.
Two tabu list structures were tested: a static or fixed tabu list length and a reactive tabu list

length. Our unreported results suggest use of a static tabu list length. The quality improvement
obtained using the reactive list scheme was insufficient to warrant the extra processing time
required. With an operational focus, like that in a UAV routing environment, processing speed is
paramount. Thus, a static tabu list length is the default setting in the UVR.
Three tabu search parameters were tested:

� the default number of iterations for each starting solution;
� the number of consecutive starting solutions not improving on the best so far before quitting;

and
� the maximum number of positions to consider when inserting an order in a tour.

A full, two-level design in all three parameters was examined using the Solomon data set
(Solomon, 1987). Table 3 summarizes the parameter settings. Our testing revealed two insights.

New best solution
listener New current solution

listener

Unimproving move
made listener

…and more

Engine

Objective
function

Penalty
function

Move
manager

Tabu
list

Solution
definition

Fig. 15. General tabu search engine.

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275 271

First, the level of solution effort (as measured by solve time) increased significantly at the higher
parameter setting levels. Second, the additional processing effort did not significantly improve the
solution quality. We therefore settled on low default settings for each parameter to focus on
quickly returning good routing solutions. The immediate question is how much does solution
quality suffer when an algorithm is focused and parameterized for processing speed.
Table 4 presents the solution results on the Solomon data set using the default parameter

settings. The Best columns in Table 4 come from the compilation in Kinney, Hill and Moore
(2001). Figure 16 depicts the gap between the general purpose UVR results (light area) and the
best known results (dark area). The question is how large is this area.
Table 5 summarizes the average and range of our results versus the best for each of the six types

of problem sets in the Solomon data set. The first two problem sets (C1xx and C2xx) contained
clustered sites and are considered the easiest problems to solve. The randomly placed (R1xx and
R2xx) and the randomly placed and clustered (RC1xx and RC2xx) problem sets are more difficult
to solve. On average, the UVR does quite well on the clustered problems, which are more typical
of UAV operational problems. Across all problems, the UVR and adaptive tabu search were
approximately 16–17% above the best known solution. Again, our focus is on processing speed,
so 16–17% above the best known solutions to academic problem sets can realistically be
construed as a good solution for operational problems when returned very quickly. Improved
solution performance is attainable at the expense of processing speed.

10 Conclusion and recommendations for further work

This research proposes a generic architecture for analytic applications. The architecture decouples
the specifics of particular classes of problems from the techniques and mechanisms used to obtain
solutions to these problems. The layers proposed and defined in this architecture provide specific
functionality used by other layers in the architecture.
A prototype application based on this architecture was built using routing problems as the

focus. Each layer of the architecture was populated with components appropriate to the layer.
The application’s focus was the routing of UAVs, an important operational issue within the
Department of Defense. Such operational applications need quality solutions obtained very
quickly; thus, we parameterized the solution technique to focus on solution speed. The graphical
user interface built for the UAV operator provides a simple, Windows-like, spreadsheet-based
environment. As demonstrated in our own empirical testing, interfaces are easily replaced with
other, possibly more sophisticated interfaces. We claim our architecture approach decouples

Table 3

Parameter settings for adaptive tabu search test design

Parameter Low setting (L) High setting (H)

Default (minimum) iterations 1/4 Number of customers Number of customers

Non-improving starts before quitting 10% Number of starting solutions 50% Number of starting solutions

