
Optimization Services: A Framework for
Distributed Optimization

Robert Fourer and Jun Ma
Northwestern University

Kipp Martin
University of Chicago

June 2, 2006

1

Outline

Optimization Services (OS)

Service Oriented Architectures and Web Services

Optimization As a Web Service

OS Protocols
OS Protocols: Representation
OS Protocols: Communication
OS Protocols: Registry

Solver Service – An OS Implementation

COIN-OR

Client Service – An OS Implementation

Summary and Future Work

2

Key Themes

I Main Idea: It is necessary for OR people to cater to the IT
community and use their tools, not the other way around!

I Witness the success of Excel Solver – the OR community got
that one right.

I Key IT Technologies/Trends

1. Extensible Markup Language (XML) for Data
2. Web Services
3. Service Oriented Architectures
4. Software as service

Corollary 1: The OR community must use these technologies in
order to integrate optimization into a modern IT infrastructure.

3

Optimization Services (OS)

Software as a service! In industry, CRM (customer relationship
software), tax preparation, Microsoft Office Live, etc. are all
becoming services. All of the major players in software are
promising software as a service. There clearly is a trend away from
the fat client loaded with lots of heavyweight applications.

Corollary 2: Optimization should available as a software service.
It should be easy to solve optimization problems of any type
(linear, integer, nonlinear, stochastic, etc), at any time, if you are
hooked up to the network.

Optimization Services is our attempt to make optimization a
service.

4

Optimization Services (OS)

If enterprise software is offered as a service, but optimization is
not, how can we possibly hope to have optimization integrated into
these products?

5

Optimization Services (OS)

“I commend the work you’ve done on the XML representation of
linear programming problems. Im with a Business Intelligence
start-up in California that would like to incorporate LP into our
solution and were evaluating a number of options including the
LPFML specification.”

An email received May 31, 2006 from the CEO of a Business
Intelligence start-up.

6

Optimization Services (OS)

A simple scenario:

Optimization
Instance

Optimization
Result

Client
Computer Solver

Server

Take advantage of a faster machine (the server), code not on the
client, a better license deal, open source software, etc. Maintaining
code on a single machine is just easier.

7

Optimization Services (OS)

A more complicated scenario:

Optimization
Instance

Optimization
Result

Client
Computer Solver

Server

Data

Data
Server

In a realistic modeling environment we cannot expect the data to
be on the client machine. We may also want a feed to real time
data to make sure the problem instance is current.

8

Optimization Services (OS)

Optimization Services on Steroids!!!

XML
Data

OSrL
Instance

OSmL

OSiL
Instance

XML Data ServerSolver Server

HTML
Result

Registry Server

Client Computer

OSmL Server

9

Optimization Services (OS)

Optimization Services:

I A set of standards to facilitate communication between
modeling languages, solvers, problem analyzers, simulation
engines, and registry and discovery services in a distributed
computing environment.

I These standards should be programming language, operating
system, and hardware independent.

I These standards should be open and available for everyone in
the OR community to use free of charge.

I Optimization should be as easy as hooking up to the network.

10

Optimization Services

Optimization services is needed because there are:

I Numerous modeling languages each with their own format for
storing the underlying model.

I Numerous solvers each with their own application program
interface (API). There is no standard API.

I Numerous operating system, hardware, and programming
language combination. It is difficult for software vendors to
support every platform.

I No standard for representing problem instances, especially
nonlinear optimization instances.

I No real standard for registry and discovery services.

11

Optimization Services

In the rest of the talk we describe how to blend together:

I A Service Oriented Architecture (SOA) using Web Services

I Optimization Service Protocols – one way to view
optimization systems is as a set of protocols

I Solver and Client Service implementations based on Web
Services and OS Protocols

12

Service Oriented Architectures

Key Trend: An important trend in industry is the move to services
oriented architectures and Web services. All of the major players
such as IBM, Microsoft, Oracle, Sun, etc are talking about service
oriented architectures and bringing out products.

13

Service Oriented Architectures

An SOA is a philosophy for how a distributed component
architecture should work it is not a specific technology

Web Services is a technology that implements this philosophy.

Definition: Web Services is SOAP over a transport protocol such
HTTP, SMTP, FTP, etc.

HTTP is the most common protocol and is the protocol we use
HTTP in our implementations.

