
Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Setting Up and Hosting
Your Solver as Web

Services via Optimization
Services (OS)

Jun Ma
maj@northwestern.edu

Industrial Engineering and Management
Sciences, Northwestern University

11/04/2007

Robert Fourer
Jun Ma

Northwestern University
Kipp Martin

University of Chicago

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Outline
• Motivation
• OS Framework
• OS Library
• OS Server
• Conclusion/User Experience

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Motivation
Future of Computing

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

OS Framework
Optimization Services System

Modeler

Model/Data
Agent

A M P L

O S m L

Parse to OSiL

OS

Server
location

OS
Server

browser

Web page

Google

Web Server

CGIsocket http/html

OSP/
OSxL

Database/
App Service

Web address

html form

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

OS Library
• OSCommon

– representationParser
• OSiL Reader/Writer
• OSrL result
• OSoL option
• Etc.

– util
• data structure
• io
• xml
• etc

– communicationInterface
• OShL (hook up to solvers/analyzers: solve, send, retrieve)
• OScL (call to simulations)
• OSdL (discover in registries)

– localInterface
• OSInstance
• etc.

– nonlinear: defines all the nonlinear operator/operands/functions

OSiLReader reader = new OSiLReader();

reader.read(example.osil);

reader.getLinearConstraintCoefficients();

reader.calculateNonlinearFunction(5, x); //x is double[]

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

OS Library
• OSAgent

– Solver agent
– Simulation agent
– Solver agent

• OSSolver
– Utility and implementation of os-compatible solvers

• OSSimulation
– Utility and implementation of os-compatible simulation.

• OSRegistry
– Allows os developers to register their services
– Lets os users discover os services
– Let os users/developers validate instances

• OSAnalyzer
– Utility and implementation of os-compatible analyzers.

• OSScheduler
– Schedules optimization jobs over the distributed system
– Takes care of all the non-optimization related chores.

OSSolverAgent agent = new OSSolverAgent();

agent.solverAddress = “http://1.2.3.6/CbcSolverService”;

String osrlResult = agent.solve(osilInstance, osolOption);

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

OS Framework
Optimization Services Protocol (OSP)

Application

Presentation

Session

Transport

Network

Link

Physical

The 7-layer OSI Model The 4-layer Internet model

HTTP

IP

TCP

Ethernet

SOAP

OSP
Application

Presentation

Session

Transport

Network

Link

Physical

GET /xt/services/ColorRequest HTTP/1.0
Content Length: 442
Host: localhost
Content-type: text/xml; charset=utf-8
SOAPAction: "/getColor"

<soap:Envelope>
<soap:Body>

<soap:Body>
</soap:Envelope>

OSP – specifies soap content

Communication Interface
Representation

e.g. hook (“<OSiL> … </OSiL>”)

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

OS Server

• Networking Protocols: HTTP, SOAP, OSP
(OS server: Tomcat, Axis, OS library)

OSServer =

http parser

soap parser

osp handler

CbcSolverService

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

OS Server

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Download the OSServer

• Download the binary distribution:
os-distribution-release_number.zip.

The server side of the Java distribution is based on the
Tomcat 5.5 implementation.

• After unpacking os-distribution-release_number.zip there is
a directory os-server-1.0 and a single file os.war.

• For users that have not installed the Tomcat server, os-
server-1.0 contains all of the necessary files for a OS
Solver Service. If you do not have a Tomcat server running
do the following to setup a Tomcat server with the OS
Solver Service :

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Setting up the OSServer

• Step 1. Put the folder os-server-1.0 in the desired location for the OS Solver
Service on the server machine.

• Step 2. Connect to the Tomcat bin directory in the os-server-1.0 root and execute
./startup.sh (Linux) or ./start.bat (Windows)

• Step 3. Test to see if the server is running the OSSolverService. Open a browser
on the server and enter the URL

http://localhost:8080/os/OSSolverService.jws
or

http://127.0.0.1:8080/os/OSSolverService.jws
You should see a message Click to see the WSDL. Click on the link and you should see

an XML description of the various methods available from the OSSolverService.
• Step 4. On a client machine, create the file testremote.config with the following

lines of text
-serviceLocation http://***.***.***.***:8080/os/OSSolverService.jws
-osil parincLinear.osil

where ***.***.***.*** is the IP address of the Tomcat server machine. Then,
assuming the files testremote.config and parincLinear.osil are in the same
directory on the client machine as the OSSolverService execute:
./OSSolverService -config testremote.config

• You should get back an OSrL message saying the problem was optimized.

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Connect to the OSServer with OSSolverService

• At present, the OSSolverService takes the following parameters.
The order of the parameters is irrelevant. Not all the parameters
are required. However, if the solve or send service methods are
invoked a problem instance location must be specified.

• -osil xxx.osil this is the name of the file that contains the
optimization instance in OSiL format. It is assumed that this file
is available in a directory on the machine that is running
OSSolverService. If this option is not specified then the instance
location must be specified in the OSoL solver options file.

• -osol xxx.osol this is the name of the file that contains the solver
options. It is assumed that this file is available in a directory on
the machine that is running OSSolverService. It is not necessary
to specify this option.

• -osrl xxx.osrl this is the name of the file that contains the solver
solution. A valid file path must be given on the machine that is
running OSSolverService. It is not necessary to specify this
option.

