Optimization Services Modeling Language

(OSmL)

Jun Ma
Northwestern University

Kipp Martin
University of Chicago

November 15, 2005

Outline

Introduction and Motivation
The OSmL Philosophy
OSmL Syntax

Data and XML

Hybrid Approached

OSmL GUI

Introduction and Motivation

The Objective: A native XML modeling language

» It should be able to act as an agent and send OSiL files to a
server with a solver that implements Optimization Services

Introduction and Motivation

The Objective: A native XML modeling language

» It should be able to act as an agent and send OSiL files to a
server with a solver that implements Optimization Services

» It should be a true algebraic modeling language

1.

© Q1R Wi

take a general infix notation

support sets and subscripts

have looping capability

support logical conditions

allow for user-defined functions

allow for sparse sets, union, intersection, etc.

Introduction and Motivation

The Objective: A native XML modeling language

» It should be able to act as an agent and send OSiL files to a
server with a solver that implements Optimization Services

» It should be a true algebraic modeling language

1.

© Q1R Wi

take a general infix notation

support sets and subscripts

have looping capability

support logical conditions

allow for user-defined functions

allow for sparse sets, union, intersection, etc.

» Store model instances internally as an OSlInstance object

Introduction and Motivation

The Objective: A native XML modeling language

» It should be able to act as an agent and send OSiL files to a
server with a solver that implements Optimization Services

» It should be a true algebraic modeling language

1.

© Q1R Wi

take a general infix notation

support sets and subscripts

have looping capability

support logical conditions

allow for user-defined functions

allow for sparse sets, union, intersection, etc.

» Store model instances internally as an OSlInstance object

» Also function as a matrix generator

Introduction and Motivation

XML is a key technology in industry

» XML is rapidly becoming an accepted format for
transferring/storing data. This is where the data is! Think
Willie Sutton and Sam Savage.

» People in IT use XML. Perhaps OR people should use IT
tools, rather than having IT people use OR tools.

» Numerous open-source. tools exist for manipulating XML files

Introduction and Motivation

There are four ways to incorporate XML in the mathematical
modeling process:

» Use XML to represent the instance of a mathematical program
» Develop an XML modeling language dialect

» Enhance modeling languages with XML features such as
XPath

» Use XML technologies to transform XML data into a problem
instance

Introduction and Motivation

Strategy 1: Use XML to represent the instance of a mathematical
model: e.g. LPFML and OSiL (Fourer, Kristjansson, Lopes, Ma,
Martin, etc.).

If there are N modeling languages and M drivers you can go from
M x N drivers to M + N drivers.

Strategy 2: Use XML to represent the mathematical model, e.g.
Ezechukwu and Maros (AML Algebraic Markup Language)

» With this approach we use XML tags to represent the
algebraic model NOT the instance.
» This is a high level approach.

» Have tags for model constructs such as sets, variables,
parameters, etc.

Introduction and Motivation

Strategy 2 (Continued): Use XML to represent the

mathematical model, e.g. Ezechukwu and Maros (AML Algebraic
Markup Language)

Potential Problems:

» How do we get everyone to agree? Witness the proliferation
of modeling languages.

» XML is wordy and would lead to a very verbose language.

<?xml version="1.0" encoding="UTF-8" 2>
- <lotSizeData>
- <product productID="1" holdCost="1" prodCost="7" fixedCost="150">
- <period periodID="1">
<demand>60</demand>
</period>
- <period periodID="2">
<demand>100</demand>
</period>
- <period periodID="3">
<demand>140</demand>
</period>
- <period periodID="4">
<demand>77.77 </demand>
</period>
</product=>
- <product productID="2" holdCost="2" prodCost="4" fixedCost="100">
- <period periodID="1">
<demand>1</demand>
</period>
- <period periodID="2">
<demand>2</demand>
</period>
+ <period periodID="3">
+ <period periodID="4">
</product>
- <periodCapacity>
<capacity periodID="1">200</capacity>
<capacity periodID="2">200</capacity:>
<capacity periodID="3">200</capacity:>
<capacity periodID="4">200</capacity>
</periodCapacity >
</lotSizeData>

Introduction and Motivation

Dynamic Lot Size Model:

N T
min = Z Z(hitlit + fityit)
=l =l
Ii,t—1+Xit_Iit = dit; I.:].,...,N, t:].,’T

N
E Xit
i=1

Xit < CtYit, I.:].,...7N7 t:].,,T

IA
2
=
Il
_I—‘
\i

Introduction and Motivation

Strategy 3: Enhance current modeling languages with XML
features such as XPath.

With XPath we can query an XML file and return a node set as an
ordered sequence.

In AMPL we declare sets such as:

set PROD;

set LINKS = {PROD, 1..numPeriods};
param HC {PROD} ;

param FXC {PROD} ;

param CAP {1..numPeriods} ;

param DEM {LINKS};

Lets look at equivalent in XPath.

Introduction and Motivation

Strategy 3: Enhance current modeling languages with XML
features such as XPath.

set PROD;

set LINKS = {PROD, 1..numPeriods};
param HC {PROD} ;

param FXC {PROD} ;

param CAP {1..numPeriods} ;

param DEM {LINKS};

Key Analogy: Create a built-in XPath Handler much like ODBC

table FXC IN XPath lotsizedata.xml
/lotSizeData/product/@fixedCost

The OSmL Philosophy: All X all the time!

Key Premise: OSmL is based on XQuery. Think of XQuery as a
much more powerful SQL applied to XML data rather than
relational data.

SQL:
» SELECT
» FROM
» WHERE
XQuery (FLWOR flower):

» For
Where
Let
Order by

>
>
>
» Return

The OSmL Philosophy: All X all the time!

