
Model Representation and an
Open Solver Interface

Robert Fourer and Jun Ma
Northwestern University

Kipp Martin
University of Chicago

Matthew Saltzman
Clemson University

November 14, 2005

1

ICS Wants YOU!
The INFORMS Computing Society

is where computation meets OR/MS.

Check us out :
• Attend one of 34 ICS-sponsored sessions here

• Read the INFORMS Journal on Computing
• Visit us online at www.informs.org/Subdiv/Society/ICS/

Join the group where people speak your language.

ICS is INFORMS’ technology leading edge.

2

Outline

The Problem

The API

The Libraries
OSCommon
OSSolver
OSAgent
OSUtilities

Summary

3

The Problem

Consider the following scenarios or problems

I You have a model you wish to optimize but don’t have the
appropriate solver on your machine. How do you access a
solver on another machine?

I You need to test an algorithm on a variety of solvers but the
solvers require inputs in different formats.

I You need to create a test bed of problem instances (linear,
quadratic, nonlinear, stochastic, etc). What format do you
use for storing these instances?

4

The Problem

OSiL
Reader

Osil
instance Solver

Interface
Solver
Engine

OSInstance
Objects

Network

Laptop
with Modeling

Language
Server with

Optimization Solver

Osil
instance

5

The Problem

How is communication done?

I Through an application program interface (API)

I Think of the API as a specification for methods.

I The methods then interact with an underlying data structure

I In our work it is through the OSInstance class and
OSExpression Tree.

6

The API

7

The API

Libraries are provided with the following features:

I Designed to read and write OSIL

I Written in C++

I Are platform independent

I Can be used in either a tightly or loosely coupled manner

8

The API

Key Idea: The API is the interface between the solver and the
problem instance. We assume the problem instance is in OSiL
format.

OSiL: Optimization Services instance Language. This is an XML
based format for representing a wide variety of optimization
problems.

More on OSiL later in this session.

9

The API

<variables number="2">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>

</variables>

The representation of ln(x0x1)

<nl idx="1">
<ln>

<times>
<variable coef="1.0" idx="0"/>
<variable coef="1.0" idx="1"/>

</times>
</ln>

</nl>

10

The API

11

The API

The job of the API is:

I Read/parse a problem instance (a file or string) in OSiL
format

I Validate the problem

I Create an in-memory representation of the problem

I Provide a set of get() methods to access logical parts of an
optimization instance, e.g. variable lower bounds

I Provide a set of set() methods to create/modify a problem
instance

I Write problem instances from the in-memory representation

12

The COIN C++ Libraries

I OSAgent: client side library (this one only needed in a
distributed environment)

I OSCommon: for reading and writing OSiL files and
OSInstance objects

I OSSolver: solver side library

I OSUtil: various utilities such as nl2osil, and mps2osil

13

The OSCommon Library

Key Classes:

I OSiLReader: Takes an OSiL string and creates and
OSInstance object. Xerces not used to parse the OSiL. We
wrote our own C++ validating (actually stronger) parser.

I OSInstance: This is the in-memory representation. We are
done with the linear, integer, and quadratic. Still to do is the
nonlinear OSExpression tree. This is the bridge between the
optimization instance and the solver internal representation.

I OSiLWriter: Use this class to write a string or file in OSiL
format given an in-memory OSInstance object.

14

The OSCommon Library

The OSInstance class is used to access the problem data or
create/modify the problem. For example, accessing a problem for
the solver

m_mdVarLB = osinstance->getVariableLowerBounds();
m_mdVarUB = osinstance->getVariableUpperBounds();
solver->assignProblem(m_, m_mdVarLB, m_mdVarUB,
m_mmdObjDenseCoefValue, m_mdConLB, m_mdConUB);

or creating a problem

instanceData.linearConstraintCoefficients.start.el
= A_colstarts;
instanceData.linearConstraintCoefficients.value.el
= A_vals;
instanceData.linearConstraintCoefficients.rowIdx.el
= A_rownos;

Key Idea: It maps to the OSiL Schema.
15

The OSCommon Library

<xs:complexType name="Variables">
 <xs:sequence>
 <xs:element name="var" type="Variable" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="number" type="xs:positiveInteger" use="required"/>
</xs:complexType>

class Variables{
public:
 Variables();
 Variable *var;
 int number;
}; // class Variables

class Variable{
public:
 Variable();
 string name
 double init;
 string initString;
 char type;
 double lb;
 double ub;
}; // class Variable

<xs:complexType name="Variable">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="init" type="xs:double" use="optional"/>
<xs:attribute name="initString" type="xs:string" use="optional"/>
<xs:attribute name="type" use="optional" default="C">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="C"/>
<xs:enumeration value="B"/>
<xs:enumeration value="I"/>
<xs:enumeration value="S"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="lb" type="xs:double" use="optional" default="0"/>
<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>

</xs:complexType>

<variables number=”2">
 <var lb=”0" name=”x0” type=”C”/>
 <var lb=”0" name=”x1" type=”C”>
</variables>

OSInstance osintance;
osinstance.instanceData.variables.number=2;
osintance.instanceData.variables.var=new Var[2];
osinstance.instanceData.variables.var[0].lb=0;
osinstance.instanceData.variables.var[0].name=x0;
osinstance.instanceData.variables.var[0].type=’C’;
osinstance.instanceData.variables.var[1].lb=0;
osinstance.instanceData.variables.var[1].name=x1;
osinstance.instanceData.variables.var[1].type=’C’;

In Memory
Class

In Memory
ObjectsOSiL File

Elements (Objects)

Schema
ComplexType (Class)

16

The OSSolver Library

Viewpoint: you wish to provide a solver service. How do you use
the API?