Maximum places to insert 10% Tour length 50% Tour length

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275272

Table 4

Performance of UVR versus best known solutions

Number of vehicles Distance traveled Solve time

UVR Best UVR Best

C101 10 10 852 827 69

C102 10 10 960 827 18

C103 10 10 923 826 188

C104 10 10 913 823 263

C105 10 10 860 827 80

C106 10 10 877 827 141

C107 10 10 894 827 113

C108 10 10 853 827 151

C109 10 10 854 827 240

C201 3 3 591 592 83

C202 3 3 676 592 179

C203 3 3 683 591 204

C204 3 3 656 591 259

C205 3 3 588 589 141

C206 3 3 633 588 172

C207 3 3 601 588 159

C208 3 3 629 588 163

R101 20 18 1805 1608 207

R102 19 17 1661 1434 251

R103 14 13 1587 1207 272

R104 11 9 1156 1007 243

R105 14 14 1517 1377 228

R106 13 12 1344 1252 213

R107 12 10 1247 1105 228

R108 10 9 1112 964 245

R109 13 11 1334 1206 251

R110 12 10 1248 1135 248

R111 11 10 1242 1097 223

R112 10 10 1148 954 232

R201 4 4 1544 1254 197

R202 4 3 1378 1214 254

R203 3 3 1210 949 268

R204 3 2 946 867 372

R205 3 3 1208 999 234

R206 3 3 1094 833 279

R207 3 3 1078 815 326

R208 2 2 989 739 407

R209 3 3 1157 855 293

R210 3 3 1232 963 258

R211 3 2 980 924 364

RC101 16 14 1802 1669 223

RC102 14 12 1698 1555 269

RC103 13 11 1502 1110 322

RC104 13 10 1502 1135 327

RC105 116 13 1706 1643 285

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275 273

application and algorithm development. We realized this capability in building two applications,
the UAV router application depicted in the paper and a Solomon data set interface not shown,
while building a solver (the general tabu search) and implementing another (Kinney’s heuristic).

Table 4. (Contd.)

Number of vehicles Distance traveled Solve time

UVR Best UVR Best

RC106 13 11 1478 1448 355

RC107 12 11 1434 1230 286

RC108 11 10 1228 1140 261

RC201 4 4 1810 1407 176

RC202 4 4 1542 1153 312

RC203 3 3 1484 1068 258

RC204 3 3 1113 804 336

RC205 4 4 1758 1302 228

RC206 4 3 1421 1156 214

RC207 4 3 1362 1075 239

RC208 3 3 1099 834 356

UVR with tabu search and best known
Solomon solutions

0

500

1000

1500

2000

2500

D
is

ta
n

ce
 t

ra
ve

le
d

Tabu search

Best known

C1 R1 R2 RC1 RC2C2

Fig. 16. Comparing UVR using tabu search and best known Solomon solutions.

Table 5

Statistics of percentage over best known solution by problem set

Problem Set Minimum Average Maximum

C1xx 3.02 7.37 16.08

C2xx F 7.16 15.57

R1xx 7.35 14.52 31.48

R2xx 6.06 23.72 35.32

RC1xx 2.07 14.38 35.32

RC2xx 22.92 32.02 38.95

All problems Average 16–17%

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275274

Avenues for future work, both applied and theoretical, abound because of the modularity of the
architecture. Applied research can focus on increasing realism in data representation such as
maps, routing concerns such as weather and threats, or application interface issues such as tighter
integration with a customer’s existing suite of software. Theoretical advances can expand the suite
of solvers for routing or refining the general tabu search objects to enhance specific tabu search
implementations.

Acknowledgements

This research was funded by the United States Air Force Unmanned Aerial Vehicle Battlelab,
under the able guidance of Dr Mark O’Hair. The views expressed in this article are those of the
authors and do not reflect the official policy of the United States Air Force, Department of
Defense, or the US Government.

References

Ackoff, R.L., 1979. The future of operational research is past. Journal of the Operational Research Society, 30.

Burdell, J., 2001. Personal communication and e-mail. February–July.

Calhoun, K., 2000. Tabu search for combat aircraft scheduling and rescheduling. MS thesis, AFIT/GOR/ENS/00M-6.

School of Engineering and Management, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,

March.

Cullenbine, C., 2000. Tabu search approach to the weapons assignment model (WAM). MS thesis, AFIT/GOR/ENS/

00M-8. School of Engineering and Management, Air Force Institute of Technology (AU), Wright-Patterson AFB

OH, March.

Glover, F., 1986. Future paths for integer programming and links to artificial intelligence. Computers and Operations

Research, 13, 533–549.

Glover, F., Laguna, M., 1997. Tabu search. Kluwer Academic Publishers, Boston.

Hall, S., 2000. A group theoretic tabu search approach to the traveling salesman problem. MS Thesis, AFIT/GOR/

ENS/00M-14. School of Engineering and Management, Air Force Institute of Technology (AU), Wright-Patterson

AFB OH, March.

Kinney, G., Hill, R., Moore, J.T., 2001. A hybrid tabu search heuristic for the unmanned aerial vehicle (UAV) routing

problem. Working Paper Series, WP01-03, Department of Operational Sciences, School of Engineering and

Management, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, August.

Laporte, G., 1992. The vehicle routing problem: an overview of exact and approximate algorithms. European Journal of

Operational Research, 59, 345–358.

O’Rourke, K.P., Bailey, T.G., Hill, R.R., Carlton, W.B., 2001. Dynamic routing of unmanned aerial vehicles using

reactive tabu search. Military Operations Research, 6, 1, 5–30.

Solomon, M.M., 1987. Algorithms for the vehicle routing and scheduling problem with time window constraints.

Operations Research, 35, 2, 254–265.

R.W. Harder, R.R. Hill and J.T. Moore / Intl. Trans. in Op. Res. 11 (2004) 259–275 275

