
Optimization Services and Nonlinear
Programming

Robert Fourer
Northwestern University

Jun Ma
Northwestern University

Kipp Martin
University of Chicago

November 6, 2007

1

Outline

The Context

The OS API

Algorithmic Differentiation API

Postfix (and Prefix)

2

Motivation

Here is the context.

Optimization
Instance

Optimization
Result

Client
Computer Solver

Server

3

Motivation

Here is what is happening on the solver.

4

The Solver Side

On the solver end there is an executable OSSolverService that
communicates with specific solver. Here is what it does.

Step 1: Create an OSiLReader object.

Step 2: Have the OSiLReader object parse the OSiL XML
instance and create an in-memory OSInstance object.

Step 3: Create an object in the specific solver class (e.g. create an
IpoptSolver, LindoSolver, or KnitroSolver).

Step 4: Have the solver specific object work with the a generic
OSInstance and the solver library to solve the problem.

5

Motivation

Here is another view of solver side

6

OS Customized Solver Interfaces

CoinSolver

Ipopt Solver

Knitro Solver

Lindo Solver

7

OS Supported Solvers

I Clp – using CoinSolver

I Cbc – using CoinSolver

I Cplex – using CoinSolver

I Dylp – using CoinSolver

I Glpk – using CoinSolver

I Ipopt – using IpoptSolver

I Knitro – using KnitroSolver

I Lindo – using KnitroSolver

I SYMPHONY – using CoinSolver

I Vol – using CoinSolver

8

Motivation

Objective: Create an API that is as flexible as possible and can
deal with numerous solver APIs

In this talk we focus on the nonlinear aspects of the API.

9

The OS API

The OSlib provides in-memory representation of optimization
instance, OSInstance. It is an API that has three types of
methods:

I get() methods: a set of methods to get information about
the problem instance including the problem in a postfix or
prefix format

I set() methods: a set of methods to create/modify a problem
instance

I calculate() methods: a set of methods for performing
Algorithmic Differentiation (based upon the COIN-OR CppAD
by Brad Bell).

10

Algorithmic Differentiation

The OS API has both high level and low level calls for algorithmic
differentiation.

Both the high level and low level calls are public methods but the
high level calls

I are meant to be user friendly – the user does not need to
know anything about forward sweeps or reverse sweeps or any
other aspect of algorithmic differentiation

I the high level calls are similar in nature to calls that the
nonlinear solver codes use

11

Algorithmic Differentiation – Sparsity Patterns

Many derivative-based solvers want to know the sparsity pattern of
the constraint Jacobian.

sparseJac = osinstance->getJacobianSparsityPattern();

I store non zero elements by row in sparse format

I the first conVals correspond to variables with constant
derivative

I variables with a constant derivative are never sent to
gradient and Hessian calculators

12

Algorithmic Differentiation – Sparsity Patterns

Similarly for Hessian of Lagrangian

osinstance->getLagrangianHessianSparsityPattern();

Here our code is not real smart smart at this point. For example,

x2
1 + x2

2 + · · · + x2
n

will generate a dense Hessian.

13

Algorithmic Differentiation – some motivation

Key Idea: The API of nonlinear solvers not really setup to
maximize the efficient use of AD.

A typical API will have methods such as:

I get an objective function value

I get constraint values

I get objective gradient

I get constraint Jacobian

I get Hessian of Lagrangian

An Issue: from an AD perspective, when, for example, calculating
first derivatives it would be nice to know if a second derivative is
also required.

14

Motivation

Here is another view of solver side

15

Algorithmic Differentiation – some motivation

The Problem: Many nonlinear algorithms, such as interior point
methods do not calculate all orders of derivatives for the current
iterate.

For example, they may do a simple line search and not use any
second derivative information.

In the API method calls for function evaluations they do not
communicate if a higher order derivative is required for the
current iterate.

16

Algorithmic Differentiation – gradient
calculation

calculateAllConstraintFunctionGradients()

The method arguments are:

I double* x

I double* objLambda

I double* conLambda

I bool new x

I int highestOrder

17

Algorithmic Differentiation – gradient
calculation

Assume, for example, only first derivative information required.

If a call has been placed to
calculateAllConstraintFunctionValues with highestOrder
= 0, then the appropriate call to get gradient evaluations is

calculateAllConstraintFunctionGradients(x, NULL, NULL,
false, 1);

Note that in this function call new x = false. This prevents a
call to forwardAD() with order 0 to get the function values.

18

Algorithmic Differentiation – gradient
calculation

If, at the current iterate, the Hessian of the Lagrangian function is
also desired then an appropriate call is

calculateAllConstraintFunctionGradients(x, objLambda,
conLambda, false, 2);

In this case, if there was a prior call

calculateAllConstraintFunctionValues(x, w, z, true, 0);

then only first and second derivatives are calculated, not function
values.

19

Algorithmic Differentiation – Hessian
calculation

In our implementation, there are exactly two conditions that
require a new function or derivative evaluation. A new evaluation
is required if and only if

1. The value of new x is true

–OR–

2. For the callback function the value of the input parameter
highestOrder is strictly greater than the current value of
m iHhighestOrderEvaluated.

In the code we keep track of the highest order derivative
calculation that has been made.

20

Algorithmic Differentiation – Hessian
calculation

for(index = 0; index < n; index++){
unit_col_vec[index] = 1;
// calculate column i of the Jacobian matrix
gradVals = f.Forward(1, unit_col_vec);
unit_col_vec[index] = 0;
// get row i of the Lagrangian function!!!
f.Reverse(2, lagMultipliers);

}

In a bad implementation, I could end up doing a forward sweep
three times.

21

The OS API – Postfix

Postfix is an excellent way to represent a wide variety of
optimization problems.

By defining enough operators you can model very generic nonlinear
optimization.

A good structure for implementing algorithmic differentiation.

As an example, the internal representation of an optimization
instance in LINDO is a postfix instruction list.

22

The OS API – Postfix

23

The OS API – Postfix

Key Postfix related methods.

In order to get the problem in postfix use the method:

getNonlinearExpressionTreeInPostfix(int rowIdx);

This returns a vector of pointers to OSnLNode objects.

There is an OSnLNode for every operator.

24

OS Supported Operators

I OSnLNodeVariable

I OSnLNodeTimes

I OSnLNodePlus

I OSnLNodeSum

I OSnLNodeMinus

I OSnLNodeNegate

I OSnLNodeDivide

I OSnLNodePower

I OSnLNodeProduct

I OSnLNodeLn

I OSnLNodeSqrt

I OSnLNodeSquare

I OSnLNodeSin

I OSnLNodeCos

I OSnLNodeExp

I OSnLNodeif

I OSnLNodeAbs

I OSnLNodeMax

I OSnLNodeMin

I OSnLNodeE

I OSnLNodePI

I OSnLNodeAllDiff

25

Using Lindo

Step 1: For each row and the objective function convert the
expression tree into a list of OSnLNodes in postfix.

Step 2: Loop over the list of OSnLNodes and create a Lindo
instructions list (map between OS operators and Lindo operator
codes).

Step 3: Call the Lindo LSaddInstruct() method.

Step 4: Solve!

26

Motivation

Here is another view of solver side

27

	The Context
	The OS API
	Algorithmic Differentiation API
	Postfix (and Prefix)

