
Optimization Services Modeling Language
(OSmL)

Jun Ma
Northwestern University

Kipp Martin
University of Chicago

November 15, 2005

1

Outline

Introduction and Motivation

The OSmL Philosophy

OSmL Syntax

Data and XML

Hybrid Approached

OSmL GUI

2

Introduction and Motivation

The Objective: A native XML modeling language

I It should be able to act as an agent and send OSiL files to a
server with a solver that implements Optimization Services

I It should be a true algebraic modeling language

1. take a general infix notation
2. support sets and subscripts
3. have looping capability
4. support logical conditions
5. allow for user-defined functions
6. allow for sparse sets, union, intersection, etc.

I Store model instances internally as an OSInstance object

I Also function as a matrix generator

3

Introduction and Motivation

The Objective: A native XML modeling language

I It should be able to act as an agent and send OSiL files to a
server with a solver that implements Optimization Services

I It should be a true algebraic modeling language

1. take a general infix notation
2. support sets and subscripts
3. have looping capability
4. support logical conditions
5. allow for user-defined functions
6. allow for sparse sets, union, intersection, etc.

I Store model instances internally as an OSInstance object

I Also function as a matrix generator

4

Introduction and Motivation

The Objective: A native XML modeling language

I It should be able to act as an agent and send OSiL files to a
server with a solver that implements Optimization Services

I It should be a true algebraic modeling language

1. take a general infix notation
2. support sets and subscripts
3. have looping capability
4. support logical conditions
5. allow for user-defined functions
6. allow for sparse sets, union, intersection, etc.

I Store model instances internally as an OSInstance object

I Also function as a matrix generator

5

Introduction and Motivation

The Objective: A native XML modeling language

I It should be able to act as an agent and send OSiL files to a
server with a solver that implements Optimization Services

I It should be a true algebraic modeling language

1. take a general infix notation
2. support sets and subscripts
3. have looping capability
4. support logical conditions
5. allow for user-defined functions
6. allow for sparse sets, union, intersection, etc.

I Store model instances internally as an OSInstance object

I Also function as a matrix generator

6

Introduction and Motivation

XML is a key technology in industry

I XML is rapidly becoming an accepted format for
transferring/storing data. This is where the data is! Think
Willie Sutton and Sam Savage.

I People in IT use XML. Perhaps OR people should use IT
tools, rather than having IT people use OR tools.

I Numerous open-source. tools exist for manipulating XML files

7

Introduction and Motivation

There are four ways to incorporate XML in the mathematical
modeling process:

I Use XML to represent the instance of a mathematical program

I Develop an XML modeling language dialect

I Enhance modeling languages with XML features such as
XPath

I Use XML technologies to transform XML data into a problem
instance

8

Introduction and Motivation

Strategy 1: Use XML to represent the instance of a mathematical
model: e.g. LPFML and OSiL (Fourer, Kristjansson, Lopes, Ma,
Martin, etc.).

If there are N modeling languages and M drivers you can go from
M × N drivers to M + N drivers.

Strategy 2: Use XML to represent the mathematical model, e.g.
Ezechukwu and Maros (AML Algebraic Markup Language)

I With this approach we use XML tags to represent the
algebraic model NOT the instance.

I This is a high level approach.

I Have tags for model constructs such as sets, variables,
parameters, etc.

9

Introduction and Motivation

Strategy 2 (Continued): Use XML to represent the
mathematical model, e.g. Ezechukwu and Maros (AML Algebraic
Markup Language)

Potential Problems:

I How do we get everyone to agree? Witness the proliferation
of modeling languages.

I XML is wordy and would lead to a very verbose language.

10

Introduction and Motivation

11

Introduction and Motivation

Dynamic Lot Size Model:

min =
N∑

i=1

T∑
t=1

(hit Iit + fityit)

Ii ,t−1 + xit − Iit = dit , i = 1, . . . ,N, t = 1, . . . ,T

N∑
i=1

xit ≤ ct , t = 1, . . . ,T

xit ≤ ctyit , i = 1, . . . ,N, t = 1, . . . ,T

12

Introduction and Motivation

Strategy 3: Enhance current modeling languages with XML
features such as XPath.

With XPath we can query an XML file and return a node set as an
ordered sequence.

In AMPL we declare sets such as:

set PROD;
set LINKS = {PROD, 1..numPeriods};
param HC {PROD} ;
param FXC {PROD} ;
param CAP {1..numPeriods} ;
param DEM {LINKS};

Lets look at equivalent in XPath.

13

Introduction and Motivation

Strategy 3: Enhance current modeling languages with XML
features such as XPath.

set PROD;
set LINKS = {PROD, 1..numPeriods};
param HC {PROD} ;
param FXC {PROD} ;
param CAP {1..numPeriods} ;
param DEM {LINKS};

Key Analogy: Create a built-in XPath Handler much like ODBC

table FXC IN XPath lotsizedata.xml
/lotSizeData/product/@fixedCost

14

The OSmL Philosophy: All X all the time!

Key Premise: OSmL is based on XQuery. Think of XQuery as a
much more powerful SQL applied to XML data rather than
relational data.
SQL:

I SELECT

I FROM

I WHERE

XQuery (FLWOR flower):

I For

I Where

I Let

I Order by

I Return

15

The OSmL Philosophy: All X all the time!

Key Premise: XQuery (an extension of XPath) is a very powerful
modeling language for mathematical optimization. It is (See
Fourer 1983):

I symbolic

I general

I concise

I understandable

We can build a modeling language using existing W3C standards!

