
Robert Fourer, Jun Ma, Kipp Martin

Optimization Services Instance
Language (OSiL), Solvers, and

Modeling Languages

Kipp Martin
University of Chicago

kipp.martin@chicagogsb.edu

Robert Fourer
Jun Ma

Northwestern University
Kipp Martin

University of Chicago

Robert Fourer, Jun Ma, Kipp Martin2

Outline

1. Motivation and problem description

2. Instance and solver communication (APIs)

3. OSiLHandler and OSiLReader classes

4. Solver Interfaces

5. Concluding Remarks

Robert Fourer, Jun Ma, Kipp Martin3

The Problem

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

This talk

Robert Fourer, Jun Ma, Kipp Martin4

The Problem

Brief Review:

OSiL: Optimization Services instance Language. This is
an XML based format for representing a wide variety of
optimization problems.

OSrL: Optimization Services result Language. An XML based
format for representing the solution to optimization problems.

Robert Fourer, Jun Ma, Kipp Martin5

The Problem

We are in a loosely-coupled environment.

Solver and modeling language are separate process,
possibly on separate machines.

There are lots of solvers, both linear and nonlinear.

Given a common instance format (OSiL), how do we
communicate the instance format to solvers?

Robert Fourer, Jun Ma, Kipp Martin6

The Problem

How is communication done?

Through an Application Program Interface (API)

Think of an API as a specification for methods.

The methods then interact with an underlying data structure.

In the case of OSiL it is our OSExpressionTree

Robert Fourer, Jun Ma, Kipp Martin7

The Problem

Our Focus - the solver
side API

Robert Fourer, Jun Ma, Kipp Martin8

Instance and Solver Communication

Robert Fourer, Jun Ma, Kipp Martin9

Instance and Solver Communication

Related work: “Simple C-API Windows DLL Implementation
Of CLP, CBS, and CGL” by Bjarni Kristjannon (TD-14)

We also provide libraries with the following features:

1. Our libraries designed to read OSiL(replacing LPFML)

2. Not Windows based (Windows, Linux, and Mac)

3. Designed for a loosely-coupled environment

4. We provide libraries to read the instance and the solver
specific interface libraries.

Robert Fourer, Jun Ma, Kipp Martin10

Key Library Components

OSiLHandler and OSiLReader are the key solver
independent classes.

OSiLHandler -- a class that is designed to parse the XML
OSiL file. The solver never sees this. The solver does not
need to know anything about XML or OSiL.

OSiLReader -- a class that creates the necessary
data structures and provides the API for the
solver specific interface library.

Robert Fourer, Jun Ma, Kipp Martin11

The OSiLHandler Class

The OSiLHandler Class is designed to parse the XML.

There are two philosophies for this: SAX and DOM

SAX -- event based (data does not persist)

DOM -- tree based (data persists)

We have a C++ SAX based implementation for linear OSiL
and a Java based DOM implementation for general OSiL

Our implementations uses the Apache Xerces libraries

Robert Fourer, Jun Ma, Kipp Martin12

The SAX OSiLHandler Class

SAX is event based. For example:

Reading the start of an XML element

Reading the end of an XML element

Reading character data in an XML element

Reading XML attributes

The Xerces parser has a default handler that
does nothing when these events are fired. The OSiLHadler
extends the Xerces base class and actually does something.

Robert Fourer, Jun Ma, Kipp Martin13

The SAX OSiLHandler Class

void OSiLHandler::startElement(a bunch of parameters)

case var:
processVar(attributes);

break;

processVar(attributes) get the information about the
Variable, e.g. name, type, ub, lb and puts into a vector --
again the library user never sees this

After the last var element is read, <variables> processed

<variables number="2">
<var name="x1" type="C" lb="0.0"/>
<var name="x2" type="C" lb="0.0"/>

</variables>

Robert Fourer, Jun Ma, Kipp Martin14

OSiLReader Class

Two key functions:

1. Use the OSiLHandler to create the data structures

2. Provide the methods that constitute the API

Robert Fourer, Jun Ma, Kipp Martin15

OSiLReader Data Structures

Linear part of model: arrays for the constraint matrix, e.g.

double* m_mdValueCoefMatrix;
int* m_miStartCoefMatrix;
int* m_miIdxCoefMatrix;

Nonlinear part of model: an expression tree

Arrays for variable and row information (e.g. lbs and ubs)

Robert Fourer, Jun Ma, Kipp Martin16

OSiLReader OSExpression Tree

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

100(x1 − x0
2)2 + (1− x0)2 + 9 * x1

Robert Fourer, Jun Ma, Kipp Martin17

OSExpressionTree (Parsing)

We take an object oriented approach, every node in
the expression tree is an instance in the OSnLNode class

OSnLNode nlNode = null;
String sNodeName = "";
try{

sNodeName = ele.getLocalName();
String sNlNodeClass = m_sPackageName + "." + m_sNlNodeStartString +]

sNodeName.substring(0, 1).toUpperCase() + sNodeName.substring(1);
Class nlNodeClass = Class.forName(sNlNodeClass);
nlNode = (OSnLNode)nlNodeClass.newInstance();

