#### A General and Unified Design and Framework for Distributed Optimization

Robert Fourer

Jun Ma

12/12/2003

Industrial Engineering and Management Sciences



NORTHWESTERN UNIVERSITY



#### NORTHWESTERN UNIVERSITY

## Outline

#### Abstract

#### Background

- A General <u>Picture</u> The Future of Computing
- Our <u>Positioning</u> The Hierarchy of Operations Research
- Some <u>Terminologies</u> (Parallel/Distributed/Grid Computing, XML, Web Services, etc.)
- Motivation
  - <u>Motorola's</u> VP Intelligent Optimization System
  - <u>AMPL-NEOS</u>
- The Design and Framework for Distributed Optimization (NSF Funded)
  - Proposing and Defining Optimization Services (OS, OSXL)
  - Design of Distributed Optimization <u>Architecture</u> (Centralized and Decentralized)
  - Optimization Services <u>Representation</u> (OSTL, OSRL, OSOL, OSSL, OSAL)
  - Optimization Services <u>Communication</u> (OSCL, OSDL, OSFL, OSEL)
  - Optimization Services <u>Inspection and Discovery</u> (OSIL, OSPL, OSBL, OSQL)
  - Future Work and Conclusion



#### NORTHWESTERN UNIVERSITY

- There exist many heterogeneous <u>implementations</u> of optimization solvers (about 70)
- There exist many <u>formats</u> to represent optimization problems (about 10)
- There exist many <u>mechanisms</u> to communicate with solvers (about 10)
- There are some initiatives to <u>analyze</u> and <u>benchmark</u> optimization (?)
- Other Problems (All these possible reasons for recent NEOS leveling off, thus the motivation)
  - Different <u>Operating Systems</u> (about 5)
  - Different <u>Programming Languages</u> (about 5)
  - <u>Locating</u> solvers (none)
  - Reliability
  - Scalability
  - Security
  - We propose a general design and framework
- We attempt to <u>unify</u> some of the popular means of solver communication, optimization analyses and model representations under the framework
- This can also be regarded an initiative to start a wider level of <u>cooperation</u> to move toward a final <u>standardization</u> and facilitate a healthier development environment for research in the area of operations research

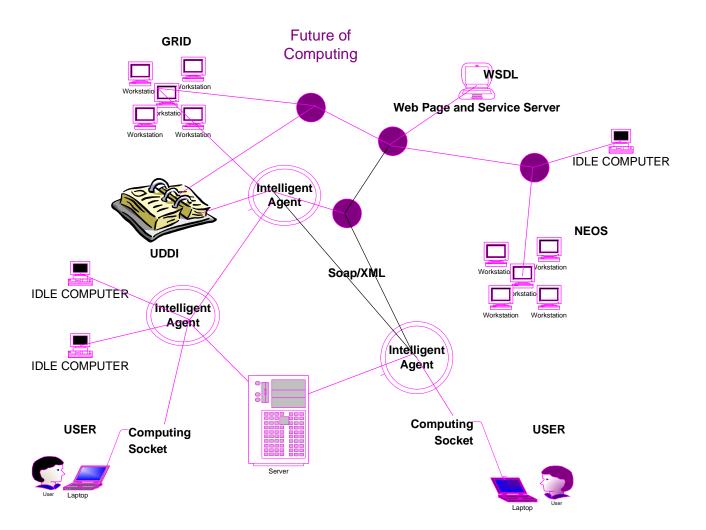




Outline

#### Abstract

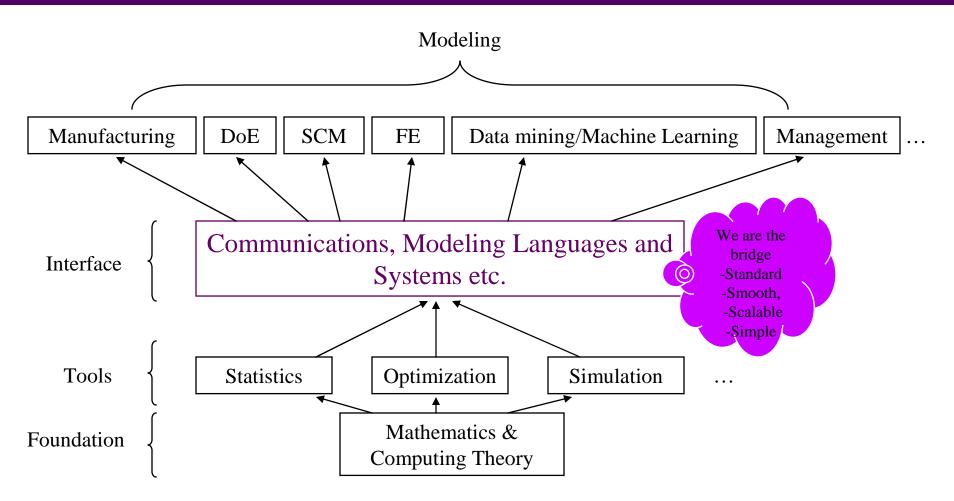
#### Background


- A General Picture The Future of Computing
- Our Positioning The Hierarchy of Operations Research
- Some Terminologies (Parallel/Distributed/Grid Computing, XML, Web Services, etc.)

#### **Motivation**

- Motorola's VP Intelligent Optimization System
- AMPL-NEOS
- The Design and Framework for Distributed Optimization (NSF Funded)
  - Proposing and Defining Optimization Services (OS, OSXL)
  - Design of Distributed Optimization Architecture (Centralized and Decentralized)
  - Optimization Services Representation (OSTL, OSRL, OSOL, OSSL, OSAL)
  - Optimization Services Communication (OSCL, OSDL, OSFL, OSEL)
  - Optimization Services Inspection and Discovery (OSIL, OSPL, OSBL, OSQL)
  - Future Work and Conclusion




## **A General Picture**





## **Our Positioning in**

**Industrial Engineering and Management Sciences** 





#### **Literature Reviews**

- General Technologies
  - <u>Web Services</u>-latest technology that we leverage On [W3C, T. Berners-Lee etc.]
  - Open <u>Grid</u> Services Architecture [I. Foster, C. Kesselman]
  - Optimization as an Internet Resource [R. Fourer, J.-P. Goux]
- Modeling Systems
  - <u>Motorola</u> Virtual Prototyping System [T. Tirpak etc.]
  - <u>NEOS</u> Network Enabled Optimization System [E.D. Dolan, R. Fourer, J.J. Moré, T.S. Munson, etc.]
- Optimization Representations
  - <u>AMPL</u>: A Modeling Language for Mathematical Programming [R. Fourer, D. Gay, B. Kernighan]
  - A W3C XML Schema for Linear Programming [R. Fouer, L. Lopez, K. Martin]
  - <u>SMPS</u> Standard [J. R. Birge, H. Gassmann, E. Gunn, A. King, and M. Dempster]
  - No widely adopted <u>nonlinear</u> extensions to Mathematical Programming System (MPS)
- Potential Applications and Collaborations
  - Integrated DEsign Automation Laboratory (<u>IDEAL</u>) [W. Chen]
  - <u>COIN-OR</u> project for publications [www-124.ib.com/developerworks/opensource/coin]
  - Optimization Methods on Computational Grids [MetaNEOS Prject, J. Linderoth, Lehigh U.]
- Other references throughout the presentation



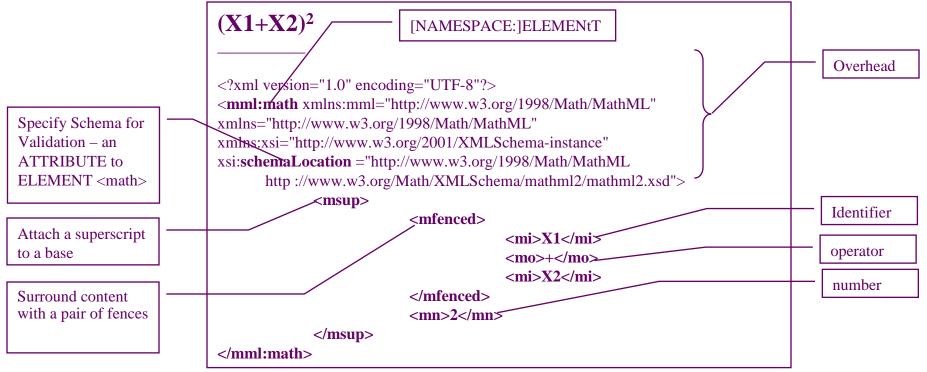
# Terminologies – Parallel/Distributed/Grid Computing

