
A Modeling System for Mixed Integer Linear
Programming Using XML Technologies

Kipp Martin
Graduate School of Business

University of Chicago

December 11, 2002
Revised: December 29, 2003

Abstract

We show that XSLT and XPath can be used in lieu of a traditional algebraic
modeling language such as AMPL, GAMS, LINGO, MPL, etc. for generating the
instance of a mixed integer linear program. Our approach is to take raw data files
in XML format and transform them using XPath and XSLT into a single XML file
that represents the instance of a linear program. An advantage of this approach is
that the operations research community can easily share and reuse XSLT model
templates regardless of computing platform. All of the required software is open
source and available on all major platforms. Also, this is the natural way to work
with XML data, which is becoming an increasingly popular standard for storing
and transmitting data. Weare not proposing a new modeling language syntax.
Rather, we demonstrate that the existing W3C Recommendations for XPath 1.0
and XSLT 1.0 contain the necessary functionality for defining sets and indices, and
operating on them by looping and summing. Supporting documents for this paper
are available athttp://gsbkip.uchicago.edu/xslt/xslt.html .

1

1 Introduction

XML (Extensible Markup Language) is hot. Whether in the the technical press or
mainstream business press, each day is filled with new articles about XML-related
technologies. XML is about data. One might argue that mathematical modeling is also
about data. Indeed, a mathematical programming modeling language, and associated
solver tools, will not be used unless they are closely integrated with corporate data.
The importance of integrating mathematical programming tools with corporate data
has been stressed before. See, for example, Atamtürk et al. [3], Choobineh [6], and
Mitra et al. [22]. Perhaps one reason for the success of Excel based solvers such as
Excel Solver from Frontline Systems [27] and What’sBest!, from Lindo Systems, Inc.
[20] is their close integration with a spreadsheet.

This paper is based on two premises. First, that XML is rapidly becoming an
accepted format for storing data and that if the data of interest are not in an XML
format, tools exist to easily transform the non-XML data into an XML format (this is
the theme of Section 7 “Getting the Data”). Second, that there are powerful open source
platform independent tools for taking XML data stored in one format and transforming
it into another XML format. Thus, if there is an agreed upon XML standard for what
a linear program instance should look like, we can use the transformation tools to
transform the raw XML data into the linear programming XML instance format.

The objective of this paper is to demonstrate that the XPath and XSLT technologies
are sufficient for transforming the raw problem data in an XML format into a linear
programming instance in an XML format. This process is illustrated in Figure 1. An
advantage of this approach is that an algebraic modeling language is not required and
the operations research community can easily share and reuse XSLT model templates
regardless of computing platform. All of the required software is open source and
available on all major platforms. Also, this is the natural way to work with XML data,
which is becoming an increasingly popular standard for storing and transmitting data.

Figure 1: The XSLT template approach to mathematical modeling

1

This is a proof of concept paper. In this respect, it is similar to the work of Atamtürk
et al. where these authors demonstrate that SQL is sufficient for generating linear
programming problem instances. Earlier, Choobineh [6] developed SQLMP, an SQL
based modeling system for linear programming.

Throughout, we make a key distinction between thealgebraic representationof
a model and aninstanceof a model. For example, an algebraic representation of a
knapsack linear program in a pseudo modeling language is

MODEL:
SET a, c, x;
MAX = SUM(SET: c*x);
SUM(SET: a*x) <= b;

Algebraic modeling languages with features such as sets, indices, summation, and
looping include AMPL [11], GAMS [5], LINGO [23], and MPL [25]. An example
instance of this linear program is

MAX = 2*x1 + 3*x2 + x3;
5*x1 + 3*x2 + 4*x3 <= 10;

Our goal is generating mixed integer linear programming model instances by trans-
forming raw XML data into an XML model instance using XPath and XSLT. Our goal
is not the development of an XML dialect for the algebraic representation of a lin-
ear programming problem. We want a methodology where the minimum amount of
agreement about model syntax is required among the user community. One need only
witness the proliferation of algebraic modeling languages mentioned earlier to be pes-
simistic about the development of an industry standard XML based modeling language.
This is why Fourer, Lopes, and Martin are currently working on an XML dialect for
representing an instance of a linear program. See [12] (work in progress). This is the
lowest common denominator and probably requires the least amount of agreement.

XPath and XSLT are existing W3C standards. The transformation illustrated in
Figure 1 is accomplished via XSLTtemplates.An XSLT template is used as a modern
version of a matrix generator. However, XSLT is based upon functional programming
and is not a procedural language. XSLT makes it very easy to transform raw data into a
linear programming instance. With the XSLT template approach, users can share tem-
plates. This differentiates our approach from using an algebraic modeling language.
For example, a person with a LINGO model cannot share it with an AMPL user. Tem-
plates, on the other hand, are platform neutral. They can be used with any of the open
source software discussed in Section 6.

This paper covers the following. In Section 2, “XML Technologies,” we provide
a brief description of the technologies used in this paper. They are XML, W3C XML
Schemas, Namespaces, XPath, and XSLT. In Section 3, “The Basic Approaches,” we
describe three possibilities for incorporating XML into a mathematical programming
modeling system. Algebraic modeling languages are based on sets, indices, and the
manipulation of sets. In Section 4, “Sets, Indices, and Data,” we show how to use
XPath to create desired node-sets of data. These node-sets can be manipulated (e.g. set

2

difference, intersection, union) and used to generate indices. Perhaps the key section is
Section 5, “Model Generation with XSLT and XPath,” where we show how to actually
create an XML instance of a linear program using XSLT and XPath. All mathemati-
cal modeling systems depend upon data. Indeed, one reason for writing this paper is
to provide a modeling system based on the increasingly ubiquitous XML format. In
Section 6, “Software,” we provide the reader with a litany of available software for im-
plementing the modeling methodology developed in this paper. In Section 7, “Getting
the Data,” transforming the most common non-XML formats such as enterprise rela-
tional databases, spreadsheets, text flat files, or desktop databases into XML format is
described. One motivation for using the XML technologies is the availability of open
source software for multiple platforms. In Section 8, “Computational Results,” we give
some preliminary computational results demonstrating that using XSLT and XPath is a
viable modeling approach. This paper is based upon XPath and XSLT Recommenda-
tions 1.0. Versions 2.0 are working drafts of the W3C. The 2.0 versions offer important
enhancements for mathematical modeling. The importance of these enhancements is
described in Section 9, “Conclusion and Future Trends.” We also extend our ideas to
nonlinear programming.

The complete source listing (XML files, XSLT templates, etc.) for the examples
used in this paper are contained in a separate appendix. They are also available for
download athttp://gsbkip.uchicago.edu/xslt/xslt.html .

2 XML Technologies

In this section we give a brief overview of the XML technologies used in this paper.
For a good overview of all of these technologies see Skonnard and Gudgin [24].

2.1 XML

It is common practice to store data in a relational database system. Two aspects of
commercial relational database systems are 1) the data are stored in multiple tables or
relations, and 2) the files containing the data are typically binary files. XML data is 1)
stored using a tree structure, and 2) stored as a text file containing both tags and the
data.

We illustrate with a multiproduct dynamic lot sizing model. See Wagner and Whitin
[29]. This model is used throughout the paper. Assume there are two products with
a four period planning horizon and that inventory holding cost, marginal production
cost, and fixed production cost depend on product but not time period. These data are
represented in Tables 1 through 3. The keys are in boldface type. The cost data are in
Table 1. The costs are functionally dependent on only theproductID. The demand data
are in Table 2. The demand is functionally dependent on theproductID andperiodID.
The capacity data are in Table 3. The capacities are functionally dependent on only the
periodID.