} // now process attributes

“OSnLNodeTimes”
An instance of OSnLNode which is
an OSnLNodeTimes

Robert Fourer, Jun Ma, Kipp Martin18

OSiLReader C++ API

void OSiLHandler::endElement(a bunch of parameters)

case variables:

osilreader_->onVariables(variables_,lb_,ub_,colDomain_)

<variables number="2">
<var name="x1" type="C" lb="0.0"/>
<var name="x2" type="C" lb="0.0"/>

</variables>

The OSiLHandler instantiates an osilreader object
and calls OSiLReader “on” methods when certain events “fire”

Robert Fourer, Jun Ma, Kipp Martin19

OSiLReader API

The C++ OSiLReader is very flexible and provides two APIs

There are two strategies for the API:

Strategy I -- a pull strategy with get() methods

Strategy II -- an event based strategy that re-implements the
base case “on” methods

Robert Fourer, Jun Ma, Kipp Martin20

OSiLReader C++ API Strategy 1 - Pull

int OSiLReader::onVariables(parameters -- data from
OSiLHandler){

m_mdVarLB = new double[m_iNumberVariables];
m_mdVarUB = new double[m_iNumberVariables];
/* code to fill in the arrays */
}

double* OSiLReader::getVariableUBs(){
return m_mdVarUB;
}

So the API with Strategy I is a bunch of get() methods.
e.g., �getVariableLBs(), getConstraintUBs(),
getMatrixNonzeroValues(), etc

Robert Fourer, Jun Ma, Kipp Martin21

OSiLReader C++ API Strategy 1 - Pull

Robert Fourer, Jun Ma, Kipp Martin22

OSiLReader C++ API Strategy 1 - Pull

Robert Fourer, Jun Ma, Kipp Martin23

OSiLReader C++ API Strategy 1 - Pull

OSiLReader() osilreader;

m_mdVarLB = osilreader.getVariableLBs();
m_mdVarUB = osilreader.getVariableUBs();

solver_->assignProblem(m_, m_mdVarLB, m_mdVarUB,
m_mmdObjDenseCoefValue, m_mdConLB, m_mdConUB);

Either a glpk or clp solver determined by the
user at runtime.

We do a similar thing for the LINDO solver

Robert Fourer, Jun Ma, Kipp Martin24

OSiLReader C++ API Strategy 2 - Event

The on methods in OSiLReader are virtual. Define
A class that derives from this base clase with a new
Implementation of the on methods.

int OSiLOSIParser::onVariables(a bunch of parameters) {
lb_ = new double[nVars_];
ub_ = new double[nVars_];
std::copy(lb.begin(), lb.end(), lb_);
std::copy(ub.begin(), ub.end(), ub_);

solver_->assignProblem(m_, lb_, ub_, obj_, lhs_, rhs_);

Robert Fourer, Jun Ma, Kipp Martin25

OSiLReader Java Implementation
Based on OSExpressionTree

This is pull oriented. A set of get() and calculate() methods.

getNonlinearPostfix(int rowIdx)
getNonlinearPrefix(int rowIdx)
getNonlinearInfix(int rowIdx)

calculateFunction(int rowIdx, double x[])
calculateNonlinearDerivatives(int rowIdx, double x[], boolean functionEvaluated)

getConstraintLBs()
getFirstObjectiveMaxOrMin()
getMatrixNonzeroIndexes()

Robert Fourer, Jun Ma, Kipp Martin26

OSiLReader Java API

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Robert Fourer, Jun Ma, Kipp Martin27

OSiLReader Java API

<nl idx="1">
<plus>

<plus>
<ln>

<times>
<var coef="1.0" idx="1"/>
<var coef="1.0" idx="0"/>

</times>
</ln>
<var coef="7.0" idx="1"/>

</plus>
<var coef="5.0" idx="0"/>

</plus>
</nl>

ln(x0x1) + 7 * x0 + 5 * x1 ≥10

Robert Fourer, Jun Ma, Kipp Martin28

OSiLReader Java API

postfix: [X1, X0, times, ln, 7.0, X1, times, plus, 5.0, X0, times, plus, 10, minus]

1063 1 1063 0 1003 1021 1062 16 1063 1 1003 1001 1062 17 1063 0 1003 1001

Call getNonlinearPostfix(0)

This methods uses our OSExpressionTree data structure

The Lindo Interface converts the postfix to a Lindo
instruction list.

Robert Fourer, Jun Ma, Kipp Martin29

OSiLReader Java API

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Robert Fourer, Jun Ma, Kipp Martin30

Supported Platforms

Modeling Languages that can generate OSiL (or LPFML):

AMPL (linear OSiL -- LPFML)
OSmL (native)
POAMS (native linear OSiL)

Solvers:

CLP - through COIN OSI
FORTMP - LPFML
GLPK - through COIN OSI
IMPACT - native support
KNITRO - using function callback
LINDO - using instruction list format

Robert Fourer, Jun Ma, Kipp Martin31

An Ideal World

Robert Fourer, Jun Ma, Kipp Martin32

http://www.optimizationservices.org

QUESTIONS?