#### Parallel Computing

"<u>Process</u> by which a problem is solved using multiple resources working <u>concurrently</u> and collaboratively." [Class Notes on Parallel Computing, P. Banerjee]

#### Distributed Computing

"<u>Computing on networked computers</u> which is deeply concerned with problems such as reliability, security, and <u>heterogeneity</u> that are generally regarded as tangential in parallel computing." [Designing and Building Parallel Programs, I. Foster]


#### Grid Computing

"An ambitious and exciting global effort to develop an <u>environment</u> in which individual users can access computers, databases and experimental facilities simply and transparently, without having to consider where those facilities are located." [RealityGrid, Engineering & Physical Sciences Research Council, UK 2001]





- eXtensible Markup Language. A subset of SGML constituting a particular text markup language for interchange of structured data. It is a trademark of the World Wide Web Consortium.
- MathML a dialect of XML more for presentation than for computation)





## **XML Schema**

- A database-inspired method for specifying constraints on XML documents using an XML-based language
- MathML Schema for element <msup>

```
<xs:element name="msup" type="msup.type" />
```

```
<msup>
<mfenced>
<mi>X1</mi>
<mo>+</mo>
<mi>X2</mi>
</mfenced>
<mn>2</mn>
</msup>
```



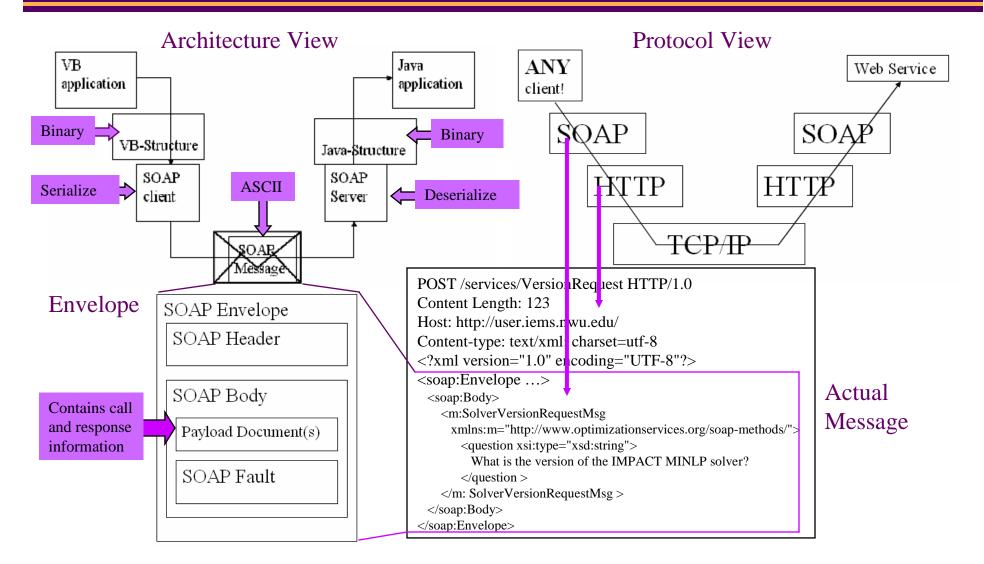
## **Other XML Technologies**

- XML authoring
  - XML editors
  - XML validators
- XML transformation
  - Tools for transforming XML into something that can be displayed in a browser or other rendering device.
  - XSL, and its associated language XSLT, is the main tool here.
- XML processing
  - Xerces
  - $\mathbf{XT}$
- XML Parsing Model
  - **DOM**
  - SAX
- **Xpath** for identifying subsets of a document, used in XSL , Xquery etc.
- **Xquery** language for querying XML
- **Xlink, Xpointer** for linking, referencing information within documents
- **XML Namespace** tagged in front of element name to avoid potential name conflict.



## Web Services & Simple Object Access Protocol

■ Web Services – Platform and implementation independent components

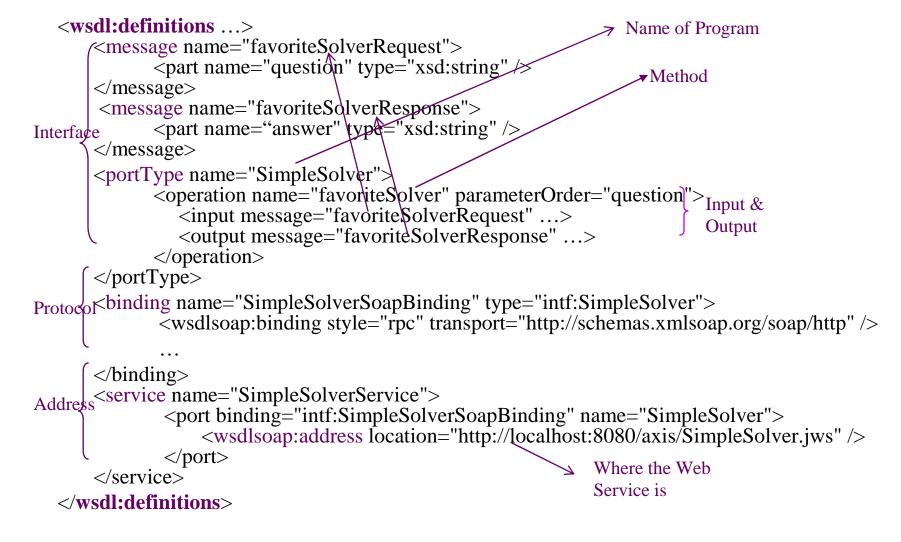

- **<u>Described</u>** using a service description language
- **<u>Published</u>** to a registry of services
- **<u>Discovered</u>** through a standard mechanism (at runtime or design time)
- **<u>Invoked</u>** through a declared API, usually over a network
- <u>**Composed**</u> with other services

SOAP (1.2v, 24 June 2003) – first version that is a W3C recommendation

- Lightweight protocol and platform independent
- For exchange of information in a decentralized, distributed environment.
- XML based
  - $\square$  An <u>envelope</u> of message description and processing,
  - $\blacksquare$  **Encoding rules** for data types
  - $\square$  A convention for representing remote procedure <u>calls and responses</u>
  - □ A **<u>binding</u>** convention for exchanging messages using an underlying protocol.



## Web Services & Simple Object Access Protocol






- The standard format for describing a web service.
  - Describes how to access a web service and what operations it will perform
  - Can be provided through UDDI registries
  - XML based
    - **PortType** Application Programming Interface
    - Gration -- Methods/Function prototype
    - G Message Parameters which can be input, output or fault message
    - Types -- Actual data types in a message, e.g. array of integers
    - Binding Transport protocol and encoding protocol
    - $\square$  Port Network address
    - $\square$  Service A collection of ports



## Web Services & Web Service Definition Language





UNIVERSITY

# Web Services, Web Service Inspection Language & Universal Description Discovery and Integration

#### WSIL

- Specification for online web service registries (cf. web page search engines)
- Light weighted and complements UDDI
- XML based

```
<inspection ...>
```

<abstract>Impact is an Integrated Mathematical Programming Advanced Computational Tool.</abstract><service>

<name>Impact Solver Service</name>

<abstract>The version of the Impact service is 1.0. It solves many types of optimization problems.</abstract></abstract></abstract>

referencedNamespace=http://schemas.xmlsoap.org/wsdl/

location="http://www.optimizationservices.org/os/ossolver/ImpactSolverService?wsdl">

#### </description>

```
</service>
```

```
k location=" http://www.optimizationservices.org/os/ossolver/JunMaSolverService.wsil" > <abstract>JunMa Solver Service</abstract></abstract>
```

```
</link>
```

</inspection>

## UDDI

- Heavyweight (think of yellow pages)
- Also specifies business models
- Provides a complete set of SOAP query APIs for searching web services



## **Open Grid Services Architecture & Web Services**

- OGSA (Globus Toolkit)
  - Protocol deficiencies
  - Mainly in scientific world
  - Missing functionality
  - + Support transient services
  - + Reliable and secure transport
  - + Service creation
  - + Global naming and references
  - + Service management
  - + Registration
  - + Notification
  - + Authorization
  - + Concurrency