14

Web Services

Web Services is Popular because:

I Uses open standards, e.g. HTTP, XML, SOAP

I Can be used to develop rich clients

I Can be used by components people not necessary

Web Services makes use of three major protocols:

I SOAP (Simple Object Access Protocol)

I WSDL (Web Services Discovery Language)

I UDDI (Universal Description, Discovery, and Integration)

15

Optimization As a Web Service

Optimization Services: a service oriented architecture for
optimization using Web services (SOAP over HTTP)

16

OS Protocols

Optimization Services: A set of protocols for representation,
communication, and registry.

17

OS Protocols: Representation

I In a distributed setting the model may be generated on one
machine and the model optimized on another machine

I The solver wants an instance as opposed to a model

I Important Distinction: model versus instance

Model versus Instance (See Fourer 83)

Model Instance
Symbolic Explicit
General Specific
Concise Verbose
Understandable Convenient

18

OS Protocols: Representation

A simple production scheduling model in AMPL

set PROD; # products
set DEP; # processing departments

param hours {DEP};
param rate {DEP, PROD};
param profit {PROD};
var Make {PROD} >= 0;

maximize TotalProfit:
sum {j in PROD} profit[j] * Make[j];

subject to HoursAvailable {i in DEP}:
sum {j in PROD} rate[i,j] * Make[j] <= hours[i];

19

OS Protocols: Representation

Raw Data for a model

param: PROD: profit :=
std 10
del 9 ;

param: DEP: hours :=
cutanddye 630
sewing 600
finishing 708
inspectandpack 135 ;

param: rate: std del :=
cutanddye 0.7 1.0
sewing 0.5 0.8333
finishing 1.0 0.6667
inspectandpack 0.1 0.25 ;

20

OS Protocols: Representation

Instance = Model + Data

maximize TotalProfit:
10*Make[std] + 9*Make[del];

subject to HoursAvailable[cutanddye]:
0.7*Make[std] + Make[del] <= 630;

subject to HoursAvailable[sewing]:
0.5*Make[std] + 0.8333*Make[del] <= 600;

subject to HoursAvailable[finishing]:
Make[std] + 0.6667*Make[del] <= 708;

subject to HoursAvailable[inspectandpack]:
0.1*Make[std] + 0.25*Make[del] <= 135;

21

OS Protocols: Representation

A Proliferation of Modeling Languages and of Solvers

Modeling languages Solvers
AIMMS CLP
AMPL CPLEX
GAMS GLPK
LINGO LINDO
Mosel MINOS
MPL MOSEK
OPL Xpress-MP

22

OS Protocols: Representation

Consequence: a lot of drivers are need for every modeling
language to talk to every solver

Modeling
Language 1

Modeling
Language 2

Modeling
Language M

Solver 1

Solver 2

Solver N

MN Drives Required
Without XML

23

OS Protocols: Representation

An instance representation language is required!

Modeling
Language 1

Modeling
Language 2

Modeling
Language M

Solver 1

Solver 2

Solver N

M + N Drives Required
With XML

XML
Instance

24

OS Protocols: OSiL

The protocol we developed for representing a broad variety of
optimization problem instances is OSiL (Optimization Services
instance Language).

The OSiL is defined using XML (Extensible Markup Language).
The decision to use XML goes back to the initial theme of the talk.

I XML is rapidly becoming an accepted format for
transferring/storing data. This is where the data is! Think
Willie Sutton and Sam Savage.

I People in IT use XML. OR people should use IT tools, rather
than having IT people use OR tools.

25

OS Protocols: OSiL

XML – A file that contains both data and markup. A very simple
idea, yet very powerful. For example, here is how AMPL would
store constraint information for a problem instance

n0
r
1 630
1 600
1 708
1 135
b
2 0
2 0
k1

The file is all data – very hard to parse! Contrast this with XML.

26

OS Protocols: OSiL
The XML file contains both data and Markup (Elements (tags)
and Attributes).

<constraints>
 <con name=“cutanddye" ub="630"/>
 <con name="sewing" ub="600"/>
 <con name="finishing" ub="708"/>
 <con name="inspectandpack" ub="135"/>
</constraints>

ATTRIBUTEELEMENT

Note: HTML (actually XHTML) is an example of an XML
vocabulary. HTML is about formatting. For example in HTML you
might write.