We could store all of these data in a single table, however, such a table would not be
in second normal form. These tables represent a normalized presentation of the data.
See Ullman [28].

3

Table 1: Product costs data table

productID holdCost prodCost fixedCost
1 1 7 150
2 2 4 100

Table 2: Demand data table

productID periodID demand
1 1 60
1 2 100
1 3 140
1 4 200
2 1 40
2 2 60
2 3 100
2 4 40

The demand data in Table 2 for the first product, i.e., the first four records of the re-
lation, expresssed as XML appear in Figure 2. In this XML representation there are two
elementtags. Theroot element isdemandRoot . There is also ademand element
tag corresponding to each row of the relation in Table 2. Eachdemand element has
threeattributes. They areproductID , periodID , anddemand. These attributes
describing thedemand element correspond exactly to the attributes in the table of a
relational database. We could use a similar XML “rectangular” storage format for the
relations in Tables 1 and 3.

Figure 2: An XML representation of demand data

<?xml version="1.0" encoding="UTF-8"?>
<demandRoot>

<demand productID="1" periodID="1" demand="60"/>
<demand productID="1" periodID="2" demand="100"/>
<demand productID="1" periodID="3" demand="140"/>
<demand productID="1" periodID="4" demand="200"/>

</demandRoot>

However, the tree structure of XML is more flexible than the table structure of a
relational database. An alternative XML representation is given in Figure 3 where we
show the fragment of an XML file that contains both the cost and demand informa-
tion for each product. This file contains the data in both Table 1 and Table 2. In this
fragment of the file we show only the cost and demand data for the first product. By
nesting theperiod elements as children of theproduct elements we store both the

4

Table 3: Time period production capacity data table

periodID capacity
1 200
2 200
3 200
4 200

Figure 3: A second XML representation of demand data

<?xml version="1.0" encoding="UTF-8"?>
<linearProgram>

<product productID="1" holdCost="1" prodCost="7"
fixedCost="150">
<period periodID="1">

<demand>60</demand>
</period>
<period periodID="2">

<demand>100</demand>
</period>
<period periodID="3">

<demand>140</demand>
</period>
<period periodID="4">

<demand>200</demand>
</period>

demand and product cost data together without creating any redundancy. It is also pos-
sible to store theproduct elements as children of theperiod elements. However,
this would cause redundancy in the data since the holding cost, production cost, and
fixed cost are independent of time and it is not necessary to repeat their values for each
time period. A graphical representation of the XML file in Figure 3 appears in Figure
4. Notice that the nodes corresponding to the time periods arechildren of the nodes
corresponding to products.

2.2 Schemas

An XML document must bewell formedin order to be parsed and the appropriate tree
constructed. Unlike an HTML document, a well formed XML document requires that:

• opening and closing tags be present,

• tags are case sensitive and opening and closing tags agree on case,

• tags be nested properly

5

Figure 4: Tree structure for dynamic lot size model

Even a well formed XML document may be ambiguous. For example, there are
numerous hedge funds actively trading financial options. Different funds might wish
to exchange financial information concerning executed trades. One hedge fund might
use the tag pair<strike> and </strike> to denote the strike price of an op-
tion. However, if another fund chooses to use the tag pair<strikeprice> and
</strikeprice> there is a problem if the two funds wish to exchange XML data
files. It is crucial that there exist an industry standard vocabulary, and that XML files
bevalidatedagainst the industry standard.

One way to accomplish this is through the use of the W3C XML Schema (or the
older document type definition (DTD)). Think of an XML document instance as an
object (instance of a class) and the XML Schema as a class or set of classes. The
Schema describes contents of the XML document. For example, in our dynamic lot
size model there is aproduct element. In the XML Schema the product is described
as

6

<xs:complexType name="product">
<xs:sequence>

<xs:element name="period" type="period"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="productID" type="xs:string"

use="required"/>
<xs:attribute name="holdCost" type="xs:double"

use="required"/>
<xs:attribute name="prodCost" type="xs:double"

use="required"/>
<xs:attribute name="fixedCost" type="xs:double"

use="required"/>
</xs:complexType>

A nice feature of the W3C XML Schema is the<xs:key> tag. This tag is used just
as a key is used in a relational database. For example, in the lot sizing schema we could
declareproductID andperiodID to be keys. Then when the XML instance file is
validated against a schema we enforce the condition that there is a uniqueproductID
and that for each product theperiodID is unique. This is obviously a nice feature
for maintaining data integrity.

2.3 Namespace

XML tags are used to give the meaning to data. However, there is a potential conflict
with the use of tags to markup data. Different XML dialects could select the same tag
name. For example, the tag<title> in one dialect might refer to the title of a book,
in another dialect it might refer the title of a person, e.g Doctor or Ms. The potential
conflict over tag names is resolved through the use ofnamespaces. A namespace is
much like an area code for a phone number. A good example of the use of a namespace
is in an XML Schema. For example, in our dynamic lot size schema the root tag is

<xs:schema
targetNamespace="http://gsbkip.uchicago.edu/lotsize"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://gsbkip.uchicago.edu/lotsize"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

There are two namespace declarations in this tag. The first,

xmlns:xs="http://www.w3.org/2001/XMLSchema"

declares that any element with the prefixxs belongs in the namespacehttp://www.
w3.org/2001/XMLSchema . For example, the tag

<xs:complexType name="product">

7

qualifiesthe elementcomplexType as an element in the namespace defined by the
xs: prefix. When an XML validating parser validates an XML document against
a W3C XML Schema the parser verifies that eachelement tag in the instance file
appears in the Schema file with an appropriate definition using anxs: prefix. In sub-
Section 2.5 we introduce the XSLT XML dialect. An XSLT processor knows how to
process the XSLT document by readingxsl elements with names qualified by anxsl
prefix. In the root element there is a second namespace declaration,

xmlns="http://gsbkip.uchicago.edu/lotsize"

This namespace isunqualified.Since it appears in the root element all of the unquali-
fied elements used in the document are assumed to be in this namespace.

2.4 XPath

XPath is used to locate data in an XML database. The function of XPath is similar to
theSELECTcommand in SQL. However, the syntax of XPath is similar to the syntax
used to locate files in a directory with a tree structure. We illustrate XPath on the
following file.

<?xml version="1.0" encoding="UTF-8"?>
<data>

<plants>
<plant name="Uvalde"/>
<plant name="Sanderson"/>
<plant name="Marathon"/>
<plant name="Alpine"/>
<plant name="Terlingua"/>
<plant name="Lajitas"/>
<plant name="Lajitas"/>

</plants>
<openPlants>

<plant name="Uvalde"/>
<plant name="Sanderson"/>
<plant name="Marathon"/>

</openPlants>
</data>

The typical use of an XPath command is alocation pathto locate a set of nodes in a
tree. This is called thenode-set.For example, the location path

/data/openPlants/plant/@name

locates the node-set{Uvalde, Sanderson, Marathon}.
XPath is quite robust and can be used to perform set operations such as union,

intersection, and set difference. For example, the node-set of closed plants is the set
differenceplants - openPlants . The XPath location path for this is

8

/data/plants/plant[not(@name=
/data/openPlants/plant/@name)]/@name

This yields the node-set{Alpine, Terlingua, Lajitas, Lajitas}. Notice that the
Lajitas node appears twice. If we want a node-set with unique city names then we
use the following location path

/data/plants/plant[not(@name=/data/openPlants/plant/@name)
and not(@name=preceding-sibling::plant/@name)]/@name

2.5 XSLT

Extensible Stylesheet Language Transformations (XSLT) is an XML based program-
ming language for transforming XML files into other XML files, or HTML files, or
plain text files. We use XSLT to convert XML files with raw instance data (e.g. costs,
demands, etc.) into an XML file representing the instance of a linear program. This
is described in greater detail in Section 5. In this section we provide a very brief in-
troduction on how stylesheet transformations work. For a thorough treatment of XSLT
programming see Kay [17].