16

The OSmL Philosophy

17

The OSmL Philosophy

Advantages of using XQuery:

I XQuery and XPath have very powerful algebraic modeling
features, e.g. sets, for loops, if-then, union, intersection,
library modules

I These are already accepted W3C standards

I Allow for concise model representation

I Lots of open source software tools are being written

I XQuery and XPath very amenable to distributed computing

I Easy problem analysis on OSrL

18

OSmL Syntax

First Requirement: Take a model in infix format without any set
notation.

return
<mathProgram>
<obj maxOrMin="min" name="Rosenbrock">
100*(x2 - x1^2)^2 + (1 - x1)^2
</obj>
<constraints>
<con>
x1 + x2 <= 100
</con>
</constraints>
</mathProgram>

19

OSmL Syntax

Of course work with sets:

Here is some AMPL

param HC {PROD} ;
param FXC {PROD} ;
param CAP {1..numPeriods} ;

Here is some XQuery

let $HC := $products/@holdCost
let $FXC := $products/@fixedCost
let $CAP := $time/text()

20

OSmL Syntax

We can point to any number of data sets:

let $products :=
doc("/Users/kmartin/temp/osml/lotsizedata.xml")
/lotSizeData/product[(1, 2, 5, 11, 17)]

let $products :=
doc("http://128.135.124.10/Users/kmartin/ ...")

We can also define variables:

let $N := count($products)
let $T := count($time)

21

OSmL Syntax

We can do looping:

Here is AMPL

subject to demand {i in PROD, t in 1..numPeriods}:
X[i, t] + I[i, t - 1] - I[i, t] = DEM[i, t];

Here is XQuery

for $i in PROD, $t in (1 to $T)
let $demand :=
$products[$i]/period[@periodID=$t]/demand/text()

return
<con name="demand[{$i},{$t}]>
X({$i},{$t }) + I({$i},{$t - 1}) - I({$i},{$t}) =
{$demand}
</con>

22

OSmL Syntax

An AMPL and XQuery analogy:

AMPL: subject to
XQuery: <con>

AMPL: demand
XQuery: name="demand[{$i},{$t }]"
AMPL: {i in PROD, t in 1..numPeriods}
XQuery: for $i in (1 to $N), $t in (1 to $T)
let $demand :=
data($products[$i]/period[@periodID=$t]/demand)

AMPL: X[i, t] + I[i, t - 1] - I[i, t] = DEM[i, t]

XQuery: X({$i},{$t }) + I({$i},{$t - 1}) - I({$i},{$t}) =
{$demand}

23

OSmL Syntax

XQuery evaluates what is in {. . .} and the $ tells XQuery you have
a variable.

{
for $i in $PROD, $t in (1 to $T)
let $demand :=
($products[$i]/period[@periodID=$t]/demand/text())

return
<con name="demand[{$i},{$t}]">
X[{$i},{$t}] + I[{$i},{$t - 1}] - I[{$i},{$t}] =
{$demand}
</con> }

24

OSmL Syntax

The XQuery results is:

<!-- DEMAND CONSTRAINTS -->
<con name=demand[1,1]>

X(1,1) + I(1,0) - I(1,1) = 60
</con>
<con name=demand[2,1]>

X(2,1) + I(2,0) - I(2,1) = 1
</con>

Etc

We then parse this and transform into OSiL.

25

OSmL Syntax

26

OSmL Syntax

Other features:

I Use if-then logic

I We can use built-in Java functions. For example:

declare namespace math="java:java.lang.Math";

I We can define our own functions

I Use XQuery and XPath to display results

I Define sparse sets, intersection, union

let $products := /lotSizeData/product[(1, 2, 11, 19)]

for (1 to 100)[mod 2 eq 0]

27

Data and XML

Point 1: It is getting easy to get data in XML format from
traditional sources

I Can export to XML from desktop software (Microsoft Office)

I Can query an enterprise database in SQL and get result as
XML

Point 2: There is even a trend toward native XML databases

I Total XML Cincom

I Tamino Software AG

I Apache Xindice

I Cognetic Systems’ solutions

I Ipedo

28

Hybrid Approaches

Possibilities:

I Make XQuery/XPath equivalent to ODBC/SQL

I Introduce the concept of a node set (as an alternative) to a
table in algebraic modeling languages

I What about adding XQuery syntax to the an algebraic
modeling language?

Perhaps all algebraic modeling languages could have a
common underlying syntax based upon XQuery/XPath?

29

OSmL GUI

The current implementation of OSmL is in OSmL GUI. It can be
used in three ways:

I A simple agent to send OSiL to a Web server.

I Use XQuery and our parser to turn OSmL into OSiL

I With the OSInstance class as a matrix generator

30

OSmL GUI
The OSInstance class is used to access the problem data or
create/modify the problem. For example, accessing a problem for
the solver

m_mdVarLB = osinstance->getVariableLowerBounds();
m_mdVarUB = osinstance->getVariableUpperBounds();
solver->assignProblem(m_, m_mdVarLB, m_mdVarUB,
m_mmdObjDenseCoefValue, m_mdConLB, m_mdConUB);

or creating a problem

instanceData.linearConstraintCoefficients.start.el
= A_colstarts;
instanceData.linearConstraintCoefficients.value.el
= A_vals;
instanceData.linearConstraintCoefficients.rowIdx.el
= A_rownos;

Key Idea: It maps to the OSiL Schema.
31

	Introduction and Motivation
	The OSmL Philosophy
	OSmL Syntax
	Data and XML
	Hybrid Approached
	OSmL GUI