<p> See Spot Run</p>

27

OS Protocols: OSiL

Minimize (1− x0)
2 + 100(x1 − x2

0)2 + 9x1

Subject to x0 + 10x2
0 + 11x2

1 + 3x0x1 ≤ 25

ln(x0x1) + 7x0 + 5x1 ≥ 10

x0, x1 ≥ 0

28

OS Protocols: OSiL

The variables: x0, x1 ≥ 0

<variables number="2">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>

</variables>

The objective function: minimize 9x1

<objectives number="1">
<obj maxOrMin="min" name="minCost">]

<coef idx="1">9</coef>
</obj>

</objectives>

29

OS Protocols: OSiL

The linear terms are stored using a sparse storage scheme

x0 + 10x2
0 + 11x2

1 + 3x0x1 ≤ 25

7x0 + 5x1 + ln(x0x1)+ ≥ 10

<linearConstraintCoefficients>
<start>

<el>0</el><el>2</el><el>3</el>
</start>
<rowIdx>

<el>0</el><el>1</el><el>1</el>
</rowIdx>
<value>

<el>1.0</el><el>7.0</el><el>5.0</el>
</value>

</linearConstraintCoefficients>
30

OS Protocols: OSiL
Representing quadratic and general nonlinear terms

x0 + 10x2
0 + 11x2

1 + 3x0x1 ≤ 25

7x0 + 5x1 + ln(x0x1)+ ≥ 10

<quadraticCoefficients numberOfQuadraticTerms="3">
<qTerm idx="0" idxOne="0" idxTwo="0" coef="10"/>
<qTerm idx="0" idxOne="1" idxTwo="1" coef="11"/>
<qTerm idx="0" idxOne="0" idxTwo="1" coef="3"/>

</quadraticCoefficients>

<nl idx="1">
<ln>

<times>
<variable coef="1.0" idx="0"/>
<variable coef="1.0" idx="1"/>

</times>
</ln>

</nl> 31

OS Protocols: OSiL
Key idea a schema. How do we know how to write proper OSiL?
Similar to the concept of a class in object orient programming.
Critical for parsing!

Schema ⇐⇒ Class

XML File ⇐⇒ Object

We need a schema to define the OSiL instance language.

<constraints number="2">
 <con name=“row0” ub="10.0"/>
 <con name=“row1” lb="10.0"/>
</constraints>

32

OS Protocols: OSiL
Schema a Constraints and Con Class

<xs:complexType name="constraints">
<xs:sequence>

<xs:element name="con" type="con" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="number" type="xs:nonNegativeInteger" use="required"/>

</xs:complexType>
<xs:complexType name="con">

<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="lb" type="xs:double" use="optional" default="-INF"/>
<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>
<xs:attribute name="mult" type="xs:positiveInteger" use="optional" default="1"/>

</xs:complexType>

33

The OSiL Schema

34

The OSiL Schema

The schema is used to validate the XML document. Think of
validation as an error check.

The schema defines an XML vocabulary, language, or dialect.
Examples include:

I XHTML – the markup language for Web documents

I FpML– Financial products Markup Language

I WordProcessingML and SpreadsheetML for Microsoft Office

I XBRL– eXtensible Business Reporting Language

I MathML– a format for representing math on Web pages

I AnatML– Anatomical Markup Language

I RSS – Really Simple Syndication for news feeds

OSiL – the markup language for optimization instances

35

The OSiL Schema

(1− x0)
2 + 100(x1 − x2

0)2

How do we validate this? Designing the schema is a huge problem!

+

^

2 -

1

x 0

*

100
^

-
2

x 1 ^

x 0 2

OSnLNodePlus
<plus>

OSnLNodePower
<power>

OSnLNodeMinus
<minus>

OSnLNodeNumber
<number value=”2"/>

OSnLNodeNumber
<number value=”1"/>

OSnLNodeNumber
<number value=”100”/>

OSnLNodeNumber
<number value=”2"/>

OSnLNodeNumber
<number value=”2"/>

OSnLNodeTimes
<times>

OSnLNodePower
<power>

OSnLNodePower
<power>

OSnLNodeMinus
<minus>

OSnLNodeVar
<variable coef=”1.0” idx=”0"/>

OSnLNodeVar
<variable coef=”1" idx=”1"/>

OSnLNodeVar
<variable coef=”1” idx=”0"/>

36

The OSiL Schema

Design Goal: represent a comprehensive collection of optimization
problems while keeping parsing relatively simple. Not easy!!!

I For purposes of validation, any schema needs an explicit
description of the children allowed in a <operator> element

I It is clearly inefficient to list every possible nonlinear operator
or nonlinear function allowed as a child element. If there are n
allowable nonlinear elements (functions and operators), listing
every potential child element, of every potential nonlinear
element, leads to O(n2) possible combinations.