A stylesheet consists of a set oftemplates. A template specifies what action to take
when the XSLT processor encounters a given pattern in the input document. A template
is somewhat similar to a function or method in a procedural language such as C++ or
Java. Template order does not matter. There is a root template where processing starts
much like themain method in C++ or Java. All of our XSLT style sheets have the
form:

<xsl:template match="/">
<xsl:apply-templates select="pattern 1 node-set"/>
<xsl:apply-templates select="pattern 2 node-set"/>

</xsl:template>
<xsl:template match="pattern 1 node set">

Do transformations for pattern 1 node-set
</xsl:template>
<xsl:template match="pattern 2 node set">

Do transformations for pattern 2 node-set
</xsl:template>

Processing begins with the root template indicated bymatch="/" . Then the XSLT
processor recursively processes each node in the node-set that matches pattern 1 by
calling the template that matches the pattern 1 node-set. When this node-set is ex-
hausted the processor repeats the process for pattern 2 node-set.

Consider a more specific example. In the previous section we used XPath to select
the node-set consisting of the unique names of the closed plants. Below is the XSLT
template that 1) locates the unique names of closed plants and then 2) puts the result in
an XML file.

9

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" version="1.0"/>
<xsl:template match="/">

<closedPlants>
<xsl:apply-templates select="data/plants"/>

</closedPlants>
</xsl:template>
<xsl:template match="data/plants">

<xsl:for-each select="plant
[not(@name=/data/openPlants/plant/@name)
and not(@name=preceding-sibling::
plant/@name)]/@name">
<plant>

<xsl:value-of select="."/>
</plant>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

When this document is processed by an XSLT processor, the processor first locates the
tag

<xsl:template match="/">

and sets thecontext nodeof the processor to the root node. Next, the XSLT processor
recursively processes each node in the node-setdata/plants and calls the template
beginning with the tag

<xsl:template match="data/plants">

Once inside this this template the processor encounters the loop

<xsl:for-each select="XPath statement">

and processes each node in the node-set located by the XPath statement, which in our
case is

/data/plants/plant
[not(@name=/data/openPlants/pl:plant/@name) and
not(@name=preceding-sibling::plant/@name)]/@name

The selected node-set city names are then placed inside theplant element tag using
the XSLT tag

<xsl:value-of select="." />

The resulting XML file is given below.

10

<?xml version="1.0" encoding="UTF-8"?>
<closedPlants>

<plant>Alpine</plant>
<plant>Terlingua</plant>
<plant>Lajitas</plant>

</closedPlants>

3 The Basic Approaches

How can the XML technologies described in the previous section best be used to en-
hance the generation of mathematical programming models? The amount of XML
involvement in the modeling process is categorized as follows.

Level 1: Use XML to represent instances of mathematical programs.

Level 2: Enhance current modeling languages with features such as XPath com-
mands in order to better facilitate accessing data stored in XML format.

Level 3: Use XML technologies, in particular XPath and XSLT, to generate an
XML instance of a mathematical program.

We consider each of these categories in turn in the next three subsections.

3.1 XML Instances

Level 1 requires representing theinstanceof a problem in XML, not the algebraic rep-
resentation of the model. This approach is currently being pursued by Fourer, Lopes,
and Martin [12] who are developing a W3C XML Schema to represent instances of
mixed integer linear programs. We refer to this as the FML Schema. This approach re-
quires no changes to current mathematical programming modeling languages. It does
require drivers to interface with various solvers and modeling languages. The native
format for representing a problem instance in each modeling language must be con-
verted to the XML instance. Then the XML instance must be converted to the native
format required by a solver. For example, an AMPL instance file *.ampl must be con-
verted into a XML instance and the XML instance converted into a LINDO compatible
format.

Having an industry standard for representing an instance of a mathematical pro-
gram in XML is an important development. If there areM modeling languages andN
solvers, then without a standard way to represent a problem instance,M · N drivers
are required for every modeling language to be compatible with every solver. Differ-
ent platforms, e.g. Unix, Linux, and Windows only exacerbates the problem. With an
industry standard XML Schema onlyM + N drivers are required. Fourer, Lopes, and
Martin discuss these issues in greater detail.

11

3.2 Incorporate XML Technologies Into Algebraic Modeling Lan-
guages

XML is becoming a popular format for data storage. Database products such as To-
tal XML [7] from Cincom and Tamino XML Server [26] from Software AG support
data storage in native XML format. The amount of corporate data stored in native
XML format will probably increase over time. Current algebraic modeling languages
such a AMPL, LINGO, and MPL provide capabilities for interfacing with relational
databases. This is usually done through ODBC drivers that are database specific. The
Level 2 use of XML technologies is incorporating into these modeling languages the
ability to access data stored in XML format in a manner analogous to the access of data
stored in a relational database. With Level 2 we are not suggesting changing the basic
syntax of the algebraic modeling language used to represent sets, loop, perform sums,
etc.

For example, in LINGO, one might declare a set of time periods and a capacity
for every time period. A more complete discussion on sets and indices is is given in
Section 4. Denote the set of capacities byCAP. In LINGO, this set of capacities is
populated from an ODBC database in theDATAsection. This is illustrated below.

DATA:
CAP = @ODBC(’capacitydata’, ’capacity’);
ENDDATA

However, if these data were in the XML file illustrated in Figure 4 we might instead
incorporate an XPath command in LINGO like

DATA:
CAP = /linearProgram/periodCapacity/capacity
ENDDATA

A command is also needed to locate the XML file with the data. Software developers
of algebraic modeling languages could also add features allowing the software to read
and write an XML instance based on an accepted W3C XML Schema.

3.3 Using XPath and XSLT for Model Generation

The focus of this paper is Level 3. We show how to use XML technologies to generate
mixed integer linear programming models. There are several approaches one could
take to achieve this. One approach is to define the model within an XML input file.
With this approach, an XML input file would contain both raw data and information
about the algebraic structure of the model. For example, sets and indices would be
defined within the XML input file. We choose not to take this approach. It would
require the development of a new XML based modeling language syntax. Although
feasible, a problem with this approach is achieving consensus on the syntax of such
an XML dialect. Indeed, one reason Fourer, Lopes, and Martin are developing an
XML Schema for instances of linear programs, rather than an XML based modeling
language, is that the instance is the lowest common denominator and requires the least
amount of agreement.

12

Our approach is to take as input the XML files that contain the problem instance
data and then transform the input files into an output file that is an instance of a linear
program. The most natural way to do this is to use something expressly designed to
transform one XML file into another. We show how to use XSLT 1.0 (in conjunction
with XPath 1.0) to generate instances of a mixed integer linear program. This approach
was illustrated in Section 1 in Figure 1. In Figure 1 the XSLT template replaces the
algebraic modeling language. The function of the template is to generate the industry
standard XML instance. The template serves as a matrix generator. The details of
XSLT transformation process and examples are given in the next two sections. With
this approach a total of onlyN software drivers is necessary. For each of theN solvers
a driver is required to translate the XML data instance into a format acceptable to the
solver API.

4 Sets, Indices, and Data

In this section we assume that the input data for the model is in XML format in a
single file. The single file assumption is not necessary. It is made only for ease of
exposition. In sub-Section 5.2 we illustrate accessing input data simultaneously from
multiple sources.