I The API provides a DefaultSolver class. It is an abstract
class.

I The DefaultSolver class has the pure virtual function

virtual string solve(string osil, string osol) = 0;

I Define your own class that inherits from DefaultSolver and
implement the solve() method.

17

The OSSolver Library - COIN Solver Example

Here is how the CoinSolver class works.

class CoinSolver : public DefaultSolver{
public:

string solve(string osil, string osol);
};

Now implement the CoinSolver solver.

string CoinSolver::solve(string osil, string osol) {
solverName = osol;
OSiLReader* osilreader;
OSInstance* theosinstance = 0;
OsiSolverInterface* solver = 0;

...

18

The OSSolver Library - COIN Solver Example

Implementation of CoinSolver solve() method (continued).

if(osol == "glpk")
solver = new OsiGlpkSolverInterface();

else
solver = new OsiClpSolverInterface();

osilreader->readOSiL(osil);
theosinstance = osilreader->getOSInstance();
if(!setOSInstance(theosinstance)) return 0;
return optimize();
}

Important: the CoinSolver class must put the OSInstance object
into the COIN data structures such as the CoinPackedMatrix

19

The OSSolver Library – Where are we?

OSiL
Reader

Osil
instance Solver

Interface
Solver
Engine

OSInstance
Objects

Network

Laptop
with Modeling

Language
Server with

Optimization Solver

Osil
instance

20

The OSSolver Library – tightly coupled

The OSSolver Library can be used locally or in a tightly coupled
environment in one of two ways.

Method 1: Use the OSServiceUtil class inside a main()
method.

OSServiceUtil serviceUtil;
string osol = "glpk";
serviceUtil.m_solver = new CoinSolver();
cout << serviceUtil.solve(osil, osol)

-OR-

Method 2: Create a solver class directly and use its solve method.

LindoSolver lindosolver;
cout << lindosolver.solve(osinstance);

21

The OSSolver Library – Loosely Coupled

Key Idea: Link the OSSolver library with a Web Server such as
Apache Axis.

I There is a C++ Apache Axis that can be used in conjunction
with the Apache Web server to support Web services.

I Create a Web service on the server machine – for example
OSCoinSolverService or OSLindoSolverService. This
service uses the solver OSSolver library service.

I xsd__string OSSolverService::solve(xsd__string osil,
xsd__string osol)

{
OSServiceUtil serviceUtil;
serviceUtil.m_solver = new CoinSolver();
char* osrl = &serviceUtil.solve(osil, osol)[0];
return osrl;

}

22

The OSAgent Library – Where we are

OSiL
Reader

Osil
instance Solver

Interface
Solver
Engine

OSInstance
Objects

Network

Laptop
with Modeling

Language
Server with

Optimization Solver

Osil
instance

23

The OSAgent Library

Key Idea: Access the solver over a network using Web Services.
Use the OSAgent library to do his.

I The API provides a OShL class (Optimization Services hookup
Language). It is an abstract class.

I The OShL class has the pure virtual function

virtual string solve(string osil, string osol) = 0;

I The OSSolverAgent class inherits from DefaultSolver and
implement the solve() method.

24

The OSAgent Library

What does the OSSolverAgent class solve() method do?

I solve() invokes and object in the �WSUtil class and:

I Creates a SOAP envelop containing the optimization instance

I Uses the C socket API to contact a server, send the server the
SOAP envelop using HTTP

I Receives the result back from the server

Note: Apache Axis client is not necessary. We have written the
necessary socket layer software to handle the communication with
the server.

25

The OSAgent Library

Here is a simple illustration of the client using the OSAgent library

string osol = "clp";
OSSolverAgent* osagent;
osagent = new
OSSolverAgent("128.135.130.17/axis/OSCoinSolverService");
cout << osagent->solve(osil, osol);

26

The OSUtilities Library

Key Idea: you need instances in OSiL format to use the libraries.
More on this in the Tuesday, 1:30 PM session. But the following
are designed to generate OSiL.

nl2osil: Convert AMPL nl files to OSiL (for linear integer
programs)

mps2osil: Convert MPS to OSiL. Not yet written but on the to do
list.

27

Summary

Modeling languages that can generate OSiL:

I AMPL (linear OSiL – use nl2osil.exe)

I OSmL (native linear and nonlinear)

I POAMS (native linear OSiL???)

Solvers:

I CLP - through COIN OSI

I FORTMP - LPFML

I GLPK – through COIN OSI

I IMPACT - native support

I KNITRO - using function callbacks

I LINDO – using instruction list format

28

Summary

An ideal world: each solver supports the function
string solve(string osil, string osol);

OSiL
Reader

Osil
instance Solver

Interface
Solver
Engine

OSInstance
Objects

Network

Laptop
with Modeling

Language
Server with

Optimization Solver

Osil
instance

29

Summary

30

	The Problem
	The API
	The Libraries
	OSCommon
	OSSolver
	OSAgent
	OSUtilities

	Summary