I This is also a problem when doing function and gradient
evaluations, etc. a real PAIN with numerous operators and
operands.

I We avoid this by having EVERY nonlinear node an OSnLNode
instance.

37

The OSiL Schema
Solution: Use objected oriented features of the XML Schema
standard.

<xs:complexType name="OSnLNode" mixed="false"/>
<xs:element name="OSnLNode" type="OSnLNode"

abstract="true">

<xs:complexType name="OSnLNodePlus">
 <xs:complexContent>
 <xs:extension base="OSnLNode">
 <xs:sequence minOccurs="2" maxOccurs="2">
 <xs:element ref="OSnLNode"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

The multiplication operator

Extend OSnLNode

38

The OSiL Schema

I The code for implementing this is written in C++.

I The C++ code “mimics” the XML schema

I In C++ there is an abstract class OSnLNode with pure
virtual functions for function and gradient calculation.

I There are operator classes such as OSnLNodePlus that
inherit from OSnLNode and do the right thing using
polymorphism.

m_mChildren = new OSnLNode*[2];
double OSnLNodePlus::calculateFunction(double *x){

m_dFunctionValue = m_mChildren[0]->calculateFunction(x)
+ m_mChildren[1]->calculateFunction(x);
return m_dFunctionValue;

}// end OSnLNodePlus::calculate

39

OS Protocols: Representation

Two other key representation standards include:

I OSrL: Optimization Services Result Language. This a
standard for solver (server) to communicate back to the
modeling language (client) the result of the optimization.

I OSoL: Optimization Services Option Language. This is a
standard for communicating options to a solver, e.g. solve
using dual simplex.

40

OS Protocols: OSrL
Here is an example of OSrL (Optimization Services result
Language)

<variables>
<values>

<var idx="0">539.984</var>
<var idx="1">252.011</var>

</values>
</variables>
<objectives>

<values>
<obj idx="-1">7667.94</obj>

</values>
</objectives>

The fact that the result is in XML has important implications. It is
now easy to write XSLT (Extensible Stylesheet Language
Transformation) stylesheets to transform the result into human
readable HTML.

41

OS Protocols: OSrL

The use of the <other> element.

42

OS Protocols: OSoL
An example of Optimization Services result Language

<?xml version="1.0" encoding="UTF-8"?>
<osol >
<general>

<instanceLocation locationType="http">
http://gsbkip.chicagogsb.edu/parincLinear.osil

</instanceLocation>
<contact transportType="smtp">

kipp.martin@chicagogsb.edu
</contact>

</general>
</osol>

Two important features:

I the option to have result notifications sent via email (could
also ftp)

I the option to specify a problem instance on a remote machine
for solution

43

OS Protocols: Representation

Summary: The case for XML in EVERY protocol!

I Validation against a schema provides for error checking

I Validation against a schema promotes stability of a standard

I The schema can restrict data values to appropriate types, e.g.
row names to string, indices to integer, coefficients to double

I The schema can define keys to insure, for example, no row or
column name is used more than once

I The schema can be extended to include new constraint types
or solver directives

I There is a lot of open source software to make parsing easy

44

OS Protocols: Representation

Summary: The case for XML in an optimization system.

I When instances are stored in XML format, optimization
technology solutions are more readily integrated into broader
IT infrastructures

I XML is used for Web Services important for distributed
computing

I The XML format lends itself well to compression

I The XML format can be combined with other technologies,
e.g. XSLT to present results in human readable formats

I Encryption standards are emerging for XML possibly
important in a commercial setting

45

OS Protocols: Communication

The key protocol is Optimization Service Hookup Language
(OShL). A set of methods that control communication between a
client and a server.
Synchronous Service:

I solve(xsd string osil, xsd string osol)

Solver Server

Client Computer

Synchronous Communication

Solve Method

OSiL and OSoL

OSrL

46

OS Protocols: Communication
Asynchronous Communication and Calls:

Solver ServerClient Computer

Asynchronous Communication

getJobID() Method

OSoL

string - JobID

Solver Server
Client Computer

Send() Method

OSiL and OSoL

Solver Server
Client Computer

Knock() Method

OSpL OSoL

Solver ServerClient Computer

Retrieve() Method

OSoL

OSpL

OSrL

true or false

47

OS Protocols: Communication
Summary of Communication Protocols:

I solve(osil, osol):
I Takes OSiL and OSoL and returns OSrL (string/file version)
I Synchronous call, blocking request/response

I getJobID(osol)
I Gets a unique job id generated by the solver service
I Maintain session and state on a distributed system

I send(osil, osol)
I Same signature as the solve function but returns a boolean
I Asynchronous (server side), non-blocking call

I knock(ospl, osol)
I Get process and job status information from the remote server

I retrieve(osol)
I Retrieving result from anywhere anytime

I kill(osol)
I kill remote optimization jobs
I Critical in long running optimization jobs

48

OS Protocols: Registry

Two parts:
1. A client may not have the address of a solver. This problem is
resolved by contacting the registry for a solver address.