The first step in building an algebraic model using a modeling language is to iden-
tify the primitive sets. See Geoffrion [13] for a discussion of sets and indices in math-
ematical programming modeling. The sets often correspond to the indices on the deci-
sion variables. In the relational database world these are often attributes that correspond
to keys in a relation. Algebraic modeling languages have commands to create sets. Sets
may be either primitive or derived sets through such operations as cartesian product or
set union. In the dynamic lot sizing example introduced in Section 2, primitive sets
correspond to products and time periods. A derived set is the cartesian product of the
product and time period sets. Here is an example of set declarations in LINGO.

SETS:
product /1, 2/;
period /1..4/;
prodperiod(product, period);

ENDSETS

The analogous concept in the XML world is the XPath node-set. Node-sets corre-
sponding toproduct , period , anddemand listed above are:

/linearProgram/product
/linearProgram/periodCapacity/period
/linearProgram/product/period

We show in Section 5 we show how to generate these node-sets, on-the-fly, as
needed. However, in XSLT, node-sets can also be stored as variables for later reference.
For example, the node-set corresponding to the products is stored using XSLT in the
variableproduct as follows:

13

<xsl:variable
name="product"
select="/linearProgram/product"

/>

In an algebraic modeling language, once the sets are identified, parameters and vari-
ables are associated with the sets and referenced by indices. For example, considering
only parameters, in the lot sizing example we have

SETS:
product /1, 2/: holdCost, prodCost, fixedCost;
period /1..4/: capacity;
prodperiod(product, period): demand;

ENDSETS

For example,holdCost(1) is the holding cost of the first product. The holding cost
node-set is referenced in XPath by

/linearProgram/product/@holdCost

Theposition() function in XPath is then used as an index. For example, the hold-
ing cost of the first product is

/linearProgram/product[position()=1]/@holdCost

or, in terms of the variableproduct

$product[position()=1]/@holdCost

Similarly, the demand for product 2 in periods 3 and 4 is given by

/linearProgram/product[position()=2]/
period[position()>2]/demand

or, in terms of the variableproduct

$product[position()=2]/period[position()>2]/demand

One advantage of nesting time period nodes within product nodes (illustrated in
Figure 3) over the more traditional tabular approach (illustrated in Figure 2) is that we
can use the position function to easily index both the product and time period. Applying
the position function to the data structure in Figure 2 only allows us to index each row
of the table.

An important aspect of this approach is that we are using the input XML for data
only, the input files do not contain any information about constraints or variables. The
input XML files need only contain all of the model parameters (or sufficient informa-
tion to generate them). In Section 2.4 we showed how to locate the input data using
XPath. In the next section we show how to use XSLT to generate the actual linear
programming instance.

14

5 Model Generation with XSLT and XPath

XSLT is designed to transform an XML file into another XML file (or HTML or text).
We use XSLT much like a matrix generator. If we know the format of the XML for
storing the instance of a linear program, we write a template to transform the raw data
file into the linear programming instance data file. For example, we could use XSLT
to transform the input file into one which validates against the FML Schema of Fourer,
Lopes, and Martin. However, the FML Schema is designed to minimize file size and
for easy integration with solver API’s. Rather than write an instance file in this format,
we write anintermediateinstance file that has a syntax that makes the XSLT template
very easy to construct. Then the intermediate XML instance is transformed into a final
XML instance file. More details on the transformation process are given in Section 8.

Figure 5: Transforming raw data into a linear program instance

The intermediate XML file used to store the linear program has two types of ele-
ments. For each row in the linear programming formulation there is a single element
of the form

<row rowName="*" rowUpperBound="*" rowLowerBound="*" />

whererowUpperBound is a double precision attribute that holds the value of the
right hand side in the case of a less-than-or-equal-to constraint,rowLowerBound is
a double precision attribute that takes on the value of the right hand side in the case
of a greater-than-or-equal-to constraint (both are present for an equality or range con-
straint), androwName is a string attribute that must uniquely identify the row. Next,
for each nonzero in the constraint matrix and objective function there is an element of
the form

15

<nonz columnName="*" rowName="*"
columnType="continuous/binary/integer"
colLowerBound="*" colUpperBound="*" cn="*"/>

wherecolumnName is a string attribute that must uniquely identify the variable,cn
is a double precision attribute that is the coefficient of the variablecolumnName that
appears in the row identified by the string attributerowName, columnType is an op-
tional string attribute used to declare either integer or continuous variables (we assume
continuous variable when attribute is absent),colLowerBound is a double preci-
sion attribute that is the variable lower bound (we assume 0 when attribute is absent),
andcolUpperBound is a double precision attribute that is the variable upper bound
(we assume+∞ when attribute is absent). We assume the objective function has a
rowName of obj . The details of generating this file are explained shortly.

The row and nonz elements may appear in an order in the intermediate XML
document. Indeed, this allows for great flexibility in the model generation. There are
different philosophies on how to generate a linear program. With our approach one
can follow the algebraic modeling language approach which usually is to specify the
constraints in a row wise fashion. Or, one can generate the model via column and row
strips. See, for example, Welch [30].

The transformation of an XML file with raw data into the intermediate XML file
with the necessaryrow andnonz elements representing the linear program instance is
illustrated in Figure 5. In this figure we illustrate the nonzero elements in the demand
constraints for the first product in the first two time periods. The row elements for first
product in the first two time periods are also shown. The transformation is done using
a style sheet that consists of a set of templates. In the next two subsections we illustrate
the process with a lot sizing and a logistics example. Complete templates are provided
in the Appendix document.

5.1 Lot Size Example

The first example is amultiproduct lot size problem. The raw data for this problem
were used in the XML example in Section 2.1. The algebraic statement of the problem
is given below.
Parameters:

dit− demand for producti in periodt

fit− fixed cost associated with production of producti in periodt

hit− marginal cost of holding one unit of producti in inventory at the end of
periodt

cit− marginal production cost of one unit of producti in periodt

gt− production capacity available in periodt

Mit− an upper bound on the production of producti in time periodt, often
called “big M” in the integer programming literature

16

Variables:

xit− units of producti produced in periodt

Iit− units of producti held in inventory at the end of periodt

yit− a binary variable which is fixed to 1 if there is nonzero production of prod-
uct i in periodt, otherwise it is fixed to 0

The mixed integer linear program for the multiproduct dynamic lot size problem is

min
∑

i

∑
t

(citxit + hitIit + fityit) (1)

s.t.
∑

i

xit ≤ gt, ∀ t (2)

Ii,t−1 + xit − Iit = dit, ∀ i, t (3)

xit −Mityit ≤ 0, ∀ i, t (4)

xit, Iit ≥ 0, ∀ i, t (5)

yit ∈ {0, 1}, ∀ i, t (6)

The objective function (1) is the minimization of the sum of the production, inventory
holding and setup costs. Constraint (2) is a capacity constraint. Constraint (3) is a
conservation of flowor sources and usesrequirement. Constraint (4) is afixed charge
or setup forcing constraint.The formulation (1)-(6) is a very simplified version of more
realistic problems. We show how to take raw cost and demand data in the XML file
illustrated in Figure 3 transform these data into the instance of a linear program given
by (1)-(6). The root template for this model is

<xsl:template match="/">
<xsl:apply-templates select=

"ls:linearProgram/ls:periodCapacity/ls:capacity"/>
<xsl:apply-templates select=

"ls:linearProgram/ls:product"/>
<!-- Code to generate LP statistics -->

</xsl:template>

(The ls: prefix that appears in all of the XPath commands refers to the namespace of
ls used to qualify the elements that define the lot size parameters.) In this example we
generate the model by rows. The first template is used to generate the capacity con-
straints (2). The second template is used to generate the demand constraints (3) and the
fixed charge constraints (4). The entire style sheet appears in the Appendix document.
We only illustrate aspects of it. Consider the template used to generate the demand and
fixed charge constraints. A match is made on the products,match="ls:product" ,
so the demand and fixed charge constraints are generated by product. Next, for each
product, we generate the demand and fixed charge constraints for each time period.
This is accomplished using the<xsl:for-each select="ls:period"> ele-
ment which is analogous to thefor element in C++ or Java.