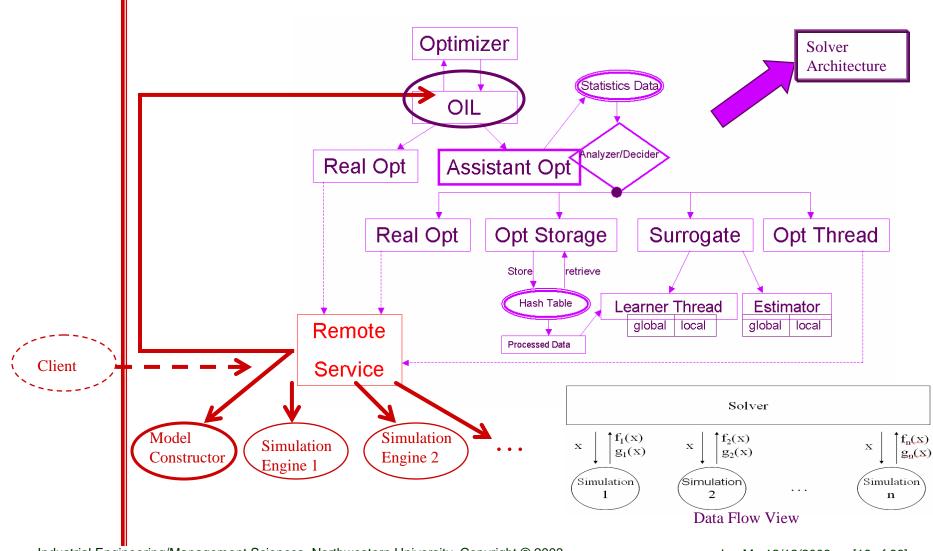
- Web Service
  - + Increasingly popular
  - + Standards-based
- Web services w/ grid good idea
- Becoming a topic at the super computing conferences
- Will eventually converge till no distinction
  - My feeling, and my hope
  - Not a question of who wins
  - Both provide something
  - Good for our Optimization Services



#### Outline

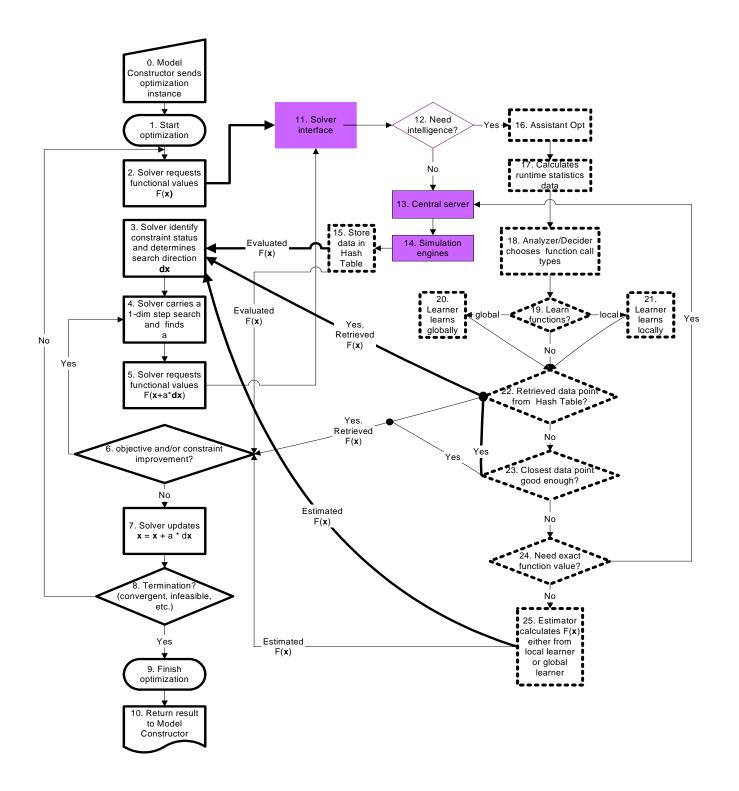
Abstract

#### Background


- A General Picture The Future of Computing
- Our Positioning The Hierarchy of Operations Research
- Some Terminologies (Parallel/Distributed/Grid Computing, XML, Web Services, etc.)

#### Motivation

- Motorola's VP Intelligent Optimization System
- AMPL-NEOS
- The Design and Framework for Distributed Optimization (NSF Funded)
  - Proposing and Defining Optimization Services (OS, OSXL)
  - Design of Distributed Optimization Architecture (Centralized and Decentralized)
  - Optimization Services Representation (OSTL, OSRL, OSOL, OSSL, OSAL)
  - Optimization Services Communication (OSCL, OSDL, OSFL, OSEL)
  - Optimization Services Inspection and Discovery (OSIL, OSPL, OSBL, OSQL)
  - Future Work and Conclusion



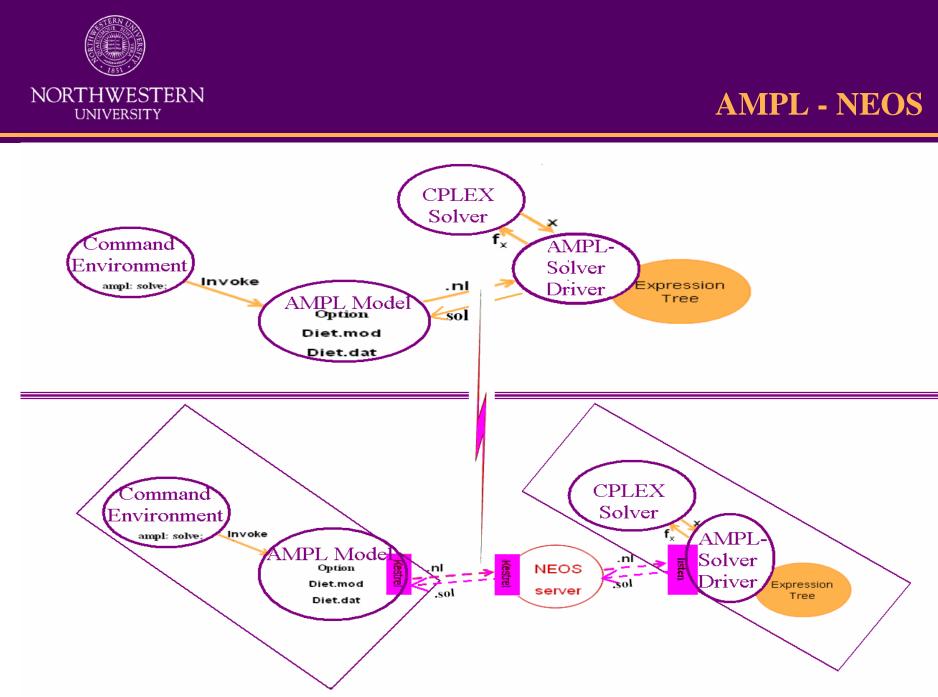

#### Motorola's VP Intelligent Optimization System Architect and Procedures



Industrial Engineering/Management Sciences, Northwestern University, Copyright © 2003

Jun Ma 12/12/2003 [19 of 66]






UNIVERSITY

#### Motorola's VP Intelligent Optimization System Service Requirement

- + System Architecting
- + Interfacing & Invocation
  - Client & Server
  - Model & Solver
  - Solver & Simulation
- + Data Flow and Representation
- + Input Parsing and Output Generation
- + Variable/Objective/Constraint Construction
- + Service Location & Discovery (Not a problem in a centralized ASP)
- ? Common Variable Resolution (Can be included in OSFL)
- ? Simulation Service Flow (Can be included in OSFL)
- ? Metrics Interpretation (To a certain degree given naming standardization)
- ? Process Monitoring & Management (OSEL, OSPL)
- ? Job Queue Management (OSEL)
- ? Interdisciplinary Domain Knowledge Management (OSFL)
- Result Presentation/Mapping
- Intelligence Learning (Local Surrogate/Accelerator)

("+" intended to solve in our framework; "?" Partially supported; "–" Not in our framework domain)



Industrial Engineering/Management Sciences, Northwestern University, Copyright © 2003

Jun Ma 12/12/2003 [22 of 66]