2. A solver may wish to register its service with the registry.

49

Solver Service – An OS Implementation

Optimization Services is a set of protocols. We now describe server
and client services built on optimizations services.

OSiL
Reader

Osil
instance Solver

Interface
Solver
Engine

OSInstance
Objects

Network

Laptop
with Modeling

Language
Server with

Optimization Solver

Osil
instance

50

Solver Service – An OS Implementation

Implementing a Solver Service

I On the solver end expose an optimization solver (or problem
analyzer).

I This is most easily done by using an existing Web Server that
supports Web Services.

1. Apache + Tomcat
2. Tomcat (Java or C++) – We have implemented both.
3. JBoss
4. IIS
5. High end – Websphere, Weblogic, Oracle, Geronimo

I Programming language is irrelevant but Java dominates the
XML world.

51

Solver Service – An OS Implementation

We have a set of open-source Java libraries that implement our
communication protocols of solve(), send(), knock(), kill(),
retrieve(), getJobID().

Programming language becomes important at this point. What if,
e.g. your solver is C++ and the Web Service is in Java. Two
options.

I Option 1: Use JNI (Java Native Interface). Call the solve()
method using JNI. A bit risky.

I Option 2: Implement a Java solve() method in the Java
Web Service that use the Java Runtime class. Use this to
launch a C++ executable. Pass the executable the OSiL and
OSoL as files. Then have the executable write a file with the
OSrL and pass this back in the SOAP envelope. This is what
we do.

52

Solver Service – An OS Implementation

In our implementation (again all open source) there is an
OSSolverService executable in C++ (and to be made available
on Windows, Linux, and Mac platforms).

Here is what OSSolverService does:

I Read the OSoL file

I Determine the appropriate solver and instantiate a solver
object in the appropriate solver class

I Pass the appropriate solver object the instance in OSiL format

The OSSolverService is linked with the necessary solver libraries.

53

Solver Service – An OS Implementation

Here is a generic implementation of a solver object.

54

Solver Service: OSInstance API
When the problem instance is read into memory an OSInstance
object is created that provides an API (Application Program
Interface) to the problem data for the solver.

Schema complexType In-memory class

<xs:complexType name="Variables"> <--> class Variables{

public;

<xs:sequence> Variables();

<xs:element name="var" type="Variable" maxOccurs="unbounded"/> <-------------> Variable *var;

</xs:sequence>

<xs:attribute name="number" type="xs:positiveInteger" use="required"/> <------> int number;

</xs:complexType> }; // class Variables

<xs:complexType name="Variable"> <---> class Variable{

public;

Variable();

<xs:attribute name="name" type="xs:string" use="optional"/> <------------------> string name;

<xs:attribute name="init" type="xs:double" use="optional"/> <------------------> double init;

<xs:attribute name="initString" type="xs:string" use="optional"/> <------------> string initString;

<xs:attribute name="type" use="optional" default="C"> <------------------------> char type;

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="C"/>

<xs:enumeration value="B"/>

<xs:enumeration value="I"/>

<xs:enumeration value="S"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="lb" type="xs:double" use="optional" default="0"/> <--------> double lb;

<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/> <------> double ub;

</xs:complexType> }; // class Variable

OSiL elements In-memory objects

<variables number="2"> OSInstance osintance;

<var lb="0" name="x0" type="C"/> osinstance.instanceData.variables.number=2;

<var lb="0" name="x1" type="C"/> osinstance.instanceData.variables.var=new Var[2];

</variables> osinstance.instanceData.variables.var[0].lb=0;

osinstance.instanceData.variables.var[0].name=x0;

osinstance.instanceData.variables.var[0].type=C;

osinstance.instanceData.variables.var[1].lb=0;

osinstance.instanceData.variables.var[1].name=x1;

osinstance.instanceData.variables.var[1].type=C;

1

55

Solver Service – OSInstance API

Some OSInstance API features are:

I get instruction lists in postfix or prefix

I get a text version of the model in infix

I get function and gradient evaluations

I get information about constraints, variables, objective
function, the A matrix, etc.