17

<xsl:template match="ls:product">
<xsl:variable name="productIndex"

select="position()"/>
<xsl:variable name="prodCost"

select="@prodCost"/>
<xsl:variable name="holdCost"

select="@holdCost"/>
<xsl:variable name="fixedCost"

select="@fixedCost"/>
<xsl:for-each select="ls:period">

<xsl:variable name="timeIndex"
select="position()"/>

<!-- more code here -->
</xsl:for-each>

We create an index for the products,productIndex , and an index for the time pe-
riods timeIndex using<xsl:variable> . These indices are used as subscripts
on the variables. The index corresponds to a position in the node-set. This is given
by the XPath functionposition(). The output file is an XML file. This means
that the transformation process must create the elements that are required in the output
file. This is accomplished using the XSLT element<xsl:element> . The use of the
element tag is illustrated below. In this segment of code illustrated below, we generated
thexit andIit variables in theIi,t−1 + xit − Iit = dit constraint. Theconcat func-
tion is used to concatenate thex or I with the product and time index. The $ in front of
theproductIndex andtimeIndex variables is used when making a reference to
a variable.

<xsl:element name="nonz" >
<xsl:attribute name="columnName">

<xsl:value-of select="concat(’x’,$productIndex,
’t’,$timeIndex)"/>

</xsl:attribute>
<xsl:attribute name="rowName">

<xsl:value-of select="concat(’d’,$productIndex,
’t’,$timeIndex)"/>

</xsl:attribute>
<xsl:attribute name="cn"> 1</xsl:attribute>

</xsl:element>

18

<xsl:element name="nonz" >
<xsl:attribute name="columnName">

<xsl:value-of select="concat(’I’,
$productIndex,’t’,$timeIndex)"/>

</xsl:attribute>
<xsl:attribute name="rowName">

<xsl:value-of select="concat(’d’,$productIndex,
’t’,$timeIndex)"/>

</xsl:attribute>
<xsl:attribute name="cn"> -1</xsl:attribute>

</xsl:element>

The segment of code illustrated above for the first product in the second time period
generates elements that look like

<nonz columnName="x1t2" rowName="d1t2" cn="1">
</nonz>
<nonz columnName="I1t2" rowName="d1t2" cn="-1">
</nonz>

This balance constraint still needs the inventory variable corresponding to the previous
period. This is easy to do. The node-sets are ordered which allowed creation of indices.
We can refer back to$timeIndex - 1 to generate the variableIi,t−1 that appears
in every constraint for a time period greater than one.

<xsl:if test="$timeIndex > 1">
<xsl:element name="nonz" >

<xsl:attribute name="columnName">
<xsl:value-of select="concat(’I’,$productIndex,

’t’,string($timeIndex-1))"/>
</xsl:attribute>
<xsl:attribute name="rowName">

<xsl:value-of select=
"concat(’d’,$productIndex,’t’,$timeIndex)"/>

</xsl:attribute>
<xsl:attribute name="cn"> 1</xsl:attribute>

</xsl:element>
</xsl:if>

The if statement used here behaves as in any procedural langauge. The objective
function is treated like any other row and objective function coefficients are generated
exactly like the coefficients in the demand balancing row illustrated above. In the case
of the objective function, therowName is alwaysobj. The right hand side infor-
mation of each constraint in the linear program is contained in anrow element. For
example, the right hand side element of the demand balancing constraints is generated
by

19

<xsl:element name="row">
<xsl:attribute name="rowName">

<xsl:value-of select=
"concat(’d’,$productIndex,’t’,$timeIndex)"/>

</xsl:attribute>
<xsl:attribute name="rowLowerBound">

<xsl:value-of select="ls:demand"/>
</xsl:attribute>
<xsl:attribute name="rowUpperBound">

<xsl:value-of select="ls:demand"/>
</xsl:attribute>

</xsl:element>

and appears in the output file as

<row rowName="d1t2" rowLowerBound="100"
rowUpperBound="100"/>

XSLT can also be used to generate constraints where there are conditions on the
coefficients in the constraints. For example, in the fixed charge constraints (4) thebig
M parameter is often set toMit = min{gt,

∑T
k=t dik}. Using the XPathsum() func-

tion and XSLT elements<xsl:choose> , <xsl:when> , and<xsl:otherwise>
gives

<xsl:variable name="remDemand"
select="sum(/ls:linearProgram/ls:product[position()=
$productIndex]/ls:period[position()>=
$timeIndex]/ls:demand)"/>

<xsl:variable name="bigM">
<xsl:choose>

<xsl:when test="$capacity[position()=$timeIndex] >
$remDemand">
<xsl:value-of select="$remDemand"/>

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="$capacity[position()=
$timeIndex]"/>

</xsl:otherwise>
</xsl:choose>

</xsl:variable>

This is not the most efficient way to calculate thebigM coefficient. This coefficient
must be computedNT time whereN is the number of products andT the number
of time periods. The total work is thenO(NT 2.) The calculation ofbigM is easily
reduced toO(NT) by looping backwards over time and keeping a running total of
the remaining demand. Unfortunately, this requires updating the value of a variable
within a loop which cannot be done in XSLT. This problem is easily overcome by

20

using recursion. The recursive version of this template appears in the Appendix and
can be downloaded from the Web site aslotsizerecurse.xslt.

Although we generate the lot sizing model by row, we generate the objective func-
tion coefficients for the inventory and production variables when we generate the de-
mand rows and we generate the objective function coefficients for the fixed charge
variables when we generate the fixed charge constraints. Thus, in a sense, we are mix-
ing the by row and by column model generation methods.

5.2 Logistics

We illustrate our approach with a second example. It a logistics example. The instance
data we use is taken directly from Atamtürk et al. [3]. The model is based on the
one in Mairs et al. [21]. The mixed integer model formulation for this single source
multiechelon distribution system is
Parameters:

dil− demand for producti at demand centerl

cij− marginal production cost of one unit of producti at plantj

fjk− marginal cost of shipping one unit of a product from plantj to warehouse
k

hkl− marginal cost of shipping one unit of a product from warehousek to de-
mand centerl

gij− production capacity available for producti at plantj

Variables:

xijk− units of producti produced at plantj and shipped to warehousek

zikl− units of producti shipped from warehousek to demand centerl

ykl− a binary variable which is fixed to 1 if centerl is supplied from warehouse
k otherwise it is fixed to 0

min
∑

i

∑
j

∑
k

(cij + fjk)xijk +
∑

i

∑
k

∑
l

hklzikl (7)

s.t.
∑

k

ykl = 1, ∀ l (8)

dilykl = zikl, ∀ i, k, l (9)∑
l

zikl =
∑

j

xijk, ∀ i, k (10)

∑
k

xijk ≤ gij , ∀ i, j (11)

xijk, zikl ≥ 0, ∀ i, j, k, l (12)

ykl ∈ {0, 1}, ∀ k, l (13)

21

In this formulation the objective is to minimize the cost of production plus ship-
ping from plants to warehouses and warehouses to demand center. Constraint (8) is
a single sourcing constraint. Each demand center is supplied by only one warehouse.
Constraint (9) is a demand constraint and requires that the demand for each product at
each demand center be satisfied by supply at a warehouse. Constraint (10) is a balance
constraint. The quantity of each product sent from a warehouse to all of the demand
centers must equal the quantity of the product sent to the warehouse from the plants.
Equations (12) and (13) are nonnegativity and integrality constraints, respectively.

