
Optimization Services (OS) Framework

Robert Fourer and Jun Ma
Northwestern University

Kipp Martin
University of Chicago

November 15, 2005

1

Outline

Optimization Services (OS)

Service Oriented Architectures and Web Services

Optimization As a Web Service

OS Protocols
OSProtocols: Representation
OSProtocols: Communication
OSProtocols: Registry

Solver Service – An OS Implementation

Client Service – An OS Implementation

Summary

2

Optimization Services (OS)

Software as a service! In industry, CRM (customer relationship
software), tax preparation, Office Live, etc. are all becoming
services. All of the major players in software are promising software
as a service. There clearly is a trend away from the fat client
loaded with lots of heavyweight applications.

So why not Optimization Services?

What is Optimization Services?

Short Answer: A service oriented architecture for optimization
based on Web services.

3

Optimization Services (OS)

Optimization Services Long Answer:

I A set of standards to facilitate communication between
modeling languages, solvers, problem analyzers, simulation
engines, and registry and discovery services in a distributed
computing environment.

I These standards should be programming language, operating
system, and hardware independent.

I These standards should be open and available for everyone in
the OR community to use free of charge.

4

Optimization Services (OS)

Optimization Services Long Answer:

I A set of standards to facilitate communication between
modeling languages, solvers, problem analyzers, simulation
engines, and registry and discovery services in a distributed
computing environment.

I These standards should be programming language, operating
system, and hardware independent.

I These standards should be open and available for everyone in
the OR community to use free of charge.

5

Optimization Services (OS)

Optimization Services Long Answer:

I A set of standards to facilitate communication between
modeling languages, solvers, problem analyzers, simulation
engines, and registry and discovery services in a distributed
computing environment.

I These standards should be programming language, operating
system, and hardware independent.

I These standards should be open and available for everyone in
the OR community to use free of charge.

6

Optimization Services

Optimization services is needed because there are:

I Numerous modeling languages each with their own format for
storing the underlying model.

I Numerous solvers each with their own application program
interface (API). There is no standard API.

I Numerous operating system, hardware, and programming
language combination. It is difficult for software vendors to
support every platform.

I No standard for representing problem instances, especially
nonlinear optimization instances.

I No real standard for registry and discovery services.

7

Optimization Services

In the rest of the talk we describe how to blend together:

I A Service Oriented Architecture (SOA) using Web Services

I Optimization Service Protocols – one way to view
optimization systems is as a set of protocols

I Solver and Client Service implementations based on Web
Services and OS Protocols

8

Service Oriented Architectures

Key Trend: An important trend in industry is the move to services
oriented architectures and Web services. All of the major players
such as IBM, Microsoft, Oracle, Sun, etc are talking about service
oriented architectures and bringing out products.

9

Service Oriented Architectures

An SOA is a philosophy for how a distributed component
architecture should work it is not a specific technology

Web Services is a technology that implements this philosophy.

Definition: Web Services is SOAP over a transport protocol such
HTTP, SMTP, FTP, etc.

HTTP is the most common protocol and is the protocol we use
HTTP in our implementations.

10

Web Services

Web Services is Popular because:

I Uses open standards, e.g. HTTP, XML, SOAP

I Can be used to develop rich clients

I Can be used by components people not necessary

Web Services makes use of three major protocols:

I SOAP (Simple Object Access Protocol)

I WSDL (Web Services Discovery Language)

I UDDI (Universal Description, Discovery, and Integration)

11

Optimization As a Web Service

Optimization Services: a service oriented architecture for
optimization using Web services (SOAP over HTTP)

12

OSProtocols

Optimization Services: A set of protocols for representation,
communication, and registry.

13

OSProtocols: Representation

The representation protocols are standards based on XML
schemas. Several of the key representation standards include:

I OSiL: Optimization Services Instance Language. This is
perhaps the most important representation protocol. OSiL is a
standard for representing a very broad class of optimization
problem instances. This standard is critical for exchanging
problem instances between a solver (server) and a modeling
language (client).

I OSnL: General nonlinear terms are handled separately, by
defining an OSnL schema. Every element defined in the OSnL
schema is an OSnLNode element that is of type OSnLNode.
This leads to very efficient parsing.
We take a very object-oriented approach. An OSnLNode is
much like an abstract class in C++ or Java.

14

OSProtocols: Representation

The representation protocols are standards based on XML
schemas. Several of the key representation standards include:

I OSrL: Optimization Services Result Language. This a
standard for solver (server) to communicate back to the
modeling language (client) the result of the optimization.

I OSoL: Optimization Services Option Language. This is a
standard for communicating options to a solver, e.g. solve
using dual simplex.

There is also OSInstance that is a standard for representing
problem instances in-memory. Classes in OSInstance correspond to
ComplexTypes in the corresponding XML Schema.

15

OS Protocols: Representation

The representation standards are all XML based. The information
is in a text file with data and markup.

<variables>
<values>

<var idx="1" value="540.2"/>
<var idx="2" value="241.9"/>
<var idx="3" value="34"/>

</values>
</variables>

16

OSProtocols: Communication

The key protocol is Optimization Service Hookup Language
(OShL). A set of methods that control communication between a
client and a server.
Synchronous Service:

I solve(xsd string osil, xsd string osol)

Solver Server

Client Computer

Synchronous Communication

Solve Method

OSiL and OSoL

OSrL

17

OSProtocols: Communication
Asynchronous Communication and Calls:

Solver ServerClient Computer

Asynchronous Communication

getJobID() Method

OSoL

string - JobID

Solver Server
Client Computer

Send() Method

OSiL and OSoL

Solver Server
Client Computer

Knock() Method

OSpL OSoL

Solver ServerClient Computer

Retrieve() Method

OSoL

OSpL

OSrL

true or false

18

Solver Service – An OS Implementation

Optimization Services is a set of protocols. We now describe server
and client services built on optimizations services.