I get the root node of the OSExpression tree

56

Solver Service – An OS Implementation

Here is an implementation for solvers that can be linked to the
COIN OSI.

57

COIN-OR

COIN-OR COmputational INfrastructure for OR

I The open-source movement has come to OR

I High-quality solvers are available under the CPL (common
public license).

I See for example CLP (linear), IPOPT (nonlinear), CBC
(integer)

I You can download either the source or binaries for the major
platforms

I Have an idea for a new IP cut? Piggyback off the code
already there.

I Why pay for what you can get for free?

I There is a conference at DIMACS July 17-20 with a lot of
tutorials.

See www.coin-or.org.

58

Client Service – An OS Implementation

Here is what happens on the client end.

59

Client Service – An OS Implementation

The SOAP – first there is a header

POST /lindo/LindoSolverService.jws HTTP/1.0
Host: gsbkip.chicagogsb.edu
Content-Type: text/xml; charset=UTF-8
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: "OSSolverService#solve"
Content-Length: 2335

The key line is the POST command. It tells the server which
service to use. In this case it is LINDO.

60

Client Service

The SOAP – then the envelope In this case we are implementing
a solve over the network.

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>

<solve>
<osil xsi:type="xsd:string">

The OSiL string goes here
</osil>
<osol xsi:type="xsd:string">

The OSoL string goes here
</osol>

</solve>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

61

Client Service

WSDL – Web Services Discovery Language.

You can use products such as Apache Axis and Visual Studio .NET
to generate code from the WSDL.

For example:

http://128.135.130.17:8080/lindo/LindoSolverService.jws?

62

Summary: An Example of Optimization
Services

XML
Data

OSrL
Instance

OSmL

OSiL
Instance

XML Data ServerSolver Server

HTML
Result

Registry Server

Client Computer

OSmL Server

63

Summary and Future Work

Modeling languages that can generate OSiL:

I AMPL (linear OSiL – use nl2osil class – nonlinear on the way)

I OSmL (native linear and nonlinear)

I POAMS (native linear OSiL???)

Solvers:

I CLP - through COIN OSI

I GLPK – through COIN OSI

I CPLEX– through COIN OSI

I IMPACT - native support

I KNITRO - using function callbacks

I LINDO – using instruction list format

64

Future Work: To Do List

1. Finish libraries and donate to COIN-OR. All of this work will be
available under the CPL.
2. Work on extensions to OSiL

I constraint programming

I cone programming

I disjunctive and piecewise linear

I user defined functions

I real time data through XPath

I stochastic programming

3. A complete remake of the client GUI.
4. Hook the system up to Excel so you can formulate the model in
Excel but call any solver remotely. Use the Web Service References
Tool in Microsoft Office Visual Basic Editor.

65

Future Work: To Do List

5. OSmL: Optimization Services modeling Language

A. It should be able to act as an agent and send OSiL files to a
server with a solver that implements Optimization Services

B. It should be a true algebraic modeling language

1. take a general infix notation
2. support sets and subscripts
3. have looping capability
4. support logical conditions
5. allow for user-defined functions
6. allow for sparse sets, union, intersection, etc.

C. Store model instances internally as an OSInstance object

D. Access XML data using XPath

66

The OSmL Philosophy: All X all the time!

Key Premise: OSmL is based on XQuery. Think of XQuery as a
much more powerful SQL applied to XML data rather than
relational data.
SQL:

I SELECT

I FROM

I WHERE

XQuery (FLWOR flower):

I For

I Where

I Let

I Order by

I Return

67

The OSmL Philosophy: All X all the time!

Key Premise: XQuery (an extension of XPath) is a very powerful
modeling language for mathematical optimization. It is (See
Fourer 1983):

I symbolic

I general

I concise

I understandable

We can build a modeling language using existing W3C standards!

68

The OSmL Philosophy

69

	Optimization Services (OS)
	Service Oriented Architectures and Web Services
	Optimization As a Web Service
	OS Protocols
	OS Protocols: Representation
	OS Protocols: Communication
	OS Protocols: Registry

	Solver Service -- An OS Implementation
	COIN-OR
	Client Service -- An OS Implementation
	Summary and Future Work