In this logistics example we illustrate two things. First, that the XML data may
reside in physically distinct files. Second, that template approach is very flexible and
allows for generating a problem either by row or by column. This example we generate
the model using column and row strips as described in Welch [30].

We use two XML input files in this example. The first file contains the information
on products, plants, warehouses, and demand centers. The second file contains the
information on shipping costs from plants to warehouses. We again use a hierarchial
tree storage as opposed to a tabular storage. The tree structure of the logistics schema
is illustrated in Figure 6. For example, the plant production data is stored as

<production>
<product prodID="chips">

<plant plantID="topeka">
<capacity>200</capacity>
<cost>230</cost>

</plant>
<plant plantID="newyork">

<capacity>600</capacity>
<cost>255</cost>

</plant>
</product>
<product prodID="nachos">

<plant plantID="topeka">
<capacity>800</capacity>
<cost>280</cost>

</plant>
</product>

</production>

The template for the logistics example also appears in the Appendix document. We
highlight a few important aspects. The root template is

22

Figure 6: Tree structure for logistics schema

<xsl:template match="/">
<xsl:apply-templates select=

"log:logistics/log:production/log:product"
mode="xijk"/>

<xsl:apply-templates select=
"log:logistics/log:centerDemand/log:center"

mode="ykl"/>
<xsl:apply-templates select=

"log:logistics/log:production/log:product"
mode="zikl"/>

</xsl:template>

Three distinct templates are used to generate the model: a template to generate the
production variablesxijk, a template to generate the transshipment variableszikl, and a
template to generate the binary variablesykl. In this example note the use of themode
attribute which was not used in the lot sizing example. The mode attribute allows for
matching more than one template to the same pattern. In this example, we generate
both the production and transshipment variables based on the pattern

log:logistics/log:production/log:product

but use different templates depending upon the variable set. This is accomplished by
using themode attribute. For example, the template for the production variables has
the form

<xsl:template match="log:production/log:product"
mode="xijk">
<!-- more code here -->

</xsl:template>

23

Recall that in the dynamic lot sizing example we had variablesIit, xit, andyit. The
i, t subscripts were generated from a node-set with the property that the subscriptt was
generated using nodes that were direct descendants of the nodes used to generate the
i subscripts. However, this is not necessary. With XPath and XSLT we can generate
indices from node-sets that are not even in the same XML file. Consider the production
variablesxijk. Generate the indices as follows:

<xsl:template match="log:production/log:product"
mode="xijk">
<xsl:variable name="productIndex" select=

"position()"/>
<xsl:for-each select="log:plant">

<xsl:variable name="plantIndex" select=
"position()"/>

<xsl:variable name="shipCostData" select=
"document(’shipcost.xml’)"/>

<xsl:for-each select=
"$shipCostData/logistics/shipCost/
plant[@plantID=$plantID]/warehouse">
<xsl:variable name="whseIndex" select=

"position()"/>
</xsl:for-each>

<xsl:for-each>
</xsl:template>

Thei subscript (productIndex in the XSLT code) is generated by theposition()
of the context node in the product node-set. Next, thej subscript (plantIndex in
the XSLT code) is generated by theposition() of the plant children nodes of
theproduct parent nodes. However, the node-set to generate thek warehouse sub-
script is in a separate XML fileshipcost.xml and is selected using the XSLT
document() function. The root node of this document is stored in the variable
shipCostData . This variable is then used in XPath statement

<xsl:for-each select="$shipCostData/logistics/shipCost/
plant[@plantID=$plantID]/warehouse">

to select thewarehouse node-set. In this case the fileshipcost.xml resides in
the same directory as the other XML file,logistics.xml . However, these files
could reside on different servers.

In this example, the XPath statement is analogous to the SQL commandsSELECT,
FROM, andWHEREthat are used to join different relations based on a key-foreign key
relationship and then project out the attributes of interest. In our case, the attributes
prodID andplantID constitute a key for the node-set with root nodeproduction
in the XML file logistics.xml In the XML file shipcost.xml the attributes
plantID andwhseID constitute a key for the node-set with root nodeshipCost .
The two node-sets are effectively “joined” on the foreign keyplantID and the desired
node-setwarehouse is projected out.

24

6 Software

Numerous software packages are available that implement XPath and XSLT. There
are two major camps: Microsoft .NET and Java. The most recent release of the Mi-
crosoft development tool, Visual Studio .NET [8], contains numerous classes such as
XPathDocument and XslTransform for manipulating and transforming XML
data. These classes are available to all of the .NET languages. All of the transforma-
tion examples in this paper could easily be performed with an application developed
using Visual Studio .NET. Indeed, a major advantage of using .NET software is that
Microsoft has done such an excellent job of integrating XML into Visual Studio .NET.
The downside of .NET is that .NET software written to process XSLT templates will
run only on the Windows platform (although Ximian has announced the launch of the
Mono project [31] to create an open source implementation of the .Net development
framework). However, the actual XSLT templates are platform independent. There-
fore, a template that meets the XSLT 1.0 standard will run on both Windows and non-
Windows platforms. There is no problem with sharing model templates among users
of different platforms.

A number of Java open source XSLT tools are also available. There is Saxon writ-
ten by Michael Kay [18] and Xalan (a C++ version is also available) by the Apache
organization [2]. Both Saxon and Xalan can be used from the command line or called
from an Servlet, or stand alone Java program. Both Xalan and Saxon implement the
Java API for XML Processing (JAXP). This makes it very convenient to write portable
software that can call either Saxon or Xalan for the transforming XML. The most re-
cent version of Saxon offers an experimental implementation of XPath 2.0 and XSLT
2.0. There is also XML Spy from Altova [1] which is a proprietary XML develop-
ment environment. Spy includes an XML parser and XSLT tool along with some very
nice graphical tools for constructing XML Schemas. The examples used in this paper
have been successfully tested on Saxon, Xalan, XML Spy, and the Microsoft processor
(MSXML 4.0).

7 Getting the Data

XSLT 1.0 is designed to work with input data in an XML format (XSLT 2.0 has features
for accessing text files). In this section we show that there are numerous tools for
transforming non-XML data into XML data. Most of the data used in a linear program
will reside in a

• spreadsheet

• desktop database (e.g. Microsoft Access)

• ASCII flat file

• enterprise database (e.g. DB2, Oracle, SQL Server)

• XML file

25

We discuss converting each source into XML. There are several options with a spread-
sheet or desktop database. If the spreadsheet or database are part of Microsoft Office
2002 (or later) it is possible to directly export each table in the database, or range in
the spreadsheet, as an XML file. If the desktop spreadsheet or database are ODBC
or OLE-DB compliant, then one can write a program in a procedural language such as
C++ or Java to access this data using ODBC or OLE-DB, read it into memory, and then
using DOM (document object module) create an XML representation of data. There is
some overhead in creating the DOM and storing it in main memory. An alternative ap-
proach is to write a custom SAX parser and feed the information directly into a JAXP
compliant XSLT processor. DOM and SAX are alternative APIs for processing XML.

If the flat file is an ASCII flat file several options exist. First, one could import the
flat file into a desktop database such as Microsoft Access and then save it as an XML
file. A second option is to write a C++ or Java program to parse the file and then use
DOM or SAX create an XML representation of the data.