OSiL
Reader

Osil
instance Solver

Interface
Solver
Engine

OSInstance
Objects

Network

Laptop
with Modeling

Language
Server with

Optimization Solver

Osil
instance

19

Solver Service – An OS Implementation

Implementing a Solver Service

I On the solver end expose an optimization solver (or problem
analyzer).

I This is most easily done by using an existing Web Server that
supports Web Services.

1. Apache + Tomcat
2. Tomcat (Java or C++) – We have implemented both.
3. JBoss
4. IIS
5. High end – Websphere, Weblogic, Oracle, Geronimo

I Programming language is irrelevant but Java dominates the
XML world.

20

Solver Service – An OS Implementation

Implement the OS Communication standard:

I solve(osil, osol):
I Takes OSiL and OSoL and returns OSrL (string/file version)
I Synchronous call, blocking request/response

I getJobID(osol)
I Gets a unique job id generated by the solver service
I Maintain session and state on a distributed system

I send(osil, osol)
I Same signature as the solve function but returns a boolean
I Asynchronous (server side), non-blocking call

I knock(ospl, osol)
I Get process and job status information from the remote server

I retrieve(osol)
I Retrieving result from anywhere anytime

I kill(osol)
I kill remote optimization jobs
I Critical in long running optimization jobs

21

Solver Service – An OS Implementation

The solve(osil, osol) method in detail for a
CoinSolverService.

string OSSolverService::solve(string osil, string osol)
{

OSServiceUtil serviceUtil;
serviceUtil.m_solver = new CoinSolver();
char* osrl = &serviceUtil.solve(osil, osol)[0];
return osrl;

}

The serviceUtil object used above has a data member that is
the implementation of an abstract DefaultSolverClass.
If you use the OS libraries you do not need to worry about
getJobID(), send() kill(), knock(), and retrieve(). They
are done for you.

22

Solver Service – An OS Implementation

OSSolver Library: If you use this library (available in both Java
and C++) it is trivial to hook your solver into our API.

I The API provides a DefaultSolver class. It is an abstract
class.

I The DefaultSolver class has the pure virtual function

virtual string solve(string osil, string osol) = 0;

I Define your own class that inherits from DefaultSolver and
implements the solve() method for your solver.

23

Solver Service – An OS Implementation

Programming language becomes important at this point. What if,
e.g. your solver is C++ and the Web Service is in Java. Two
options.

I Option 1: Use JNI (Java Native Interface). Call the solve()
method using JNI. A bit risky.

I Option 2: Implement a Java solve() method in the Java
Web Service that use the Java Runtime class. Use this to
launch a C++ executable. Pass the executable the OSiL and
OSoL as files. Then have the executable write a file with the
OSrL and pass this back in the SOAP envelope.

24

The OSSolver Library - COIN Solver Example

Here is how the CoinSolver class works.

class CoinSolver : public DefaultSolver{
public:

string solve(string osil, string osol);
};

Now implement the CoinSolver solver.

string CoinSolver::solve(string osil, string osol) {
solverName = osol;
OSiLReader* osilreader;
OSInstance* theosinstance = 0;
OsiSolverInterface* solver = 0;

...

25

The OSSolver Library - COIN Solver Example

Implementation of CoinSolver solve() method (continued).

if(osol == "glpk")
solver = new OsiGlpkSolverInterface();

else
solver = new OsiClpSolverInterface();

osilreader->readOSiL(osil);
theosinstance = osilreader->getOSInstance();
if(!setOSInstance(theosinstance)) return 0;
return optimize();

}

Important: the CoinSolver class must put the OSInstance object
into the COIN data structures such as the CoinPackedMatrix

26

Client Service – An OS Implementation

The SOAP – first there is a header

POST /os/ossolver/LindoSolverService.jws HTTP/1.0
Host: gsbkip.chicagogsb.edu
Content-Type: text/xml; charset=UTF-8
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: "OSSolverService#solve"
Content-Length: 2335

The key line is the POST command. It tells the server which
service to use. In this case it is LINDO.

27

Client Service

The SOAP – then the envelop. In this case we are implementing a
solve over the network.

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>

<solve>
<osil xsi:type="xsd:string">

The OSiL string goes here
</osil>
<osol xsi:type="xsd:string">

The OSoL string goes here
</osol>

</solve>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

28

Client Service

WSDL – Web Services Discovery Language.

You can use products such as Apache Axis and Visual Studio .NET
to generate code from the WSDL.

For example:

http://gsbkip.chicagogsb.edu/os/osolver/COINSolverService.jws?

29

Summary: An Example of Optimization
Services

XML
Data

OSrL
Instance

OSmL

OSiL
Instance

XML Data Server
Solver Server

OSmL Server

Client Computer

HTML
Result

Registry Server

30

Summary

Modeling languages that can generate OSiL:

I AMPL (linear OSiL – use nl2osil.exe)

I OSmL (native linear and nonlinear)

I POAMS (native linear OSiL???)

Solvers:

I CLP - through COIN OSI

I FORTMP - LPFML

I GLPK – through COIN OSI

I IMPACT - native support

I KNITRO - using function callbacks

I LINDO – using instruction list format

31

	Optimization Services (OS)
	Service Oriented Architectures and Web Services
	Optimization As a Web Service
	OS Protocols
	OSProtocols: Representation
	OSProtocols: Communication
	OSProtocols: Registry

	Solver Service -- An OS Implementation
	Client Service -- An OS Implementation
	Summary