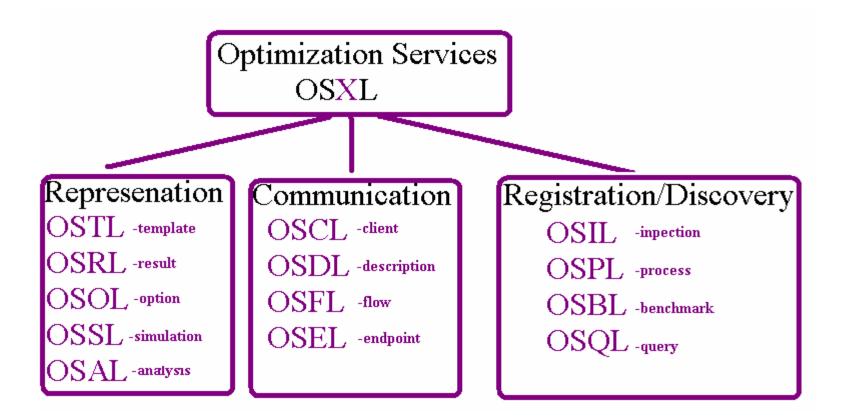


## Outline

- Abstract
- Background
  - A General Picture The Future of Computing
  - Our Positioning The Hierarchy of Operations Research
  - Some Terminologies (Parallel/Distributed/Grid Computing, XML, Web Services, etc.)
  - Motivation
    - Motorola's VP Intelligent Optimization System
    - AMPL-NEOS
- The Design and Framework for Distributed Optimization (NSF Funded)
  - Proposing and Defining Optimization Services (OS, OSXL)
  - Design of Distributed Optimization Architecture (Centralized and Decentralized)
  - Optimization Services Representation (OSTL, OSRL, OSOL, OSSL, OSAL)
  - Optimization Services Communication (OSCL, OSDL, OSFL, OSEL)
  - Optimization Services Inspection and Discovery (OSIL, OSPL, OSBL, OSQL)
  - Future Work and Conclusion



## **Proposing "Optimization Services"**

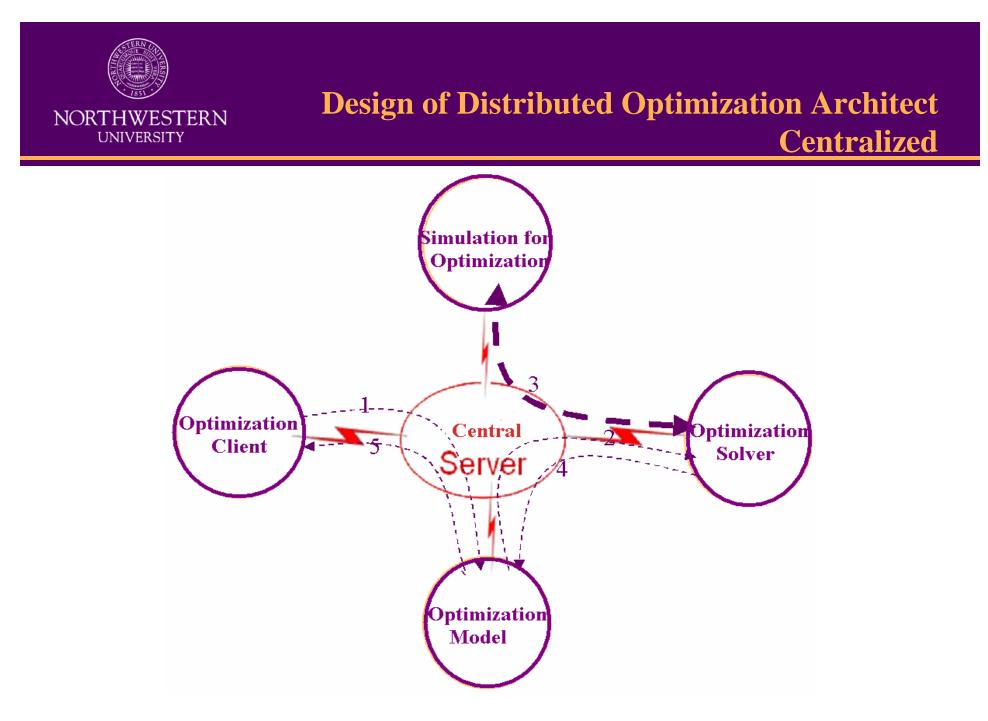

- Optimization Services (temporary definition)
  - SOAP based web services (potentially also leveraging on grid computing technologies) with specified interfaces and behaviors under the general framework of distributed optimization, including the following OSXL's: for representing optimization instances,
    - G Optimization Services Template Language (OSTL)
    - G Optimization Services Result Language (OSRL)
    - G Optimization Services Option Language (OSOL)
    - G Optimization Services Simulation Language (OSSL)
    - G Optimization Services Analysis Language (OSAL)
    - for controlling optimization accesses, flows and operations,
      - G Optimization Services Client Language (OSCL)
      - G Optimization Services Description Language (OSDL)
      - G Optimization Services Flow Language (OSFL)
      - G Optimization Services Endpoint Language (OSEL)

for discovering and inspecting optimization services,

- G Optimization Services Inspection Language (OSIL)
- G Optimization Services Process Language (OSPL)
- G Optimization Services Benchmark Language (OSBL)
- G Optimization Services Query Language (OSQL)

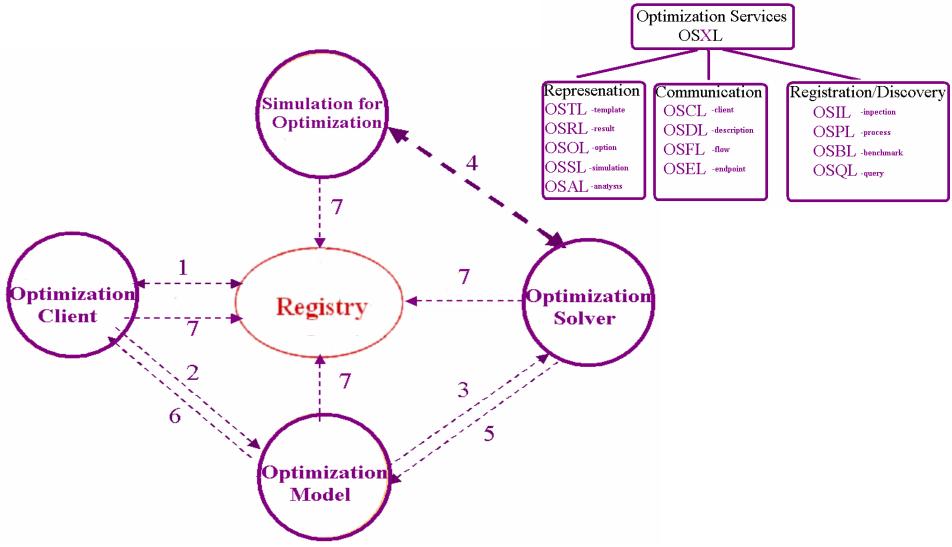


## **Proposing "Optimization Services"**







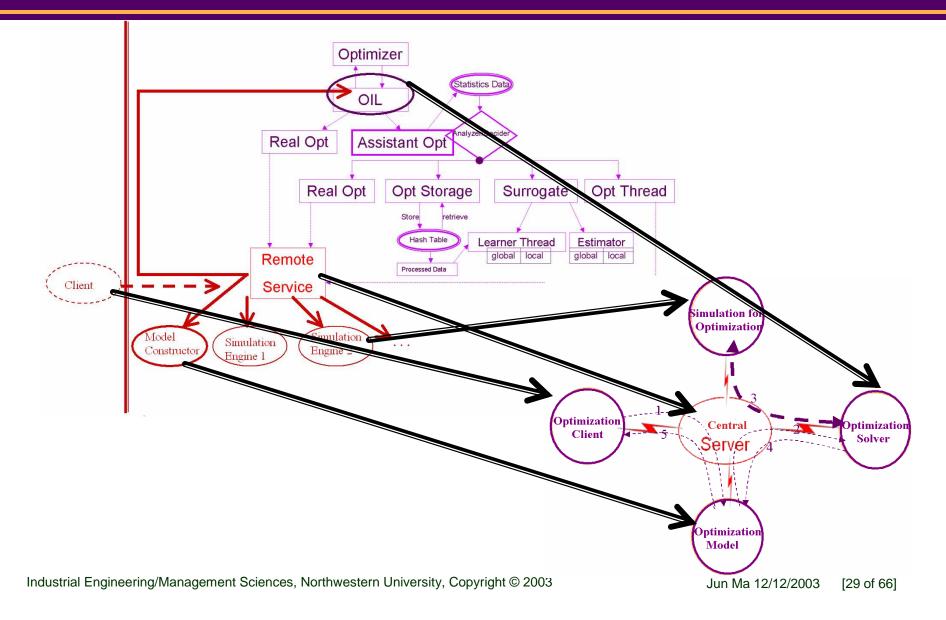


## Outline

- Abstract
- Background
  - A General Picture The Future of Computing
  - Our Positioning The Hierarchy of Operations Research
  - Some Terminologies (Parallel/Distributed/Grid Computing, XML, Web Services, etc.)
  - Motivation
    - Motorola's VP Intelligent Optimization System
    - AMPL-NEOS
- The Design and Framework for Distributed Optimization (NSF Funded)
  - Proposing and Defining Optimization Services (OS, OSXL)
  - Design of Distributed Optimization Architecture (Centralized and Decentralized)
  - Optimization Services Representation (OSTL, OSRL, OSOL, OSSL, OSAL)
  - Optimization Services Communication (OSCL, OSDL, OSFL, OSEL)
  - Optimization Services Inspection and Discovery (OSIL, OSPL, OSBL, OSQL)
  - Future Work and Conclusion