Much of the data for large models is stored in enterprise corporate databases. For-
tunately, the major database vendors are adding features to their products that allow
the user to submit an SQL query to the database and get the result back in XML for-
mat. There are JDBC drivers for the most widely used databases. Thus, one could
write a Java program and use JDBC and SQL to query the database, get the result as
XML, and then transform the XML using a JAXP transformation engine such XALAN
or Saxon. This process is also easily carried out using Visual Studio .NET. There are
many classes available to any of the .NET languages for reading data in XML format
from a relational database and then transforming it with theXslTransform class.

Ideally, the input data is initially in XML format. However, some XML structures
are more amenable to transformation into a mathematical model than others. For exam-
ple, the hierarchal structure illustrated in Figure 3 is more amenable to transformation
into a linear program with doubly subscripted variables than the table structure illus-
trated in Figure 2. Of course XSLT is designed to transform one XML file into another
and it is not difficult to transform the XML file illustrated in Figure 2 into the one il-
lustrated in Figure 3. Use XPath to select each uniqueproductID and then select
eachperiodID for the givenproductID . This is accomplished with the following
XPath statement to get the set of unique productIDs.

/linearProgram/record[not(productID=
preceding-sibling::record/productID)]/productID

Then for eachproductID one can select theperiodID . This type of grouping is
now even easier in XSLT 2.0 that has anxsl:for-each-group command.

There are new products being released expressly for the purpose of accessing data
stored in different formats and viewing the data as XML. Two such products include
BEA’s Liquid Data[4] and IBM’s XPeranto[16]. The trend is obvious: make it easy to
gather data in various sources and convert it into XML. This makes the methodology
we are proposing even more viable over time.

26

8 Computational Results

XSLT is a functional programming language and is not as efficient as a procedural lan-
guage such as C++ for generating mathematical models. Nevertheless, we tested the
XSLT template approach on some small to medium size capacitated lot sizing prob-
lems with structure (1)-(6). The lot sizing problems are based on the Dixon and Silver
[9] data reported in Eppen and Martin [10]. The problem data and CPU times in sec-
onds appear in Table 4. The CPU times include file input and output time. This is
nontrivial since the output XML files are over five megabytes in size for the largest
problems. We report times for three XSLT transformers: Saxon 6.5.2 and Xalan 2.4.1
which are written in Java and a Microsoft .NET C# implementation that uses the .NET
XslTransform class for transforming the stylesheet. The problems were solved on
a Dell Latitude C600 notebook with a 1.1 GHz Pentium III processor and 512 MB of
main memory.

Table 4: Intermediate Instance Generation Time

Saxon 6.5.2 Xalan 2.4.1 C# .NET
Problem Rows Columns Nonz CPU Sec CPU Sec CPU Sec
ds100m 2010 3000 9000 1.67 2.22 .992
ds200m 4010 6000 18000 2.59 3.26 1.98
ds400m 8010 12000 36000 4.05 5.07 4.06
ds800m 16010 24000 72000 7.04 8.91 8.63

The CPU times in Table 4 use the lot sizing template described in Section 5.1
(where recursion is used to calculate the coefficients in the fixed charge constraints).
The model generation template is designed to transform the raw XML data into an in-
termediate XML output file which represents the instance of the linear program. The
structure of this intermediate XML output file is described in Section 5. The inter-
mediate output XML file exists only to make the model generation template easy to
construct. Recall that we can generate the model by either row or column and mix row
and column element tags in the output file. However, storing the instance of a linear
program with no structure on the rows and columns is not ideal for archival purpose,
or for use with linear programming solver APIs. Therefore, we take the intermediate
XML file representing the linear programming instance and transform it into another
XML file that validates against the FML Schema.

There are two alternatives to transform the intermediate output file into the final in-
stance format. The first alternative is to again use XSLT to transform the intermediate
instance file into the final instance that validates against the FML Schema. A second
alternative is to write a program in Java or C++ that takes the intermediate instance
and transforms it into the final instance. Both of these alternatives are model indepen-
dent, that is, the same XSLT/Java/C++ program could be used for lot sizing, logistics,
scheduling etc.

We chose the second alternative and wrote a Java program to read the intermediate
linear programming instance and transform it into an instance that validates against the
FML Schema. Our implementation uses the Saxon transformer and the SAX (Simple

27

API for XML) and TrAX (Transformation API for XML) APIs. Rather than transform
the raw data into an XML file, the raw data is transformed into aSAXResult which
is processed. TheSAXResult is processed by reading the elements and attributes
of the intermediate XML instance. The elements and attributes of theSAXResult
are then reorganized by the Java program into an XML file that validates against the
FML Schema. For more details on the SAX and TrAX APIs we refer the reader to
Harold [15] or Kay [17]. The total processing time to get the FML instance is given
Table 5. A dedicated modeling language is more efficient. For example, LINGO takes
approximately 1.7 CPU seconds to generate the linear programming instance for a
ds800m problem. (LINGO cannot read files in XML format so we converted our
XML data files into a flat file for LINGO to read. Also, LINGO cannot write XML
files and we are reporting the time to generate an instance in MPS format.) Given the
early stage of our technology we feel that the times reported in Table 5 show that the
XSLT approach is worth pursuing.

Table 5: Final Instance Generation Time

Saxon 6.5.2
Total CPU Sec

ds100m.xml 2.13
ds200m.xml 3.50
ds400m.xml 5.33
ds800m.xml 9.65

9 Conclusion and Future Trends

All of the methodology discussed so far is based upon XPath 1.0 and XSLT 1.0. These
two standards are implemented in Microsoft .NET, Saxon, Xalan, XML Spy and others.
However, Working Drafts of XPath 2.0 and XSLT 2.0 are available from the W3C as of
November 15, 2002. The 2.0 versions of these standards have numerous features that
greatly increase their utility for mathematical modeling. Saxon 7.0 and above has a
partial implementation of the 2.0 versions of XPath and XSLT. A key addition to XSLT
2.0 is user defined functions. For example, in the lotsizing model the nonzero term for
the production variablexit in a demand constraint is generated by

28

<xsl:element name="nonz" >
<xsl:attribute name="columnName">

<xsl:value-of select=
"concat(’x’,$productIndex,’t’,$timeIndex)"/>

</xsl:attribute>
<xsl:attribute name="rowName">

<xsl:value-of select="concat(’d’,$productIndex,
’t’,$timeIndex)"/>

</xsl:attribute>
<xsl:attribute name="cn">1</xsl:attribute>

</xsl:element>

Using XSLT 2.0, we have implemented the following functionxlp:nonz

<xsl:function name="xlp:nonz">
<xsl:param name="columnName"/>
<xsl:param name="rowName"/>
<xsl:param name="cn"/>
<xsl:variable name="output">

<xsl:element name="nonz" >
<xsl:attribute name="columnName">

<xsl:value-of select="$columnName"/>
</xsl:attribute>
<xsl:attribute name="rowName">

<xsl:value-of select="$rowName"/>
</xsl:attribute>
<xsl:attribute name="cn">

<xsl:value-of select="$cn"/>
</xsl:attribute>

</xsl:element>
</xsl:variable>
<xsl:result select="$output"/>

</xsl:function>

This function has three inputs (parameters): a column name, a row name, and the
value of the nonzero. This is function is generic and can be applied toany template.
This function is called by the statement

<xsl:copy-of select="xlp:nonz(concat(’x’,$productIndex,
’t’,$timeIndex), concat(’d’,$productIndex,’t’,
$timeIndex), 1)"/>

An even more useful function is thexlp:consum function. The code for this
is in the Appendix document. It behaves much like thesum function in a modeling
language such as AMPL, LINGO, or MPL. For example, the XSLT code to express the
capacity constraints

∑
i xit ≤ gt for all t, is

29

<xsl:template match="ls:capacity">
<xsl:copy-of select="xlp:consum(’x’,

/ls:linearProgram/ls:product, position(),
true(), concat(’cap’,’t’,position()), 1)"/>

<xsl:copy-of select="xlp:row(concat(’cap’,
’t’,position()), ’<’, .)"/>

</xsl:template>

Note also the use of thexlp:row function. It behaves much like thexlp:nonz
function and generates the necessary tags for the capacity rows.

