
Optimization Services: A Framework
For Distributed Optimization

Kipp Martin
Booth School of Business

University of Chicago

November 7, 2010

1

Outline

What is Optimization Services (OS)?

Instance and Solver APIs

Using the Solver Service

Communication Protocols

Obtaining OS

Future Development

2

Background – Collaborators

I Robert Fourer – Northwestern University

I Horand (Gus) Gassmann – Dalhousie University

I Jun Ma – Northwester University

I Kipp Martin – University of Chicago

I Tim Middelkoop – University of Florida

I Imre Pólik – SAS Institute

I Wayne Shang – Northwestern University

3

Background – Motivation

Operations Research: focus is on standalone tools like modeling
languages and solvers designed to work on a single machine.

IT Community: focus is on tools like Extensible Markup
Language (XML), Service Oriented Architectures (SOA), and Web
Services that facilitate distributed computing.

Motivation: The OR community could much more readily achieve
its objective of the widespread use of optimization if optimization
tools were built into technologies that the IT community is already
using.

4

Background – Objective

Define standards for all activities necessary to support
decentralized optimization on the Internet: representation of
optimization instances, results, and solver options; communication
between clients and solvers; and discovery and registration of
optimization-related software using the concept of Web Services.

5

What Is Optimization Services (OS)?

1. A set of XML schemas optimization instances (OSiL),
optimization results (OSrL), and solver options (OSoL).

2. Open source libraries that support and implement these
standards/schemas. For each schema a corresponding
in-memory object:

1. OSiL – OSInstance

2. OSrL – OSResult

3. OSoL – OSOption

Each in-memory object is an API with get() and set()
methods. (We have OSxx readers and writers also.)

6

What Is Optimization Services (OS)?

3. A set of COIN-OR solver interfaces that implement the OS
standards:

I Bonmin

I Clp (through Osi)

I Cbc (through Osi)

I Couenne

I Dip (see Application Templates)

I DyLP (through Osi)

I Ipopt

I SYMPHONY (through Osi)

I Vol (through Osi)

7

What Is Optimization Services (OS)?

4. A set of modeling language interfaces that implement the OS
standards:

AMPL – OSAmplClient – inside AMPL this is like any other
solver except that you can place calls to remote solver servers.

model hs71.mod;
option solver OSAmplClient;
option OSAmplClient_options "serviceLocation yourURL ";
solve;

8

What Is Optimization Services (OS)?

4. (continued) A set of modeling language interfaces that
implement the OS standards:

GAMS (using GAMSLinks) – GAMS (23.4 and above) ships
with an “OS Solver”. At the command line tell GAMS to use
the OS solver.

gams eastborne.gms mip=os optfile=1

The options file is:

writeosrl result.osrl
readosol solveroptions.osol
writeosil eastborne.osil
service yourURL

9

What Is OS?

5. A command line executable OSSolverService for reading
problem instances (in OSiL format, AMPL nl format, or MPS
format) and calling a solver either locally or on a remote
server.

The OSSolverService has an interactive shell.

You can just “double-click” on the executable and it will guide
you through the process.

10

Using the OSSolverService

Double clicking on OSSolverService.exe gives:

11

What Is OS?

6. A library for converting MPS files and AMPL nl files into the
OSiL XML-based format.

7. Standards that facilitate the communication between clients
and optimization solvers using Web Services and libraries that
support these standards.

8. Java server software that works with Apache Tomcat and
Apache Axis. This software uses Web Services technology and
acts as middleware between the client that creates the
instance, and solver on the server that optimizes the instance
and returns the result.

12

Instance and Solver APIs

The C++ code “mimics” the XML schema.

Every interface (OSInstance, OSResult, OSOption) adheres to
these mapping rules!

13

Instance and Solver APIs
Schema:

<xs:complexType name="Constraints">
<xs:sequence>
<xs:element name="con" type="Constraint"/>
</xs:sequence>
<xs:attribute name="number" type="xs:nonNegativeInteger"/>
</xs:complexType>

CPP Code:

class Constraints{
public:

Constraints();
~Constraints();
int numberOfConstraints;
Constraint **con;

}; //class Constraints

14

Instance and Solver APIs

Mapping Rules:

I Each XML schema complexType corresponds to a class in
OSInstance. Elements in the actual XML file then
correspond to objects in the OSInstance class.

I An attribute or element used in the definition of a
complexType is a member of the corresponding in-memory
class; moreover the type of the attribute or element matches
the type of the member.

I A schema sequence corresponds to an array. For example, the
complexType Constraints has a sequence of <con> elements
that are of type Constraint.