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Connect to the OSServer with OSSolverService
• -serviceLocation url is the URL of the solver service. This is

not required, and if not specified it is assumed that the
problem is solved locally.

• -serviceMethod methodName this is the method on the
solver service to be invoked. The options are solve, send,
kill, knock, getJobID, and retrieve. The use of these
options is illustrated in the examples below. This option is
not required, and the default value is solve.

• -solver solverName Possible values for default OS
installation are clp (COIN-OR Clp), cbc (COIN-OR Cbc),
dylp (COIN-OR DyLP), and symphony (COIN-OR
SYMPHONY). Other solvers supported (if the necessary
libraries are present) are cplex (Cplex through COIN-OR
Osi), glpk (glpk through COIN-OR Osi), ipopt (COIN-OR
Ipopt), knitro (Knitro), and lindo LINDO. If no value is
specified for this parameter, then cbc is the default value of
this parameter if the the solve or send service methods are
used.

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Connect to the OSServer with OSSolverService
• -mps xxx.mps this is the name of the mps file if the problem

instance is in mps format. It is assumed that this file is
available in a directory on the machine that is running
OSSolverService. The default file format is OSiL so this
option is not required.

• -nl xxx.nl this is the name of the AMPL nl file if the problem
instance is in AMPL nl format. It is assumed that this file is
available in a directory on the machine that is

• -browser browserName this paramater is a path to the
browser on the local machine. If this optional parameter is
specified then the solver result in OSrL format is
transformed using XSLT into HTML and displayed in the
browser.

• -config pathToConfigureFile this parameter specifies a path
on the local machine to a text file containing values for the
input parameters. This is convenient for the user not
wishing to constantly retype parameter values.

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Examples (1)
• ./OSSolverService -solver clp -osil ./parincLinear.osil
• ./OSSolverService –config ./testlocalclp.config

where testlocalclp.config looks like:

-osil ./parincLinear.osil

-solver clp

• ./OSSolverService –config ./testlocal.config
where testlocalclp.config looks like:

-osil ../data/osilFiles/parincQuadratic.osil
-solver ipopt
-serviceMethod solve
-browser /Applications/Firefox.app/Contents/MacOS/firefox
-osrl ./test.osrl

• ./OSSolverService –config ./testlocalclp.config
where testlocalclp.config looks like:
-osol ./demo.osol
-solver clp

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">
<general>
<instanceLocation locationType="local">
../data/osilFiles/parincLinear.osil
</instanceLocation>
</general>
</osol>

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Examples (2)
• ./OSSolverService –config ./testremote.config

where testlocalclp.config looks like:
-osil ./parincLinear.osil
-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-serviceMethod send

• ./OSSolverService -config .testremote.config -solver clp
• or by adding the line -solver clp to the testremote.config file.
• ./OSSolverService -osol ./remoteSolve1.osol -serviceLocation

http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
where remoteSolve1.osol looks like:

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">
<general>
<instanceLocation locationType="local">c:\parincLinear.osil</instanceLocation>
<contact transportType="smtp">maj@northwestern.edu</contact>
</general>
<optimization>
<other name="os_solver">ipopt</other>
</optimization>
</osol>

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Usage Summary
• solve(osil, osol):
– Inputs: a string with the instance in OSiL format and an optional

string with the solver options in OSoL format
– Returns: a string with the solver solution in OSrL format
– Synchronous call, blocking request/response
• send(osil, osol):
– Inputs: a string with the instance in OSiL format and a string with

the solver options in OSoL format (same as in solve)
– Returns: a boolean, true if the problem was successfully

submitted, false otherwise
– Has the same signature as solve
– Asynchronous (server side), non-blocking call
– The osol string should have a JobID in the <jobID> element

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Usage Summary
• getJobID(osol)
– Inputs: a string with the solver options in OSoL format (in this case, the string

may be empty because no options are required to get the JobID)
– Returns: a string which is the unique job id generated by the solver service
– Used to maintain session and state on a distributed system
• knock(ospl, osol)
– Inputs: a string in OSpL format and an optional string with the solver options

in OSoL format
– Returns: process and job status information from the remote server in OSpL

format
• retrieve(osol)
– Inputs: a string with the solver options in OSoL format
– Returns: a string with the solver solution in OSrL format
– The osol string should have a JobID in the <jobID> element
• kill(osol)
– Inputs: a string with the solver options in OSoL format
– Returns: process and job status information from the remote server in OSpL

format
– Critical in long running optimization jobs

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

Conclusion/User Experience
• Open Environment
• Convenience just like Using Utility Services
• No High Computing Power Needed
• No Knowledge in Optimization Algorithms and Software (solvers,

options, etc.)
• Better and More Choices of Modeling Languages
• More Solver Choices
• Solve More Types of Problems
• Automatic Optimization Services Discovery
• Decentralized Optimization Services Development and Registration
• More Types of Optimization Services Components Integrated

(Analyzers/Preprocessors, Problem Providers, Bench Markers)
• Smooth Flow and Coordination of Various Optimization Services

Components.
• A Universal, Scalable and Standard Infrastructure that promotes

Collaboration and Other Related Researches
• Concentration on Good Modeling

Optimization Services
Robert Fourer, Jun Ma, Kipp Martin

• www.optimizationservices.org
• www.coin-or.org/OS