Developing a set of template independent functions greatly enhances the utility of
XSLT 2.0 for generating linear programming models. The functions are easily shared
by users over the Web. They are included in a template much like the#include
statement in C++, orimport statement in Java and can be linked to a server by a
URL. For example,

<xsl:include href="http://gsbkip.uchicago.edu/template
/functions/function.xslt" />

This paper has focused on linear programming. However, the XSLT template ap-
proach applies to nonlinear programming. Unfortunately, there is not an agreed upon
standard for representing a nonlinear optimization problem. Halldórsson, Thorsteins-
son, and Kristj́ansson [14] propose a nonlinear extension to the MPS format for repre-
senting a linear program. In the API manual from Lindo Systems, Inc. [19] a similar
representation scheme is proposed. In both cases a postfix representation of the oper-
ators and operands is used. The postfix instructions are put into a stack for execution.
In both proposals a set of tags with corresponding integer codes are used to represent
the operators such as addition and exponentiation. It is certainly possible with XSLT
to transform XML based text into plain text which is not marked up. Therefore, one
could use XSLT to transform the raw data XML file into the text format proposed by
Halldórsson, Thorsteinsson, Kristjánsson” or Lindo Systems, Inc.

Another approach is to use Content MathML as proposed by the W3C. This is a
proposed XML dialect for representing mathematical expressions. It is quite verbose.
For example the Content Markup representation ofx2 is

<math>
<apply>

<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
</math>

The MathML representation is similar in approach to what Halldórsson, Thorsteinsson,
Kristjánsson” or Lindo Systems, Inc. propose except prefix notation is used instead of
postfix and XML tags are used instead of integer codes for operands.

It is certainly possible to take an XML data file and use it to create a nonlinear
mathematical program with the objective function and constraints written in Content

30

MathML. One possibility is simply to allow thenonz tag to hold nonlinear expres-
sions. For example,

<nonz rowname="*" />
MathML goes here to describe a nonlinear term
that appears in this row.
</nonz>

This is a topic for future research.
Finally, we mention an important, related technology called XQuery. As of this

writing, it is a Working Draft of the W3C, but not a Recommendation. XQuery is to
XML what SQL is to relational databases. Like XSLT, it uses XPath to locate data in
the XML tree. The goal of XQuery is to provide a concise query langauge. There is
no need to declare templates in order to query data. However, XQuery is not designed
to transformthe entire structure of an XML document. It is designed to quickly and
efficiently extract chunks of data – much like SQL. Unlike XSLT, XQuery is not an
XML dialect. One reason we chose XSLT for our research is that it is farther along
than XQuery and XSLT software is more widely available than XQuery software. In-
vestigating the use of XQuery to build mathematical programming models is also a
topic of future research.

References

[1] Altova. XML SPY 5, 2002.http://www.altova.com/products_ide.
html .

[2] Apache Software Foundation. The Apache XML project, 2002.http://xml.
apache.org/ .

[3] A. Atamtürk, E.L. Johnson, J.T. Linderoth, and M.W.P. Savelsbergh. A rela-
tional modeling system for linear and integer programming.Operations Research,
4:263–283, 2000.

[4] BEA. Introducing BEA Liquid Data for WebLogic, 2002.http://www.bea.
com/products/weblogic/liquiddata/index.shtml .

[5] A. Brooke, D. Kendrick, and A Meeraus.GAMS, A User’s Guide. Scientific
Press, Redwood City, CA, 1988.

[6] J. Choobineh. SQLMP: a data sublanguage for representation and formulation of
linear mathematical models.ORSA Journal of Computing, 3:358–375, 1991.

[7] Cincom. Total XML, 2002.http://www.cincom.com/en/products/
about.asp?ProductID=12 .

[8] Microsoft Corporation. Visual Studio .NET, 2002. http://msdn.
microsoft.com/library/default.asp?url=/vs/techinfo/
Default.%asp .

31

[9] P.S. Dixon and E.A. Silver. A heuristic solution procedure for the multi-item
single-level, limited capacity, lot sizing problem.Journal of Operations Manage-
ment, 2:23–39, 1981.

[10] G. D. Eppen and R. K. Martin. Solving multi-item capacitated lot-sizing problems
using variable redefinition.Operations Research, 35:832–848, 1992.

[11] R. Fourer, D.M. Gay, and B.W. Kernighan.AMPL A Modeling Language for
Mathematical Programming. Scientific Press, San Francisco, CA, 1993.

[12] R. Fourer, L. Lopes, and K. Martin. A W3C XML schema for linear programming
(work in progress). Technical report, Northwestern University and The University
of Chicago, 2002.

[13] A.M. Geoffrion. Indexing in modeling languages for mathematical programming.
Management Science, 38:325–344, 1992.

[14] B. V. Halldórsson, E. S. Thorsteinsson, and B. Kristjánsson. A modeling interface
to non-linear programming solvers an instance: xMPS, the extended MPS format.
Technical report, Carnegie Mellon University and Maximal Software, 2000.

[15] E.R. Harold.Processing XML with Java: A Guide to SAX, DOM, JDOM, JAXP,
and TrAX. Addison-Wesley, Boston, 2003.

[16] IBM. Introducing the new information integration technology preview,
2002. http://www7b.software.ibm.com/dmdd/library/demos/
0203xperanto/0203xpera%nto.html .

[17] M. Kay. XSLT Programmer’s Reference 2nd Edition. Wrox Press, Birmingham,
UK, 2001.

[18] M. Kay. Saxon the XSLT processor, 2002.http://saxon.sourceforge.
net/ .

[19] Lindo Systems, Inc. LINDO API user’s manual. Technical report, Lindo Systems,
Inc., 2002.

[20] Lindo Systems, Inc. What’sbest! 6.0, 2002. http://www.lindo.com/
cgi/frameset.cgi?leftwb.html;wbf.html .

[21] T.G. Mairs, G.W. Wakefield, E.L. Johnson, and K. Speilbergh. On a production
and distribution problem.Management Science, 24:1622–1630, 1978.

[22] G. Mitra, C. Lucas, S. Moody, and B. Kristjánsson. Sets and indices in linear
programming modelling and their integration with relational data models.Com-
putational Optimization and Applications, 4:263–283, 1995.

[23] L. Schrage.Optimization Modeling with LINGO. Lindo Systems, Inc, Chicago,
IL, 2000.

32

[24] Aaron Skonnard and Martin Gudgin.Essential XML Quick Reference. Pearson
Education, Inc, 2002.

[25] Maximal Software. MPL manual, 2002.http://www.maximal-usa.com/
mplman/mplwtoc.html .

[26] Software AG. Tamino XML Server, 2002.http://www.softwareag.
com/tamino/ .

[27] Frontline Systems. Excel Solver: Premium Solver Platform Version 5.0, 2002.
http://www.solver.com/ .

[28] J. D. Ullman. Principles of Database and Knowledge - Base Systems Volume.
Computer Science Press, 1988.

[29] H. M. Wagner and T. M. Whitin. Dynamic version of the economic lot size model.
Management Science, 5:89–96, 1958.

[30] J.S. Welch. PAM–A Practioners’ Approach to Modeling.Management Science,
33:610–625, 1987.

[31] Ximian, Inc. Ximian and the Mono Project, 2002.http://developer.
ximian.com/projects/mono/ .

33