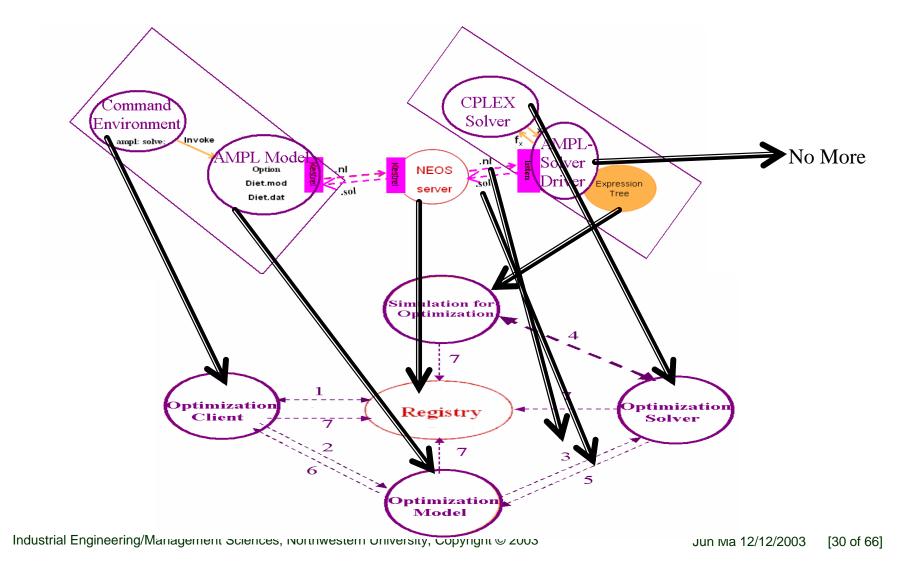


## Design of Distributed Optimization Architect Decentralized (Recommended)




Industrial Engineering/Management Sciences, Northwestern University, Copyright © 2003




NORTHWESTERN UNIVERSITY

## **Application Service Provider Revisited**





## **AMPL-NEOS Revisited**







## Outline

- Abstract
- Background
  - A General Picture The Future of Computing
  - Our Positioning The Hierarchy of Operations Research
  - Some Terminologies (Parallel/Distributed/Grid Computing, XML, Web Services, etc.)
  - Motivation
    - Motorola's VP Intelligent Optimization System
    - AMPL-NEOS
- The Design and Framework for Distributed Optimization (NSF Funded)
  - Proposing and Defining Optimization Services (OS, OSXL)
  - Design of Distributed Optimization Architecture (Centralized and Decentralized)
  - Optimization Services Representation (OSTL, OSRL, OSOL, OSSL, OSAL)
  - Optimization Services Communication (OSCL, OSDL, OSFL, OSEL)
  - Optimization Services Inspection and Discovery (OSIL, OSPL, OSBL, OSQL)
  - Future Work and Conclusion

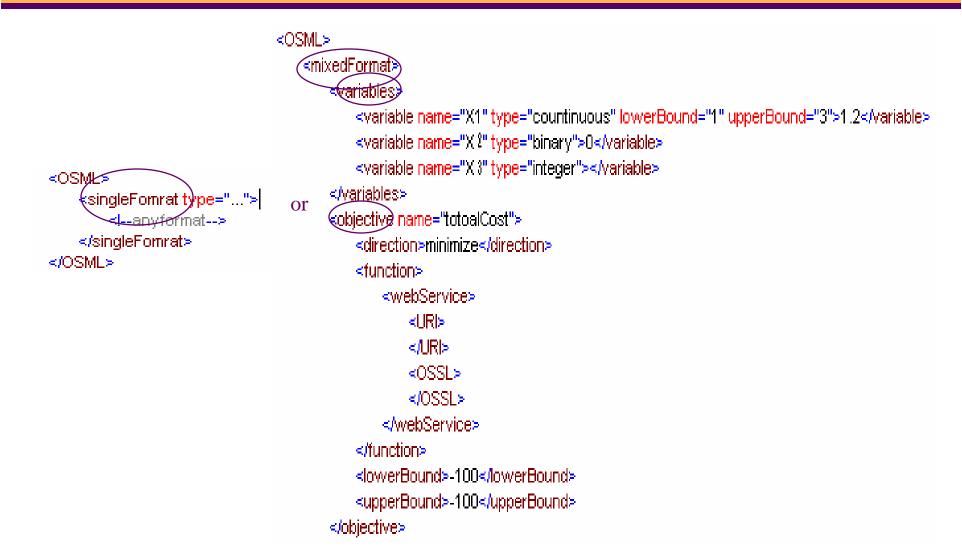


## High and Low Levels of Optimization Representation

- High Level Optimization Representation
  - Example: <u>AMPL</u>, GAMS, LINGO, ILOG OPL etc.
  - <u>Abstract algebraic</u> representation of a problem
  - <u>Separation</u> between model and data
- Optimization Services Representation
  - Example: <u>MPS</u> linear programming, SMPS stochastic programming, .nl used in AMPL, numerous proprietary formats used in commercial solvers
  - Considered in our framework
  - An optimization problem <u>instance</u>
  - Generated by <u>filling</u> the model with corresponding data



NORTHWESTERN UNIVERSITY


# Lower Level Optimization Representation Optimization Services Template Language (OSTL)

- It's not "<u>Optimization Services Modeling language</u>." It is "Optical Spectroscopy Markup Language" (The National Scientific Research Center – France)
- "<u>Modeling</u>" may be confused with high level algebraic modeling languages.
- A unified optimization instance representation think of <u>skeleton</u> or simply <u>template</u>
- Possible function type to be included (listed in terms of possibility)
  - Existing standard linear representation in XML
  - Simulation engine used for function evaluation through optimization
    - $\square$  Called through <u>OSCL</u>
    - $\square$  Represented through <u>OSSL</u>
  - <u>MathML</u> for simple relation and nonlinear representation
  - Existing <u>standard linear</u> representation in ASCII
  - <u>Binary</u> expression or function calculation executable that takes OSSL as input and output
- Constraints expressed as combination of <u>individual constraints</u> (mainly nonlinear or closed form) and <u>constraint sets</u> (mainly for linear form and matrices)
- Can contain an optional section of optimization analysis represented by <u>OSAL</u>



NORTHWESTERN UNIVERSITY

## **Lower Level Optimization Representation Optimization Services Template Language (OSTL)**





UNIVERSITY

# Lower Level Optimization Representation

**Optimization Services Template Language (OSTL)** 

```
<constraints>
            <constraint name="c1">
               <!-- for expressing nonlinear constraints-->
               <function>
                   <br/>
<br/>
hinary language="java" platform="unix">

                       <URI>
                       </URI>
                       <OSSL>
                       </binary>
               </function>
               <lowerBound>-3</lowerBound>
               <up>erBound>5</upperBound>
           </constraint>
           <constraint name="c2">
               <function>
                   <MathML>
                       <!--terms can be functions, which in term can be binary, webservice, or mathml, besides values and defined variables-->
                   </MathML>
               </function>
               <upperBound>5</upperBound>
            </constraint>
            <constraintSet)name="cset" type="MPS">
               --for expressing linear constraints-->
           </constraintSet>
       </constraints>
   </mixedFormat>
    <OSAL>
           analysis data-->
    </OSAL>
</OSML>
```



UNIVERSITY

## Lower Level Optimization Representation Optimization Services Result Language (OSRL)

- Contains 4 sections
  - <u>Status</u>
  - <u>Variables</u>
  - <u>Objective</u>
  - Constraints
  - May contain extended contents
- <u>Names</u> of different types of results associated with variables, the objective and constraints should be <u>standardized</u> (don't necessarily have to be reported)
- Think of AMPL suffixes