Key Premise: XQuery (an extension of XPath) is a very powerful
modeling language for mathematical optimization. It is (See
Fourer 1983):

» symbolic

» general

> concise

» understandable

We can build a modeling language using existing W3C standards!

The OSmL Philosophy

Advantages of using XQuery:

>

XQuery and XPath have very powerful algebraic modeling
features, e.g. sets, for loops, if-then, union, intersection,
library modules

These are already accepted W3C standards

Allow for concise model representation

Lots of open source software tools are being written
XQuery and XPath very amenable to distributed computing

Easy problem analysis on OSrL

OSmL Syntax

First Requirement: Take a model in infix format without any set
notation.

return

<mathProgram>

<obj max0OrMin="min" name="Rosenbrock">
100%(x2 - x1°2)7°2 + (1 - x1)°2

</obj>
<constraints>
<con>
x1 + x2 <= 100
</con>
</constraints>

</mathProgram>

OSmL Syntax

Of course work with sets:

Here is some AMPL

param HC {PROD} ;
param FXC {PROD} ;
param CAP {1..numPeriods} ;

Here is some XQuery

let $HC := $products/CholdCost
let $FXC := $products/@fixedCost
let $CAP := $time/text()

OSmL Syntax

We can point to any number of data sets:

let $products :=
doc("/Users/kmartin/temp/osml/lotsizedata.xml")
/lotSizeData/product[(1, 2, 5, 11, 17)]

let $products :=
doc("http://128.135.124.10/Users/kmartin/ ...")
We can also define variables:

let $N :
let $T :

count ($products)
count ($time)

OSmL Syntax

We can do looping:
Here is AMPL

subject to demand {i in PROD, t in 1..numPeriods}:
X[i, t] + I[i, t - 1] - I[i, t] = DEM[i, tl;

Here is XQuery

for $i in PROD, $t in (1 to $T)

let $demand :=

$products[$i] /period[@periodID=$t]/demand/text ()
return

<con name="demand [{$i},{$t}]1>

X({$1i},{3t) + I({$i},{$t - 1}) - T({$i},{$t}) =

{$demand}

</con>

OSmL Syntax
An AMPL and XQuery analogy:

AMPL: subject to
XQuery: <con>

AMPL: demand

XQuery: name="demand[{$i},{$t 31"

AMPL: {i in PROD, t in 1..numPeriods}

XQuery: for $i in (1 to $N), $t in (1 to $T)
let $demand :=

data($products[$i] /period[@periodID=$t]/demand)

AMPL: X[i, t] + I[i, t - 1] - I[i, t] = DEM[i, t]

XQuery: X({$i},{$t }) + I({$i},{$t - 1}) - I({$i},{%t}) =
{$demand} ,y

OSmL Syntax

XQuery evaluates what is in {...} and the $ tells XQuery you have
a variable.

{

for $i in $PROD, $t in (1 to $T)

let $demand :=

($products[$i] /period[@periodID=$t]/demand/text ())

return
<con name="demand [{$i},{$t}]1">
X[{$i},{$tF] + I[{$i},{$t - 1}] - IT[{$i},{$t}] =
{$demand}
</con> }

OSmL Syntax

The XQuery results is:

<!-- DEMAND CONSTRAINTS -->
<con name=demand[1,1]>

X(1,1) + I(1,0) - I(1,1) = 60
</con>
<con name=demand[2,1]>

X(2,1) + I(2,0) - I(2,1) =1
</con>
Etc

We then parse this and transform into OSiL.

OSmL Syntax

Other features:

» Use if-then logic
» We can use built-in Java functions. For example:
declare namespace math="java:java.lang.Math";

We can define our own functions

v

v

Use XQuery and XPath to display results

v

Define sparse sets, intersection, union

let $products := /lotSizeData/product[(1, 2, 11, 19)]

for (1 to 100) [mod 2 eq 0]

Data and XML

Point 1: It is getting easy to get data in XML format from
traditional sources
» Can export to XML from desktop software (Microsoft Office)
» Can query an enterprise database in SQL and get result as
XML
Point 2: There is even a trend toward native XML databases
» Total XML Cincom
» Tamino Software AG
» Apache Xindice
» Cognetic Systems’ solutions

» Ipedo

Hybrid Approaches

Possibilities:

» Make XQuery/XPath equivalent to ODBC/SQL

» Introduce the concept of a node set (as an alternative) to a
table in algebraic modeling languages

» What about adding XQuery syntax to the an algebraic

modeling language?

Perhaps all algebraic modeling languages could have a
common underlying syntax based upon XQuery/XPath?

OSmL GUI

The current implementation of OSmL is in OSmL GUI. It can be
used in three ways:

» A simple agent to send OSiL to a Web server.
» Use XQuery and our parser to turn OSmL into OSiL

» With the OSlInstance class as a matrix generator

OSmL GUI

The OSlnstance class is used to access the problem data or
create/modify the problem. For example, accessing a problem for
the solver

m_mdVarLB = osinstance->getVariableLowerBounds() ;
m_mdVarUB = osinstance->getVariableUpperBounds() ;
solver->assignProblem(m_, m_mdVarLB, m_mdVarUB,
m_mmdObjDenseCoefValue, m_mdConlB, m_mdConUB) ;

or creating a problem

instanceData.linearConstraintCoefficients.start.el
= A_colstarts;
instanceData.linearConstraintCoefficients.value.el
= A_vals;
instanceData.linearConstraintCoefficients.rowldx.el
= A_rownos;

Key Idea: It maps to the OSiL Schema.

	Introduction and Motivation
	The OSmL Philosophy
	OSmL Syntax
	Data and XML
	Hybrid Approached
	OSmL GUI