15

Instance and Solver APIs

You can use the OSInstance API to build an optimization (linear,
nonlinear) instance.

Either work with pointers to the correct objects or use the
convenience methods.

osinstance->setVariableNumber(2);
osinstance->addVariable(0, "x0", -100, 100, ’C’);
osinstance->addVariable(1, "x1", 0, 1, ’B’);

16

Instance and Solver APIs

Using the solver interface:

DefaultSolver *solver = NULL;

solver = new CouenneSolver();

solver->osinstance = osinstance;

solver->osoption = osoption;

solver->buildSolverInstance(); //a pure virtual function

solver->setSolverOptions(); //a pure virtual function

solver->solve(); //a pure virtual function

17

Using the OSSolverService

The OS build includes the OSSolverService executable. This
executable can be called locally, or on a remote server.

A local call:

18

Using the OSSolverService

Here is the local call

OSSolverService -config
../data/configFiles/testlocal.config

where testlocal.config is

-osil ../data/osilFiles/parincLinear.osil
-solver ipopt
-serviceMethod solve

Options at command line override options in the configure file.

19

Using the OSSolverService

A remote call:

20

Using the OSSolverService

Figure: OShL and OSoL Protocols Inside a SOAP Envelope Inside an
HTTP Body.

21

Using the OSSolverService

A remote call with data solver server and data server:

22

Using the OSSolverService

Tell the remote solver were to look for the data. Give the
OSSolverService a service location and an option file.

The option file specifies the location of the model instance and
which solver to invoke.

The solver and model instance may be on different machines.

<general>
<instanceLocation locationType="http">

http://www.coin-or.org/OS/parincLinear.osil
</instanceLocation>
<solverToInvoke>clp</solverToInvoke>

</general>

23

Communication Protocols

Figure: A Summary of OS Protocols.
24

Communication Protocols

Figure: Centralized Distributed Computing Architecture.
25

Communication Protocols
Key Trend: An important trend in industry is the move to services
oriented architectures and Web services. All of the major players
such as IBM, Microsoft, Oracle, Sun, etc are talking about service
oriented architectures and bringing out products.

Figure: Services Oriented Architecture (SAO) Paradigm.

26

Communication Protocols

Figure: Centralized Distributed Computing Architecture.

27

Communication Protocols

An SOA is a philosophy for how a distributed component
architecture should work it is not a specific technology

Web Services is a technology that implements this philosophy.

Definition: Web Services is SOAP over a transport protocol such
HTTP, SMTP, FTP, etc.

HTTP is the most common protocol and is the protocol we use
HTTP in our implementations.

28

Communication Protocols

Figure: A Summary of OS Protocols.
29

Communication Protocols

30

Obtaining OS

Summary: OS has been built successfully on:

I Various flavors of GNU/Linux

I Windows using Microsoft Visual Studio (both Express and full
version – project files available)

I Windows using MSYS and Microsoft cl

I Windows using MINGW and gcc

I Windows using Cygwin and gcc

I Windows using Cygwin and cl

I Mac OS X (both Intel and Power PC)

https://projects.coin-or.org/TestTools/wiki/
NightlyBuildInAction

31

https://projects.coin-or.org/TestTools/wiki/NightlyBuildInAction
https://projects.coin-or.org/TestTools/wiki/NightlyBuildInAction

Obtaining OS

Binary Format Available for:

I Windows with Microsoft Visual Studio cl compiler (32 bit)

I GNU/Linux 32 and 64 bit

I Mac OS X (Intel)

32

Future Development

1. Modification: Right now we have implemented instance
representation, option representation, and result
representation. We need OSmL – Optimization Services
modification Language for modifying problems. Adding rows,
columns, etc.

2. Python Modeling Languages: integrate OS with the
COIN-OR modeling languages PuLP and Pyomo.

3. Decomposition: Integrate OS with algorithms, in particular
DIP, so that block optimization problems can be solved in
parallel over the Web.

4. Broader Instance Representations: Extend the type of
optimization problems handled by OSiL. Leading candidates
are stochastic, disjunctive, and cone.

5. Implement Registry Services: Extend the communication
and representation protocols to registry services.

33

Related Sessions

1. TD40: COIN-OR Under the Hood – I will discuss CoinEasy
and ApplicationTemplates. A discussion of application templates
that illustrate using OS with various solvers.

2. WA40: Solver APIs II – I will discuss in more detail the OS
solver API for COIN-OR solvers.

34

	What is Optimization Services (OS)?
	Instance and Solver APIs
	Using the Solver Service
	Communication Protocols
	Obtaining OS
	Future Development