UNIVERSITY

#### **Lower Level Optimization Representation**

**Optimization Services Result Language (OSRL)** 

| «OSRL»                                                                                 | <pre>objective name="totalCost"&gt;</pre> |  |
|----------------------------------------------------------------------------------------|-------------------------------------------|--|
| <status></status>                                                                      | <standard></standard>                     |  |
| unbounded, found, infeasible, error                                                    | <r name="value">3</r>                     |  |
|                                                                                        |                                           |  |
| «variables»                                                                            | <specific></specific>                     |  |
| <variable name="x1"></variable>                                                        |                                           |  |
| <standard></standard>                                                                  |                                           |  |
| <r name="value">12</r>                                                                 | (constraint)>                             |  |
|                                                                                        | <constraint name="c1"></constraint>       |  |
| <specific></specific>                                                                  | <standard></standard>                     |  |
| <r name="weirdValue"></r>                                                              | <r name="body">12</r><br>                 |  |
| <pre><description>some weird values only calculated by this solver</description></pre> | <specific></specific>                     |  |
|                                                                                        |                                           |  |
|                                                                                        |                                           |  |
|                                                                                        |                                           |  |
| <variable name="x2"></variable>                                                        | <constraint name="c2"></constraint>       |  |
| Svanable Hanie= XZ P                                                                   |                                           |  |
|                                                                                        |                                           |  |
|                                                                                        |                                           |  |
|                                                                                        |                                           |  |

Jun Ma 12/12/2003 [37 of 66]



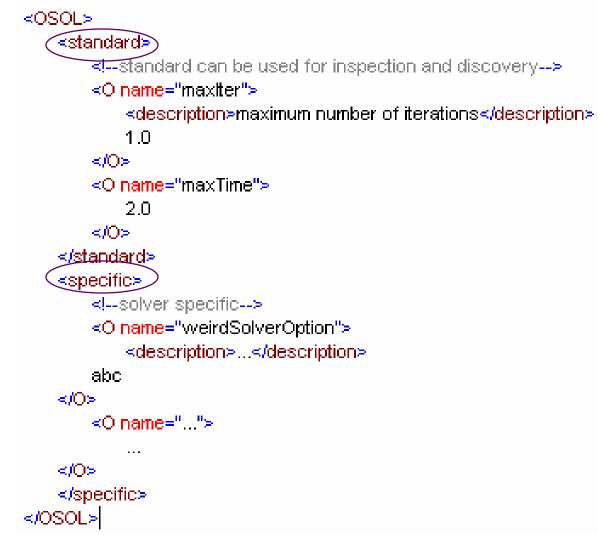
UNIVERSITY

# Lower Level Optimization Representation Optimization Services Option Language (OSOL)

Separate from OSTL, because it is <u>solver specific</u>, rather than problem specific

#### Contains 2 sections

- <u>Standard</u>
  - $\square$  Common names of solver options
  - Generation (because it is standardized)
  - $\square$  Can be used for solver inspection and discovery


#### - Specific

- ☐ Solver specific
- $\square$  Better contains a description for each option
- G Option values are typeless (For simplification. Think of Python)



UNIVERSITY

#### Lower Level Optimization Representation Optimization Services Option Language (OSOL)





# **Lower Level Optimization Representation Optimization Services Simulation Language (OSSL)**

- Used both for client initiating optimization model and <u>solver</u> <u>calling simulation engines</u>
- Contains an <u>input</u> and/or an <u>output</u> section.
- Input section contains two types of elements, both are typeless
  - <u>Variable</u>
  - <u>Parameter</u>
- From perspective of simulation engine or function evaluator (binary executables), they are both input arguments
- Reasoning for having two types of input argument
  - Parameters are fixed, whereas variables change
  - Iterative nature of optimization
  - Network trafficking
  - Variable matching between OSSL and OSML
  - Different treatment for numerical analysis, e.g. variable be represented more accurately for calculating derivatives



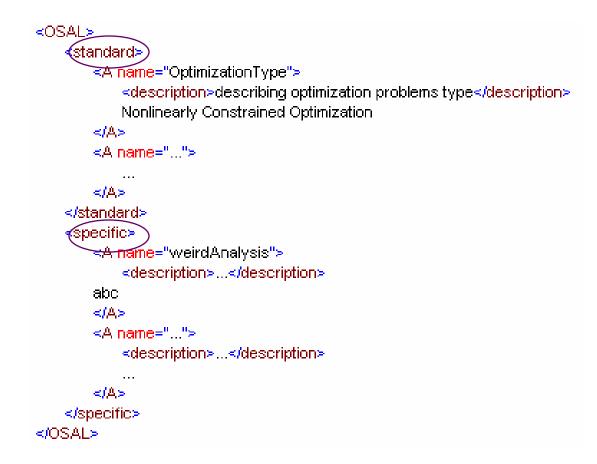
# Lower Level Optimization Representation

**Optimization Services Simulation Language (OSSL)** 



UNIVERSITY

# Lower Level Optimization Representation Optimization Services Analysis Language (OSAL)


- Separate from OSTL, because it is analyzer specific, as well as problem specific
- AMPL .nl file does some analysis
- Analyzer [H.J. GreenBerg]
- MProbe [J.W. Chinneck, Carleton U.]
- Convexity detection [D. Orban, NU]
- Other solver recommendation projects [A. Neumeier, U. of Vienna]
- Contains 2 sections
  - <u>Standard</u>
    - $\square$  Common names and analyses from analyzers
    - Generation (because it is standardized)
  - <u>Specific</u>
    - ☐ Analyzer specific
    - 🖫 Better contains a description for each option
    - 🖫 Analysis values are typeless



UNIVERSITY

#### **Lower Level Optimization Representation**

**Optimization Services Analysis Language (OSAL)** 







#### Outline

- Abstract
- Background
  - A General Picture The Future of Computing
  - Our Positioning The Hierarchy of Operations Research
  - Some Terminologies (Parallel/Distributed/Grid Computing, XML, Web Services, etc.)
  - Motivation
    - Motorola's VP Intelligent Optimization System
    - AMPL-NEOS
- The Design and Framework for Distributed Optimization (NSF Funded)
  - Proposing and Defining Optimization Services (OS, OSXL)
  - Design of Distributed Optimization Architecture (Centralized and Decentralized)
  - Optimization Services Representation (OSTL, OSRL, OSOL, OSSL, OSAL)
  - Optimization Services Communication (OSCL, OSDL, OSFL, OSEL)
  - Optimization Services Inspection and Discovery (OSIL, OSPL, OSBL, OSQL)
  - Future Work and Conclusion



UNIVERSITY

# Lower Level Optimization Communication Optimization Services Client Language (OSCL)

- Specifies the following client interface for it to get function values
  <u>String call (String input)</u>
- Both return value and input value should be of the XML form specified in <u>OSSL</u>
- Default binding should be SOAP to HTTP
- Used to call a standard web service used as a simulation for optimization
- When solver needs a function value from a web service, the solver is considered a client
- It should be a Remote Procedure Call
- Port address (location of web service) should be specified



NORTHWESTERN UNIVERSITY

Lower Level Optimization Communication Optimization Services Client Language (OSCL)

<OSCL:definitions xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" <br/>
sinding name="clientSoapBinding" type="client"> </wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.ord//soap/http"/> xmins:wsdl="http://schemas.xmisoap.org/wsdl/" <operation name="call"> xmins:wsdisoap="http://schemas.xmisoap.org/wsdi/soap/" </wsdlsoap:operation soapAction=""/> xmins:xsd="http://www.w3.org/2001/XMLSchema"> <input name="callRequest"> <types/> <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" <message name="callRequest"> </input> <output name="callResponse"> </wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" use="encoded"/> </hessage> </output> <message name="callResponse"> </operation> </binding> </message> <service name="clientService"> <portType name="client"> <wsdisoap:address location</td> <operation name="call" parameterOrder="OSSLRequest"> </bort> <input message="callRequest" name="callRequest"/> </service> <output message="callResponse" name="callResponse"/> </operation> </portType>



# Lower Level Optimization Communication

**Optimization Services Description Language (OSDL)** 

- Mechanism similar to OSCL
- Specifies the following 3 standard solver interfaces
  - int solver (binary solve)
  - Input specifies whether just checking status (false) or finally need to solve (true)
  - Output reports solver status (possibly -1 if not ready, or a positive integer indicating job number for later retrieval)

#### String set (String input)

- Both input and output should be of the XML format specified in <u>OSOL</u>
- Option values are set to empty if certain option input cannot be resolved <u>String solve (String input)</u>
- Input should be of the XML format specified in <u>OSTL</u>
- Output should be of the XML format specified in <u>OSRL</u>
- Other interfaces are possible but <u>solver/optimization specific</u>
- But probably don't need a <u>stop</u> function (We may well leverage it as well as other similar "management" functions on grid computing technologies. So hope they will be merged with web services)



UNIVERSITY

#### **Lower Level Optimization Communication Optimization Services Description Language (OSDL)**

<OSDL:definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmins:soapenc="http://schemas.xmisoap.org/soap/encoding/" xmins:wsdl="http://schemas.xmisoap.org/wsdl/" xmins:wsdlsoap="http://schemas.xmisoap.org/wsdl/soap/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <types/> <message name="solverRequest"> <part name="jobRequest" type="xsd:boolean"/> </message> <message name="solverResponse"> <part name="jobResponse" type="xsd:int"/> </message> <message name="setRequest"> <part name="OSOLRequest" type="xsd:string"/> </message> <message name="setResponse"> <part name="OSOLResponse" type="xsd:string"/> </messade> <message name="solveRequest"> <part name="OSMLRequest" type="xsd:string"/> </message> <message name="solveResponse"> cpart name="OSRLResponse" type="xsd:string"/> </message> <portType name="solver"> <operation namé="solver" parameterOrder="jobRequest"> <input message="solverRequest" name="solverRequest"/> <output message="solverResponse" name="solverResponse"/> </operation> <operation name="set" parameterOrder="OSOLRequest"> <input message="setRequest" name="setRequest"/> <output message="setResponse" name="setResponse"/> </operation> <operation name="solve")parameterOrder="OSMLRequest"> <input message="solveRequest" name="solveRequest"/> <output message="solveResponse" name="solveResponse"/> </operation> 



#### NORTHWESTERN UNIVERSITY

#### **Lower Level Optimization Communication Optimization Services Description Language (OSDL)**

```
<br/>
solverSoapBinding" type="impl:solver">
       <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"//
       <operation name="set">
           </wsdlsoap:operation soapAction=""/>
           <input name="setRequest">
                                                                                         use="encoded"/>
               <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding)"
           </input>
           <output name="setResponse">
               <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" use="encoded"/>
           </output>
       </operation>
       <operation name="solver">
           </wsdlsoap:operation soapAction=""/>
           <input name="solverRequest">
               <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" use="encoded"/>
           </input>
           <output name="solverResponse">
               <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" use="encoded"/>
           </output>
       </operation>
       <operation name="solve">
           </wsdlsoap:operation soapAction=""/>
           <input name="solveRequest">
               <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" use="encoded"/>
           </input>
           <output name="solveResponse">
               </wsdlsoap;body_encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" use="encoded"/>
           </output>
       </operation>
    </binding>
    <service name="solverService">
       <port binding="solverSoapBinding"_name="solver">
           <wsdlsoap:address location="http://localhost:8080/axis/solver.jws"/
       </port>
    </service>
</OSDL:definitions>
```



UNIVERSITY

# Lower Level Optimization Communication Optimization Services Flow Language (OSFL)

- <u>Reserved</u> for now
- Exact <u>purpose</u> is clear and may be necessary. But don't know of an appropriate <u>design</u>
- <u>Intention</u> is to organize analyzers, solvers, optimization simulations and other Optimization Services components, orchestrate information (e.g. input and output), sequence optimization process, resolve common variables etc.
- May prove to be especially <u>useful in</u> multi-objective, multi-start, multi-level, multi-disciplinary, Multi-processor optimization, Pareto-set optimization
- It is likely that OSFL will highly leverage on the interfaces specified in <u>OSDL</u>.
- May also need to collaborate with <u>OSPL</u>
- OSFL will probably wait to see the success and popularity of <u>other OSXL</u>.



# **Lower Level Optimization Communication**

**Optimization Services Endpoint Language (OSEL)** 

- Reserved for now
- Exact <u>purpose</u> not clear (may overlap with <u>grid</u> computing, thus unnecessary to <u>design</u> it)
- Intention is to be <u>compatible</u> with certain grid computing features
- Mainly to describe <u>non-functional characteristics</u> of an Optimization service
  - Quality of Service
  - Privacy policy
  - Auditing policy
- Should not affect the core syntax of <u>OSDL</u>
- May affect whether the solver requestor chooses to collaborate with a particular solver provider
- Can be important for <u>asynchronous message flows</u> (that is not request and response model)
  - Expected optimization time
  - Possible duration estimates for interaction or number of acceptable retires.
  - Basis on which solver requestor could establish time-out behavior, execute rollback or other interaction/compensation mechanism
  - Certain other run time information (may need to collaborate with OSPL)





#### Outline

- Abstract
- Background
  - A General Picture The Future of Computing
  - Our Positioning The Hierarchy of Operations Research
  - Some Terminologies (Parallel/Distributed/Grid Computing, XML, Web Services, etc.)
  - Motivation
    - Motorola's VP Intelligent Optimization System
    - AMPL-NEOS
- The Design and Framework for Distributed Optimization (NSF Funded)
  - Proposing and Defining Optimization Services (OS, OSXL)
  - Design of Distributed Optimization Architecture (Centralized and Decentralized)
  - Optimization Services Representation (OSTL, OSRL, OSOL, OSSL, OSAL)
  - Optimization Services Communication (OSCL, OSDL, OSFL, OSEL)
  - Optimization Services Inspection and Discovery (OSIL, OSPL, OSBL, OSQL)
  - Future Work and Conclusion



NORTHWESTERN UNIVERSITY

# Lower Level Optimization Communication Optimization Services Inspection Language (OSIL)

Nondifferentiable

Optimization

Nonlinearly

Constrained

Bound

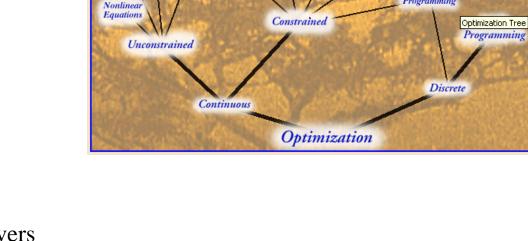
Constrained

Network

Programming

Stochastic

Programming


Global Optimization

Nonlinear

Least

Squares

- Think of <u>optimization tree</u>
- Think of it as <u>record in database</u>, only that the record is in XML rather than a row, and likely to be queries by OSQL rather than SQL.
- <u>Describing</u> keywords, abstract, description, etc.
- Describes Functionalities
  - <u>OSOL</u>
  - <u>OSBL</u>
  - Function type/format accepted
  - − <u>NEOS ranking</u> ☺
- May also provide <u>links</u> to other solvers
- This is the piece that probably most need the <u>authorities</u>:
  - INFORMS
  - OTC/NEOS
  - W3C



Linear

Programmin



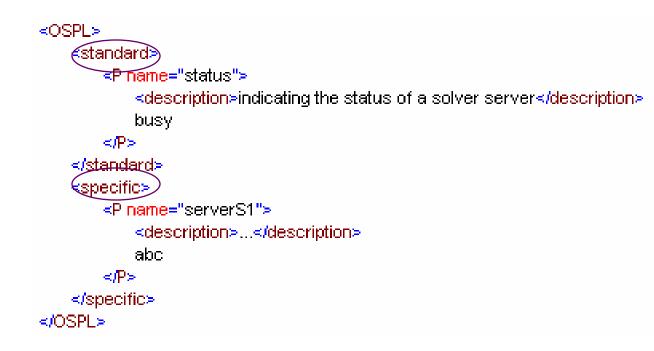
UNIVERSITY

#### Lower Level Optimization Communication Optimization Services Inspection Language (OSIL)

<OSIL:inspection xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/"> <!--siimlar to a record in a table--> -can use OSQL to search the registry table of OSIL--> <abstract/> service> name>CPLEX</name> <abstract>A solver that solves linear problem</abstract> <description/eferencedNamespace="http://schemas.xmlsoap.org/wsdl/" location="http://localhost:8080/cplex?wsdl"> </descriptions <solverCategory>Linear Programming</solverCategory> <OSOL> <standard/> <specific/> </os <OSBL/> EunctionTypesAccepted> <MathML/> <br/>dinary> <languages> <language>java</language> <language>c++</language> Ianguages> <platforms> <platform>win2000</platform> <platform>UNIX</platform> </platforms> </binary> <webService/> </FunctionTypesAccepted> NEOSRank> </NEOSRank> </service> Init referencedNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/" location="http://localhost:8080/othersolver.wsil"> <abstract>Other solver</abstract> </ink> </OSIL:inspection>



UNIVERSITY


#### Lower Level Optimization Communication Optimization Services Process Language (OSPL)

- <u>Runtime</u> description of solvers
  - Status
  - Number of jobs in its queue
  - Etc.
- Contains 2 sections
  - <u>Standard</u>
    - $\square$  Common names of solver process information
    - Generation (because it is standardized)
    - $\square$  Can be used for solver inspection and discovery
  - <u>Specific</u>
    - ☐ Solver specific
    - **Better contains a description for each option**
    - $\square$  Process values are typeless



# Lower Level Optimization Communication

**Optimization Services Process Language (OSPL)** 





UNIVERSITY

#### **Lower Level Optimization Communication Optimization Services Benchmark Language (OSBL)**

- Establishing <u>industry standard</u> for comparing solver algorithms and performances [w/ H. Mittelmann, U of Arizona]
- <u>Benchmarking</u> Solver at NEOS
- Probably doesn't need to contain <u>benchmarker specific</u> information, since benchmarking is supposed to be carried out against one single authoritative benchmarker.
- Not sure about exact <u>design</u> will be designed by researchers who do benchmarking analysis.
- Not sure where it fits and how it can <u>incorporated</u> in the entire framework (Maybe its separate)
- <u>Purpose</u> is to make solver benchmark runs and make comparable results
- Can be coupled with <u>OSIL</u> discovery and inspection



UNIVERSITY

# Lower Level Optimization Communication Optimization Services Query Language (OSQL)

- A language specification on <u>query syntax</u>
- To facilitate <u>discovery</u> of optimization solvers
- May just leverage on <u>XMLQuery</u>





#### Outline

- Abstract
- Background
  - A General Picture The Future of Computing
  - Our Positioning The Hierarchy of Operations Research
  - Some Terminologies (Parallel/Distributed/Grid Computing, XML, Web Services, etc.)
  - Motivation
    - Motorola's VP Intelligent Optimization System
    - AMPL-NEOS
- The Design and Framework for Distributed Optimization (NSF Funded)
  - Proposing and Defining Optimization Services (OS, OSXL)
  - Design of Distributed Optimization Architecture (Centralized and Decentralized)
  - Optimization Services Representation (OSTL, OSRL, OSOL, OSSL, OSAL)
  - Optimization Services Communication (OSCL, OSDL, OSFL, OSEL)
  - Optimization Services Inspection and Discovery (OSIL, OSPL, OSBL, OSQL)
- Future Work and Conclusion



#### Applications

- Virtual Prototyping (T. Tirpak)
- <u>iNEOS</u> (J. Nocedal)
- **IDEAL** (W. Chen)
  - Experimental Design, Response Surface Methodology, Metamodeling
  - Multidisciplinary Optimization
  - Multi-level Optimization
- Stochastic Programming Decomposition and Parallel Processing
- Integer Programming Branch and Bound
- Optimization Via Simulation
- Data Mining/Machine Learning



#### Possible Future Process The W3C Model

"I wrote in 1990 a program called "WorlDwidEweb"...

The first three years were a phase of persuasion to get the Web adopted ...

In 1992 academia, and in 1993 industry, was taking notice ...

After much discussion I decided to form the World Wide Web Consortium in September 1994, with a base at MIT in the USA ..."

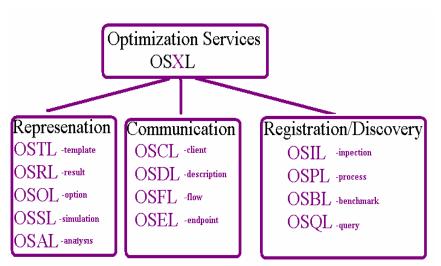
T. Berners-Lee

#### The W3C Process Model:

- 1. Working Group Notes
- 2. Working Drafts
- 3. Candidate Recommendations
- 4. **Proposed Edited Recommendations**
- 5. Proposed Recommendations
- 6. Recommendations



UNIVERSITY


#### **Future Work**

- To be
  - Smoother
  - Simpler
  - More scalable
  - More systematic
- Elaboration
- Collaboration
- Standardization
- Finalization
- To serve as a <u>basis</u> for other research



#### NORTHWESTERN UNIVERSITY

- Distributed Optimization Design
  - Centralized
  - Decentralized
- Optimization Services
  - Representation
     (OSTL, OSRL, OSOL, OSSL, OSAL)
  - Communication and Scheduling (OSCL, OSDL, OSFL, OSEL)
  - Analyzing, Benchmarking and Categorizing (OSIL, OSPL, OSBL, OSQL)



G

N

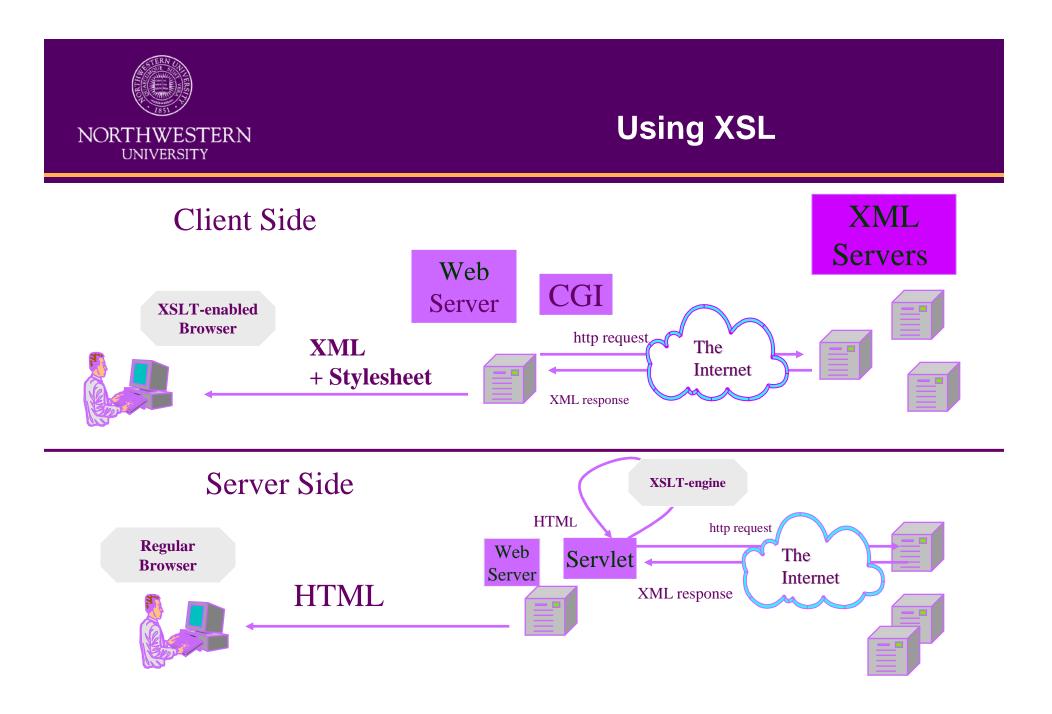
Conclusion

#### OSXL

| А                | В                 | С                          | D                       | E                    | F                     |
|------------------|-------------------|----------------------------|-------------------------|----------------------|-----------------------|
| Analysis         | Benchmark         | Client                     | Description             | Endpoint             | Flow                  |
| Н                | I<br>Inspection   | J                          | K                       | L                    | M<br>(Not to be used) |
| O<br>Option<br>U | P<br>Process<br>V | Q<br><sup>Query</sup><br>W | R<br>Result<br>X<br>(*) | S<br>Simulation<br>Y | T<br>Template<br>Z    |



# Acknowledgement


- To Professor Fourer for providing the vision and direction.
- To Tom Tirpak for providing the perfect environment, opportunity and motivation
- To Professor John Birge and Professor Wei Chen for serving on my committee
- To My wife, Haiyan Xu, who is graduating this afternoon.
- To all other OTC members for bring NEOS into being



NORTHWESTERN UNIVERSITY

## Misc. Notes (ignore)

- Tag, name description value (option), parameter (attribute or element)
- Id and href and Soap message with attachment
- Web service used locally (conforming to ossl)
- Xml with binary attachment <pic xsi:type="soap-end:base64>\*&^KJfak</pic>
- Use of ref or URI
- Constraint programming
- Complementarity problem
- Primitive type, array/matrix
- <obj> term and relation And closed form expression, name, can be web service choices <web service function> param, variable<>
- Data provider and model provider
- anyURI datatype usually a url
- URIReference: abs or relative
- <SOAP-ENC:uriReference>http://www.zvon.org</SOAP-ENC:uriReference> <foo xsi:type="SOAP-ENC:uriReference">http://www.zvon.org</foo> <SOAP-ENC:uriReference>reference.xml</SOAP-ENC:uriReference> <foo xsi:type="SOAP-ENC:uriReference">reference.xml</foo> <SOAP-ENC:uriReference>schema.xml#uriReference</SOAP-ENC:uriReference> <foo xsi:type="SOAP-ENC:uriReference">schema.xml#uriReference</foo>



Industrial Engineering/Management Sciences, Northwestern University, Copyright © 2003

Jun Ma 12/12/2003 [66 of 66]